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Abstract
In this paper, we show new results and improvements of the non-Archimedean counterpart
of classical analysis in the theory of lineability. Besides analyzing the algebraic genericity
of sets of functions having properties regarding continuity, discontinuity, Lipschitzianity,
differentiability and analyticity, we also study the lineability of sets of sequences having
properties concerning boundedness and convergence. In particular we show (among several
other results) the algebraic genericity of: (i) functions that do not satisfy Liouville’s theorem,
(ii) sequences that do not satisfy the classical theorem of Cèsaro, or (iii) functionals that do
not satisfy the classical Hahn–Banach theorem.
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Mathematics Subject Classification 15A03 · 46B87 · 26E30 · 46S10 · 32P05

1 Introduction and preliminaries

Throughout this paper, we are concerned with the study of rich algebraic structures within
families of functions and sequences that are non-linear. This kind of study belongs to the area
of lineability theory (intruduced by V. I. Gurariy in the early 2000’s [6,31,45], and recently
introduced by the AMS under classifications 15A03 and 46B87).
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The one result that, likely, inspired the introduction of this theory was perhaps that of
Levine andMilman [39] in 1940,which states that the set of all functions of bounded variation
on [0, 1] does not contain a closed infinite dimensional subspace in C([0, 1]) endowed with
the supremum norm.

Later, in 1966, V. I. Gurariy ([32], see also [33]), showed that the set of nowhere differ-
entiable functions on the unit interval of the real line contains an infinite dimensional vector
space. These works, among others, motivated the introduction of the notion of lineability in
2005 [6] (notion coined by V. I. Gurariy). One can go further and not just consider linear
spaces but, also, larger or more complex structures. For instance, we can name algebrabil-
ity and strong algebrability defined in [5,8], respectively. We refer the interested reader to
[1,2,4–6,10–14,14–17,19–22,24,25,27–29,45] for a current state of the art on this topic.

Before carrying on with the main results of this manuscript, let us gather some necessary
definitions and results from lineability theory. We shall use standard set-theoretical notation.
As usual, P, N, N0, Z, Q, R and C denote the sets of all prime numbers, natural, natural
numbers including zero, integer, rational, real, and complex numbers, respectively. We iden-
tify each cardinal number with the first ordinal of the same cardinality (thus, a cardinal κ is
equal to the set of all ordinals less than κ , denoted κ = {α : α < κ}). Also, ℵ0 and c denote
the cardinalities of N and R, respectively. The restriction of a function f to a set A will be
denoted by f � A.

We shall frequently use the Fichtenholz-Kantorovich-Hausdorff theorem about families
of independent sets in our proofs. This states that for any infinite set X there exists a family
Y ⊆ P(X) (called a family of independent sets) of cardinality 2card(X) such that for any finite
sequences Y1, . . . , Yn ∈ Y and ε1, . . . , εn ∈ {0, 1} we have Y ε1

1 ∩ · · · ∩ Y εn
n �= ∅, where

Y 1 = Y and Y 0 = X \ Y , the complement of the set Y denoted Y c. Moreover, all the sets in
Y can be chosen with cardinality card(X); for more information see, for example, [26,34].
Here P(X) denotes the power set of X . In what follows we fix P , N and B for a family of
independent subsets of P, N and [0, 1], respectively.

Now, we recall some usual terminology from the lineability theory. We say that a subset
A of a vector space V over a field K is:

• κ-lineable in V (where κ is a cardinal number) if there exists a vector space M of
dimension κ and M \ {0} ⊆ A.

If, in addition, V is a topological vector space over K, then A is said to be:

• κ-spaceable in V if there exists a closed vector space M of dimension κ such that
M \ {0} ⊆ A.

Finally, and following [5,8], if V is a topological vector space contained in a (not neces-
sarily unital) algebra and if κ and β are any (finite or infinite) cardinal numbers, then A is
called:

• κ-algebrable if there exists an algebraM such thatM \{0} ⊆ A andM is a κ-dimensional
vector space.

• (κ, β)-algebrable if there is an algebra M such that M \ {0} ⊆ A, dim(M) = κ and there
exists a minimal subset S of generators for the algebra M such that card(S) = β.

Here, by S = {sα : α ∈ I } is a minimal system of generators of M , we mean that M is the
algebra generated by S and for every α0 ∈ I , sα0 does not belong to the algebra generated
by S \ {sα0}.
• strongly κ-algebrable if there exists a κ -generated free algebra M such that M \{0} ⊆ A.
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Recall that an algebra M is called a κ-generated free algebra if there exists a subset
X = {xα : α < κ} of M such that any function f from X to some algebra A can be uniquely
extended to a homomorphism from M into A. Then X is called a set of free generators of
the algebra M . In a commutative algebra we have a simple criterion; namely, a subset X =
{xα : α < κ} in a commutative algebra B generates a free subalgebra M if and only if for any
polynomial P without free term and any xαi ∈ X , 1 ≤ i ≤ n, we have P(xα1 , . . . , xαn ) = 0 if
and only if P = 0 . It should be noted that X = {xα : α < κ} ⊂ B is a set of free generators of
a free algebraM ⊂ B if and only if the set of all elements of the form xk1α1x

k2
α2 · · · xknαn is linearly

independent and all linear combinations of these elements (called algebraic combinations)
are in B ∪ {0}. The notion of strong algebrability is essentially stronger than the notion of
algebrability; see [8].

Recently, we began to study the lineability of certain subsets of functions and sequences
over valued fields different from the classical fields of real and complex numbers; see [23,36–
38] . In this work we continue this study, investigating lineability and other related notions for
the spaces of functions and sequences over the field of p-adic numbers in order to establish
and compare the analogous of recent results within the context of non-Archimedean analysis.
This ought to give a new insight in the theory of lineability in particular and in analysis in
general by showing what properties of the scalar field are crucial for classical results.

This paper is arranged as follows. In Sect. 2, we recall some standard concepts and
notations concerning non-Archimedean analysis. In Sect. 3, we first show that, if K ∈
{Qp,Qp,Cp,�p}, the set of everywhere surjective functions fromK toK is 2c-lineable, and
(2c, 2c) -algebrable whenK �= Qp; generalizing [7] to the most important non-Archimedean
fields. Some results about Darboux continuity and functions having continuity only at a fixed
closed proper set are also given. Then we prove that the set of Lipschitz functions of order
1/m which are not of order 1/(m − 1) for any integer m ≥ 2 is c-lineable (obtaining as
a consequence an improvement of [37] about the set of continuous nowhere differentiable
functions). We also show that the set of discontinuous functions with finite range that have
antiderivative and the set of separately continuous functions from Q

n
p to Qp with p > 2

and n ≥ 2 that are everywhere continuous except at a point are c-lineable. In Sect. 4, we
begin by showing that the set of functions on Qp that do not satisfy Liouville’s theorem
is c-lineable. Then we prove a similar result for the set of sequences of functions that do
not satisfy a well known classical theorem on the interchange of limit and derivative, and
another result involving continuity and differentiablity. We also study the lineability of the
set of non-locally constant functions that have derivative 0 with additional Lipschitz condi-
tions. Finally, in Sect. 5, we provide some results on the spaces of p-adic sequences. More
specifically, we show that the set of bounded sequences not converging to zero is c-spaceable
and, within the same set, the family of sequences that also have only finitely many zero
coordinates is strongly c-algebrable. We also prove the strong c-algebrability of the set of
non-absolutely convergent series that are convergent; a result without any counterpart in the
real case. In the same line of study, we also prove that the set of convergent sequences that
are not Cesàro summable is strongly c-algebrable. Finally, we establish that the family of
functionals on c0, considered over any non-spherically complete non-Archimedean field with
non-trivial valuation, that do not have any continuous extension on �∞ is c -lineable. That
means that the set of functionals that do not satisfy the classical Hahn–Banach theorem in
the non-Archimedean setting is algebraically generic. Comparing with the classical cases,
these results require an entirely new approach for their proofs.
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2 A brief background p-adic analysis

We refer the interested reader for a more profound treatment of these topics to [4,30,35,43,
44,46]. Now we turn to the main object of the paper; p-adic analysis. A non-Archimedean
field is a field K equipped with a function (valuation)

| · | : K → [0,∞)

such that:

• |x | = 0 if and only if x = 0,
• |xy| = |x ||y|, and
• |x + y| ≤ max{|x |, |y|} (the strong triangle inequality),

for all x, y ∈ K. Clearly, |1| = | − 1| = 1 and the valuation of summing n-times 1 is less
or equal than 1 for all n ∈ N. An immediate consequence of the so-called strong triangle
inequality is that |x | �= |y| implies |x + y| = max{|x |, |y|}. A trivial example of a non-
Archimedean valuation is the function | · | taking everything except 0 into 1 and |0| = 0.
This valuation is referred to as the “trivial” one. By Big Ostrowski’s theorem (see [46,
theorem 1.2]) any complete valued field K that is not topologically isomorphic to R or C is
non-Archimedean.

Let us denote by p an arbitrary prime number throughout this work. For any non-zero
integer n �= 0, let ordp(n) be the highest power of p which divides n. Then we define
|n|p = p−ordp(n), |0|p = 0 and | nm |p = p−ordp(n)+ordp(m). The completion of the field of
rationals,Q, with respect to the p-adic metric d(x, y) = |x − y|p is called the field of p-adic
numbersQp . Themetric d satisfies the strong triangle inequality |x± y|p ≤ max{|x |p, |y|p}.
Ostrowski’s theorem states that every non-trivial absolute value on Q is equivalent (i.e.,
defines the same topology) to an absolute value | · |p , for some prime number p, or the usual
absolute value (see [30]).

Let a ∈ Qp and r be a positive number. The set B(a, r) = {x ∈ Qp : |x − a|p < r} is
called the open ball of radius r with center a, B(a, r) = {x ∈ Qp : |x − a|p ≤ r} the closed
ball of radius r with centera, and S(a, r) = {x ∈ Qp : |x−a|p = r} the sphere of radius r and
center a. The ring of integers in Qp is denoted by Zp , i.e., Zp = {x ∈ Qp : |x |p ≤ 1}. Note
that every x ∈ Zp can be expanded in canonical form as x = a0 + a1 p + · · · + ak pk + · · · ,
ak ∈ {0, 1, . . . , p − 1}, k ≥ 0. We know that Zp is a compact set and N is dense in Zp

[30]. Note that Qp is an infinite dimensional vector space over Q. In view of the fact that
card(Zp \ {0}) = c and by applying the canonical representation of the p-adic rationals, we
can take a Hamel basis of Qp over Q contained in Zp \ {0}.

As usual, we also denote byQp the algebraic closure ofQp and by Cp the completion of
Qp with respect to the extended p-adic valuation. Finally, by �p we denote the spherically
complete extension of Cp; see [43, III.2]. A metric space is called spherically complete if
each nested sequence of balls has a non-empty intersection.

