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Abstract
We prove and discuss several fixed point results for nonlinear operators, acting on some
classes of functions with values in a b-metric space. Thus we generalize and extend a recent
theorem of Dung and Hang (J Math Anal Appl 462:131–147, 2018), motivated by several
outcomes in Ulam type stability. As a simple consequence we obtain, in particular, that
approximate (in some sense) eigenvalues of some linear operators, acting in some function
spaces, must be eigenvalues while approximate eigenvectors are close to eigenvectors with
the same eigenvalue. Our results also provide some natural generalizations and extensions
of the classical Banach Contraction Principle.

Keywords b–metric · Fixed point · Function space · Ulam stability · Approximate
eigenvalue
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1 Introduction

The notion of Ulam stability (see [8,16,22] for details) has motivated several generalizations
of Banach Contraction Principle for various function spaces (see, e.g., [3,4,6,7,9]). Let us
recall for instance the main result in [9] (see also [4, Theorem 2]). To formulate it we need the
following hypothesis for operators Λ : R+E → R+E (R+ stands for the set of nonnegative
reals, E is a nonempty set and AB denotes the family of all functions mapping a nonempty
set B into a nonempty set A):

(C0) If (δn)n∈N is a sequence in R+E with limn→∞ δn(t) = 0 for t ∈ E , then

lim
n→∞(Λδn)(t) = 0, t ∈ E .
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Let us yet remind that, given a metric space (Y , ρ), ∅ �= C ⊂ Y E and an operator
Λ : R+E → R+E , we say that T : C → Y E is Λ–contractive (cf., e.g., [9]) if

d
(
(T ν)(t), (T μ)(t)

) ≤ (Λδ)(t), t ∈ E,

for any ν, μ ∈ C and δ ∈ R+E such that

d(ν(t), μ(t)) ≤ δ(t), t ∈ E .

Next, if A is a nonempty set and F ∈ AA, then F0 is the identity function on A (i.e.,
F0(x) = x for x ∈ A) and

Fn+1 = F ◦ Fn, n ∈ N0 := N ∪ {0},
where N stands for the set of positive integers.

The main result in [9] can be formulated as follows (see [7] for an abstract generalization
of it).

Theorem 1 [9, Theorem 2.2] Let (Y , ρ) be a complete metric space, E be a nonempty set,
operator Λ : R+E → R+E fulfil (C0), T : Y E → Y E be Λ-contractive, and ε : E → R+
and ϕ : E → Y be such that

ρ
(
(T ϕ)(t), ϕ(t)

) ≤ ε(t), σ (t) :=
∑

n∈N0

(Λnε)(t) < ∞, t ∈ E .

Then the limit

ψ(t) := lim
n→∞(T nϕ)(t) (1)

exists for each t ∈ E and the function ψ ∈ Y E , defined in this way, is a unique fixed point of
T with

ρ
(
(T nϕ)(t), ψ(t)

) ≤
∞∑

i=n

(Λiε)(t), t ∈ E, n ∈ N0.

Moreover, if limn→∞(Λnσ)(t) = 0 for t ∈ E, then ψ is the unique fixed point of T with

ρ(ϕ(t), ψ(t)
) ≤ σ(t), t ∈ E .

A very interesting extension of the theorem to the b–metric spaces, but only for Λ of a
particular form, has been presented by Dung and Hang [13, Theorem 2.1]. Let us recall that
a b–metric, in a nonempty set Y , is a function d : Y ×Y → R+ satisfying the following three
conditions:

(A) d(x, y) = 0 if and only if x = y;
(B) d(x, y) = d(y, x);
(C) d(x, y) ≤ η

(
d(x, z) + d(z, y)

)

for all x, y, z ∈ Y and some real constant η ≥ 1. If conditions (A)–(C) are valid, then we say
that (Y , d, η) is a b–metric space. Let us yet mention that the b–metric spaces also have been
named quasi-metric spaces by some authors (see, e.g., [15]), which is better corresponding
to the notion of quasi-norms (see Remark 6). However, the term b-metric seems to be more
convenient, as the name quasi-metric has also other meanings (see, e.g, [12] and [27]); for
instance in [12] it means a function d satisfying only (A) and (C) with η = 1 (without (B)).
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The term b–metric has been used for the first time in [10] with η = 2 and next in [11] for
any η ≥ 1.

Let us yet remind that, in the b-metric spaces, the notions of convergence,Cauchy sequence
and a limit of a sequence are defined analogously as in the classical metric spaces. Namely,
if (Y , d, η) is a b–metric space, then:

– a sequence (xn)n∈N ∈ YN is convergent to x ∈ Y if limn→∞ d(x, xn) = 0 and then we
say that x is a limit (which must be unique) of the sequence and write x = limn→∞ xn;

– a sequence (xn)n∈N ∈ YN is Cauchy if limn,m→∞ d(xm, xn) = 0;
– (Y , d) is complete if every Cauchy sequence in Y is convergent to some point x ∈ Y .

The result in [13] can be formulated in the following way.

