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Abstract
We study a double phase Neumann problem with a superlinear reaction which need not
satisfy the Ambrosetti-Rabinowitz condition. Using the Nehari manifold method, we show
that the problem has at least three nontrivial bounded ground state solutions, all with sign
information (positive, negative and nodal).
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1 Introduction

Let � ⊆ R
N be a bounded domain with a Lipschitz boundary ∂�. In this paper we study the

following double phase Neumann problem

⎧
⎨

⎩

−�a
pu(z) − �qu(z) + ξ(z)|u(z)|q−2u(z) = f (z, u(z)) in �,

∂u

∂n
= 0 on ∂�, 1 < q < p < N .

⎫
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Given a ∈ L∞(�) \ {0} with a(z) ≥ 0 for a.a. z ∈ � and 1 < r < +∞, we denote by
�a

r the weighted r -Laplace differential operator defined by

�a
r u = div

(
a(z)|Du|r−2Du

)
.

If a ≡ 1, then we have the usual r -Laplacian denoted by �r . The differential operator in
problem (1) is the sum of two such operators with different exponents. Hence the differential
operator is not homogeneous.There is also a potential term ξ(z)|u|q−2uwith ξ ∈ L∞(�)\{0},
ξ(z) ≥ 0 for a.a. z ∈ �. The differential operator of problem (1) is related to the so-called
“double phase" integral functional defined by

∫

�

(
a(z)|Du|p + |Du|q) dz.

The integrand of this functional is

θ(z, x) = a(z)x p + xq for all z ∈ �, all x ≥ 0.

We do not assume that the weight a(·) is bounded away from zero (that is, we do not have
that ess inf�a > 0). Therefore the integrand θ(z, x) exhibits unbalanced growth, namely

xq ≤ θ(z, x) ≤ c0
(
xq + x p) for a.a. z ∈ �, all x ≥ 0, some c0 > 0.

Such functionals, wre first considered by Marcellini [14,15] and Zhikov [27,28], in the
context of problems of the calculus of variations and of nonlinear elasticity theory. Recently
the interest for such problemswas revived and some important interior regularity results were
obtained for local minimizers of such functionals. We refer to the works of Baroni et al. [1],
Mingione and Rădulescu [16], and Ragusa and Tachikawa [24]. However, until now there is
no global regularity theory (that is, regularity results up to the boundary) for the solutions of
such problems. This fact limits the tools available for the study of such equations and makes
double phase problems more difficult to deal with. In fact, the unbalanced growth of θ(z, ·)
implies that the usual Sobolev spaces do not suffice for the analysis of the problem and we
have to use the general abstract setting of Musielak-Orlicz-Sobolev spaces.

In the reaction of problem (1), we have a Carathéodory function f (z, x) (that is, for all
x ∈ R the mapping z �→ f (z, x) is measurable and for a.a. z ∈ � the function x �→ f (z, x)
is continuous). We assume that f (z, ·) exhibits (p − 1)-superlinear growth as x → ±∞
but without satisfying the usual in such cases Ambrosetti-Rabinowitz condition (the AR-
condition for short). The absence of a global regularity theory for such problems requires a
different approach for double phase equations. In problems with balanced growth ((p, q)-
equations), for which a powerful global regularity theory exists (see Lieberman [10]), the
main tools are truncation and comparison techniques, critical point theory and Morse theory
(critical groups). We refer to the works of Liu and Papageorgiou [12], Papageorgiou and
Rădulescu [17,18], Papageorgiou et al. [21], Papageorgiou and Zhang [23]. Here instead, we
use the Nehari manifold method as this was developed by Brown and Wu [2], Brown and
Zhang [3], Szulkin and Weth [25] and Willem [26].

We show that problem (1) has at least three nontrivial bounded solutions, all with sign
information (positive, negative and nodal (sign changing)). Recently there have been some
multiplicity results for double phase problems. We refer to the works of Gasiński and Papa-
georgiou [5], Ge et al. [8], Liu and Dai [11], Papageorgiou et al. [22] (Dirichlet problems) and
Gasiński and Winkert [7], Papageorgiou, Rădulescu and Repovš [20] (Neumann and Robin
problems). Closer to our work here are the papers of Gasiński and Papageorgiou [5] and Liu
and Dai [11], which deal with superlinear Dirichlet problems, employing more restrictive
conditions on the reaction and using a different approach.
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2 Mathematical background and hypotheses

Aswe alreadymentioned in the introduction, in order to accommodate the unbalanced growth
of θ(z, ·), we have to use Musielak-Orlicz-Sobolev spaces. A comprehensive presentation of
the theory of these spaces can be found in the recent book of Harjulehto and Hästö [9].

We make the following hypotheses on the weight a(·), the potential function ξ(·) and
exponents q , p.

H0: a ∈ C0,1(�) (that is, a : � �→ R is Lipschitz continuous), a(z) > 0 for all z ∈ �,

ξ ∈ L∞(�) \ {0}, ξ(z) ≥ 0 for a.a. z ∈ �, 1 < q < p < q∗
(

q∗ = Nq

N − q

)

, p < N .

Remark 1 In contrast to previous works on Dirichlet double phase problems, we do not

require that
p

q
< 1 + 1

N
. This condition implies that p < q∗, but the converse is not true.

For Dirichlet problems this condition guarantees that the Poincaré inequality is valid for the
corresponding Musielak-Orlicz-Sobolev space (see Harjulehto & Hästö [9, pp. 100, 138]).

Let M(�) be the space of all Lebesgue measurable functions u : � �→ R. As usual we
identify two measurable functions which differ only on a Lebesgue-null subset of �. Then
the Musielak-Orlicz space Lθ (�) is defined by

Lθ (�) = {u ∈ M(�) : ρθ (u) < +∞} ,

with ρθ (·) being the modular function defined by

ρθ (u) =
∫

�

θ(z, u(z))dz =
∫

�

(
a(z)|u(z)|p + |u(z)|q) dz.

We equip Lθ (�) with the so-called “Luxemburg norm"

‖u‖θ = inf
{
λ > 0 : ρθ

(u

λ

)
≤ 1

}
.

Then Lθ (�) becomes a Banach space which is separable and reflexive (in fact, uniformly
convex).