Let us remark that the derivative of p-adic functions and analyticity of functions is defined
as in the case of classical real functions, for more details, see [46]. Other functions that are
relevant for our purposes are the Lipschitz functions. For any α > 0, the space of Lipschitz
functions from K1 to K2 of order α is defined as
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Lipα(K1 → K2) :={ f : K1 → K2 : ∃M>0(| f (x) − f (y)|p ≤M |x − y|αp,∀x, y ∈ K1)},

where K1 ∈ {Zp,Qp} and K2 ∈ {Qp,Qp,Cp,�p}.
The binomial coefficient functions

(x
n

)
are defined for x ∈ Zp and n ∈ N0 by

(
x

n

)
=
{

x(x−1)···(x−n+1)
n! if n > 0,

1 if n = 0.

Finally, we define K-normed spaces. Let V be a linear space over a field K with a non-
Archimedean non-trivial valuation | · |. A function ‖ · ‖ : V → [0,∞) is said to be a
non-Archimedean norm on V if the following conditions hold:

(i) ‖x‖ = 0 if and only if x = 0,
(ii) ‖λx‖ = |λ|‖x‖, for all λ ∈ K and x ∈ V ,
(iii) ‖x + y‖ ≤ max{‖x‖, ‖y‖}, for all x, y ∈ V .

Then (V , ‖ · ‖) is called a non-Archimedean normed space or a normed space overK. When
V is complete with respect to the norm ‖ · ‖, it is called Banach space over K.

TheBanach space of all sequences (xn)n≥0 with coordinates inK such that ‖(xn)n≥0‖∞ :=
supn∈N0

|xn | ≤ M , for some M ≥ 0, is denoted by �∞. The subspace of �∞ consisting of
all sequences converging to zero is denoted by c0. Unlike the Archimedean world, the dual
space of c0 is isometrically isomorphic to �∞ (see [42, theorem 2.5.11]).

Throughout this article we shall consider all vector spaces and algebras taken over the
field K = Qp (unless stated otherwise).

3 Algebraic genericity of sets of p-adic discontinuous, continuous, and
Lipschitz functions

We begin this section with a result about everywhere surjective functions. For a topological
space X and a non-empty set Y , we say that f : X → Y is everywhere surjective (ES)
provided f [U ] = Y for every non-empty open subset U of X . Apparently, the first example
of these surprising functions on the real line is due to H. Lebesgue. Algebrability of these
functions and other variants have been studied; see for example [7,9]. We give an optimal
result in the sense of cardinality for the considered valued fields. To do this let us consider
the following partition of Qp into c-many sets of cardinality c. For every α ∈ [0, 1], define

Aα =
{

x =
∞∑

i=−m

xi p
i ∈ Qp : lim sup

n→∞
card({x2k = 0 : 1 ≤ k ≤ n})

n
= α

}

.

Now, partition Aα into c-many sets of cardinality c as follows: for every β ∈ [0, 1], define

Aα,β =
{
x ∈ Aα : lim sup

n→∞
card({x2k−1 = 0 : 1 ≤ k ≤ n})

n
= β

}
.

Theorem 3.1 If K ∈ {Qp,Qp,Cp,�p}, then the family of ES functions Qp → K is

(i) 2c-lineable (as a K-vector space),
(ii) (2c, 2c)-algebrable if K �= Qp (as a K-vector space).
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Proof Fix K ∈ {Qp,Qp,Cp,�p}. Since card(K) = c, let γ : [0, 1] → K be a bijection.
Also let us define for every α ∈ [0, 1] the function rα : Qp → K as follows: for every
x ∈ Qp ,

rα(x) =
{

γ (β) if x ∈ Aα,β,

0 otherwise.

The functions rα are ES. Indeed, fix a ∈ Qp and ε ∈ {pn : n ∈ Z}. It is enough to prove
that rα[B(a, ε)] = K. Take y ∈ K arbitrary, then there exists a unique β ∈ [0, 1] such that
γ (β) = y. Now choose x ∈ B(a, ε)\{a}, then 0 < |x−a|p = pt < pn for some t ∈ Z\{0}.
Case (1): If t > 0, then change the coefficients of pk where k ≥ 0 in the canonical

representation of x so that x ∈ Aα,β .
Case (2): If t ≤ 0, then change the coefficients of pk where k > t in the canonical repre-

sentation of x so that x ∈ Aα,β .

Notice that in both cases we have x ∈ B(a, ε) ∩ Aα,β . Hence, rα(x) = y.
For every B ∈ B, we define rB = ∑α∈B rα . We will prove first that the functions rB are

well defined for any B ∈ B. For every x ∈ Qp , there exist unique α, β ∈ [0, 1] such that
x ∈ Aα,β . If α ∈ B, then rB(x) = γ (β) since {Aα : α ∈ Qp} forms a partition of Qp and
{Aα,β : β ∈ Qp} forms a partition of Aα . If not, then rB(x) = 0. Clearly, the function rB is
ES for every B ∈ B since for any α ∈ B and any non-empty open subset U of Qp we have
K ⊇ rB [U ] ⊇ rB[U ∩ Aα] = rα[U ∩ Aα] = K.

Let r = ∑n
i=1 airBi with n ∈ N, ai ∈ K \ {0} for every 1 ≤ i ≤ n and B1, . . . , Bn ∈ B

distinct. Choose α ∈ B1 ∩ Bc
2 ∩ · · · ∩ Bc

n . Thus, for every x ∈ Aα , we have r(x) = a1rB1(x).
Hence, the functions {rB : B ∈ B} are linearly independent over K. Moreover, since K ⊇
r [U ] ⊇ r [U ∩ Aα] = a1rB1 [U ∩ Aα] = a1K = K for any non-empty open subset U of Qp ,
we have that r is ES.

Assume now that K �= Qp . Let us prove first that rB1 does not belong to the algebra
generatedby {rB : B ∈ B}\{rB1}.Assumeotherwise, that is, there exist B2, . . . , Bn ∈ B\{B1}
distinct and a polynomial P in n − 1 variables with coefficients in K \ {0} and without free
term such that rB1 = P(rB2 , . . . , rBn ). Take α ∈ B1 ∩ Bc

2 ∩ · · · ∩ Bc
n , then for every x ∈ Aα

we have

rα(x) = rB1(x) = P(rB2(x), . . . , rBn (x)) = P(0, . . . , 0).

However, since rα[Aα] = K, we have reached a contradiction.
Now let B1, . . . , Bn ∈ B be distinct. Assume that P is a polynomial in n variables with

coefficients inK\{0} and without free term such that P(rB1(x0), . . . , rBn (x0)) �= 0 for some
x0 ∈ Qp \ {0}. Then there exists α ∈ B1 ∪ · · · ∪ Bn such that x0 ∈ Aα , since otherwise we
would have P(rB1(x0), . . . , rBn (x0)) = P(0, . . . , 0) = 0 contradicting the construction of
P . Thus, for any x ∈ Aα , we see that P(rB1(x), . . . , rBn (x)) is of the form P1(rα(x)), where
P1 is a polynomial in 1 variable with coefficients inK\ {0} and without free term. Therefore,
as K \ {0} is algebraically closed, for every non-empty open set U of Qp we have

K ⊇ P(rB1 , . . . , rBn )[U ] ⊇ P(rB1 , . . . , rBn )[U ∩ Aα] = P1(rα)[U ∩ Aα] = K.

This proves (ii). ��
A consequence of Theorem 3.1 is the following.

Corollary 3.2 If K ∈ {Qp,Cp,�p}, then the family of ES functions K → K is (2c, 2c)-
algebrable.
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Proof Fix K ∈ {Qp,Cp,�p} and let rB : Qp → K be the functions defined in the proof
of Theorem 3.1. Take H be a Hamel basis of K over Qp containing 1. Then, for every
x ∈ K, we have that x can be decomposed as x = β · 1 + y = β + y, where β ∈ Qp and
y ∈ span〈H \ {1}〉. For every B ∈ B, define ρB(x) = rB(β) for every x = β + y ∈ K.
Clearly the family of functions {ρB : B ∈ B} is linearly independent. Now take a non-empty
open subset U of K and fix x = β + y ∈ U , then there exists ε > 0 such that B(x, ε) ⊆ U .
Therefore for every z ∈ B(β, ε) ∩ Qp (where B(β, ε) ∩ Qp is a non-empty open subset of
Qp) we have z+ y ∈ B(x, ε) since |z+ y− x |p = |z+ y−β − y|p = |z−β|p < ε. Hence,

K ⊇ ρB [U ] ⊇ ρB [B(x, ε)] ⊇ ρB [{z + y : z ∈ B(β, ε) ∩ Qp}]
= rB [{z : z ∈ B(β, ε) ∩ Qp}] = rB [B(β, ε) ∩ Qp] = K.

Assume now that ρB1 belongs to the algebra generated by {ρB : B ∈ B}\{ρB1}, then there
exist B2, . . . , Bn ∈ B\{B1} distinct and a polynomial P in n−1 variables with coefficients in
K\{0} and without free term such that ρB1 = P(ρB2 , . . . , ρBn ). Take α ∈ B1∩Bc

2 ∩· · ·∩Bc
n ;

and fix an arbitrary ball B(x, ε) ∈ K, where x = β + y. For every z ∈ B(β, ε) ∩ Qp ∩ Aα ,
we have

rα(z) = rB1(z) = ρB1(z + y) = P(ρB2(z + y), . . . , ρBn (z + y))

= P(rB2(z), . . . , rBn (z)) = P(0, . . . , 0) = 0.

But, since rα[B(β, ε) ∩ Qp ∩ Aα] = K, we have a contradiction.
Finally, take B1, . . . , Bn ∈ B distinct and P a polynomial in n variables with coeffi-

cients in K \ {0} and without free term such that P(ρB1(x0), . . . , ρBn (x0)) �= 0 for some
x0 ∈ K \ {0}. Then there exists α ∈ B1 ∪ · · · ∪ Bn such that x0 = β0 + y0 with β0 ∈ Aα

and y0 ∈ span〈H \ {1}〉, since otherwise we would have P(ρB1(x0), . . . , ρBn (x0)) =
P(0, . . . , 0) = 0. Thus, for any x = β + y ∈ K with β ∈ Aα and y ∈ span〈H \ {1}〉,
we see that P(ρB1(x), . . . , ρBn (x)) is of the form P1(rα(x)), where P1 is a polynomial in 1
variable with coefficients in K \ {0} and without free term. Let U be a non-empty subset of
K and take an arbitrary open ball B(x, ε) ⊂ U , where x = β + y. Therefore, as K \ {0} is
algebraically closed, we have

K ⊇ P(ρB1 , . . . , ρBn )[U ] ⊇ P(ρB1 , . . . , ρBn )[B(x, ε)]
⊇ P(ρB1 , . . . , ρBn )[{z + y : z ∈ B(β, ε) ∩ Qp ∩ Aα}]
= P1(rα)[B(β, ε) ∩ Qp ∩ Aα] = K.

��
Let us recall that a subsetC of a non-ArchimedeanfieldK is called convex ifλx+μy+νz ∈

C for every x, y, z ∈ C , and λ,μ, ν ∈ K with |λ| , |μ|, |ν| ≤ 1 and λ + μ + ν = 1 (see [42,
theorem 3.1.15]). It can be seen that the only convex subsets of K are ∅, K, the singleton
sets and balls (see [42, p. 89]). A function f : C → K, where C is a convex set, is called
(convex) Darboux continuous if for each convex set A ⊆ K, the image f [A] is convex inK.

