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Abstract
We prove the existence of free objects in certain subcategories of Banach lattices, including
p-convex Banach lattices, Banach lattices with upper p-estimates, andAM-spaces. From this
we immediately deduce that projectively universal objects exist in each of these subcategories,
extending results of Leung, Li, Oikhberg and Tursi (Israel J. Math. 2019). In the p-convex
and AM-space cases, we are able to explicitly identify the norms of the free Banach lattices,
and we conclude by investigating the structure of these norms in connection with nonlinear
p-summing maps.
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1 Introduction

Our objective is to construct free Banach lattices having certain additional desirable prop-
erties, so let us begin by recalling the fundamental definition: The free Banach lattice
over a Banach space E is a Banach lattice FBL[E] together with a linear isometry
φE : E → FBL[E] such that, for every Banach lattice X and every bounded linear oper-
ator T : E → X , there is a unique linear lattice homomorphism ̂T : FBL[E] → X making
the following diagram commute:

FBL[E]

E X .

∃! ̂T
φE

T

De Pagter and Wickstead [17] initiated the focused study of free Banach lattices by intro-
ducing the free Banach lattice generated by a nonempty set A; in the above language, it
corresponds to FBL

[

�1(A)
]

. The construction of FBL[E] for an arbitraryBanach space E was
carried out in [7], with further research conducted in [6,8,18]. By now it is firmly established
that free Banach lattices provide a fundamental tool for understanding the interplay between
Banach-space and Banach-lattice properties. In particular, spaces of the form FBL[�2(A)]
for an uncountable set A are used in [7, Section 5] to resolve an open problem of Diestel.

However, being universal, free Banach lattices usually lack classical properties such as
reflexivity and p-convexity. To counteract this, we will restrict the target spaces in the above
diagram to only those Banach lattices X which satisfy some fixed property P , and then look
to replace FBL[E] with a Banach lattice satisfying P . More specifically, we shall prove the
following result.

Theorem 1.1 Let E beaBanach space and1 ≤ p ≤ ∞. There exists a pair
(

FBL(p)[E], φE
)

,

where FBL(p)[E] is a p-convex Banach lattice with p-convexity constant 1 and φE : E →
FBL(p)[E] is a linear isometry, with the following universal property: For every p-convex
Banach lattice X and every bounded linear operator T : E → X , there exists a unique
linear lattice homomorphism ̂T : FBL(p)[E] → X such that ̂T ◦ φE = T . Moreover,
∥

∥̂T
∥

∥ ≤ M (p)(X) ‖T ‖, where M (p)(X) denotes the p-convexity constant of X , and the
pair

(

FBL(p)[E], φE
)

is essentially unique.

In later sections we will give an explicit description of the Banach lattices whose existence
is asserted in Theorem 1.1 and show analogous results when p-convexity is replaced with
upper p-estimates or being a (unital) AM-space. Of course, one cannot expect a version of
Theorem 1.1 for reflexivity or p-concavity without any restrictions on E , as not all Banach
spaces embed into such Banach lattices.

An outline of the paper is as follows: Sect. 2 contains some preliminarymaterial, primarily
concerning function calculus, that we require in Sect. 3 when showing that FBL(p)[E] exists.
In fact, the main result of Sect. 3 is somewhat more general than Theorem 1.1, as it is stated in
terms of a new notionwhichwe call “D-convexity” andwhich encompasses both p-convexity
and upper p-estimates. The approach taken in Sect. 3 is similar to that of the recent paper
[18], in which FBL[E] is constructed as the completion of the free vector lattice FVL[E] (see
[9,10]) under a certain “maximal” lattice norm. However, some additional work is needed to
make sense of function calculus.
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Anadvantage of this abstract approach is that it allowsus to construct free objects in various
other subcategories of Banach lattices, while a significant drawback is that it does not provide
any concrete description of these spaces, notably leaving it open whether FBL(p)[E] can be
realized as a vector lattice of functions. Despite this, the universal properties of these spaces
are powerful enough to establish several results, which we do in Sect. 4. Section 5 is devoted
to free AM-spaces and free C(K )-spaces.

Then, in Sect. 6 we return to the beginnings by giving an alternative, explicit description
of FBL(p)[E] as a sublattice of the vector lattice of real-valued functions defined on the dual
Banach space E∗ of E , thus in particular resolving the above problem. This section can be
read independently of the previous ones.