Using Lθ (�) we can define the corresponding Musielak-Orlicz-Sobolev space W 1,θ (�)

as follows

W 1,θ (�) = {
u ∈ Lθ (�) : |Du| ∈ Lθ (�)

}
.

Here Du denotes the weak gradient of u(·). We equip W 1,θ (�) with the following norm

‖u‖ = ‖u‖θ + ‖Du‖θ for all u ∈ W 1,θ (�),

where ‖Du‖θ = ‖|Du|‖θ . This space is also a Banach space which is separable and reflexive
(in fact, uniformly convex).

We have the following embeddings for these spaces (see Gasiński and Winkert [7]).

Proposition 1 If hypotheses H0 hold, then the following embeddings are true:
(a) Lθ (�) ↪→ Lr (�) and W 1,θ (�) ↪→ W 1,r (�) continuously for all 1 ≤ r ≤ q;
(b) W 1,θ (�) ↪→ Lr (�) continuously if 1 ≤ r ≤ q and compactly if 1 ≤ r < q;
(c) L p(�) ↪→ Lθ (�) continuously.

There is a close relation between the norm ‖ · ‖θ and the modular function ρθ (·).
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Proposition 2 If hypotheses H0 hold, then

(a) if u ∈ Lθ (�)\{0}, then ‖u‖θ = μ ⇐⇒ ρθ

(
u

μ

)

= 1;
(b) ‖u‖θ < 1 (resp. = 1, > 1) ⇐⇒ ρθ (u) < 1 (resp. = 1, > 1);
(c) ‖u‖θ < 1 �⇒ ‖u‖p

θ ≤ ρθ (u) ≤ ‖u‖qθ ;
(d) ‖u‖θ > 1 �⇒ ‖u‖qθ ≤ ρθ (u) ≤ ‖u‖p

θ ;
(e) ‖un‖θ → 0 ⇐⇒ ρθ (un) → 0;
(f) ‖un‖θ → +∞ ⇐⇒ ρθ (un) → +∞.

Let 〈·, ·〉 denote the duality brackets for the pair 〈W 1,θ (�)∗,W 1,θ (�)〉 and let V :
W 1,θ (�) �→ W 1,θ (�)∗ be the nonlinear operator defined by

〈V (u), h〉 =
∫

�

a(z)|Du|p−2(Du, Dh)RN dz +
∫

�

|Du|q−2(Du, Dh)RN dz

for all u, h ∈ W 1,θ (�).
The next proposition summarizes the main properties of this nonlinear operator (see Liu

and Dai [11]).

Proposition 3 If hypotheses H0 hold, then the operator V : W 1,θ (�) �→ W 1,θ (�)∗ is
bounded (that is, it maps bounded sets to bounded sets), continuous, monotone and of type
(S)+, namely it has the following property:

“un
w−→ u in W 1,θ (�), lim sup

n→∞
〈V (un), un − u〉 ≤ 0

imply that

un → u in W 1,θ (�).′′

For every u ∈ W 1,θ (�), we set

|u| = ‖Du‖θ +
(∫

�

ξ(z)|u|qdz
)1/q

.

Evidently, this is a norm on W 1,θ (�).

Proposition 4 If hypotheses H0 hold, then ‖ · ‖ and | · | are equivalent norms on W 1,θ (�).

Proof Since ξ ∈ L∞(�) (see hypotheses H0), we have
∫

�

ξ(z)|u|qdz ≤ ‖ξ‖∞‖u‖qq ≤ c1‖u‖qq
for some c1 > 0 (see Proposition 1).

Therefore

|u| = ‖Du‖θ + c1/q1 ‖u‖θ ≤ c2‖u‖ (2)

for some c2 > 0, all u ∈ W 1,θ (�).
Claim: There exists c3 > 0 such that c3‖u‖ ≤ |u| for all u ∈ W 1,θ (�).
Arguing by contradiction, suppose we can find {un}n∈N ⊆ W 1,θ (�) such that

|un | <
1

n
‖un‖ for all n ∈ N.
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Let vn = un
‖un‖ (n ∈ N). Then we have

‖vn‖ = 1 and ‖Dvn‖θ +
(∫

�

ξ(z)|vn |qdz
)1/q

<
1

n
for all n ∈ N. (3)

By passing to a subsequence if necessary, we may assume that

vn
w−→ v in W 1,θ (�) and vn → v in Lq(�) (see Proposition 1). (4)

Then from (3) and (4), we have

‖Dv‖θ +
(∫

�

ξ(z)|v|qdz
)1/q

≤ 0,

⇒ ‖Dv‖θ +
(∫

�

ξ(z)|v|qdz
)1/q

= 0,

⇒ ‖Dv‖θ = 0 and so v = η ∈ R. (5)

From (5) we have

|η|q
∫

�

ξ(z)dz = 0.

Since
∫

�

ξ(z)dz > 0 (see hypotheses H0), we have that η = 0 and so v = 0. From (3)

we have

‖Dvn‖θ → 0,

⇒ vn → 0 in W 1,θ (�),

which contradicts the fact that ‖vn‖ = 1 for all n ∈ N (see (3)). Finally, (2) and the Claim
imply that

‖ · ‖ and | · | are equivalent norms on W 1,θ (�).

This proof is now complete. ��
In a similar fashion we can show also the following result. In what follows, ‖·‖1,q denotes

the norm of the Sobolev space W 1,q(�).

Proposition 5 If ξ ∈ L∞(�)\{0} and ξ(z) ≥ 0 for a.a. z ∈ �, then ‖ · ‖1,q and [u] =
‖Du‖q +

(∫

�

ξ(z)|u|qdz
)1/q

are equivalent norms on W 1,q(�).

Given u ∈ W 1,θ (�), we define

u+(z) = max {u(z), 0} , u−(z) = max {−u(z), 0} for all z ∈ �.

We know that

u± ∈ W 1,θ (�), u = u+ − u−, |u| = u+ + u−.

If X is a Banach space and ϕ ∈ C1(X ,R), then

Kϕ = {
u ∈ X : ϕ′(u) = 0

}
(the critical set of ϕ).
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Also, if c ∈ R, then

ϕc = {u ∈ X : ϕ(u) ≤ c} .