Remark 3.3 Notice that the definition of convex set over a non-Archimedean field K is not
the classical definition of a convex set in the Archimedean fields R or C. Recall that a subset
C of R (resp. C) is convex provided that λx + μy ∈ C for every x, y ∈ C , and λ,μ ∈ R

(resp. C) with |λ| , |μ| ≤ 1 and λ + μ = 1. The reader may think that such definition can
be adapted to any non-Archimedean field but this is not the case, for instance, on Q2, since
the residue class field of Q2 is the finite field of 2 elements F2 (see [42, theorem 3.1.17] and
[43, p. 145]).
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Take K ∈{Qp,Qp,Cp,�p}. If f : Qp → K (resp. f : K → K) is an ES function and
C is a convex subset ofQp (resp.K), then f [C] is the empty set, a singleton set, orK, i.e., a
convex subset ofK. Hence, as an immediate consequence of Theorem 3.1 and Corollary 3.2,
we have the following corollary, which generalizes [38, theorem 2.3].

Corollary 3.4 (1) If K ∈ {Qp,Qp,Cp,�p}, then the family of functions Qp → K that are
Darboux continuous but not continuous is

(i) 2c-lineable (as a K-vector space),
(ii) (2c, 2c)-algebrable if K �= Qp (as a K-vector space).

(2) If K ∈{Qp,Cp,�p}, then the family of functions K → K that are Darboux continuous
but not continuous is (2c, 2c)-algebrable.

The next result generalizes [38, theorem 2.5].

Proposition 3.5 The family of continuous functionsQp → Qp that are not Darboux contin-
uous is strongly c-algebrable.

Proof For every n ∈ N0, we denote by Sn the following set:

Sn =
{{

x ∈ Qp : |x | = pn
}

if n ≥ 1,
{
x ∈ Qp : |x | ≤ 1

}
otherwise.

Notice that Qp = ⊔
n∈N0

Sn . For every α ∈ (0, 1), we define hα : Qp → Qp as hα(x) =
p−�nα� if x ∈ Sn for every n ∈ N0. Since the spheres and closed balls of the space Qp are
open (see [42, proposition 2.2]), we have that the sets Sn are open and, therefore, hα is locally
constant for every α ∈ (0, 1). Hence, hα is continuous for every α ∈ (0, 1) and, thus, every
algebraic combination of the functions {hα : α ∈ (0, 1)} is also continuous.

Take, without loss of generality, 0 < α1 < · · · < αk < 1. Let P be a polynomial in k
variables with coefficients in Qp \ {0} and without free term. If Pi are the monomials that
form P and x ∈ Sn , then

P
(
hα1 , . . . , hαk

)
(x) =

t∑

i=1

Pi
(
p−�nα1 �, . . . , p−�nαk �) .

In particular,

P
(
hα1 , . . . , hαk

)
(x) =

t∑

i=1

γi p
−ik�nαk �−···−i1�nα1 �, (3.1)

where γi ∈ Qp \ {0} are the coefficients of P and ik, . . . , i1 are non-negative integers.
Assume, without loss of generality, that the k-tuples (ik, . . . , i1) from (3.1) appear ordered
lexicographically. Notice that all the k-tuples are distinct since otherwise we could add the
monomials in the polynomial P that have these k-tuples as exponents. Clearly, we have that
(tk, . . . , t1) = max{(ik, . . . , i1) : 1 ≤ i ≤ t} and also (ik, . . . , i1) < (tk, . . . , t1) for any
other k-tuple (ik, . . . , i1) in (3.1) (the latter makes sense if there are 2 or more k-tuples, if
not then (tk . . . , t1) is the only k-tuple). Hence, there exists n0 ∈ N such that for any n ≥ n0
we have

∣∣P
(
hα1 , . . . , hαk

)
(x)
∣∣
p = |γt |p · p tk�nαk �+···+t1�nα1 �.

Thus, P
(
hα1 , . . . , hαk

)
is not identically zero.Moreover, P

(
hα1 , . . . , hαk

) [Qp] is an infinite
set. Since the functions hα are constant in Sn and the sets Sn form a partition ofQp , we have
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that the cardinality of the set P
(
hα1 , . . . , hαk

) [Qp] is ℵ0. Hence, as the convex sets have
cardinality 0, 1 or c (see [42, lemma 3.2.1]), we have that P

(
hα1 , . . . , hαk

) [Qp] is not convex,
i.e., P

(
hα1 , . . . , hαk

)
is not Darboux continuous. ��

In [38, proposition 2.1], Khodabendehlou and the second and fourth authors prove that
given a closed proper subset F ofQp , the family of functionsQp → Qp that are continuous
only at the points belonging to F is 2c-lineable. Here we give a strong version of the result.

Theorem 3.6 If K ∈ {Qp,Cp,�p} and F is a closed proper subset of K, then the family of
functionsK → K that are continuous only at the points belonging to F is (2c, 2c)-algebrable.

Proof Fix K ∈ {Qp,Cp,�p}. Since card(Zp) = c, let ξ : [0, 1] → Zp be a bijection. Also
let us define for every α ∈ [0, 1], the function tα : Qp → Zp as follows: for every x ∈ Qp ,

tα(x) =
{

ξ(β) if x ∈ Aα,β,

0 otherwise.

Following the proof of Theorem 3.1 define the functions ϕB = ∑
α∈B tα for every B ∈ B.

As in the proof of Theorem 3.1, notice that the functions ϕB are well defined functions from
Qp to Zp and also tα[U ∩ Aα] = Zp for every non-empty open subset U of Qp .

Take H a Hamel basis of K over Qp containing 1. Then, for every x ∈ K, we have that
x can be decomposed as x = β · 1 + y = β + y, where β ∈ Qp and y ∈ span〈H \ {1}〉.
For every B ∈ B, define φB(x) = ϕB(β) for every x = β + y ∈ K. Similar to the proof of
Corollary 3.2, the functions φB are ES from K to Zp .

Consider now the distance function d ′(x, F) = min
{|x − c|p : c ∈ F

}
, where x ∈ K,

and take the sets

Fm =
{{

x ∈ K : p−(m+1) < d ′ (x, F) ≤ p−m
}

if m ∈ N,
{
x ∈ K : p−1 < d ′ (x, F)

}
if m = 0.

Now define the function d(·, F) : K → Qp as follows:

d(x, F) =
{
0 if d ′(x, F) = 0,
pm+1 si x ∈ Fm .

Notice that d(x, F) = 0 if and only if x ∈ F , and |d(x, F)|p ≤ d ′(x, F) for every x ∈ K.
For every B ∈ B, define the functions dB(x) = φB(x)d(x, F) for every x ∈ K. We will

prove that the family of functions {dB : B ∈ B} are continuous only at the points belonging
to F . Take x ∈ F , i.e., dB(x) = 0, and let (xn)n≥1 ⊂ K be a sequence converging to x , then
(dB(xn))n≥1 converges to 0. Indeed, notice that for every n ∈ N we have

0 ≤ |dB(xn)|p = |φB(xn)d(xn, F)|p ≤ |d(xn, F)|p ≤ d ′(xn, F)

If there are finitely many n ∈ N such that d ′(xn, F) �= 0, then clearly (dB(xn))n≥1 converges
to 0. If not, then the subsequence (xnk )k≥1 of (xn)n≥1 with d ′(xnk , F) �= 0 satisfies that
(dB(xnk ))k≥1 converges to 0 since (d ′(xnk , F))k≥1 converges to 0. The latter is true since
(xnk )k≥1 also converges to x, d ′(·, F) is continuous and |d(xn, F)|p ≤ d ′(xn, F). Thus,
dB � F is continuous. Now take x /∈ F . By means of contradiction, assume that dB is
continuous at x . We have two cases:

Case (1): Assume that φB(x) = 0. As φB is ES from K to Zp , we can choose a sequence
(xn)n≥1 ⊂ Fc converging to x such that φB(xn) = 1 for every n ∈ N. Since
(xn)n≥1 converges to x ∈ Fm for some m ∈ N0, we have that there exists n0 ∈ N
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such that |dB(xn)|p ≥ p−m−1 for every n ≥ n0. Hence, (dB(xn))n≥1 cannot
converge to 0, a contradiction.

Case (2): Assume that φB(x) �= 0. Once again, as φB is ES fromK to Zp , we can choose a
sequence (xn)n≥1 ⊂ Fc converging to x such that φB(xn) = 0 for every n ∈ N.
Since x ∈ Fm for some m ∈ N0, we have that dB(x) �= 0. But dB(xn) = 0 for
every n ∈ N, a contradiction.

Thus dB is not continuous at the points outside F .
Let B1 ∈ B, we will prove that dB1 does not belong to the algebra generated by

{dB : B ∈ B} \ {dB1}. Assume that dB1 can be written as P(dB2 , . . . , dBn ), where
B2, . . . , Bn ∈ B \ B1 are distinct and P is a polynomial in n − 1 variables with coeffi-
cients in K \ {0} and without free term.

Fix x = β + y ∈ Fc. There exists ε > 0 such that B(x, ε) ⊆ Fc. Analogously to the
proof of Corollary 3.2 we have that given z ∈ B(β, ε) ∩ Qp , then z + y ∈ B(x, ε). Take
α ∈ B1 ∩ Bc

2 ∩ · · · ∩ Bc
n . Then, for every x = z + y ∈ Fc with z ∈ B(β, ε) ∩ Qp ∩ Aα , we

have

ϕB1(z)d(x, F) = φB1(x)d(x, F) = dB1(x)

= P(dB2(x), . . . , dBn (x)) = P(0, . . . , 0) = 0.

But, since ϕB1 [B(β, ε) ∩ Qp ∩ Aα] = Zp and d(x, F) �= 0 for every x ∈ Fc, we have a
contradiction.