Theorem 2 [13, Theorem 2.1] Let U be a nonempty set, (Y , d, η) be a complete b-metric
space, and T : YU → YU . Assume that there exist ε : U → R+, ϕ : U → Y , f1, . . . , fk :
U → U and L1, . . . , Lk : U → R+ such that

d
(
(T ν)(t), (T μ)(t)

) ≤
k∑

i=1

Li (t)d
(
ν
(
fi (t)

)
, μ

(
fi (t)

))
, ν, μ ∈ YU , t ∈ U ,

d
(
(T ϕ)(t), ϕ(t)

) ≤ ε(t), ε∗(t) =
∞∑

n=0

((Λnε)(t))θ < ∞, t ∈ U , (2)

where θ = log2η 2 and Λ : R+E → R+E is given by

(Λδ)(t) :=
k∑

i=1

Li (t)δ
(
fi (t)

)
, δ ∈ R+U , t ∈ U . (3)

Then limit (1) exists for every t ∈ U and the function ψ : U → Y so defined is a fixed point
of T with

d
(
ϕ(t), ψ(t)

)θ ≤ 4ε∗(t), t ∈ U . (4)

Moreover, if

ε∗(t) ≤
(
M

∞∑

n=1

(Λnε)(t)
)θ

< ∞, t ∈ U , (5)

with some real number M > 0, then ψ is the unique fixed point of T satisfying (4).

Remark 3 Note that every operator of form (3) fulfils hypothesis (C0).

Remark 4 Let r ∈ (1,∞) and (Z , d) be a metric space. Then (Z , dr , 2r−1) is a b–metric
space, where dr (x, y) := d(x, y)r for x, y ∈ Z . In fact, for every x, y, z ∈ Z ,

dr (x, y) ≤ (
d(x, z) + d(z, y)

)r

≤ 2r−1(d(x, z)r + d(z, y)r
) = 2r−1(dr (x, z) + dr (z, y)

)
,

because (a + b)r ≤ 2r−1(ar + br ) for a, b ∈ R+.

The reasoning presented in Remark 4 also leads to the following two examples (cf. [2,
Examples 1.1 and 1.2]).
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Example 1 Let X be a Banach space, p ∈ (0, 1),

�p(X) :=
{
(xn)n∈N ∈ XN :

∞∑

n=1

‖xn‖p < ∞
}
,

and ρ : �p(X)2 → R+ be defined by

ρ(x, y) :=
( ∞∑

n=1

‖xn − yn‖p
)1/p

, x = (xn)n∈N, y = (yn)n∈N ∈ �p(X).

Then (�p(X), ρ, 2(1−p)/p) is a b-metric space.

Example 2 If p ∈ (0, 1),

L p[0, 1] :=
{
x : [0, 1] → R :

∫ 1

0
|x(t)|pdt < 1

}
,

and ρ : L p[0, 1] × L p[0, 1] → R+ is defined by

ρ(x, y) :=
( ∫ 1

0
|x(t) − y(t)|pdt

)1/p
, x, y ∈ L p[0, 1],

then (L p[0, 1], ρ, 2(1−p)/p) is a b-metric space.

Moreover, note that if n ∈ N, a1, . . . , an ∈ (0,∞) and d1, . . . , dn are b-metrics in a
nonempty set X , then d and d0 also are b-metrics in X , where

d(x, y) =
n∑

i=1

aidi (x, y), d0(x, y) = max
i=1,...,n

ai di (x, y), x, y ∈ X .

Let us yet recall the following very useful result.

Theorem 5 [24, Proposition, p. 4308] Let (Y , d, η) be a b–metric space and

Dd(x, y) = inf
{ n∑

i=1

d ξ (xi , xi+1) : x2, ..., xn ∈ Y , n ∈ N, x1 = x, xn+1 = y
}

for all x, y ∈ Y , where ξ := log 2η 2 and d ξ (x, y) = (
d(x, y)

)ξ
for x, y ∈ Y . Then Dd is a

metric in Y with

1

4
d ξ (x, y) ≤ Dd(x, y) ≤ d ξ (x, y), x, y ∈ Y . (6)

In particular, if d is a metric, then Dd = d.

Remark 6 Assume that (X , ‖ · ‖, η) is a quasi–normed space, i.e., η ≥ 1 is a fixed real
number, X is a real or complex linear space and ‖ · ‖ : X → R+ satisfies the following three
conditions:

(a) ‖x‖ = 0 if and only if x = 0;
(b) ‖αx‖ = |α| ‖x‖ for x ∈ X and all scalars α;
(c) ‖x + y‖ ≤ η

(‖x‖ + ‖y‖) for x, y ∈ X .