In order to motivate the candidate norm, let us recall the construction of the space FBL[E]
and its norm from [7, Section 2]: For any function f : E∗ → R, define

‖ f ‖FBL[E] = sup

{

n
∑

k=1

∣

∣ f (x∗
k )
∣

∣ : n ∈ N, x∗
1 , . . . , x

∗
n ∈ E∗, sup

x∈BE

n
∑

k=1

∣

∣x∗
k (x)

∣

∣ ≤ 1

}

.

The set H1[E] of positively homogeneous functions f : E∗ → Rwith ‖ f ‖FBL[E] < ∞ turns
out to be a Banach lattice with respect to the pointwise operations and this norm, and FBL[E]
is defined as the closure in H1[E] of the sublattice generated by the set {δx : x ∈ E}, where
δx : E∗ → R is the evaluation map given by δx (x∗) = x∗(x), together with the linear
isometry φE : E → FBL[E] defined by φE (x) = δx .

We shall show that analogously, for 1 < p < ∞, FBL(p)[E] can equivalently be defined
as the closure of the sublattice generated by {δx : x ∈ E} in the Banach lattice of positively
homogeneous functions f : E∗ → R for which the quantity

‖ f ‖p = sup

{

(
n
∑

k=1

∣

∣ f (x∗
k )
∣

∣

p
) 1

p : n ∈ N, x∗
1 , . . . , x

∗
n ∈ E∗, sup

x∈BE

n
∑

k=1

∣

∣x∗
k (x)

∣

∣

p ≤ 1

}

(1.1)

is finite. This implies in particular that there is a continuous linear injection of FBL(p)[E]
into the space C(BE∗) of continuous functions on the closed unit ball BE∗ of E∗, equipped
with the relative weak∗ topology. Although the form (1.1) of ‖·‖p is clearly motivated by [7],
the proof that it is indeed the free p-convex norm requires quite different techniques. Having
this explicit expression will be particularly useful in certain computations.

For the reader who is familiar with the theory of p-summing operators, the above expres-
sion for the free p-convex norm has another interpretation: A function f : E∗ → R for which
‖ f ‖p < ∞maps weakly p-summable sequences in E∗ to (strongly) p-summable sequences
in R. In Sect. 7 we devote our attention to the spaces of positively homogeneous functions
from E∗ to R with finite (p, q)-summing norm, and explore classical arguments such as the
Dvorezky–Rogers Theorem and Pietsch’s Domination Theorem in this nonlinear setting.

2 Preliminaries

Our notation and terminology aremostly standard andwill be introduced as andwhen needed.
A few general conventions are as follows. All vector spaces, including vector lattices, Banach
spaces and Banach lattices, are real. The terms “operator” and “lattice homomorphism”
will be synonymous with “bounded linear operator” and “linear lattice homomorphism”,
respectively. A “sublattice” of a vector lattice will mean a linear subspace which is closed
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under finite suprema and infima.We shall repeatedly use the elementary fact that the sublattice
generated by a subset W of a vector lattice is given by

⎧

⎨

⎩

n
∨

j=1

x j −
n
∨

j=1

y j : n ∈ N, x1, . . . , xn, y1, . . . , yn ∈ spanW

⎫

⎬

⎭

; (2.1)

see, e.g., [3, p. 204, Exercise 8(b)].
For a positive element e of a vector lattice X , Ie denotes the order ideal of X generated

by e, that is,

Ie = {

x ∈ X : |x | ≤ λe for some λ ∈ [0,∞)
}

.

We can endow Ie with the lattice seminorm defined by

‖x‖e = inf
{

λ ∈ [0,∞) : |x | ≤ λe
}

(2.2)

for every x ∈ Ie. This seminorm is a norm if X is Archimedean.

Function calculus

The definitions of p-convexity and upper p-estimates can be stated by means of function
calculus, which is a standard tool in Banach lattices (see, e.g., [15, 1.d]). However, since our
constructions will require us to work in more general vector lattices, we bring some basic
facts to the reader’s attention.We essentially need only what is contained in [13]. Form ∈ N,
Hm denotes the vector lattice of continuous, positively homogeneous, real-valued functions
on R

m . Clearly it contains the kth coordinate projection πk : (t1, . . . , tm) 
→ tk for each
k ∈ {1, . . . ,m}. We say that a vector lattice X admits a positively homogeneous continuous
function calculus if, for every m ∈ N and every m-tuple x = (x1, . . . , xm) ∈ Xm , there is a
lattice homomorphism �x : Hm → X such that