It is clear that any algebraic combination of the functions {dB : B ∈ B} over K

is continuous at the points belonging to F . It remains to show the following: Given
B1, . . . , Bn ∈ B distinct and assuming that P is a polynomial in n variables with coef-
ficients in K \ {0} and without free term such that P(dB1(x0), . . . , dBn (x0)) �= 0 for
some x0 ∈ K \ {0}, then P(dB1 , . . . , dBn ) is discontinuous outside F . Now, there exists
α ∈ B1 ∪ · · · ∪ Bn such that x0 = β0 + y0 with β0 ∈ Aα and y0 ∈ span〈H \ {1}〉, since
otherwise P(dB1(x0), . . . , dBn (x0)) = P(0, . . . , 0) = 0. Moreover, x0 ∈ Fc, if not, then
P(dB1(x0), . . . , dBn (x0)) = P(0, . . . , 0) = 0. Hence, for any x = β + y ∈ Fc with β ∈ Aα ,
we have that P(dB1(x), . . . , dBn (x)) is of the form P1(tα(β)d(x, F)), where P1 is a polyno-
mial in 1 variable with coefficients in K \ {0} and without free term. Fix x ∈ Fm for some
m ∈ N0. If m �= 0, take Vx a neighborhood of x sufficiently small contained in Fm ∪ Fm−1.
If m = 0, take Vx contained in F0. Notice that there exists a neighborhoodUβ of β such that
Uβ + y ⊂ Vx . We have two cases:

Case (1): Assume that P(dB1(x), . . . , dBn (x)) = 0. Since P1 takes the value 0 at most on
a finite set C ⊂ K, take a sequence (xr )r≥1 that converges to x satisfying: xr =
βr + yr ∈ Vx with βr ∈ Aα ∩Uβ and yr ∈ span〈H\{1}〉, (tα(βr ))r≥1 is a constant
sequence, and (tα(βr )d(xr , F))n≥1 �⊂ ∪z∈C B(z, ε)with ε > 0 sufficiently small.
This can be done as tα is ES fromQp toZp and d(xr , F) ∈ {pm, pm+1

}
for every

r ∈ N. Hence, (P1(tα(βr )d(xr , F)))r≥1 does not converge to 0.
Case (2): Assume that P(dB1(x), . . . , dBn (x)) �= 0. Take α′ ∈ Bc

1∩· · ·∩Bc
n and a sequence

(xr )r≥1 converging to x such that xr = βr + yr ∈ Vx with βr ∈ Aα′ and
yr ∈ span〈H \ {1}〉. Now we have that (P(dB1(xr ), . . . , dBn (xr )))r≥1 is the zero
sequence which cannot converge to P(dB1(x), . . . , dBn (x)).

Thus, P(dB1 , . . . , dBn ) is not continuous at any point of Fc. ��
In the next result, we give a p-adic analogous of [3, theorem 5.1]. Here we need a more

delicate argument in comparison to the real case. We equip the space Qn
p with the following
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norm:

|x |p = max
1≤i≤n

|xi |p, x = (x1, . . . , xn) ∈ Q
n
p.

Theorem 3.7 Let n ≥ 2 and x0 ∈ Q
n
p with p > 2. The family of separately continuous

functions Qn
p → Qp that are everywhere continuous except at x0 is c-lineable.

Proof We will prove the result in the case when n = 2. Fix x0 = 0, where 0 := (0, 0).
For any x, y ∈ Zp written in the canonical form x = ∑∞

n=0 an p
n and y = ∑∞

n=0 bn p
n ,

let us denote c(x, y) := ∑∞
n=0 cn p

n , where cn = an and c2n+1 = bn . Let us also denote
x =∑∞

n=1

(
a2n+1 p2n + a2n p2n+1

)
for any x =∑∞

n=0 an p
n ∈ Zp .

Let us define f : Qp × Qp → Qp as follows

f (x, y) =
{

c(x,y)c(y,x)
c(y,x)c(x,y) if (x, y) ∈ Z

2
p \ {0},

1 otherwise.

Notice that if (x, y) /∈ Z
2
p \ {0}, then there exists a neighborhood V(x,y) of (x, y) such that

f � V(x,y) ≡ 1. Indeed, as (x, y) /∈ Z
2
p \ {0}, there exists r ∈ N such that |(x, y)|p = pr .

Hence, (x, y) ∈ S(0, pr ) which is an open set and, therefore, for every 0 < ε < pr , we have
B((x, y), ε) ⊂ S(0, pr ). Thus, f � B((x, y), ε) ≡ 1.

Now, on the one hand, for any (x ′, y′) ∈ Z
2
p \ {0}, there exists (x, y) ∈ Z

2
p \ {0} such that

|x − x ′| < p−2r+1 and |y − y′| < p−2r+1 with r sufficiently large. Then,

c(x ′, y′)
c(y′, x ′)

= a′
0 + b′

0 p + · · · + b′
2r−1 p

4r−1 + a′
2r p

4r + · · ·
b′
0 + a′

0 p + · · · + a′
2r−1 p

4r−1 + b′
2r p

4r + · · · ,

c
(
y′, x ′

)

c
(
x ′, y′

) = b′
1 + a′

1 p + b′
0 p

2 + a′
0 p

3 + · · · + a′
2r−2 p

4r−1 + d2r p4r + · · ·
a′
1 + b′

1 p + a′
0 p

2 + b′
0 p

3 + · · · + b′
2r−2 p

4r−1 + c2r p4r + · · · .

Notice that we have the following

∣∣ f (x ′, y′) − f (x, y)
∣∣
p ≤ p−4r

|c(y′, x ′)|p
∣∣∣c(x ′, y′)

∣∣∣
p
|c(y, x)|p |c (x, y)|p

−→ 0,

as r → ∞.
On the other hand, for any k ∈ N, consider the sequence (xkn , y

k
n )n≥0 ⊂ Z

2
p , where

xkn = 2p2n + 2p2n+1 + 2p2n+2k+1 and ykn = p2n + p2n+1 + p2n+2k+1 for every n ≥ 0.
Then, for any n ≥ 0, we have that

f (xkn , y
k
n ) = 2 + p + 2p2 + p3 + 2p4k+2 + p4k+3

1 + 2p + p2 + 2p3 + p4k+2 + 2p4k+3

·1 + 2p + p2 + 2p3 + p4k + 2p4k+1

2 + p + 2p2 + p3 + 2p4k + p4k+1 .

Thus, for any k ∈ N, when n → ∞ we have that (xkn , y
k
n )n≥0 tends to zero in Q

2
p and

f (xkn , y
k
n ) tends in Qp to the constant

βk = 2 + p + 2p2 + p3 + 2p4k+2 + p4k+3

1 + 2p + p2 + 2p3 + p4k+2 + 2p4k+3 · 1 + 2p + p2 + 2p3 + p4k + 2p4k+1

2 + p + 2p2 + p3 + 2p4k + p4k+1 .
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Notice that for distinct k, k′ ∈ N, the p-adic numbers βk, βk′ are p-integers and also distinct.
Hence f is not continuous at 0. It is easy to see that f is separately continuous since f (0, x) =
f (y, 0) = 1 for every x, y ∈ Qp .
Let V be a family of c-many analytic linearly independent functions from Qp to Qp . For

every v ∈ V , let us define the function fv = v ◦ f : Q2
p → Qp . Take F = ∑n

j=1 α j fv j ,
where fv j are distinct and α j ∈ Qp for any 1 ≤ j ≤ n. If F were identically zero,
then

∑n
j=1 α jv j (βk) = 0 for every k ∈ N. Therefore, the function

∑n
j=1 α jv j (which is

analytic) would be equal to zero on an infinite set which contradicts Strassman’s theorem
[30, theorem 4.4.6]. Notice that by construction the function F is continuous except at 0 and
also separately continuous. ��

The next result shows that the inclusion

Lip1/(m−1)(K1 → K2) ⊂ Lip1/m(K1 → K2)

is proper, with K1 ∈ {Zp,Qp} and K2 ∈ {Qp,Qp,Cp,�p}; and large enough to contain a
c-dimensional linear space over K2.

Theorem 3.8 For every K1 ∈ {Zp,Qp}, K2 ∈ {Qp,Qp,Cp,�p} and any integer m ≥ 2,
the set Lip1/m(K1 → K2) \ Lip1/(m−1)(K1 → K2) is c-lineable (as a K2-vector space).

Proof Fix K1 ∈ {Zp,Qp}, K2 ∈ {Qp,Qp,Cp,�p} and an integer m ≥ 2. Given q ∈ P we
will define a function fq : K1 → Zp in the following way: for every x = ∑∞

n=r an p
n , with

r ∈ Z, take fq(x) =∑∞
n=0 am(m−1)qn+1 p(m−1)qn+1

.
Let us prove that for any q ∈ P, we have fq ∈ Lip1/m(K1 → K2). Take x, y ∈ K1.

Clearly | fq(x) − fq(y)|p ≤ |x − y|1/mp when x = y, so assume that x �= y. Hence there
exists t ∈ Z such that |x − y|p = p−t . We will divide the proof into two cases:

Case (1): If t ≤ m(m − 1)q , then | fq(x) − fq(y)|p ≤ p−(m−1)q . Thus | fq(x) − fq(y)|p ≤
p−(m−1)q ≤ p−t/m = |x − y|1/mp .

Case (2): If t > m(m − 1)q , then there exists nt ∈ N0 such that m(m − 1)qnt+1 < t ≤
m(m − 1)qnt+2. Therefore,

| fq(x) − fq(y)|p ≤ p−(m−1)qnt+2
,

and, hence, we have

| fq(x) − fq(y)|p ≤ p−(m−1)qnt+2 ≤ p−t/m = |x − y|1/mp .

For every P ∈ P , let us define FP = ∑
q∈P fq . Fix P ∈ P . The function FP is well

defined since, for every x ∈ K1, FP (x) exists. Indeed, it is enough to prove that ( fq(x))q∈P

converges to 0 for every x ∈ K1. Take x ∈ K1, then | fq(x)|p ≤ p−(m−1)q → 0 as q → ∞.
Let us prove now that FP /∈ Lip1/(m−1)(K1 → K2) for every P ∈ P . Fix P ∈ P . For every

q ∈ P , take x = 0 and yi = pm(m−1)qi+1
for any i ∈ N0. Notice that |yi |p = p−m(m−1)qi+1

and |FP (yi )| = p−(m−1)qi+1
for any i ∈ N0. Assume that FP ∈ Lip1/(m−1)(K1 → K2),

then there exists M > 0 such that |FP (x) − FP (yi )|p ≤ M |x − yi |1/(m−1)
p for any i ∈ N0.

Thus, we have p−(m−1)qi+1 ≤ Mp−mqi+1
for any i ∈ N0, that is, pq

i+1 ≤ M for any i ∈ N0,
which is absurd.
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Now we will show that FP ∈ Lip1/m(K1 → K2) for every P ∈ P . For every x, y ∈ K1

we have that

|FP (x) − FP (y)|p =
∣
∣
∣
∣
∣
∣

∑

q∈P

(
fq(x) − fq(y)

)
∣
∣
∣
∣
∣
∣
p

≤ sup
q∈P

∣
∣ fq(x) − fq(y)

∣
∣
p ≤ |x − y|1/mp .

Let us show that the functions in the set {FP : P ∈ P} are linearly independent over K2.
Take n distinct elements P1, . . . , Pn of P and consider F =∑n

j=1 b j FPj with b j ∈ K2 \ {0}
for every 1 ≤ j ≤ n. Notice that by picking q ∈ P1 ∩ Pc

2 ∩ · · · ∩ Pc
n and x = pm(m−1)q , we

have F(x) = b1 p(m−1)q . If F were the identically zero function, then b1 = 0 and we have a
contradiction.

Since Lip1/m(K1 → K2) forms a vector space over K2, we clearly have that any linear
combination over K2 of the functions in {FP : P ∈ P} belongs to Lip1/m(K1 → K2). It
remains to prove that given F = ∑n

j=1 b j FPj with b j ∈ K2 \ {0} and P1, . . . , Pn distinct
elements ofP , we have that F /∈ Lip1/(m−1)(K1 → K2). Take q ∈ P1∩ Pc

2 ∩· · ·∩ Pc
n , x = 0

and yi = pm(m−1)qi+1
for any i ∈ N0. Notice that |F(x) − F(yi )|p = |b1|p−(m−1)qi+1

for
any i ∈ N0. By using the same arguments as above we have that F /∈ Lip1/(m−1)(K1 → K2).