Let Y ⊂ X be nonempty and d : Y 2 → R+ be given by: d(x, y) := ‖x − y‖ for x, y ∈ Y .
Then it is easily seen that (Y , d, η) is a b–metric space.
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In view of Aoki-Rolewicz Theorem (see, e.g., [20, Theorem 1]), each quasi-norm is
equivalent to some p-norm, but there exist p-Banach spaces which are not normable (see,
e.g., [20, Examples 1 and 2]). Let us yet recall that, if X is a a real (complex, respectively)
linear space and p > 0, then a mapping ‖ · ‖ : X → R+ is a p-norm provided conditions (a)
and (b) hold and

(c1) ‖x + y‖p ≤ ‖x‖p + ‖y‖p for x, y ∈ X .

In the next section we provide some generalizations of Theorem 2 by showing that similar
fixed point results hold also for operators Λ of more general forms. In this way we extend
Theorem 1 and several similar outcomes in [4–6,9] to the case of b–metric spaces.

Finally, let us mention that in [14,19,23,25,28,29] and references contained therein, the
interested readers can find various further recent metric-type fixed point results. Maybe some
of them could be extended and applied in a similar way as in this paper. It seems that the
concept of ν-generalized metric is very promising in this respect (see, e.g., [28]).

2 Themain result

In what follows, we always assume that (Y , d, η) is a complete b-metric space. Moreover, E
denotes a nonempty set and, given ν, μ ∈ Y E , we define a mapping d(ν, μ) : E → R+ by
the formula:

d(ν, μ)(t) := d(ν(t), μ(t)), ν, μ ∈ Y E , t ∈ E .

Similarly, as in the usual metric spaces, if (χn)n∈N is a sequence in Y E , then we say that
χ ∈ Y E is a pointwise limit of (χn)n∈N when

lim
n→∞ d(χ, χn)(t) = 0, t ∈ E;

χ ∈ Y E is a uniform limit of (χn)n∈N if

lim
n→∞ sup

t∈E
d(χ, χn)(t) = 0.

We say that a subset F �= ∅ of Y E is p-closed (u-closed, respectively) if each χ ∈ Y E that
is a pointwise (uniform, resp.) limit of a sequence of elements of F , is an element of F .

Further, if f , g ∈ R
E , then we write f ≤ g provided f (t) ≤ g(t) for t ∈ E .

First note that from Theorem 1 we can easily deduce the following partial generalization
of Theorem 2 (i.e., of [13, Theorem 2.1]), in which we do not need to presume any particular
form of Λ, but has to replace (4) with a somewhat different estimate (see the definition of ε∗
in (2)) and formulate the statement on uniqueness similarly as in Theorem 1.

Theorem 7 Let Λ : R+E → R+E fulfil (C0), T : Y E → Y E be Λ-contractive, and ε : E →
R+ and ϕ : E → Y be such that

d
(
(T ϕ)(t), ϕ(t)

) ≤ ε(t),
∑

k∈N0

(Λξ
kε ξ )(t) < ∞, t ∈ E, (7)

where ξ := log 2η 2 and ε ξ : E → R+, Λξ : R+E → R+E are given by

ε ξ (t) := (ε(t))ξ , (Λξ δ)(t) = (
(Λδ)(t)

)ξ
, δ ∈ R+E , t ∈ E .
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Then the limit

ψ(t) := lim
n→∞(T nϕ)(t)

exists for each t ∈ E and the function ψ ∈ Y E , defined in this way, is a unique fixed point of
T with

d
(
T nϕ(t), ψ(t)

)ξ ≤ 4
∞∑

k=n

(
(Λξ

kε ξ )(t)
)ξ

, t ∈ E, n ∈ N0.

Proof According to Theorem 5, (7) and the Λ-contractivity of T ,

Dd
(
(T ϕ)(t), ϕ(t)

) ≤ d
(
(T ϕ)(t), ϕ(t)

)ξ ≤ ε ξ (t),

Dd
(
(T ν)(t), (T μ)(t)

) ≤ d
(
(T ν)(t), (T μ)(t)

)ξ

≤ ((
Λd(ν, μ)

)
(t)

)ξ = (
Λξd(ν, μ)

)
(t)

for every ν, μ ∈ Y E and t ∈ E . Moreover, note that the completeness of (Y , d, η) implies
the completeness of the metric space (Y , Dd) (see (6)). So, by Theorem 5 and Theorem 1
(with ρ = Dd and Λ and ε replaced by Λξ and εξ ), we obtain the statement. ��

The next fixed point theorem provides a further, a bit different, generalization of Theorem
2; it is the main result of this paper. To simplify some formulas, we denote by Λ0 the identity
operator on R+E , i.e., Λ0δ = δ for all δ ∈ R+E .

Theorem 8 Let C ⊂ Y E be nonempty, T : C → C, Λn : R+E → R+E for n ∈ N, and T n be
Λn –contractive for n ∈ N. Suppose there are ε ∈ R+E and ϕ ∈ C with

d(T ϕ, ϕ) ≤ ε, ε∗(t) :=
∞∑

i=0

(
(Λiε)(t)

)ξ
< ∞, t ∈ E, (8)

and one of the following two hypotheses is valid.

(i) C is p-closed.

(ii) C is u-closed and the sequence
( ∑n

i=0(Λiε)
ξ
)

n∈N tends uniformly to ε∗.