Now we introduce the hypotheses on the reaction f (z, x).
H1: f : � ×R �→ R is a Carathéodory function such that f (z, 0) = 0 for a.a. z ∈ � and

(i) | f (z, x)| ≤ â(z)
(
1 + |x |r−1

)
for a.a. z ∈ �, all x ∈ Rwith â ∈ L∞(�) and p < r < q∗;

(ii) if F(z, x) =
∫ x

0
f (z, s)ds, then limx→±∞

F(z, x)

|x |p = +∞ uniformly for a.a. z ∈ �;

(iii) for a.a. z ∈ �, the quotient function x �→ f (z, x)

|x |p−1 is increasing on R\{0};

(iv) limx→0
f (z, x)

|x |q−2x
= 0 uniformly for a.a. z ∈ �.

Remark 2 For s ≥ 0 and x �= 0, we have

1 − s p

p
f (z, x)x + F(z, sx) − F(z, x)

=
∫ 1

s
f (z, x)xt p−1dt −

∫ 1

s

d

dt
F(z, t x)dt

=
∫ 1

s
f (z, x)xt p−1dt −

∫ 1

s
f (z, t x)xdt (by the chain rule)

=
∫ 1

s

(
f (z, x)

|x |p−1 − f (z, t x)

t p−1|x |p−1

)

|x |p−1xt p−1dt

≥ 0 (see hypothesis H1(iii)),

⇒ F(z, x) − F(z, sx) ≤ 1 − s p

p
f (z, x)x

for a.a. z ∈ �, all x ∈ R, all s ≥ 0. (6)

If in (6) we choose s = 0, then

pF(z, x) ≤ f (z, x)x for a.a. z ∈ �, all x ∈ R, (7)

⇒ lim
x→±∞

f (z, x)

|x |p−2x
= +∞ uniformly for a.a. z ∈ � (see hypothesis H1(ii)).

So, we see that f (z, ·) is (p − 1)-superlinear as x → ±∞. However this superlinearity
property is not formulated using the AR-condition which is common in superlinear problems,
see Liu & Dai [11], hypothesis ( f4). Also, in hypothesis H1(iii) we do not require that the

quotient function x �→ f (z, x)

|x |p−1 is strictly increasing onR\{0} as it is common in the literature,

see Liu & Dai [11], hypothesis ( f6). Compared to the other superlinear Dirichlet double
phase work of Gasiński & Papageorgiou [5], we do not require f (z, ·) to be locally Lipschitz
and replace hypothesis H( f )(iii) of [5] by hypothesis H1(iii). In case f (z, ·) is strictly
differentiable, then hypothesis H( f )(iii) of [5] has the form (p − 1) f (z, x)x ≤ f ′

x (z, x)x
2

for a.a. z ∈ �, all x ∈ R (see Clarkc [4, p. 33]), which of course implies the monotonicity of
the quotient function. Note that hypothesis H1(iii) is equivalent to saying that for a.a. z ∈ �,

the mapping x �→ f (z, x)x

|x |p is increasing in |x | �= 0.

First we will study problem (1) under the following stronger set of hypotheses.
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H′
1: f : � × R �→ R is a Carathéodory function such that f (z, 0) = 0 for a.a. z ∈ �,

hypotheses H′
1(i), (ii), (iv) are the same as the corresponding hypotheses H1(i), (ii), (iv) and

(iii) for a.a. z ∈ �, the quotient function x �→ f (z, x)

|x |p−1 is strictly increasing on R\{0}.

Example 1 The following function satisfies hypotheses H1 but not H′
1. For the sake of sim-

plicity we drop the z-dependence.

f (x) =
{

|x |p−2x if |x | ≤ 1,

|x |p−2x (ln |x | + 1) if 1 < |x |.
This function does not satisfy the AR-condition and so it does not fit in the framework of

Liu & Dai [11]. Also it does not fit the framework of Gasiński & Papageorgiou [5] since it
does not satisfy hypothesis H( f )(iii) of [5].

In what follows, ρa(·) denotes the modular function defined by

ρa(Du) =
∫

�

a(z)|Du|pdz for all u ∈ W 1,θ (�).

Let ϕ : W 1,θ (�) �→ R be the energy (Euler) functional for problem (1) defined by

ϕ(u) = 1

p
ρa(Du) + 1

q
‖Du‖qq + 1

q

∫

�

ξ(z)|u|qdz −
∫

�

F(z, u)dz

for all u ∈ W 1,θ (�).
We have that ϕ ∈ C1(W 1,θ (�)) and the Nehari manifold N of ϕ(·), is defined by

N = {
u ∈ W 1,θ (�) : 〈ϕ′(u), u〉 = 0, u �= 0

}
.

Evidently, every weak solution of problem (1) is in the Nehari manifold. Since we want
to produce constant sign solution for problem (1), we introduce the C1-functionals ϕ± :
W 1,θ (�) �→ R defined by

ϕ±(u) = 1

p
ρa(Du) + 1

q
‖Du‖qq + 1

q

∫

�

ξ(z)|u|qdz −
∫

�

F(z,±u±)dz.

We associate with these functionals, the following submanifolds of N

N+ = {
u ∈ W 1,θ (�) : 〈ϕ′+(u), u〉 = 0, u ≥ 0, u �= 0

}
,

N− = {
u ∈ W 1,θ (�) : 〈ϕ′−(u), u〉 = 0, u ≤ 0, u �= 0

}
.

Finally, in order to produce a nodal (sign changing) solution of problem (1), we introduce
the set

N0 = {
u ∈ W 1,θ (�) : 〈ϕ′(u), u+〉 = 〈ϕ′(u), u−〉 = 0, u± �= 0

}
.

Note that

N+, N−, N0 ⊆ N. (8)

For the study of N and of its submanifolds, we introduce the fibering function. So, let
u ∈ W 1,θ (�)\{0} and consider the function

ku(t) = ϕ(tu) for all t ≥ 0.

This is the fibering function for u. Note that

tu ∈ N if and only if k′
u(t) = 0.