��
In [37, theorem 4.5], the authors prove that the family of uniformly continuous functions

Zp → Qp that are nowhere differentiable functions is c-lineable provided that p > 2. These
functions can be named Dieudonné’s monster in parallel to its counterpart in the real case
named Weierstrass’ monster.

By taking m = 2 in Theorem 3.8, note that the functions in the set Lip1/2(K1 →
K2) \ Lip1(K1 → K2), with K1 ∈ {Qp,Qp} and K2 ∈ {Qp,Qp,Cp,�p}, are uniformly
continuous and nowhere differentiable. Hence, we have the following result.

Corollary 3.9 For everyK1 ∈ {Zp,Qp} andK2 ∈ {Qp,Qp,Cp,�p}, the family of uniformly
continuous nowhere differentiable functions K1 → K2 is c-lineable (as a K2-vector space).

By an antiderivative of a function f we mean any function F such that F ′ = f . We give a
weaker corrected version of [38, theorem 2.7] . Let us remark that the functions constructed
in its proof are not everywhere discontinuous and do not generate an algebra.

Proposition 3.10 The family of discontinuous functions Qp → Qp with finite range that
have antiderivative is c-lineable.

Proof For every N ∈ N , let us define gN : Qp → Qp as

gN (x) =
{
0 if |x |p = p−n with n ∈ N ,

1 otherwise.

For any N ∈ N , the function gN clearly has finite range and has an antiderivative GN given
by

GN (x) =
{
xn pn + · · · + x2n p2n if |x |p = p−n with n ∈ N and x =∑∞

i=1 xi p
i ,

x otherwise.

Firstly, if x �= 0 and |x |p /∈ {p−n : n ∈ N
}
, there is a neighborhood Ux of x such that

GN � Ux is the identity function. Thus, GN is differentiable at x and the derivative is
1 = gN (x). Secondly, if |x |p ∈ {p−n : n ∈ N

}
, there is a neighborhood Ux of x such that
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GN � Ux is constant. Hence, GN is differentiable at x and the derivative is 0 = gN (x).
Lastly, we will analyze the case when x = 0. Notice that

GN (x) − GN (0)

x − 0
=

⎧
⎪⎪⎨

⎪⎪⎩

1 −
∑∞

i=2n+1 xi p
i

xn pn+∑∞
i=n+1 xi p

i if |x |p = p−n with n ∈ N

and x =∑∞
i=1 xi p

i ,

1 otherwise.

(3.2)

To see that GN is differentiable at 0 and G ′
N (0) = 1 = gN (0), it is enough to prove in (3.2)

that

lim
n→∞

∑∞
i=2n+1 xi p

i

xn pn +∑∞
i=n+1 xi p

i
= 0.

But the latter simply follows from the fact that
∣
∣
∣
∣
∣

∑∞
i=2n+1 xi p

i

xn pn +∑∞
i=n+1 xi p

i

∣
∣
∣
∣
∣
p

=
∣
∣
∣
∣
∣

∞∑

i=2n+1

xi p
i

∣
∣
∣
∣
∣
p

pn < pn−2n−1 = p−(n+1) → 0,

as n → ∞.
Moreover, gN is discontinuous at 0. Indeed, fix ε = p−1 . For every n ∈ N and every

x ∈ N with |x |p = p−n , we have |gN (0) − gN (x)|p = 1 > p−1. Obviously αgN has finite
range, is discontinuous at 0 and has antiderivative (i.e., αG ′

n = αgN ), for every α ∈ Qp \ {0}
and N ∈ N

Now, take α1, . . . , αk ∈ Qp and gN1 , . . . , gNk distinct, where k ∈ N. Define g = α1gN1 +
· · · + αkgNk , and assume first that g ≡ 0. Then, for any n ∈ Nc

1 ∩ N2 ∩ · · · ∩ Nk and any
x ∈ Qp with |x |p = p−n , we have 0 = g(x) = α1 . Repeating the same argument
we have that αi = 0 for every i ∈ {1, . . . , k}. Assume second that αi �= 0 for every
i ∈ {1, . . . , k}. Then g clearly has finite range and α1G1 + · · · + αkGk is an antiderivative.
It remains to prove that g is discontinuous at 0. Assume that |α1|p = pk , where k ∈ Z. Fix
ε = pk−1. For every n ∈ N1 ∩ Nc

2 ∩ · · · ∩ Nc
k and every x ∈ Qp with |x |p = p−n , we have

|g(0) − g(x)|p = |α1 + · · · + αk − (α2 + · · · + αk)|p = |α1|p > pk−1. ��

4 Lineability of sets of p-adic differentiable and analytic functions

We commence by showing the failure of celebrated Liouville’s theorem on p -adic numbers
field. Let us remark that Liouville’s theorem, which states that a bounded analytical function
of a field K is constant, holds true in any not locally compact complete non-trivially valued
field [44, theorem 42.6]. But this is not true for the locally compact case as illustrated in
[44, example 43.1]. We show that this is a generic algebraic behavior of bounded analytic
functions on Qp .

Theorem 4.1 The family of non-constant bounded analytic functionsQp → Qp is c-lineable.

Proof First, it is important to mention that the function f given in the proof of [44, exam-
ple 43.1] satisfies f (0) = 1. Also, by the proof of [44, example 43.1], we can assume that
| f (x)|p ≤ p−1. By considering now f̃ = f − 1, we have a non-constant bounded analytic
function from Qp to Qp , which will be called again f for simplicity, that satisfies the fol-
lowing properties: f (0) = 0 and | f (x)|p ≤ 1 for any x ∈ Qp . Hence, since f is analytic,
there exists (an)n≥0 ⊂ Qp such that f (x) = ∑∞

i=0 ai x
i for any x ∈ Qp and, as f (0) = 0,

notice that a0 = 0.
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Given q ∈ P, let us define the function gq(x) = pq f (x) for every x ∈ Qp . For every
P ∈ P , take GP = ∑

q∈P gq . Fix P ∈ P . The function GP is well defined since GP (x)
exists for every x ∈ Qp . Indeed, for every x ∈ Qp , we have that (gq(x))q∈P converges to 0
since |gq(x)|p ≤ p−q → 0 as q → ∞. Moreover, the functions GP are bounded since for
every x ∈ Qp we have

|GP (x)|p =
∣
∣
∣
∣
∣
∣

∑

q∈P

gp(x)

∣
∣
∣
∣
∣
∣
p

≤ sup
q∈P

∣
∣gp(x)

∣
∣
p ≤ 1.

Now we will prove that the functions GP are analytic in Qp . For every α ∈ Q \Z, let us
define aα = 0. Notice that the function

∑
i∈N
q∈P

pqa i
q
x

i
q is clearly analytic in Qp and for any

integer n ≥ 2 and every x ∈ Qp we have
∣
∣
∣
∣
∣
∣
∣∣

∑

i∈N
q∈P

pqa i
q
x

i
q −

∑

q∈P
q≤n

gp(x)

∣
∣
∣
∣
∣
∣
∣∣
p

≤ sup
i∈N

∣
∣
∣
∣
∣
∣
∣∣

∑

q∈P
q>n

pqa i
q
x

i
q

∣
∣
∣
∣
∣
∣
∣∣

≤ sup
i∈N

sup
q∈P, q>n

|pq |p
∣
∣
∣a i

q
x

i
q

∣
∣
∣
p

≤ sup
i∈N

sup
q∈P, q>n

∣∣∣p−(n+1)
∣∣∣
p

∣∣∣a i
q
x

i
q

∣∣∣
p

On the other hand, as
∑∞

i=0 ai y
i converges for any y ∈ Qp , the sequence (ai yi )i≥0 converges

to 0 for any y ∈ Qp (see, for instance, [35, proposition 3.3]). Hence, there exists Ay > 0
such that |ai yi |p ≤ Ay for any i ∈ N0. Thus

sup
q∈P, q>n

∣∣∣p−(n+1)
∣∣∣
p

∣∣∣a i
q
x

i
q

∣∣∣
p

≤ Ax p
−(n+1)

for any i ∈ N0. Since the latter upper bound does not depend on i , we have
∣∣∣∣∣∣∣∣

∑

i∈N
q∈P

pqa i
q
x

i
q −

∑

q∈P
q≤n

gp(x)

∣∣∣∣∣∣∣∣
p

= O
(
p−n) .

Hence GP (x) =∑q∈P gp(x) =∑i∈N
q∈P

pqa i
q
x

i
q for every x ∈ Qp .

It is clear that any non-zero linear combination onQp of functions in the set {GP : P ∈ P}
is a non-constant, bounded and analytic function fromQp toQp . It remains to prove that they
are linearly independent over Qp . Let i0 ∈ N be the index such that ai0 �= 0 and ai = 0 for
every 0 ≤ i ≤ i0−1. Take n distinct sets P1, . . . , Pn inP and the functionG =∑n

j=1 b jGPj

with b j ∈ Qp \ {0}. Notice that by taking q ∈ P1 ∩ Pc
2 ∩ · · · ∩ Pc

n , the coefficient of x
i
q with

i = i0q in the power series expansion of GP is b1 pqai0 . Hence, if G were identically zero,
we would have b1 = 0, which is absurd. ��

In the next proposition we study the failure of one of the standard results in real analysis
about the interchange of limit and derivative. More specifically, as K. Mahler put it [40]: if
a series f (x) = ∑

n fn(x) converges and the derived series g(x) = ∑
n f ′

n(x) converges
uniformly, g(x) still need not be the derivative of f (x). To do that, we need the van der Put
expansion of a continuous function on Zp . For an integer m > 0 and x ∈ Zp define

ψm(x) ≡ characteristic function of the ball B(m, p−�logp(m)�]−1)
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and

ψ0(x) ≡ characteristic function of the ball B(0, 1/p).

It is a well known result of van der Put that every continuous function f : Zp → K, where
K is a complete extension of Qp , is represented by the series f (x) = ∑∞

m=0 αmψm(x),
where αm ∈ K; see [41,43,44]. It should be noted that the series converges uniformly, and
the functions ψm form a basis of the space of locally constant functions Zp → K (see [43,
pp. 179–182]).

Now we are ready to prove our next result.

Theorem 4.2 For every K ∈ {Qp,Qp,Cp,�p}, the set of functions f : Zp → K such that
there exists a sequence of differentiable functions ( fn)n≥1 with fn : Zp → K, fn → f
uniformly and f ′

n → g uniformly but f ′ �= g is c-lineable.