Then, for each t ∈ E, the limit
ψ(t) := lim

n→∞(T nϕ)(t) (9)

exists and the function ψ ∈ Y E , so defined, belongs to C and fulfils the inequalities

d(T nϕ,ψ) ≤
(
4

∞∑

i=n

(Λiε)
ξ
)1/ξ =: ε∗

n, n ∈ N0. (10)

Moreover, the following three statements are valid.

(a) If l ∈ N and
lim inf
n→∞

(
Λlε

∗
n

)
(t) = 0, t ∈ E, (11)

then ψ is a fixed point of operator T l .
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(b) If l ∈ N, t ∈ E and γ ∈ R+E are such that

lim inf
n→∞ (Λlnγ )(t) = 0, (12)

then ψ(t) = ω(t) for every fixed point ω ∈ C of T l , satisfying the inequality

d(ϕ, ω) ≤ γ. (13)

(c) If t ∈ E and ε∗
n(t) �= 0 for n ∈ N, then τ(t) = ψ(t) for every τ ∈ C with

lim inf
n→∞

d
(
(T nϕ)(t), τ (t)

)

ε∗
n(t)

< ∞. (14)

Proof Let Dd be the metric defined as in Theorem 5. Since T n is Λn-contractive, (8) implies
that

d(T n+1ϕ, T nϕ) ≤ Λnε, n ∈ N,

whence

Dd

(
T n+kϕ, T nϕ

)
≤

k−1∑

i=0

Dd

(
T n+i+1ϕ, T n+iϕ

)

≤
k−1∑

i=0

d
(
T n+i+1ϕ, T n+iϕ

)ξ

≤
n+k−1∑

i=n

(Λiε)
ξ ≤

∞∑

i=n

(Λiε)
ξ , (15)

and consequently

d(T n+kϕ, T n+rϕ)ξ ≤ 4Dd

(
T n+kϕ, T n+rϕ

)

≤ 4Dd

(
T n+kϕ, T nϕ

)
+ 4Dd

(
T nϕ, T n+rϕ

)

≤ 4
∞∑

i=n

(Λiε)
ξ + 4

∞∑

i=n

(Λiε)
ξ

for any k, r ∈ N and n ∈ N0, where (Λiε)
ξ (t) := (

(Λiε)(t)
)ξ for t ∈ E . So, by (8),

(T nϕ(t))n∈N is a Cauchy sequence in (Y , d, η) for each t ∈ E , which means that it is
convergent. Consequently, (9) defines a function ψ ∈ Y E . Clearly, if (i) holds, then ψ ∈ C.

Note that (9) holds also in the metric space (Y , Dd), in view of (6). So, letting k → ∞ in
(15), for each t ∈ E we get

d(ψ(t), (T nϕ)(t))ξ ≤ 4Dd(ψ(t), (T nϕ)(t))

≤ 4
∞∑

i=n

((Λiε)(t))
ξ , n ∈ N0, (16)

which is (10). Since, in the case of (ii), we have

lim
n→∞ sup

t∈E

( ∞∑

i=n

(
(Λiε)(t)

)ξ
)

= 0,
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35 Page 8 of 17 J. Brzdek

it is easily seen that (10) implies that ψ ∈ C also in this case.
Next, observe that (16) implies

d
(
T n+lϕ, T lψ

)
≤ Λl

((
4

∞∑

i=n

(
Λiε

)ξ
)1/ξ) = Λlε

∗
n

for l, n ∈ N0. So, for each l, n ∈ N0,

d
(
ψ, T lψ

)
≤ ηd

(
ψ, T n+lϕ

)
+ ηd

(
T n+lϕ, T lψ

)

≤ ηd
(
ψ, T n+lϕ

)
+ ηΛlε

∗
n .

Hence, if (11) is valid for a fixed l ∈ N, then with n → ∞ we get

d
(
ψ(t), (T lψ)(t)

)
= 0, t ∈ E,

and consequently T lψ = ψ .
Now, let l ∈ N, γ : E → R+ and ω ∈ C be a fixed point of T l satisfying (13). Then, for

each n ∈ N, we get

d(ψ, ω) = d
(
ψ, T lnω

)

≤ ηd(ψ, T lnϕ) + ηd
(
T lnϕ, T lnω

)

whence

d(ψ(t), ω(t)) ≤ ηd
(
ψ(t),

(
T lnϕ

)
(t)

)
+ η (Λlnγ ) (t), t ∈ E .

Consequently, letting n → ∞, by (9), we can easily see that ω(t) = ψ(t) for each t ∈ E
such that (12) holds.

Finally, let t ∈ E and τ ∈ C be such that ε∗
n(t) �= 0 for n ∈ N and (14) is valid. Write

Mt := 1 + lim inf
n→∞

d
(
(T nϕ)(t), τ (t)

)

ε∗
n(t)

.