123



   14 Page 8 of 21 N. S. Papageorgiou et al.

3 Constant sign solutions under strict monotonicity

In this section, working with the functionals ϕ± and the submanifolds N±, we will produce
two constant sign (positive and negative) solutions for problem (1) under H′

1.
The Nehari manifold N is much smaller than the spaceW 1,θ (�). So, the energy functional

ϕ(·) restricted onNmay exhibit propertieswhich fail globally. In our case note that on account
of hypothesis H1(ii), ϕ(·) is unbounded below. However, as we show in the next proposition,
ϕ|N is coercive, thus bounded below.

Proposition 6 If hypotheses H0, H1 hold, then ϕ|N is coercive.

Proof Arguing by contradiction, suppose we can find {un}n∈N ⊆ W 1,θ (�) such that

un ∈ N for all n ∈ N, ‖un‖ → +∞, ϕ(un) ≤ c4 for some c4 > 0, all n ∈ N. (9)

Since un ∈ N, we have

ρa(Dun) + ‖Dun‖qq +
∫

�

ξ(z)|u|qdz =
∫

�

f (z, un)undz,

⇒ 1

p
ρa(Dun) + 1

p
‖Dun‖qq + 1

p

∫

�

ξ(z)|un |qdz = 1

p

∫

�

f (z, un)undz

≥
∫

�

F(z, un)dz

for all n ∈ N (see (7)). (10)

From (9) and (10), we obtain
(
1

q
− 1

p

)(

‖Dun‖qq +
∫

�

ξ(z)|un |qdz
)

≤ c4 for all n ∈ N, (11)

⇒ {un}n∈N ⊆ W 1,q(�) is bounded (see Proposition 5),

⇒ {un}n∈N ⊆ Lr (�) is relatively compact (see Proposition 1). (12)

From (9), (11) and (12) it follows that

1

p
ρa(Dun) ≤ c5 for some c5 > 0, all n ∈ N, (13)

⇒ ρθ (Dun) +
∫

�

ξ(z)|un |qdz ≤ c6 for some c6 > 0, all n ∈ N (see (11), (13)),

⇒ {un}n∈N ⊆ W 1,θ (�) is bounded (see Proposition 4). (14)

Comparing (9) and (14), we have a contradiction. This proves that ϕ|N is coercive. ��
Clearly we have

ϕ+|N+ = ϕ|N+ , ϕ−|N− = ϕ|N− .

Since N+, N− ⊆ N (see (8)), from Proposition 6 we infer the following corollary.

Corollary 7 If hypotheses H0, H1 hold, then ϕ+|N+ and ϕ−|N− are both coercive.

Next we show that N �= ∅. Now we will start using the stronger hypotheses H′
1.
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Proposition 8 If hypotheses H0, H′
1 hold and u ∈ W 1,θ (�)\{0}, then there exists a unique

tu > 0 such that

tuu ∈ N.

Proof We introduce the function βu : R+ �→ R defined by

βu(t) = t pρa(Du) + tq
(

‖Du‖qq +
∫

�

ξ(z)|u|qdz
)

−
∫

�

f (z, tu)(tu)dz (15)

for all t ≥ 0.
We see that

βu(t) = tk′
u(t) for all t ≥ 0. (16)

Hypothesis H′
1(iii) implies that if x �= 0 and t ∈ (0, 1), then

f (z, t x)(t x)

t p|x |p <
f (z, x)x

|x |p for a.a. z ∈ �,

⇒ f (z, t x)(t x) < t p f (z, x)x for a.a. z ∈ �, all x �= 0, all t ∈ (0, 1). (17)

We use (17) in (15) and obtain

βu(t) ≥ t pρa(Du) + tq
(

‖Du‖qq +
∫

�

ξ(z)|u|qdz
)

− t p
∫

�

f (z, u)udz

≥ tq
1

2q−1 [u]q − t p
∫

�

f (z, u)udz.

Since q < p, we see that

βu(t) > 0 for all t ∈ (0, 1) small. (18)

Also we have

βu(t)

t p
= ρa(Du) + 1

t p−q

(

‖Du‖qq +
∫

�

ξ(z)|u|qdz
)

−
∫

�

f (z, tu)(tu)

t p
dz

≤ ρa(Du) + 2

t p−q
[u]q −

∫

�

pF(z, tu)

t p
dz (see (7)),

⇒ lim
t→+∞

βu(t)

t p
= −∞ (see hypothesis H′

1(ii)),

⇒ βu(t) < 0 for t > 0 large. (19)

Then relations (18), (19) and Bolzano’s theorem, imply that there exists tu > 0 such that

βu(tu) = 0,

⇒ tuk
′
u(tu) = 0 (see (16)),

⇒ k′
u(tu) = 0,

⇒ tuu ∈ N.

Finally, note that

βu(t) = 0 ⇐⇒ ρu(Du) =
∫

�

f (z, tu)(tu)

t p
dz − 1

t p−q

(

‖Du‖qq +
∫

�

ξ(z)|u|qdz
)

.

In the last equality the right-hand side is strictly increasing in t > 0 (see hypothesis H′
1(ii))

and so it follows that tu > 0 is unique. ��
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In a similar fashion, working with ϕ+ and ϕ−, we show the nonemptiness of the subman-
ifolds N+ and N−, respectively. Recall that N± ⊆ N (see (8)).

Proposition 9 If hypotheses H0, H′
1 hold and u ∈ W 1,θ (�) \ {0} with u ≥ 0 (resp. u ≤ 0),

then there exists a unique t+u > 0 (resp. t−u > 0) such that

t+u u ∈ N+ (resp. t−u u ∈ N−).

The next proposition presents a useful connection between the fibering function and the
elements of the Nehari manifold.

Proposition 10 If hypotheses H0, H′
1 hold and u ∈ N, then ϕ(tu) ≤ ϕ(u) for all t ≥ 0.

Proof From (16) we have

βu(1) = k′
u(1),

⇒ βu(1) = 0 (since u ∈ N).

Note that

ku(t)

t p
= 1

p
ρa(Du) + 1

qt p−q

(

‖Du‖qq +
∫

�

ξ(z)|u|qdz
)

−
∫

�

F(z, tu)

t p
dz,

⇒ ku(t)

t p
→ −∞ as t → +∞ (see hypothesis H ′

1(i i)),

⇒ ku(t) < 0 for all t > 0 large. (20)

On the other hand, on account of hypotheses H′
1(i), (iv) given ε > 0, we can find c7 =

c7(ε) > 0 such that

F(z, x) ≤ ε

q
|x |q + c7|x |r for a.a. z ∈ �, all x ∈ R. (21)

Then using (21) we have

ku(t) ≥ t p

p
ρa(Du) + tq

q

(
1

2q−1 − εc8

)

[u]q − tr c7‖u‖rr
for some c8 > 0 (see Proposition 5).