�x(πk) = xk (2.3)

for each k ∈ {1, . . . ,m}. In this case, we refer to the map x 
→ �x (or simply �x) as a
positively homogeneous continuous function calculus for X . In line with common practice,
for h ∈ Hm , we usually use the shorter and more suggestive notation h(x1, . . . , xm) instead
of �x(h). It is well known that every uniformly complete vector lattice (in particular,
every Banach lattice) admits a positively homogeneous continuous function calculus. The
following more precise characterization was given in [13, Theorem 1.3]: An Archimedean
vector lattice X admits a positively homogeneous continuous function calculus if and only
if it is finitely uniformly complete in the sense that, for every m ∈ N and x1, . . . , xm ∈ X ,
there is a positive element e ∈ X such that e ≥ ∨m

j=1|x j | and the norm ‖ · ‖e given by (2.2)

is complete on the closed sublattice of
(

Ie, ‖ · ‖e
)

generated by x1, . . . , xm . We shall freely
use this result in the following without any further reference. We can define a norm ‖ · ‖Hm

onHm by identifying it with C(S�m∞) via the restriction map h 
→ h|S�m∞ , where S�m∞ denotes
the unit sphere of �m∞. The sublattice of Hm generated by {πk : 1 ≤ k ≤ m} is dense
with respect to this norm. We shall now establish some basic facts that we require in later
sections. They may be known, but as we have been unable to find any precise references in
the literature, we include their proofs. We begin with a result which will imply that when an
Archimedean vector lattice admits a positively homogeneous continuous function calculus,
it is unique in a very strong sense.
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Lemma 2.1 Let T : X → Y be a lattice homomorphism between two Archimedean vector
lattices X and Y , let x1, . . . , xm ∈ X for some m ∈ N, and define e = ∨m

j=1|x j | in X+.
Then:

(i) T maps the ideal Ie of X into the ideal IT e of Y , and ‖T x‖T e ≤ ‖x‖e for every x ∈ Ie.
(ii) ‖T x‖T e = ‖x‖e for each x ∈ Ie if and only if the restriction of T to Ie is injective.

Suppose that �x : Hm → X is a lattice homomorphism which satisfies (2.3). Then:

(iii) The image of �x is contained in Ie, and �x is bounded with norm at most 1 when
considered an operator into

(

Ie, ‖ · ‖e
)

.
(iv) The composite map T ◦ �x is the unique lattice homomorphism from Hm into Y which

maps πk to T xk for each k = 1, . . . ,m.

Proof (i) For every x ∈ Ie, we can find λ ∈ [0,∞) such that |x | ≤ λe. Since T is a
lattice homomorphism, we have |T x | ≤ λT e, so T x ∈ IT e with ‖T x‖T e ≤ λ. Now the
conclusion follows by taking the infimum over all λ with |x | ≤ λe.

(ii) The forward implication is clear because ‖ · ‖e is a norm on Ie.
Conversely, suppose that the restriction T |Ie is injective, and consider x ∈ Ie and λ ∈
[0,∞) with |T x | ≤ λT e. Then T

(

λe − |x |) = λT e − |T x | ≥ 0, so that

0 = 0 ∧ T
(

λe − |x |) = T
(

0 ∧ (

λe − |x |)
)

.

This implies that 0 ∧ (

λe − |x |) = 0 by the injectivity of T |Ie , that is, λe ≥ |x |. Hence
λ ≥ ‖x‖e, and taking the infimum over all λ with |T x | ≤ λT e, we conclude that
‖T x‖T e ≥ ‖x‖e. The opposite inequality was shown in (i).

(iii) This is a special case of (i), applied with T = �x and xk = πk |S�m∞ for each k =
1, . . . ,m. To see this, recall our identification of Hm with C(S�m∞), and observe that
∨m

k=1

∣

∣πk |S�m∞

∣

∣ = 1 is a strong unit in C(S�m∞), with the corresponding lattice norm (2.2)
being equal to the uniform norm ‖ · ‖∞.

(iv) Only the uniqueness statement is not clear. To prove it, let S : Hm → Y be any lattice
homomorphismwith S(πk) = T xk for each k = 1, . . . ,m. By (i) and (iii), wemay regard
T : Ie → IT e, �x : Hm → Ie, and S : Hm → IT e as bounded lattice homomorphisms
with respect to the specified domains and codomains, where Ie and IT e are given the
norms ‖ · ‖e and ‖ · ‖T e, respectively. Then T ◦ �x : Hm → IT e is also bounded, and
therefore it is equal to S because (T ◦ �x)(πk) = S(πk) for each k = 1, . . . ,m and
{πk : 1 ≤ k ≤ m} generates a dense sublattice of Hm . �

Corollary 2.2 Let X be a finitely uniformly complete Archimedean vector lattice, and let Y be
a sublattice of X. Then Y is finitely uniformly complete if and only if � y(Hm) ⊆ Y for every
m ∈ N and y ∈ Ym, where � y denotes the positively homogeneous continuous function
calculus for X.