Then there is a strictly increasing sequence (tn)n∈N in N such that

d
((
T tnϕ

)
(t), τ (t)

)ξ
<

(
Mtε

∗
tn (t)

)ξ = Mξ
t

∞∑

i=tn

(
(Λiε) (t)

)ξ
, n ∈ N,

and consequently, by (16),

d (τ (t), ψ(t))ξ ≤ 4Dd
(
τ(t), (T tnϕ)(t)

) + 4Dd
((
T tnϕ

)
(t), ψ(t)

)

≤ 4d
(
τ(t), (T tnϕ)(t)

)ξ + 4d
((
T tnϕ

)
(t), ψ(t)

)ξ

< 4(Mξ
t + 1)

∞∑

i=tn

(
(Λiε) (t)

)ξ
, n ∈ N,

whence we get τ(t) = ψ(t) with n → ∞ (in view of (8)). ��
Remark 9 From statement (b) of Theorem 8 we can deduce, in particular, the following: If ψ

is not a fixed point of T l for some l ∈ N, then the same is true for every functionω ∈ C, which
satisfies (13) with some γ ∈ �l , where �l denotes the family of all functions γ : E → R+
such that (12) holds for each t ∈ E .
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But, if ψ is a fixed point of T l for some l ∈ N, then

ψ(t) = lim
n→∞(T lknχ)(t)

for every χ ∈ C, t ∈ E , and every sequence (kn)n∈N in N such that there is γ ∈ R+E with
d(χ,ψ) ≤ γ and

lim
n→∞(Λlknγ )(t) = 0. (17)

In fact, if γ : E → R+ and χ ∈ C satisfies the inequality d(χ,ψ) ≤ γ , then for each t ∈ E
and each sequence (kn)n∈N in N such that (17) holds, we have

d((T lknχ)(t), ψ(t)) = d((T lknχ)(t), (T lknψ)(t))

≤ (Λlknγ )(t), n ∈ N,

which implies that

ψ(t) = lim
n→∞(T lknχ)(t).

To avoid any ambiguity in the sequel, we need one more definition.

Definition 10 Let (D, ρ, η) be a b-metric space, T be a nonempty subset of D, S : T → D
and λ : R+ → R+. We say that S is a λ-contraction provided

ρ(S(t), S(s)) ≤ λ(δ)

for every t, s ∈ T and every δ ∈ R+ such that ρ(t, s) ≤ δ.

It is clear that, for nondecreasing λ, S is a λ-contraction if and only if

ρ(S(t), S(s)) ≤ λ(ρ(t, s)), t, s ∈ T .

Note yet that, if E has only one element, i.e., E = {t0}, then Y E can be identified with Y .
Therefore, Theorem 8 yields at once the following generalization of the Banach Contraction
Principle.

Corollary 11 Let T : Y → Y and λn : R+ → R+ for n ∈ N. Suppose that T n is a λn-
contraction for n ∈ N and there exist e ∈ R+ and φ ∈ Y such that

∞∑

i=1

λi (e)
ξ < ∞, d(T (φ), φ) ≤ e.

Then there exists the limit
ψ0 := lim

n→∞ T n(φ)

and

d(T n(φ), ψ0) ≤
(
4

∞∑

i=n

λi (e)
ξ
)1/ξ =: e∗

n, n ∈ N0,

where λ0(d) = d for d ∈ R+. Moreover, the following statements are valid.

(α) If l ∈ N and
lim inf
n→∞ λl(e

∗
n) = 0,

then ψ0 is a fixed point of T l .
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35 Page 10 of 17 J. Brzdek

(β) If e0 ∈ R+, l ∈ N and

lim inf
n→∞ λln(e0) = 0,

then every fixed point φ0 ∈ Y of T l , satisfying the inequality

d(φ, φ0) ≤ e0,

is equal to ψ0.
(γ ) If e∗

n �= 0 for n ∈ N, then ψ0 is the unique element of the set

{
z ∈ Y : lim inf

n→∞
d
(
(T n(φ), z

)

e∗
n

< ∞
}
.

Remark 12 Analogously as in Remark 9, from statement (β) of Corollary 11 we can deduce,
in particular, the following: If ψ0 is not a fixed point of T l for some l ∈ N, then the same is
true for each z ∈ E with d(ψ0, z) < sup D, where D is the set of all c ∈ R+ such that there
is a sequence (kn)n∈N in N with

lim
n→∞ kn = ∞, lim inf

n→∞ λlkn (c) = 0.

However, ifψ0 is a fixed point of T l for some l ∈ N, then (again analogously as in Remark
9) it is easy to show that

ψ0 = lim
n→∞ T lkn (v)

for every v ∈ E and every sequence (kn)n∈N inN such that there is d ∈ R+E with d(v, ψ0) ≤
d and

lim
n→∞ λlkn (d) = 0.

Theorem 8 also yields the subsequent.

Corollary 13 Let C ⊂ Y E be nonempty,Λ : R+E → R+E , T : C → C beΛ-contractive, and
functions ε ∈ R+E and ϕ ∈ C be such that

d(T ϕ, ϕ) ≤ ε, ε�(t) :=
∞∑

i=0

(
(Λiε)(t)

)ξ
< ∞, t ∈ E . (18)

Next, assume one of the following two hypotheses.