Proof FixK ∈ {Qp,Qp,Cp,�p}. For every N ∈ N , let us define the power series fN (x) =
∑

n∈N pn
2
xn for any x ∈ Zp . Clearly, the radius of convergence of fN is infinite for any

N ∈ N . Now, let f = a1 fN1 + · · · + ak fNk , where k ∈ N, N1, . . . , Nk ∈ N are distinct and
a1, . . . , ak ∈ K \ {0}. Notice that f is a power series with coefficients in K. If f were the
zero power series, then the coefficients of f in the terms xn with n ∈ N1 ∩ Nc

2 ∩ · · · ∩ Nc
k ,

which are a1 pn
2
, would be zero. Thus, we would have a1 = 0 which is a contradiction. An

analogous approach shows that the derivative of f given by f ′ = a1 f ′
N1

+ · · · + ak f ′
Nk
,

where f ′
Ni

(x) =∑n∈Ni
npn

2
xn−1, is not the zero power series.

Let F = { fN : N ∈ N }. For any fN ∈ F and n ∈ N0, take fn,N to be the partial sum∑n
i=0 αiψi of the van der Put expansion of the function fN . On the one hand, as noted above,

the sequence ( fn,N )n≥0 converges uniformly to fN for any N ∈ N . On the other hand, in
view of the fact that (ψi )i≥0 is a basis of the space of locally constant functions Zp → K,
we have that f ′

n,N ≡ 0 for any n ∈ N0 and N ∈ N . Hence, ( f ′
n,N )n≥0 converges uniformly

to the zero function for any N ∈ N . But f ′
N �≡ 0 for any N ∈ N . The same can be applied

for any non-zero linear combination over K of the functions in F . ��
It is well known that if f : R → R is differentiable with f ′ ≡ 0, then f is constant. This

is not true in general in the p-adic setting (see [35, example 4.26]). In [37], it was shown
that the set of functions Qp → Qp with f ′ ≡ 0 that are not constant (or locally constant)
on any ball is c-lineable. We show that this can be improved by restricting ourselfs to the
Lipschitzian functions. It should be noted that in real analysis, the Lipschitz functions of
order α > 1 are trivial.

Theorem 4.3 For everyK ∈ {Zp,Qp}, the family of non-locally constant functions f : K →
Qp whose derivative is the zero function and f belongs to Lipα(K → Qp) for every α > 0
is c-lineable.

Proof Fix K ∈ {Zp,Qp}. Given q ∈ P, let us define the function fq : K → Zp as: for

every x = ∑∞
n=r an p

n , with r ∈ Z, we have fq(x) = ∑∞
n=0 an p

q(n+1)!
. For every P ∈ P ,

define FP : K → Zp by FP = ∑
q∈P fq . Once again we have that FP is well defined for

every P ∈ P since, by fixing P ∈ P , the sequence ( fq(x))q∈P converges for every x ∈ Zp .
Indeed, we have

∣∣ fq(x)
∣∣
p ≤ p−q → 0 as q → ∞ for any x ∈ K.

We will prove that the set {FP : P ∈ P} is a family of linearly independent functions
overQp such that any non-zero linear combination of these functions overQp is non-locally
constant, belongs to Lipα(Zp → Qp) for every α > 0 and its derivative is the zero function.
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It is clear that the functions FP and any non-zero linear combination of these functions is
non-locally constant. Now we will show that they belong to Lipα(K → Qp) for any α > 0.
Fix α > 0. For any distinct x, y ∈ K such that |x − y|p = pt for some t ∈ Z we have that
|FP (x)−FP (y)|p

|x−y|αp = p−q̃(t+1)!+αt → 0 as t → ∞, and where q̃ = min{q ∈ P}. Hence, notice
that the latter proves that FP ∈ Lipα(K → Qp), and in the case α = 1 we have that F ′

P ≡ 0.
Now let F = ∑n

j=1 b j FPj , where n ∈ N, b j ∈ Qp \ {0} for any 1 ≤ j ≤ n and
P1, . . . , Pn are n distinct elements of P . Assume that F is the zero function, then by fixing
q ∈ P1 ∩ Pc

2 ∩ · · · ∩ Pc
n we have that F(pq) = b1 pq

(q+1)! = 0 if and only if b1 = 0, a
contradiction. Now, it is easy to see that F ∈ Lipα(K → Qp) for any α > 0 and F ′ ≡ 0. ��

In [41, p. 200], by usingMahler series, Mahler constructs a continuous function that is not
differentiable only at a point but has continuous derivative elsewhere. By a totally different
example, we show that the set of such functions is c-lineable.

Theorem 4.4 The family of continuous functions Zp → Qp that are not differentiable only
at a point but have continuous derivative elsewhere is c-lineable.

Proof For any q ∈ P, let us define fq : Zp → Zp in the following way:

fq(x) =
{
pq

n
if x ∈ S

(
0, p−qn+1

)
for some n ∈ N,

0 otherwise.

The function fq is locally constant at every point except 0, i.e., for every x ∈ Zp , there exists
a neighborhood Vx of x such that fq � Vx is constant. Indeed, let x ∈ Zp , then we have two
cases:

Case (1): If x ∈ S
(
0, p−qn+1

)
for some n ∈ N, then fq � S

(
0, p−qn+1

)
≡ pq

n
.

Since S
(
0, p−qn+1

)
is open for every ε < p−qn+1

we have that B(x, ε) ⊂
S
(
0, p−qn+1

)
. Thus, fq � B(x, ε) ≡ pq

n
.

Case (2): If x /∈ S
(
0, p−qn+1

)
for every n ∈ N, then x ∈ S

(
0, p−k

)
for some k ∈

N0 \
{
p−qn+1 : n ∈ N

}
. Applying the same arguments as in Case (1) we have

that fq is identically zero on some neighborhood of x .

Moreover, fq is not locally constant at 0 since for every ε ∈ {p−k : k ∈ N0}, there exists
distinct n,m ∈ N such that p−qn+1

< ε and p−qm+1
< ε. Hence, the spheres S

(
0, p−qn+1

)

and S
(
0, p−qm+1

)
are contained in B(0, ε), which shows that fq takes at least two distinct

values in B(0, ε). (In fact, it takes infinitely many values.) Therefore, we have proven that fq
is differentiable at every point except maybe 0 (we will see later that it is not differentiable
at 0). However, fq is continuous at 0 (obviously it is continuous at every other point x �= 0
since fq is differentiable at x �= 0). Indeed, let ε ∈ {p−k : k ∈ N0} and take n ∈ N0 such

that p−qn < ε. For any x ∈ Zp with |x |p < p−qn+1
we have | fq(x)|p < p−qn < ε . Now,

fq is not differentiable at 0 since

| fq(pqn+1
)|p

|pqn+1 |p
= pq

n+1−qn = pq
n(q−1) → ∞,

as n → ∞.

123



72 Page 18 of 27 J. Fernández-Sánchez et al.

For every P ∈ P , define the function FP = ∑
q∈P fq . Using similar arguments used

before, we see that FP is well defined. Moreover, by applying similar arguments used to
prove that fq is continuous everywhere and differentiable at every point x �= 0, we have that
FP is differentiable at every point x �= 0 and hence continuous at every point x �= 0. But
also continuous at 0 since FP is the uniform limit of the sequence of continuous functions(
∑

q∈P
q≤k

fq

)

k≥2

. Furthermore, the functions FP are not differentiable at 0. To see this, fix

q ∈ P . Then,
∣
∣
∣FP

(
pq

n+1
)∣∣
∣
p∣

∣pqn+1
∣
∣
p

= pq
n(q−1) → ∞,

as n → ∞.
Also the functions FP are linearly independent overQp (apply similar arguments used in

other proofs of this work). Finally, any non-zero linear combination overQp of the functions
Fp satisfies the desires properties. Indeed, take r ∈ N distinct elements of P . Namely,
P1, . . . , Pr , and take F = ∑n

j=1 a j FPj , where a j ∈ Qp \ {0}. Clearly F is continuous
everywhere and differentiable at every point x �= 0. Now, fix q ∈ P1 ∩ Pc

2 ∩ · · · ∩ Pc
r . Notice

that F(pq
n+1

) = a1 pq
n �= 0, then

|F(pq
n+1

)|p
|pqn+1 |p

= |a1|pqn(q−1) → ∞,

as n → ∞, which shows that F is not differentiable at 0. ��

5 p-adic sequence spaces and failure of the Cesàro and Hahn–Banach
theorems

In this section we present some results about lineability, algebrability and spaceability of
some subsets of the space of p-adic sequences and conclude with a result concerning the
failure of the Hahn–Banach theorem in the p-adic setting. To begin, we give an improvement
of [36, proposition 2.1].

Theorem 5.1 Let K be a non-Archimedean field with non-trivial valuation. If �∞ and c0 are
defined over K, then the set �∞ \ c0 is c-spaceable.
Proof For every N ∈ N , let us define the sequence xN as follows: for every n ∈ N,

xN (n) =
{
1 if n ∈ N ,

0 otherwise.

Notice that the sequences in the set {xN : N ∈ N } are linearly independent over K since
N is a family of independent subsets of N. Take V = span〈{xN : N ∈ N }〉. Clearly, any
x ∈ V is bounded. Also, if x is not the zero sequence, then x does not converge to 0. Indeed,
assume that x = ∑m

i=1 ai xNi , where ai ∈ K \ {0} and Ni ∈ N for every 1 ≤ i ≤ m. Then,
for every n ∈ N1 ∩ Nc

2 ∩ · · · ∩ Nc
j we have x(n) = a1, i.e., x restricted to the infinite set

N1 ∩ Nc
2 ∩ · · · ∩ Nc

m is a constant non-zero infinite sequence.
Now, let x ∈ V \ {0}, then there exists (sk)k≥1 ⊂ V \ {0} converging (uniformly) to x ,

i.e., ‖sk − x‖∞ → 0 as k → ∞. We will prove that x ∈ �∞ \ c0. Clearly, x is bounded
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since (sk)k≥1 ⊂ �∞. As x is not the zero sequence, there exists n0 ∈ N such that x(n0) �= 0,
that is, there exists r ∈ (0,∞) such that |x(n0)|p = r . Thus, there exists k0 ∈ N such that
‖sk − x‖∞ < r

2 for every k ≥ k0. For every k ≥ k0, let N1,k, . . . , Nm,k be the sets that form
sk . Assume that n0 ∈ N ε1

1,k ∩ · · · ∩ N εm
m,k , where εi ∈ {0, 1} for every 1 ≤ i ≤ m. Then, since

N ε1
1,k ∩ · · · ∩ N εm

m,k is infinite and the sequence sk restricted to N ε1
1,k ∩ · · · ∩ N εm

m,k is a constant
sequence, we have sk(n) = sk(n0) for infinitely many n. Notice that

r = |x(n0) − sk(n0) + sk(n0)| ≤ max{|x(n0) − sk(n0)|, |sk(n0)|}.
Therefore, since |x(n0) − sk(n0)| < r

2 , we have max{|x(n0) − sk(n0)|, |sk(n0)|} = |sk(n0)|.
Thus, |sk(n0)| ≥ r . Hence, |sk(n)| ≥ r for infinitely many n. The latter implies that for
infinitely many n we have

r

2
> ‖sk − x‖∞ ≥ |sk(n) − x(n)| ≥ |sk(n)| − |x(n)| ≥ r − |x(n)|.