Choosing ε ∈
(

0,
1

2q−1c8

)

, we obtain

ku(t) ≥ c9t
p − c10t

r for some c9, c10 > 0, all t ∈ (0, 1),

⇒ ku(t) > 0 for all t ∈ (0, 1) small (recall that p < r). (22)

From (21), (22) it follows that there exists t̂u > 0 local maximizer of the fibering function.
Then

k′
u(t̂u) = 0,

⇒ t̂uu ∈ N,

⇒ t̂u = 1 and it is a global maximizer of ku(·)
(recall that u ∈ N and see Proposition 8),

⇒ ϕ(tu) ≤ ϕ(u) for all t ≥ 0.

This proof is now complete. ��
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The same result is also true for ϕ±.

Proposition 11 If hypothesesH0,H′
1 hold and u ∈ N+ (resp. u ∈ N−), thenϕ+(tu) ≤ ϕ+(u)

(resp. ϕ−(tu) ≤ ϕ−(u)) for all t ≥ 0.

In the next proposition we show that the elements of the Nehari manifold are in norm
bounded away from zero.

Proposition 12 If hypotheses H0, H′
1 hold, then there exists μ0 > 0 such that

0 < μ0 ≤ ‖u‖r , ‖u‖ for all u ∈ N.

Proof From hypotheses H′
1(i), (iv), we see that given ε > 0, we can find c11 = c11(ε) > 0

such that

f (z, x)x ≤ ε|x |q + c11|x |r for a.a. z ∈ �, all x ∈ R. (23)

Let u ∈ N and we can always assume that ‖u‖, |u| ≤ 1. Then

ρa(Du) +
(

‖Du‖qq +
∫

�

ξ(z)|u|qdz
)

≤ εc12[u]q + c11‖u‖rr for some c12 > 0,

⇒ ρa(Du) +
(

1

2q−1 − εc12

)

[u]q ≤ c11‖u‖rr .

Choosing ε ∈
(

0,
1

2q−1c12

)

, we obtain

ρθ (Du) +
∫

�

ξ(z)|u|qdz ≤ c13‖u‖rr for some c13 > 0,

⇒ ρθ (Du) +
(∫

�

ξ(z)|u|qdz
)p/q

≤ c14‖u‖rr
for some c14 > 0 (recall that |u| ≤ 1 and that q < p),

⇒ ‖Du‖p
θ +

(∫

�

ξ(z) |u|qdz
)p/q

≤ c14‖u‖rr (see Proposition 2),

⇒ |u|p ≤ c15‖u‖rr for some c15 > 0,

⇒ ‖u‖p ≤ c16‖u‖rr for some c16 > 0.

Therefore we conclude that we can find μ0 > 0 such that

0 < μ0 ≤ ‖u‖r , ‖u‖ for all u ∈ N.

This proof is now complete. ��
From (8) it follows the following auxiliary property.

Corollary 13 If hypotheses H0, H′
1 hold, then

0 < μ0 ≤ ‖u‖r , ‖u‖ for all u ∈ N+.

Now let

m+ = inf
N+

ϕ+ and m− = inf
N−

ϕ−.

We show that both infima are attained.
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Proposition 14 If hypotheses H0, H′
1 hold, then there exist u0 ∈ N+ and v0 ∈ N− such that

ϕ+(u0) = m+ and ϕ−(v0) = m−.

Proof We consider a sequence {un}n∈N ⊆ W 1,θ (�) such that

un ∈ N+ for all n ∈ N and ϕ+(un) ↓ m+. (24)

From Corollary 7, we know that {un}n∈N ⊆ W 1,θ (�) is bounded and so by passing to a
subsequence, we may assume that

un
w−→ u0 in W 1,θ (�) and un → u0 in Lr (�). (25)

Since N+ ⊆ N (see (8)), we have

ρa(Dun) + ‖Dun‖qq +
∫

�

ξ(z)|un |qdz =
∫

�

f (z, un)undz, un ≥ 0 for all n ∈ N. (26)

Then u0 ≥ 0 (see (25)) and from Corollary 13 and (25), we see that 0 < μ0 ≤ ‖u0‖r ,
hence u0 �= 0.

From (25) and (26), we have

ρa(Du0) + ‖Du0‖qq +
∫

�

ξ(z)|u0|qdz ≤
∫

�

f (z, u0)u0dz.

Suppose that the above inequality is strict, that is,

ρa(Du0) + ‖Du0‖qq +
∫

�

ξ(z)|u0|qdz <

∫

�

f (z, u0)u0dz. (27)

We use the function βu0(·) from the proof of Proposition 8. We know that

βu0(t) > 0 for t ∈ (0, 1) small (see (18)), βu0(1) < 0 (see (15), (27)).

So, we can find t0 ∈ (0, 1) such that

βu0(t0) = 0,

⇒ t0k
′
u0(t0) = 0 since u0 ≥ 0 and so ϕ+(tu0) = ϕ(tu0), t ≥ 0,

⇒ t0u0 ∈ N+.

We have

m+ ≤ ϕ+(t0u0)

= 1

p
ρa(D(t0uo)) + 1

q

(

‖D(t0u0)‖qq +
∫

�

ξ(z)|t0u0|qdz
)

−
∫

�

F(z, t0u0)dz

= 1

p

∫

�

( f (z, t0u0)(t0u0) − pF(z, t0u0)) dz

+
(
1

q
− 1

p

)(

‖D(t0u0‖qq +
∫

�

ξ(z)|t0u0|qdz)
)

(since t0u0 ∈ N+). (28)

On account of (6), we have

f (z, sx)(sx) − pF(z, sx) ≤ f (z, x)x − pF(z, x) (29)

for a.a. z ∈ �, all x ∈ R, all s ∈ (0, 1).
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Recall that 0 < t0 < 1. So, using (27) and (29) in (28), we obtain

m+ <
1

p

∫

�

( f (z, u0)u0 − pF(z, u0))dz

+
(
1

q
− 1

p

) (

‖Du0‖qq +
∫

�

ξ(z)|u0|qdz
)

≤ lim inf
n→∞

(
1

p

∫

�

( f (z, un)un − pF(z, un)) dz

+
(
1

q
− 1

p

) (

‖Dun‖qq +
∫

�

ξ(z)|un |qdz
) )

(see (25))

= lim inf
n→∞

(
1

p
ρa(Dun) + 1

q

(

‖Dun‖qq +
∫

�

ξ(z)|un |qdz
)

−
∫

�

F(z, un)dz

)

= lim inf
n→∞ ϕ+(un) = m+,

a contradiction.
So, we have

ρa(Du0) + ‖Du0‖qq +
∫

�

ξ(z)|u0|qdz =
∫

�

f (z, u0)u0dz,

⇒ u0 ∈ N+.