(i) C is p-closed.

(ii) C is u-closed and the sequence
( ∑n

i=0(Λ
iε)ξ

)

n∈N tends uniformly to ε�.

Then, for each t ∈ E, there exists the limit

ψ(t) := lim
n→∞(T nϕ)(t) (19)

and the function ψ ∈ Y E , so defined, belongs to C and fulfils the inequalities

d(T nϕ,ψ) ≤
(
4

∞∑

i=n

(
Λiε

)ξ
)1/ξ =: ε�

n, n ∈ N0. (20)

Moreover, the following statements are valid.
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(A) If
lim inf
n→∞

(
Λε�

n

)
(t) = 0, t ∈ E, (21)

then ψ is a fixed point of T .
(B) If t ∈ E and γ ∈ R+E are such that

lim inf
n→∞ (Λnγ )(t) = 0, (22)

thenψ(t) = ω(t) for every fixed pointω ∈ C of T , satisfying the inequality d(ϕ, ω) ≤ γ .
(C) If t ∈ E and ε�

n(t) �= 0 for n ∈ N, then τ(t) = ψ(t) for every τ ∈ C with

lim inf
n→∞

d
(
(T nϕ)(t), τ (t)

)

ε�
n(t)

< ∞.

Proof It is easy to see that T n is Λn –contractive for each n ∈ N. So, it is enough to use
Theorem 8 with l = 1 and Λn := Λn for n ∈ N. ��
Remark 14 Fix j ∈ N. Let fi : E → E and Li : E → R+ for i = 1, . . . , j . Define
Λ : R+E → R+E by the formula

Λδ(t) :=
j∑

i=1

Li (t)δ( fi (t)), δ ∈ R+E , t ∈ E .

Then (C0) holds for such Λ (see Remark 3). This means that Theorem 1 is a simple conse-
quence of Corollary 13. We show that this is also the case for Theorem 2.

First note that (C0) and (18) imply (21). Therefore the statement of Theorem 2 that ψ

is a fixed point of T can be deduced from (A). We are yet to show that the statement on
uniqueness of ψ can be derived from (B).

To this end fix γ ∈ R+E and M > 0 such that

γ ∗
0 (t) :=

( ∞∑

k=0

(
(Λkγ )(t)

)ξ
)1/ξ

< ∞, t ∈ E,

γ ∗
0 (t) ≤ M

∞∑

i=0

(Λiγ )(t), t ∈ E . (23)

We prove that, for each n ∈ N0,

(Λnγ ∗
0 )(t) ≤ M

∞∑

i=n

(Λiγ )(t), t ∈ E . (24)

Clearly, the case n = 0 is trivial in view of (23). Next, fix n ∈ N0 and suppose that (24)
is valid. Then

(Λn+1γ ∗
0 )(t) =

j∑

i=1

Li (t)(Λ
nγ ∗

0 )( fi (t)) ≤
j∑

i=1

Li (t)M
∞∑

k=n

(Λkγ )( fi (t))

≤ M
∞∑

k=n

j∑

i=1

Li (t)(Λ
kγ )( fi (t))

= M
∞∑

k=n

(Λk+1γ )(t) = M
∞∑

k=n+1

(Λkγ )(t), t ∈ E .
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Thus, by induction, we have proved (24). Therefore, in this case, (24) yields (22). Conse-
quently, (22) results also from the condition

γ ∗
0 (t) ≤ M

∞∑

k=1

(Λkγ )(t), t ∈ E .

This means that (5) (cf. [13, (2.6)]) implies that

lim inf
n→∞ (Λnε∗

0)(t) = 0, t ∈ E,

and therefore from (B) we can infer that ψ is the unique fixed point of T , satisfying the
inequality d(ϕ, ψ) ≤ ε∗

0 .
Thus we have shown that Theorem 2 (i.e., [13, Theorem 2.1]) is a simple consequence of

Corollary 13.

The next example shows that, in some natural situations, assumption (8) can be signifi-
cantly weaker than (18) with Λ := Λ1. It is a bit trivial, but this allows to expose clearly the
main differences between (8) and (18).

Example 3 Assume that (X , ‖ · ‖, η) is a real quasi–normed space. Let Y = X2 and define
d : Y 2 → R+ by

d((x1, x2), (y1, y2)) =
2∑

i=1

‖xi − yi‖, (x1, x2), (y1, y2) ∈ Y .