Proof The implication ⇐ is clear, while the converse follows from the uniqueness statement
in Lemma 2.1(iv), applied in the case where T : Y → X is the inclusion map. �
Corollary 2.3 Let T : X → Y be a lattice homomorphismbetween two finitely uniformly com-
plete Archimedean vector lattices X and Y . Then T

(

h(x1, . . . , xm)
) = h(T x1, . . . , T xm) for

every m ∈ N, h ∈ Hm, and x1, . . . , xm ∈ X.

Proof This is immediate from Lemma 2.1(iv). �
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Our next result involves the following standard notion: A sequence (xk) in an Archi-
medean vector lattice X converges uniformly to x ∈ X if X contains a positive element e
such that, for every ε ∈ (0,∞), there is k0 ∈ N with |xk − x | ≤ εe whenever k ≥ k0. If
explicit reference to the element e is required, we call it a regulator and say that it witnesses
the convergence.

Lemma 2.4 Let X be a finitely uniformly complete Archimedean vector lattice, let m ∈ N,

and suppose that (x1k ), . . . , (x
m
k ) are sequences in X which converge uniformly to x1, . . . , xm,

respectively. Then the sequence
(

h(x1k , . . . , x
m
k )
)

converges uniformly to h(x1, . . . , xm) for
every h ∈ Hm.

Proof For each j = 1, . . . ,m, let e j ∈ X+ be a regulatorwhichwitnesses that (x j
k ) converges

uniformly to x j . We shall show that

f =
m
∨

j=1

|x j | +
m
∑

j=1

e j +
m
∨

j=1

(|x j | + e j ) ∈ X+ (2.4)

is a regulator witnessing that
(

h(x1k , . . . , x
m
k )
)

converges uniformly to h(x1, . . . , xm) for any
h ∈ Hm . To this end, let ε > 0. Since the sublattice generated by {π1, . . . , πm} is dense
in Hm , it contains a function � such that ‖h − �‖Hm ≤ ε, that is,

∣

∣

∣h(t1, . . . , tm) − �(t1, . . . , tm)

∣

∣

∣ ≤ ε

m
∨

j=1

|t j | (2.5)

for every t1, . . . , tm ∈ R. By (2.1), we can express � as

� =
n
∨

i=1

⎛

⎝

m
∑

j=1

αi jπ j

⎞

⎠ −
n
∨

i=1

⎛

⎝

m
∑

j=1

βi jπ j

⎞

⎠

for some n ∈ N and coefficients αi j , βi j ∈ R. It follows that for every k ∈ N,
∣

∣

∣�(x1, . . . , xm) − �(x1k , . . . , x
m
k )

∣

∣

∣

≤
∣

∣

∣

∣

n
∨

i=1

(
m
∑

j=1

αi j x
j
)

−
n
∨

i=1

(
m
∑

j=1

αi j x
j
k

)

∣

∣

∣

∣

+
∣

∣

∣

∣

n
∨

i=1

(
m
∑

j=1

βi j x
j
)

−
n
∨

i=1

(
m
∑

j=1

βi j x
j
k

)

∣

∣

∣

∣

≤
n
∨

i=1

m
∑

j=1

|αi j | |x j − x j
k | +

n
∨

i=1

m
∑

j=1

|βi j | |x j − x j
k | ≤ C

m
∑

j=1

|x j − x j
k |, (2.6)

where C = ∨

i, j |αi j | + ∨

i, j |βi j |. Choose k0 ∈ N such that |x j − x j
k | ≤ ε

ε ∨C e
j for every

k ≥ k0 and j = 1, . . . ,m. Then, combining the estimate
∣

∣

∣h(x1, . . . , xm) − h(x1k , . . . , x
m
k )

∣

∣

∣ ≤
∣

∣

∣h(x1, . . . , xm) − �(x1, . . . , xm)

∣

∣

∣

+
∣

∣

∣�(x1, . . . , xm) − �(x1k , . . . , x
m
k )

∣

∣

∣ +
∣

∣

∣�(x1k , . . . , x
m
k ) − h(x1k , . . . , x

m
k )