This proves that |x(n)| > r
2 > 0 for infinitely many n. Therefore, x does not converge to 0

in K and the proof is complete. ��
We pause to analyze the functions (1 + x)α where x ∈ pZp and α ∈ Zp . By definition,

the function x �→ (1 + x)α is defined as (1 + x)α := F(x, α) := ∑∞
i=0

(
α
i

)
xi . Notice that

by construction (1 + x)α is a function from pZp to Zp . The function (1 + x)α satisfies the
following properties which can be found in [44, pp. 138–142]:

(i) (1 + x)α is differentiable and the derivative is α(1 + x)α−1.
(ii) For x fixed, the sequence

∑n
i=0

(
α
i

)
xi converges uniformly (see [43]). Hence, since pZp

is a compact metric space, the function F(x, α) is continuous in the second variable.
(iii) As a consequence of (ii) and the fact thatN is dense in Zp , we have (1+ x)α(1+ x)β =

(1 + x)α+β and ((1 + x)α)β = ((1 + x)β)α = (1 + x)αβ .

Let us continue by proving the following lemma which will be very useful in the sequel.

Lemma 5.2 If α1, . . . , αn ∈ Zp \ {0} are distinct, with n ∈ N, then there is no linear
combination

∑n
i=1 γi (1 + x)αi , with γi ∈ Qp \ {0} for every 1 ≤ i ≤ n, that is constant.

Proof We will prove it by induction on n. For n = 1 we have that F(x, α) is a non-constant
analytic function, and hence γ F(x, α) is not constant for every γ ∈ Qp \ {0}. We claim that
the lemma is true up to n − 1. Now, let α1, . . . , αn ∈ Zp \ {0} and assume that

n∑

i=1

γi (1 + x)αi = γ, (5.1)

for some γi ∈ Qp \ {0} for every 1 ≤ i ≤ n, and γ ∈ Qp . We have two cases:

Case (1): If γ = 0, then
∑n

i=2 γi (1 + x)αi−α1 = γ1 for every x ∈ pZp , which contradicts
the inductive hypothesis (this can be done since −1 /∈ pZp).

Case (2): If γ �= 0, then by differentiating (5.1) we have
∑n

i=1 γiαi (1+ x)αi−1 = 0. On the
one hand, if αi �= 1 for every 1 ≤ i ≤ n, then we proceed as in Case (1). On the
other hand, if αi = 1 for some 1 ≤ i ≤ n, then we would reach a contradiction
with the inductive hypothesis.

��
Having these non-Archimedean tools, we are ready to show an improvement and gener-

alization of [18, proposition 2.1] to the p-adic setting; see also [36, proposition 2.4].
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Theorem 5.3 The subset of �∞ \ c0 defined overQp whose elements only have finitely many
zero coordinates is strongly c-algebrable.

Proof Let {zn}n≥1 be an enumeration of Z and for any α ∈ Zp \ {0} consider the sequence
((1+ pzn)α)n≥1. TakeH a Hamel basis ofQp overQ contained in Zp \ {0} . Notice that the
sequences {((1+ pzn)h)n≥1 : h ∈ H} are algebraically independent. Indeed, first of all, note
that for every n ∈ N, the function P((1+ pzn)h1 , . . . , (1+ pzn)hm ) (where P is a polynomial
in m ∈ N variables with coefficients inQp \ {0} and without free term, and hi ∈ H for every
1 ≤ i ≤ m) can be written as

k∑

i=1

γi (1 + pzn)
αi ,

where γi ∈ Qp \ {0} and αi ∈ Zp \ {0} with 1 ≤ i ≤ k and k ∈ N. By means of
contradiction, assume that

∑k
i=1 γi (1+ pzn)αi = 0. Then, as Z is dense in Zp , we have that∑n

i=1 γi (1 + x)αi = 0 for every x ∈ pZp contradicting Lemma 5.2.
Clearly, for every γi ∈ Qp \ {0} and αi ∈ Zp \ {0} with 1 ≤ i ≤ k, the

sequence
(∑k

i=1 γi (1 + pzn)αi
)

n≥1
is bounded in Qp by construction (in fact, we have

∣∣∣
∑k

i=1 γi (1 + pzn)αi
∣∣∣
p

≤ max1≤i≤k |γi |p , for every n ∈ N). Now fix x ∈ pZp . As

{zn}n≥1 is dense in the set Zp , there exists a sequence (zσ(n))n≥1 of {zn}n≥1 converging
to x . Thus, since

∑k
i=1 γi (1 + px)αi is analytic (in particular, continuous) we have that(∑k

i=1 γi
(
1 + pzσ(n)

)αi
)

n≥1
converges to

∑k
i=1 γi (1+ px)αi inQp . Furthermore, assume

that
(∑k

i=1 γi
(
1 + pzσ(n)

)αi
)

n≥1
tends to 0 in Qp . Then

∑k
i=1 γi (1 + px)αi = 0 with x

being an arbitrary element of pZp and, therefore, contradicting Lemma 5.2. ��
It is easy to see that the set of all conditionally convergent series of real numbers is

algebrable with respect to the pointwise multiplication while, in [36], it was shown that in
the p-adic setting the family of all sequences whose series is convergent but not absolutely
convergent is (ℵ0, 1)-algebrable in c0. Here we prove a stronger and more optimal version
of this result.

Theorem 5.4 In the space c0 over Qp, the family of all sequences whose series is conver-
gent but not absolutely convergent is strongly c-algebrable with respect to the pointwise
multiplication.

Proof Let (rn)n≥1 be the sequence of exponents in the sequence (tn)n≥1 given in the proof
of [36, proposition 4.2] and {zn}n≥1 be an enumeration of Z. For every α ∈ Zp \ {0},
consider the sequence (prn (1 + pzrn )

α)n≥1. Now, take H a Hamel basis of Qp over Q
contained in Zp \ {0}. We will prove that the sequences in {(prn (1 + pzrn )

h)n≥1 : h ∈ H}
are algebraically independent by showing that any linear combination s of products of the
sequences (prn (1 + pzrn )

α)n≥1 is not absolutely convergent.
For any n ∈ N, notice that s(n) is of the form

s(n) =
a∑

i=1

pγi rn
bi∑

j=1

βi, j (1 + pzrn )
αi, j ,

where a ∈ N, bi ∈ N and γi ∈ N with γi < γi+1, αi, j ∈ Zp \ {0} and βi, j ∈ Qp with
βi, j �= 0 for some pair (i, j). First of all, s converges in Qp since
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|s(n)|p ≤ max
1≤i≤a

⎧
⎨

⎩
p−γi rn

∣
∣
∣
∣
∣
∣

bi∑

j=1

βi, j (1 + pzrn )
αi, j

∣
∣
∣
∣
∣
∣
p

⎫
⎬

⎭

≤ p−γ1rn max
1≤i≤a

∣
∣
∣
∣
∣
∣

bi∑

j=1

βi, j (1 + pzrn )
αi, j

∣
∣
∣
∣
∣
∣
p

≤ p−γ1rn max
1≤i≤a

max
1≤ j≤bi

∣
∣βi, j (1 + pzrn )

αi, j
∣
∣
p

≤ p−γ1rn max
1≤i≤a

max
1≤ j≤bi

∣∣βi, j
∣∣
p ,

tends to 0 as n → ∞. Thus,
∑∞

n=1 s(n) converges in Qp (see, [44, proposition 2.3.1]).
Now, on the one hand, for every 1 ≤ i ≤ a, by Lemma 5.2, there is x ∈ Zp such that∣
∣
∣
∑bi

j=1 βi, j (1 + px)αi, j
∣
∣
∣
p

= pki for some ki ∈ Z. Choose a subsequence (rσ(n))n≥1 such

that if rσ(n) = rm for somem ∈ N, then rm appears pr
2
σ(n) times in (rσ(n))n≥1, and (zrσ(n)

)n≥1

converges to x in Qp . Then, there exists ni ∈ N such that

pki =
∣∣∣∣∣∣

bi∑

j=1

βi, j (1 + px)αi, j

∣∣∣∣∣∣
p

=
∣∣∣∣∣∣

bi∑

j=1

βi, j (1 + pzrσ(n)
)αi, j

∣∣∣∣∣∣
p

,

for every n ≥ ni . Therefore, for every n ≥ max
1≤i≤a

ni , we have

∣∣∣∣∣∣
pγi rσ(n)

bi∑

j=1

βi, j (1 + pzrσ(n)
)αi, j

∣∣∣∣∣∣
p

= p−γi rσ(n)+ki ,

for any 1 ≤ i ≤ a. On the other hand, there exists n∗ ∈ N such that γ1rσ(n)−k1 < γi rσ(n)−ki
for every 2 ≤ i ≤ a and every n ≥ n∗. Hence, for every n ≥ max

{
n∗,max1≤i≤ani

}
, we

have |s(σ (n))|p = p−γ1rσ(n)+k1 (see [35, remark 1.16]). Since rσ(n) appears p
r2
σ(n) , we have

that the sum of |s(σ (n))|p with the entries having rσ(n) is equal to pr
2
σ(n)

−γ1rσ(n)+k1 . Notice

that there exits n∗∗ ≥ n∗ such that pr
2
σ(n)

−γ1rσ(n)+k1 ≥ 1 for every n ≥ n∗∗. As there are
infinitely many n having |s(σ (n))|p ≥ 1, we have that s is not absolutely convergent. ��

A sequence (xn)n≥1 is Cesàro summable if its sequence of averages,

σn := (x1 + . . . + xn)/n,

converges. Recall that, in the classical case, Cesàro’s theorem states that if a sequence con-
verges, then it is Cesàro summable to the same limit. This theorem does not have any p-adic
analogous. In [36], Khodabendehlou and the second and fourth authors show that, in the p-
adic setting, the set of all convergent sequences for which Cesàro’s theorem fails is c-lineable,
we now present two results about strong algebrability of the two extreme cases of Cesàro
summability.

Theorem 5.5 In the space of all p-adic sequences over Qp, the family of convergent
sequences that are not Cesàro summable is strongly c-algebrable.

Proof Let β : N → (0, 1) be a bijection. For every N ∈ N , define the sequence zN as
follows: for every m ∈ N, we have
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zN (m) =
{
p�lnβ(N )(ln(n))� if m = pn with n ∈ N ,

0 otherwise.

The sequences {zN : N ∈ N } are algebraically independent. Indeed, take P a polynomial
of degree k ≥ 1 in p ∈ N variables with coefficients in Qp \ {0} and without free term, and
N1, . . . , Np ∈ N . Let us define the sequence (z(m))m≥1 = (P(zN1(m), . . . , zNp (m))

)
m≥1.

Assume that z is the zero sequence. For every n ∈ N1 ∩ N2 ∩ · · · ∩ Np , notice that z(pn) is

a linear combination of products of p�lnβ(Ni )(ln(n))� with 1 ≤ i ≤ p (where the coefficients
and exponents are fixed independently of n). As N1 ∩ · · · ∩ Np has infinitely many elements,

we have that not all of such linear combinations of products of p�lnβ(Ni )(ln(n))� are 0, which
is absurd. Furthermore, it is easy to see that z converges to 0 in Qp .