Then it follows that

ρθ (Dun) → ρθ (Du0) (see (25)).

The uniform convexity of θ(z, ·) implies that

ρθ (Dun − Du0) → 0 (see Harjuletho & Hästö [9, p. 65] ),

⇒ Dun → Du0 in Lθ
(
�,RN

)
(see Proposition 2),

⇒ un → u0 in W 1,θ (�) (see(25) and Proposition 4).

So, finally we can say that

ϕ+(u0) = m+, u0 ∈ N+.

Similarly, working with ϕ−(·) and N−, we show that there exists v0 ∈ W 1,θ (�) such that

ϕ−(v0) = m−, v0 ∈ N−.

This proof is now complete. ��
Next, we show that the two minimizers produced in Proposition 14 are in fact critical

points of the functionals ϕ+ and ϕ− respectively. This means that N+ and N− are natural
constraints for ϕ+ and ϕ−, respectively (see Papapgeorgiou et al. [19, p. 422]). Our proof is
inspired by the works of Willem [26, p. 74] and Szulkin and Weth [25, p. 611].

Proposition 15 If hypothesisH0, H′
1 hold and u0 ∈ N+ and v0 ∈ N− are the two minimizers

from Proposition 14, then u0 ∈ Kϕ+ and v0 ∈ Kϕ− .

Proof Let τ ∈ R̊+\{1} (R̊+ = (0,+∞)). Since u0 ∈ N+ from Proposition 11 we have

ϕ+(τu0) ≤ ϕ+(u0) = m+. (30)
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We argue indirectly. So, suppose that u0 /∈ Kϕ+ . Then

ϕ′+(u0) �= 0.

We can find δ > 0 and d > 0 such that

‖u − u0‖ ≤ 3δ ⇒ ‖ϕ′+(u)‖∗ ≥ d.

We consider the interval I =
(
1

2
,
3

2

)

. From (30) we have

m̂+ = max
τ∈∂ I

ϕ+(τu0) < m+. (31)

We can always choose δ > 0 even smaller if necessary in order to have
dδ

8
≤ m+ − m̂+

4
.

Then we apply the quantitative deformation theorem of Willem [26, p. 38] with ε = dδ

8
and S = Bδ(u0) = {

u ∈ W 1,θ (�) : ‖u − u0‖ ≤ δ
}
. So, we produce a deformation h :

[0, 1] × W 1,θ (�) �→ W 1,θ (�) such that

• h(1, u) = u if ϕ+(u) /∈ [m+ − 2ε,m+ + 2ε] ∩ B2δ(u0);

• h
(
1, ϕm++ε

+ ∩ Bδ(u0)
)

⊆ ϕ
m+−ε
+ ;

• ϕ+(h(1, u)) ≤ ϕ+(u) for all u ∈ W 1,θ (�).

From these properties of the deformation and (31), we deduce that

max
τ∈I

ϕ+(h(1, τu0)) < m+. (32)

Claim: h(1, I u0) ∩ N+ �= ∅.
Let ψ(τ) = h(1, τu0) and consider the following two functions

σ0(τ ) = 〈ϕ′+(τu0), u0〉,
σ1(τ ) = 1

τ
〈ϕ′+(ψ(τ)), ψ(τ)〉, τ > 0.

Recall that u0 ∈ N+. So, we have

〈ϕ′+(τu0), u0〉 > 0 if 0 < τ < 1, (33)

〈ϕ′+(τu0), u0〉 < 0 if 1 < τ

(see Propositions 11 and 9). (34)

By dB(·, ·, ·) we denote the Brouwer degree. Then from (33), (34) and Lloyd [13, see
Illustration 1, pp. 19, 20], we have

dB(σ0, I , 0) = −1. (35)

From the properties of the deformation, we have

σ0|∂ I = σ1|∂ I ,
⇒ dB(σ0, I , 0) = dB(σ1, I , 0),

⇒ dB(σ1, I , 0) �= 0 (see (35)),

⇒ σ1(τ ) = 0 for some τ ∈ I (see [9], [19]),

⇒ ψ(τ) = h(1, τu0) ∈ N+.
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This proves the Claim.
But then on account of the Claim, we have

m+ ≤ max
τ∈I

ϕ+(h(1, τu0)).

Comparing with (32) we have a contradiction. Therefore u0 ∈ Kϕ+ .
Similarly we show that v0 ∈ Kϕ− . ��
Now we are ready to produce two constant sign solutions for problem (1) (positive and

negative solutions), under the strict monotonicity condition H′
1(iii).

Proposition 16 If hypotheses H0, H′
1 hold, then problem (1) has at least two nontrivial

constant sign solutions

u0 ∈ N+ ∩ L∞(�), u0(z) > 0 for a.a. z ∈ �,

v0 ∈ N− ∩ L∞(�), v0(z) < 0 for a.a. z ∈ �.

Proof From Proposition 15 we know that

u0 ∈ N+ and v0 ∈ N−
are nontrivial constant sign solutions of problem (1). As in Gasiński andWinkert [6, Theorem
3.1], we have that

u0 ∈ N+ ∩ L∞(�), v0 ∈ N− ∩ L∞(�).

Finally using Proposition 2.4 of Papageorgiou, Vetro and Vetro [22], we have

v0(z) < 0 < u0(z) for a.a. z ∈ �.