Clearly, (Y , d, η) is a b–metric space.
Fix τ1, τ2 ∈ XE and define the operator T : Y E → Y E by

(T φ)(t) = (τ1(t), φ1(t) + τ2(t)), t ∈ E,

for all φ = (φ1, φ2) ∈ Y E . Then

d((T φ)(t), (T μ)(x)) = d((τ1(t), φ1(t) + τ2(t)), (τ1(t), μ1(t) + τ2(t)))

≤ d(φ(t), μ(t)), t ∈ E,

for every φ = (φ1, φ2), μ = (μ1, μ2) ∈ Y E . Therefore, with any Λ1 : R+E → R+E such
that Λ1δ ≥ δ for δ ∈ R+E , we have Λ1-contractivity of T . Next,

(T nφ)(t) = (τ1(t), τ1(t) + τ2(t)), t ∈ E, n ∈ N, n ≥ 2,

for each φ = (φ1, φ2) ∈ Y E and we can take Λnδ(t) = 0 for δ ∈ R+E , t ∈ E and n ∈ N,
n ≥ 2. This means that the second inequality in (8) is fulfilled for every ε ∈ R+E .

Fix δ ∈ R+E and u ∈ X with ‖u‖ = 1. Let functions φ,ψ ∈ Y E be defined by:

φ(t) = (δ(t)u, 0), ψ(t) = (0, 0), t ∈ E .

Clearly,

(T φ)(t) = (τ1(t), δ(t)u + τ2(t)),

(T ψ)(t) = (τ1(t), τ2(t)), t ∈ E,

d(φ(t), ψ(t)) = ‖δ(t)u‖ = δ(t), t ∈ E .

Assume now that T is Λ1-contractive with some Λ1 : R+E → R+E . Then

δ(t) = ‖δ(t)u‖ = d((T φ)(t), (T ψ)(t)) ≤ Λ1δ(t), t ∈ E .
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Thus we have shown that

Λ1δ ≥ δ, δ ∈ R+E .

Consequently, by an easy induction, for each n ∈ N, we obtain

Λ1
nδ ≥ δ, δ ∈ R+E ,

whence
∞∑

i=0

(Λ1
iδ)(t) = ∞, t ∈ E, δ ∈ R+E , δ(t) �= 0.

3 Ulam stability

Now, we present a simple Ulam stability result that can be derived from our considerations
in the previous sections. To this end, we need the following hypothesis.

(H1) j ∈ N, Li : E → R+ for i = 1, . . . , j , Φ : E × Y j → Y , and

d(Φ(t, w1, . . . , w j ),Φ(t, z1, . . . , z j )) ≤
j∑

k=1

Lk(t)d(wk, zk)

t ∈ E, (w1, . . . , w j ), (z1, . . . , z j ) ∈ Y j . (25)

The following corollary can be easily deduced from Corollary 13.

Corollary 15 Let hypothesis (H1) be valid, f1, . . . , f j ∈ EE , ϕ ∈ Y E , ε ∈ R+E and

d(Φ(t, ϕ( f1(t)), . . . , ϕ( f j (t))), ϕ(t)) ≤ ε(t), t ∈ E, (26)

ε�(t) :=
∞∑

i=0

(
(Λiε)(t)

)ξ
< ∞, t ∈ E, (27)

where Λ : R+E → R+E is given by

(Λδ)(t) =
j∑

k=1

Lk(t)δ( fk(t)), δ ∈ R+E , t ∈ E .

Then the limit
ψ(t) := lim

n→∞(T nϕ)(t) (28)

exists for each t ∈ E, with T given by:

(T ϕ)(t) := Φ(t, ϕ( f1(t)), . . . , ϕ( f j (t))), ϕ ∈ Y E , t ∈ E,

and ψ ∈ Y E , defined by (28), is a solution of the functional equation

Φ(t, ψ( f1(t)), . . . , ψ( f j (t))) = ψ(t), t ∈ E, (29)

such that
d(ϕ(t), ψ(t)) ≤ (4ε�(t))1/ξ =: ε(t), t ∈ E . (30)

Moreover, if
lim inf
n→∞

(
Λn ε

)
(t) = 0, t ∈ E, (31)
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then ψ is the unique function in Y E that satisfies (29) and (30).

Proof Clearly, inequalities (26) and (27) imply (18).Next, (25)means thatT isΛ-contractive.
Note yet that C0 holds (see Remark 3), whence (21) is valid. Consequently, by Corollary 13
with C = Y E , the function ψ defined by (28) is a fixed point of T (that is a solution of (29))
satisfying (30) (take n = 0 in (20)).

Further, (31) implies (22) for every t ∈ E with γ = ε. So, by (B),ψ is the unique function
in Y E that satisfies (29) and (30). ��

Stability of functional equations of form (29) (or related to it) has already been studied
by several authors and for further information we refer to [1,5,8]. A very particular case of
(29) is the linear functional equation of the form

φ(t) =
j∑

i=1

Li (t)φ( fi (t)),

with j ∈ N, f1, . . . , f j ∈ EE , L1, . . . , L j : E → R+ and for functions φ ∈ Y E (provided
Y is a real linear space); some recent results concerning stability of less general cases of it
can be found in [8,17,18,21]. A result similar to Corollary 15 can also be obtained for the
functional equation

φ(t) = max
i=1,..., j

Li (t)φ( fi (t)),

with Y = E = R and d(x, y) = |x − y|p for x, y ∈ R, with some fixed p ∈ [1,∞) (see
Remark 4). Then we take T : Y E → Y E given by

(T ϕ)(t) = max
i=1,..., j

Li (t)ϕ( fi (t)), ϕ ∈ Y E , t ∈ E,

and it is easy to show that such T is Λ-contractive with Λ : R+E → R+E defined by the
formula:

(Λξ)(t) = max
i=1,..., j

|Li (t)|pξ( fi (t)), ξ ∈ R+E , t ∈ E .