∣

∣

∣

with (2.5)–(2.6), we obtain

∣

∣

∣h(x1, . . . , xm) − h(x1k , . . . , x
m
k )

∣

∣

∣ ≤ ε

m
∨

j=1

|x j | + ε

m
∑

j=1

e j + ε

m
∨

j=1

|x j
k | ≤ ε f

for every k ≥ k0, where f is defined by (2.4). This completes the proof. �
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Corollary 2.5 Let X be a Banach lattice, and let h ∈ Hm for some m ∈ N. Then the map
from Xm to X defined via (x1, . . . , xm) 
→ h(x1, . . . , xm) is continuous with respect to the
norm

∥

∥(x1, . . . , xm)
∥

∥ = ∨m
j=1‖x j‖ on Xm.

Proof Assume the contrary. Then there are sequences (x1k ), . . . , (x
m
k ) in X which norm con-

verge to x1, . . . , xm, respectively, but the sequence
(

h(x1k , . . . , x
m
k )
)

is not norm convergent
to h(x1, . . . , xm). Passing to a subsequence, we may suppose that there is ε > 0 such that

∥

∥

∥h(x1k , . . . , x
m
k ) − h(x1, . . . , xm)

∥

∥

∥ ≥ ε (2.7)

for every k ∈ N. Since every norm convergent sequence has a uniformly conver-
gent subsequence, we may further suppose that (x1k ), . . . , (x

m
k ) converge uniformly to

x1, . . . , xm, respectively. Then Lemma 2.4 implies that
(

h(x1k , . . . , x
m
k )
)

converges uni-
formly to h(x1, . . . , xm), which contradicts (2.7). �

3 Construction of freeD-convex Banach lattices

A Banach lattice X is p-convex for some p ∈ [1,∞] if there exists a constant M ≥ 1 such
that for every m ∈ N and x1, . . . , xm ∈ X , we have

∥

∥

∥

∥

(
m
∑

k=1

|xk |p
) 1

p

∥

∥

∥

∥

≤ M
(

m
∑

k=1

‖xk‖p
) 1

p
. (3.1)

Clearly it suffices to verify this inequality in the case where x1, . . . , xm are positive. The least
constantM for which (3.1) is valid is denotedM (p)(X) and is called the p-convexity constant
of X . If (3.1) is assumed to hold only for pairwise disjoint elements x1, . . . , xm ∈ X , then X
is said to satisfy an upper p-estimate. The reader is referred to [15] for further information
on such Banach lattices.

In this section we present a general construction which yields the existence of both free
p-convex Banach lattices and free Banach lattices with upper p-estimates. For this, we need
a definition encompassing both concepts.

Let m ∈ N, and recall thatHm denotes the set of all continuous, positively homogeneous
functions fromR

m toR.We say that a function h ∈ Hm ismonotone onR
m+ if h(t1, . . . , tm) ≤

h(s1, . . . , sm) whenever t1, . . . , tm, s1, . . . , sm ∈ R with 0 ≤ tk ≤ sk for each k = 1, . . . ,m.
This, of course, implies that h(t1, . . . , tm) ≥ 0 whenever t1, . . . , tm ≥ 0. We denote byH>0

m
the set of all continuous, positively homogeneous functions which are monotone on R

m+.
By a convexity condition, we understand a triple D = (G, M, ϑ), where G is a nonempty

subset of
⋃∞

m=1 H>0
m and M : G → [1,∞) and ϑ : G → {0, 1} are any functions. Given a

convexity condition D = (G, M, ϑ), we set Gm = G ∩ H>0
m for m ∈ N and say that a lattice

seminorm ν on a finitely uniformly complete Archimedean vector lattice X is D-convex if,
for every m ∈ N and g ∈ Gm , the inequality

ν
(

g(x1, . . . , xm)
) ≤ M(g) · g(ν(x1), . . . , ν(xm)

)

(3.2)

holds for all pairwise disjoint elements x1, . . . , xm ∈ X+ if ϑ(g) = 0, and for all elements
x1, . . . , xm ∈ X+ if ϑ(g) = 1. A Banach lattice is D-convex if its norm is D-convex.

Note that every closed sublattice of aD-convex Banach lattice isD-convex by uniqueness
of the function calculus.

123



15 Page 8 of 25 H. Jardón-Sánchez, N. J. Laustsen

Remark 3.1 It should be clear that p-convexity and upper p-estimates can be recovered easily
from D-convexity. Indeed, for p ∈ [1,∞], let G p = {‖ · ‖�mp

: m ∈ N
}

be the collection
of all �mp -norms, and let M : G p → [1,∞) be a constant function. Then, choosing ϑ to be
the constant function 0, we obtain an upper p-estimate, while choosing ϑ to be the constant
function 1 gives p-convexity (with constant M (p) ≤ M).