This proof is now complete. ��

4 Nodal solutions under strict monotonicity

In this section we prove the existence of a nodal (that is, sign changing) solution for problem
(1), under the strict monotonicity hypothesis H′

1(iii). For this purpose, we bring in the picture
the submanifold N0.

We define

m0 = inf
N0

ϕ.

Proposition 17 If hypotheses H0, H′
1 hold, then there exists y0 ∈ N0 such that

m0 = ϕ(y0).

Proof We consider a sequence {yn}n∈N ⊆ W 1,θ (�) such that

yn ∈ N0 for all n ∈ N and ϕ(yn) ↓ m0.

From Proposition 6 we know that {yn}n∈N ⊆ W 1,θ (�) is bounded. Then
{
y+
n

}

n∈N ⊆
W 1,θ (�) and

{
y−
n

}

n∈N ⊆ W 1,θ (�) are bounded, too. So, we may assume that

y+
n

w−→ ŷ1 and y−
n

w−→ ŷ2 in W 1,θ (�). (36)
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Suppose that ŷ1 = 0. Since yn ∈ N, we have that y+
n ∈ N+ for all n ∈ N and so

ρa(Dy+
n ) + ‖Dy+

n ‖qq +
∫

�

ξ(z)(y+
n )qdz =

∫

�

f (z, y+
n )y+

n dz for all n ∈ N,

⇒ ρθ (Dy+
n ) +

∫

�

ξ(z)(y+
n )qdz → 0

(see (36) and recall that ŷ1 = 0),

⇒ |y+
n | → 0,

⇒ y+
n → 0 in W 1,θ (�) (see Proposition 4). (37)

But from Corollary 13 we know that

0 < μ0 ≤ ‖y+
n ‖ for all n ∈ N. (38)

Comparing (37) and (38), we have a contradiction.
Therefore ŷ1 �= 0. Similarly we show that ŷ2 �= 0.
According to Proposition 9, there exist a unique t̂1, t̂2 > 0 such that

t̂1 ŷ1 ∈ N+ and t̂2 ŷ2 ∈ N−.

We set

y0 = t̂1 ŷ1 − t̂2 ŷ2.

Evidently we have

y+
0 = t̂1 ŷ1, y−

0 = t̂2 ŷ2 and so y0 ∈ N0.

We have

m0 = lim
n→∞ ϕ(yn)

= lim
n→∞

(
ϕ+(y+

n ) + ϕ−(−y−
n )

)

≥ lim inf
n→∞

(
ϕ+(t̂1y

+
n ) + ϕ−(−t̂2y

−
n )

)
(see Proposition 11)

≥ ϕ(y0)

≥ m0 (since y0 ∈ N0),

⇒ m0 = ϕ(y0) with y0 ∈ N0.

This proof is now complete. ��
Reasoning as in the proof of Proposition 15, we show that N0 is a natural constraint for

ϕ(·), that is, y0 ∈ Kϕ . In this case we apply the quantitative deformation theorem of Willem
[26], using the following data: the set

D =
(
1

2
,
3

2

)

×
(
1

2
,
3

2

)

and the functions

ψ(τ, t) = h(1, τ ŷ1 − t ŷ2), τ, t ≥ 0,

σ0(τ, t) = (〈ϕ′(τ ŷ1), ŷ1〉, 〈ϕ′(−t ŷ2),−ŷ2〉
)

σ1(τ, t) =
(
1

τ
〈ϕ′(ψ(τ, t)+), ψ(τ, t)+〉, 1

t
〈ϕ′(−ψ(τ, t)−),−ψ(τ, t)−〉

)

.
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Using the quantitative deformation theorem of Willem [26, p. 38], with the above data,
we have the following result.

Proposition 18 If hypotheses H0, H′
1 hold and y0 ∈ N0 is the minimizer from Proposition

17, then y0 ∈ Kϕ.

So, under the stronger strictmonotonicity condition,we can state the followingmultiplicity
theorem for problem (1).

Proposition 19 If hypotheses H0, H′
1 hold, then problem (1) has at least three nontrivial

solutions

u0 ∈ N+ ∩ L∞(�), u0(z) > 0 for a.a. z ∈ �, m+ = ϕ+(u0),

v0 ∈ N− ∩ L∞(�), v0(z) < 0 for a.a. z ∈ �, m− = ϕ−(v0),

y0 ∈ N0 ∩ L∞(�) nodal, m0 = ϕ(y0).

5 Multiple solutions under relaxedmonotonicity

In this section we drop the strict monotonicity condition H′
1(iii) and prove a multiplicity

result (three solutions theorem) with sign information for all the solutions, under the weaker
set of hypotheses H1.

For this purpose, we introduce the following perturbation of the reaction

f�(z, x) = f (z, x) + �|x |r−2x, � > 0.

This perturbation of f (·, ·) satisfies hypotheses H′
1. We set F�(z, x) =

∫ x

0
f�(z, s)ds

and we consider the corresponding energy functionals ϕ�, ϕ±
� : W 1,θ (�) �→ R defined as

ϕ, ϕ± only now F(z, x) is replaced by F�(z, x). Also, to these functionals we associate the
corresponding Nehari manifolds N�, N�±,N�

0.

Proposition 20 If hypotheses H0, H1 hold, then there exists μ̂ > 0 such that

0 < μ̂ ≤ ϕ�(u) for all u ∈ N�, all � ∈ (0, 1).

Proof On account of hypotheses H1(i), (iv), given ε > 0, we can find c17 = c17(ε) > 0 such
that

F(z, x) ≤ ε

q
|x |q + c17|x |r for a.a. z ∈ �, all x ∈ R. (39)

Let u ∈ N� (� ∈ (0, 1)). From Proposition 10, we have

ϕ�(u) = max
t≥0

ϕ�(tu)

≥ max
t≥0

(
t p

p
ρa(Du) + tq

q

(

‖Du‖qq +
∫

�

ξ(z)|u|qdz
)

−
∫

�

F(z, tu)dz − tr‖u‖rr
)

(since 0 < � < 1).