To this end it is enough to prove by a simple induction that

∣∣ max
i=1,..., j

xi − max
i=1,..., j

yi
∣∣ ≤ max

i=1,..., j
|xi − yi |, xi , yi ∈ R, i = 1, . . . , j,

using the inequality

|max {x1, x2} − max {y1, y2}| ≤ max {|x1 − y1|, |x2 − y2|}, x1, x2, y1, y2 ∈ R,

which is very easy to check, because only the case

max {x1, x2} = x1, max {y1, y2} = y2

must be verified and then we have the following two situations:

0 ≤ x1 − y2 ≤ x1 − y1, 0 ≤ y2 − x1 ≤ y2 − x2.
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4 Approximate eigenvalues

Assume additionally that (Y , ‖ · ‖, η) is a real quasi-normed space and d(x, y) = ‖x − y‖
for x, y ∈ Y . Clearly, then Y E is also a real liner space with the operations defined pointwise
in the usual way:

(ξ + η)(t) := ξ(t) + η(t), (αν)(t) := αν(t), ν, μ ∈ Y E , t ∈ E, α ∈ R.

The next corollary is an example of a result (that can be derived from the previous sections)
concerning approximate eigenvalues of some linear operators onY E . Actually the assumption
of linearity of the operators is not necessary in the proof, but the notion of eigenvalue might
be ambiguous without it (see, e.g., [26]) and therefore we confine only to the linear case.

Corollary 16 Let γ ∈ R \ {0}, Λ0 : R+E → R+E , and T0 : Y E → Y E be Λ0-contractive
and linear. Suppose that there are h ∈ Y E and ε ∈ R+E such that

∥
∥(T0h)(t) − γ h(t)

∥
∥ ≤ ε(t), t ∈ E, (32)

ε�(t) :=
∞∑

i=0

(
(Λiε)(t)

)ξ
< ∞, t ∈ E,

and (21) is valid, where Λδ := |γ |−1(Λ0δ) for δ ∈ R+E . Then γ is an eigenvalue of T0, the
limit

ψ(t) := lim
n→∞

(
T n
0 (γ −n+1h)

)
(t) (33)

exists for every t ∈ E, and the function ψ0 ∈ Y E , given by

ψ0(t) := γ −1ψ(x), t ∈ E,

is an eigenvector of T0, with the eigenvalue γ , and

‖ψ0(t) − h(t)‖ ≤ |γ |−1ε∗(t), t ∈ E . (34)

Proof Let ϕ := γ h and T : Y X → Y X be given by:

(T ν)(t) = (
T0(γ

−1ν)
)
(t), ν ∈ Y E , t ∈ E .

Then, in view of the Λ0-contractivity and linearity of T0, for every μ, ν ∈ Y E and δ ∈ R+E

with d(μ, ν) ≤ δ we have

d(T μ, T ν) = d(T0(γ
−1μ), T0(γ

−1ν))

≤ |γ −1| d(T0μ, T0ν) ≤ |γ −1|(Λ0δ),

which means that T is Λ–contractive. Next, we can write (32) in the form

d((T ϕ)(t), ϕ(t)) ≤ ε(t), t ∈ E . (35)

Hence, by Corollary 13 (with C = Y E ), the limit (19) exists for each t ∈ E and the function
ψ : E → Y , so defined, is a fixed point of T with

d(ψ(t), ϕ(t)) ≤ ε∗(t), t ∈ E . (36)

Write ψ0 := γ −1ψ . Now, it is easily seen that T0ψ0 = T ψ = ψ = γψ0, (34) is equivalent
to (36), and (19) yields (33). ��
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35 Page 16 of 17 J. Brzdek

Clearly, under suitable additional assumptions in Corollary 16, we can deduce fromCorol-
lary 13 some statements on the uniqueness of ψ , and consequently of the uniqueness of ψ0.

Given ε ∈ R+E , let us introduce the following definition: γ ∈ R \ {0} is an ε-eigenvalue
of a linear operator T0 : Y E → Y E provided there exists h ∈ Y E such that ‖T0h − γ h‖ ≤ ε.

Corollary 16 yields the following simple result.

Corollary 17 Let Λ0 : R+E → R+E , T0 : Y E → Y E be Λ0-contractive and linear, and
ε ∈ R+E . Then every ε-eigenvalue γ ∈ R \ {0} of T0 such that

ε�(t) :=
∞∑

i=0

( (
Λiε

)
(t)

)ξ
< ∞, t ∈ E,

(
wi th Λδ := |γ |−1 (Λ0δ) for δ ∈ R+E

)
and (21) holds, is an eigenvalue of T0.
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