It remains to prove that z is not Cesàro summable. Assume otherwise, that is,( 1
m

∑m
i=1 z(i)

)
m≥1 converges inQp . Then, any subsequence of

( 1
m

∑m
i=1 z(i)

)
m≥1 also con-

verges in Qp . Hence,
⎛

⎝ 1

pn

pn∑

i=1

z(i)

⎞

⎠

n∈N1∩···∩Np

and

⎛

⎝ 1

pn + 1

pn∑

i=1

z(i)

⎞

⎠

n∈N1∩···∩Np

converge to the same limit, say a, in Qp . Thus,

(∣∣∣ 1
pn
∑pn

i=1 z(i)
∣∣∣
p

)

n∈N1∩···∩Np

and
(∣∣∣ 1

pn+1

∑pn

i=1 z(i)
∣∣∣
p

)

n∈N1∩···∩Np

converge to |a|p . Furthermore, notice that if n ∈ N1 ∩
· · · ∩ Np , then

∣∣∣∣∣∣

1

pn

pn∑

i=1

z(i)

∣∣∣∣∣∣
p

= pn

∣∣∣∣∣∣

pn∑

i=1

z(i)

∣∣∣∣∣∣
p

and

∣∣∣∣∣∣

1

pn + 1

pn∑

i=1

z(i)

∣∣∣∣∣∣
p

=
∣∣∣∣∣∣

pn∑

i=1

z(i)

∣∣∣∣∣∣
p

converge to the same limit |a|p = 0. Indeed, for every ε > 0, there exists n0 ∈ N1 ∩· · ·∩Np

such that

∣∣∣∣
∣∣∣ 1
pn
∑pn

i=1 z(i )

∣∣∣
p

− |a|p
∣∣∣∣ =

∣∣∣∣p
n
∣∣∣
∑pn

i=1 z(i )

∣∣∣
p

− |a|p
∣∣∣∣ < ε for every n ≥ n0

with n ∈ N1 ∩ · · · ∩ Np . Thus,

∣∣∣∣
∣∣∣
∑pn

i=1 z(i)
∣∣∣
p

− p−n |a|p
∣∣∣∣ < p−nε < ε for every n ≥ n0

with n ∈ N1 ∩ · · · ∩ Np . Now take n ∈ N with n + 1 ∈ N1 ∩ · · · ∩ Np , then notice

that
∑pn+1

i=1 z(i) = ∑pn

i=1 z(i) + z(pn+1). There exist n1 ∈ N, s ∈ N sufficiently large and

β ∈ (0, 1) sufficiently small such that |z(pn+1)|p > p−s lnβ (n) for every n + 1 ≥ n1 with
n + 1 ∈ N1 ∩ · · · ∩ Np . Hence,

∣∣∣∣∣∣

pn∑

i=1

z(i) + z(pn+1)

∣∣∣∣∣∣
p

> p−s lnβ (n),

for every n+1 ≥ n1 with n+1 ∈ N1∩· · ·∩Np . Thus,
∣∣∣ 1
pn+1

∑pn+1

i=1 z(i)
∣∣∣
p

> p−s lnβ (n)+n+1

which diverges as n+1 ∈ N1 ∩ · · ·∩ Np tends to ∞, and we have reached a contradiction. ��
Proposition 5.6 In the space of all p-adic sequences over Qp, the family of convergent
sequences that are Cesàro summable is c-lineable.
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Proof For every α ∈ Zp \ {0}, define the sequence sα = (
(−1)n pt(n) (1 + pt(n))α

)
n≥1,

where

t(n) =
{

n
2 if n is even,
n+1
2 otherwise.

Assume that s = ∑m
i=1 γi sαi , where m ∈ N and γi ∈ Qp \ {0} for every 1 ≤ i ≤ m, is the

zero sequence.
We can assume that the coefficients γi that form the linear combination of s belong to

Zp \ {0}. (This can be done simply by multiplying s by pmax{ord(γi ):1≤i≤m}.) Therefore,
we have that

∑r
i=1 γi (−1)n pt(n) (1 + pt(n))αi = 0 for every n ∈ N. This is equivalent

to
∑r

i=1 γi (1 + pt(n))αi = 0 for every n ∈ N. Fix x ∈ Zp arbitrary. Since t(n) is sur-
jective in N, and N is dense in Zp , there exists a sequence (σ (n))n≥1 ⊂ N such that
(t(σ (n)))n≥1 converges to x . Hence, we have that

(∑n
i=1 γi (1 + pt(σ (n)))αi

)
n≥1 converges

to
∑n

i=1 γi (1 + px)αi .As x is an arbitrary element ofZp ,wehave that
∑n

i=1 γi (1 + px)αi =
0 for every x ∈ Zp , contradicting Lemma 5.2.

On the one hand, the sequences sα and any linear combination converge to 0 in Qp . On
the other hand, for every n ∈ N, we have

1

n

n∑

i=1

(−1)i pt(i) (1 + pt(i))α =
{
0 if n is even,

− 1
n p

t(n) (1 + pt(n))α otherwise.

Since |n|p ≥ p−�ln n/ ln p� we have
∣∣∣∣−

1

n
pt(n) (1 + pt(n))α

∣∣∣∣
p

=
∣∣∣∣−

1

n

∣∣∣∣
p
|pt(n)|p

∣∣(1 + pt(n))α
∣∣
p ≤ p�ln(n)/ ln(p)�−t(n).

Hence, 1
n

∑n
i=1(−1)n pt(n) converges to 0 as n → ∞ in Qp . It is easy to see that any linear

combination of the sequences sα is also Cesàro summable. ��

We conclude with a result about the Hahn–Banach theorem. Let us recall that if K is a
non-Archimedean field with non-trivial valuation that is not spherically complete, then the
Hahn–Banach theorem is not true over K (see [42, corollary 4.1.13] or [46, theorem 4.15]).
It follows that the Hahn–Banach theorem cannot be extended toCp since it is not spherically
complete. We will show that the set of functionals for which the Hahn–Banach theorem fails
in the non-Archimedean setting is c-lineable. To do so, let us consider first the following
construction.

Let K be a non-Archimedean field with non-trivial valuation. Consider now c0 and �∞
defined over K. For every N ∈ N , let us define TN : c0 → K as follows: for every
x = (xn)n≥1 ∈ c0, we have

TN (x) =
∑

n∈N
xn .

Notice that TN is well defined for every N ∈ N . Indeed, it is known that (xn)n≥1 converges
to 0 in K if, and only if,

∑∞
n=1 xn converges in K ([44, proposition 23.1]). Now, if (xn)n≥1

converges to 0 in K, then so does the subsequence (xn)n∈N . Hence,
∑

n∈N xn converges in
K.

It is easy to see that TN is linear over K for every N ∈ N . Let us prove that TN is
continuous for every N ∈ N . Fix N ∈ N . For every x = (xn)n≥1 ∈ c0 , we have
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|TN (x)| =
∣
∣
∣
∣
∣

∑

n∈N
xn

∣
∣
∣
∣
∣
≤ sup

n∈N
|xn | ≤ sup

n∈N
|xn | = ‖x‖∞ < ∞.

In fact, it is clear that ‖TN‖ = 1 for any N ∈ N . Hence, TN ∈ c′
0 for any N ∈ N .

Furthermore, the functionals TN are linearly independent. To see this, take T =∑k
i=1 ai TNi , where ai ∈ K \ {0} and with Ni ∈ N distinct for every 1 ≤ i ≤ k. Assume

that T is the zero functional and fix n0 ∈ N1 ∩ Nc
2 ∩ · · · ∩ Nc

k . Now consider x = (xn)n≥1

defined by

xn =
{
1 if n = n0,

0 otherwise.

Clearly, x ∈ c0. Moreover, 0 = T (x) = a1, and we have a contradiction. Let T =
span〈TN : N ∈ N 〉. If T ∈ T , then T clearly belongs to c′

0.
The following result is a refinement of [42, corollary 4.1.13] (see also [46, theorem 4.15]).

Lemma 5.7 Let K be a non-Archimedean field with non-trivial valuation. For every T ∈
span〈TN : N ∈ N 〉 \ {0}, the following properties on K are equivalent:

(i) K is spherically complete.
(ii) The functional T ∈ c′

0 can be extended to a functional T ∈ (�∞)′.
(iii) (�∞/c0)′ �= {0}.
Proof Fix T = ∑k

i=1 ai TNi , where ai ∈ K \ {0}, and with Ni ∈ N distinct, for every
1 ≤ i ≤ k.

(i) ⇒ (i i) and (i i i) ⇒ (i) follow from [42, corollary 4.1.3] and [42, proposition 4.1.12],
respectively.

It remains to prove (i i) ⇒ (i i i). By (i i), let T ∈ (�∞)′ be an extension of T .
Let us denote Ñ = N \⋂k

j=1 N
0
j . Take (kn)n≥1 ⊂ N the strictly increasing sequence

such that Ñ = {kn : n ∈ N}. Consider φ : N → Ñ the bijection defined as φ(n) = kn ,
for every n ∈ N, and define the auxiliary operator R : �∞ → �∞ as follows: for every
x = (xn)n≥1 ∈ �∞,

R(x) = y = (yn)n≥1,

where, for every n ∈ N, the coordinate yn is defined in the following way.

If n = km for some m ∈ N with km ∈⋂k
j=1 N

ε j
j \

{
min

⋂k
j=1 N

ε j
j

}
, where ε1, . . . , εk ∈

{0, 1} with εl �= 0 for some 1 ≤ l ≤ k, then

yn = x
max

{
ks∈⋂k

j=1 N
ε j
j : ks<km

}.

Otherwise, yn = 0.
Notice that R is a continuous linear operator on �∞ such that T ◦ R − T = 0 on c0.

Assume that (�∞/c0)′ = {0}, then T ◦ R = T on �∞. For every x = (xn)n≥1 ∈ �∞, let us
define inductively the sequence z = (zn)n≥1 in the following way.

Take z1 = x1. For n ≥ 2, assume that we have already defined zr for every 1 ≤ r ≤ n−1.
If n �= km for everym ∈ N, or n = km for somem ∈ Nwith km = min

⋂k
j=1 N

ε j
j and where

ε1, . . . , εk ∈ {0, 1} with εl �= 0 for some 1 ≤ l ≤ k, then zn = xn . If n = km for some

m ∈ N with km ∈ ⋂k
j=1 N

ε j
j \

{
min

⋂k
j=1 N

ε j
j

}
, where ε1, . . . , εk ∈ {0, 1} with εl �= 0 for

some 1 ≤ l ≤ k, then
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zn = xkm + z
max

{
ks∈⋂k

j=1 N
ε j
j : ks<km

}.

SinceK is non-Archimedean, we have that z ∈ �∞. Moreover, by construction, x = z−R(z).
Thus, T (x) = T (z − R(z)) = 0 for every x ∈ �∞. We have reached a contradiction since
the latter implies that T ≡ 0 on �∞, but T � c0 = T �≡ 0. ��

We have proven the following result.

Theorem 5.8 IfK is a non-spherically complete non-Archimedean field with non-trivial val-
uation, and c0 and �∞ are defined over K, then the family of functionals on c′

0 that cannot
be extended to a functional on (�∞)′ is c -lineable.
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