Using (39), Proposition 5 and choosing ε > 0 small, we obtain

ϕ�(u) ≥ max
t≥0

(
c18t

p − c19t
r ) for some c18, c19 > 0, all t ≥ 0,

⇒ ϕ�(u) ≥ μ̂ > 0 (recall that p < r).
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This proof is now complete. ��
In a similar fashion we show similar results for the functionals ϕ±

� (·).
Proposition 21 If hypotheses H0, H1 hold, then there exist μ̂± > 0 such that

0 < μ̂+ ≤ ϕ+
� (u) for all u ∈ N�+, all � ∈ (0, 1),

0 < μ̂− ≤ ϕ−
� (u) for all u ∈ N�−, all � ∈ (0, 1).

Now letting � → 0+ we will produce constant sign and nodal solutions for problem (1)
under the relaxed monotonicity condition H1(iii).

Theorem 22 If hypotheses H0, H1 hold, then problem (1) has at least three nontrivial solu-
tions

u0 ∈ N+ ∩ L∞(�), u0(z) > 0 for a.a. z ∈ �, ϕ+(u0) = m+,

v0 ∈ N− ∩ L∞(�), v0(z) < 0 for a.a. z ∈ �, ϕ−(v0) = m−,

y0 ∈ N0 ∩ L∞(�) nodal, ϕ(y0) = m0.

Proof Let �n → 0+. From Proposition 19 we know that we can find yn ∈ W 1,θ (�) such that

yn ∈ N�n (n ∈ N), ϕ�n (yn) = m�n
0 → m̂0 ≥ 0 as n → ∞, ϕ′

�n
(yn) = 0 (n ∈ N)

(note that
{
m�n

0

}

n∈N ⊆ R̊+ is decreasing). (40)

We will show that {yn}n∈N ⊆ W 1,θ (�) is bounded. Arguing by contradiction, suppose
that at least for a subsequence, we have

‖yn‖ → +∞. (41)

We set ŵn = yn
‖yn‖ (n ∈ N). Then ‖ŵn‖ = 1 for all n ∈ N and so we may assume that

ŵn
w−→ ŵ in W 1,θ (�) and ŵn → ŵ in Lr (�). (42)

Suppose that ŵ ≡ 0 and let k > 1. Then on account of Proposition 11, we have

m�n
0 = ϕ�n (yn)

≥ ϕ�n

(
k

‖yn‖ yn
)

= ϕ�n (kŵn)

= k p

p
ρa(Dŵn) + kq

q

(

‖Dŵn‖qq +
∫

�

ξ(z)|ŵn |qdz
)

−
∫

�

F(z, kŵn)dz − �kr‖ŵn‖rr

≥ kq

p
c20 −

∫

�

F(z, kŵn)dz − �kr‖ŵn‖rr
for some c20 > 0 (since k > 1, q < p, ‖ŵn‖ = 1).

Passing to the limit as n → ∞ and recalling that ŵ = 0, we obtain

m̂0 ≥ kq

p
c20 (see (40), (42)).
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Since k > 1 is arbitrary, we let k → +∞ and have a contradiction.
Now assume that ŵ �= 0 and let �̂ = {

z ∈ � : ŵ(z) �= 0
}
.

Then |�̂|N > 0 (by | · |N we denote the Lebesgue measure on RN ). We have

|yn(z)| → +∞ for a.a. z ∈ �̂.

From (40) we have

0 ≤ m�n
0

‖yn‖p

= ϕ�n (yn)

‖yn‖p

≤ 1

p
ρa(Dŵn) + 1

q‖yn‖p−q

(

‖Dŵn‖qq +
∫

�

ξ(z)|ŵn |qdz
)

−
∫

�

F(z, yn)

‖yn‖p
dz

≤ 1

q

(

ρθ (Dŵn) +
∫

�

ξ(z)|ŵn |qdz
)

−
∫

�

F(z, yn)

‖yn‖p
dz for all n ≥ n1

≤ 1

q

(

‖Dŵn‖qθ +
∫

�

ξ(z)|ŵn |qdz
)

−
∫

�

F(z, yn)

‖yn‖p
dz

(since ‖Dŵn‖θ ≤ ‖ŵn‖ = 1, see Proposition 2)

≤ 1

q
c21 −

∫

�

F(z, yn)

‖yn‖p
dz

for some c21 > 0, all n ≥ n1 (see Proposition 4). (43)

On account of hypothesis H1(ii), we have
∫

�̂

F(z, yn)

‖yn‖p
dz → +∞,

⇒
∫

�

F(z, yn)

‖yn‖p
dz → +∞

(see H1(ii) and use Fatou’s lemma). (44)

If in (43) we pass to the limit as n → ∞ and use (44) we have a contradiction.
Therefore {yn}n∈N ⊆ W 1,θ (�) is bounded and so we may assume that

yn
w−→ y0 in W 1,θ (�) and yn → y0 in Lr (�). (45)

From (40) we have

〈V (yn), h〉 +
∫

�

ξ(z)|yn |q−2ynhdz =
∫

�

f (z, yn)hdz for all h ∈ W 1,θ (�).

We choose h = yn − y0 ∈ W 1,θ (�), pass to the limits as n → ∞ and use (45). We obtain

lim
n→∞〈V (yn), yn − y0〉 = 0,

⇒ yn → y0 in W 1,θ (�) (see Proposition 3). (46)

From (46) and Proposition 20, we have

0 < μ̂ ≤ ϕ(y0),

⇒ y0 �= 0 and so y0 ∈ N.

123



   14 Page 20 of 21 N. S. Papageorgiou et al.

Reasoning as in the proof Proposition 17, using Proposition 21, we show that y+
0 �= 0,

y−
0 �= 0, hence y0 ∈ N0. Therefore we have

y0 ∈ N0, ϕ′(y0) = 0, ϕ(y0) = m0,

⇒ y0 ∈ N ∩ L∞(�) is a ground state nodal solution of problem (1).

Similarly, working with ϕ+
�n

and N�n+ and passing to the limit as n → ∞, we obtain

u0 ∈ W 1,θ (�) such that

u0 ∈ N+ ∩ L∞(�), ϕ′(u0) = 0, u0(z) > 0 for a.a. z ∈ �, ϕ(u0) = m+

(positive ground state solution) and v0 ∈ W 1,θ (�) such that

v0 ∈ N− ∩ L∞(�), ϕ′(v0) = 0, v0(z) < 0 for a.a. z ∈ �, ϕ(v0) = m−

(negative ground state solution). ��
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