Lemma 3.2 Let D be a convexity condition. The completion of a finitely uniformly complete
Archimedean vector lattice with respect to a D-convex lattice norm is a D-convex Banach
lattice.

Proof Suppose that D = (G, M, ϑ), and let X be a finitely uniformly complete Archime-
dean vector lattice endowed with aD-convex lattice norm ‖ · ‖. Its completion ˜X is a Banach
lattice, so we just need to verify that ˜X is D-convex. Suppose that g ∈ Gm for some m ∈ N.

We beginwith the caseϑ(g) = 1 as it is easier. Given x1, . . . , xm ∈ ˜X+, choose sequences
(x1k ), . . . , (x

m
k ) in X+ which converge in norm to x1, . . . , xm , respectively. TheD-convexity

of the norm on X coupled with the continuity of g implies that

∥

∥g(x1k , . . . , x
m
k )
∥

∥ ≤ M(g) · g(‖x1k ‖, . . . , ‖xmk ‖) k→∞−−−→ M(g) · g(‖x1‖, . . . , ‖xm‖).
Now (3.2) follows because the left-hand side converges to

∥

∥g(x1, . . . , xm)
∥

∥ by Corollary
2.5.

Suppose instead that ϑ(g) = 0, and let x1, . . . , xm ∈ ˜X+ be pairwise disjoint. As before,
choose sequences (y1k ), . . . , (y

m
k ) in X+ which converge in norm to x1, . . . , xm , respectively.

We can “disjointify” these sequences by defining

xik =
∧

{

yik − yik ∧ y j
k : 1 ≤ j ≤ m, j �= i

}

for every k ∈ N and i = 1, . . . ,m. Then x1k , . . . , x
m
k are pairwise disjoint for every k ∈ N,

and the sequence (xik) converges in norm to xi for each i = 1, . . . ,m because the lattice
operations are continuous and x1, . . . , xm are pairwise disjoint. We can now complete the
proof as in the case ϑ(g) = 1. �
Theorem 3.3 Let E be a Banach space and D a convexity condition, as defined above.
There exists a pair

(

FBLD[E], φD
E

)

, where FBLD[E] is a D-convex Banach lattice and
φD
E : E → FBLD[E] a linear isometry, with the following universal property: For every

D-convex Banach lattice X and every operator T : E → X , there exists a unique lattice
homomorphism ̂T : FBLD[E] → X such that ̂T ◦ φD

E = T , i.e., the following diagram
commutes:

FBLD[E]

E X .

̂T
φD
E

T

Moreover, ‖̂T ‖ = ‖T ‖.
Proof Throughout this proof, we work in the Archimedean vector latticeR

BE∗ of real-valued
functions defined on the closed unit ball BE∗ of the dual space E∗. Being a vector lattice
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of functions, R
BE∗ admits a positively homogeneous continuous function calculus which is

defined pointwise, that is,
(

h( f1, . . . , fm)
)

(x∗) = h
(

f1(x
∗), . . . , fm(x∗)

)

(3.3)

for m ∈ N, h ∈ Hm , f1, . . . , fm ∈ R
BE∗ , and x∗ ∈ BE∗ .

Regarding the point evaluations δx : x∗ 
→ x∗(x) for x ∈ E as elements of R
BE∗ , we can

define

Y0 =
{

h(δx1 , . . . , δxm ) : m ∈ N, h ∈ Hm, x1, . . . , xm ∈ E
}

⊆ R
BE∗ . (3.4)

The set
⋃∞

m=1 Hm is closed under compositions in the sense that it contains the function

(t11 , . . . , t1m1
, . . . , tn1 , . . . , tnmn

) 
→ h
(

g1(t
1
1 , . . . , t1m1

), . . . , gn(t
n
1 , . . . , tnmn

)
)

whenever n,m1, . . . ,mn ∈ N, h ∈ Hn , and g1 ∈ Hm1 , . . . , gn ∈ Hmn . This implies that Y0
defined above is closed under positively homogeneous continuous function calculus. It fol-
lows in particular that Y0 is a sublattice of R

BE∗ because the functions (s, t) 
→ s ∨ t and
(s, t) 
→ s + αt for α ∈ R both belong to H2.

Let ND denote the collection of all D-convex lattice seminorms ν : Y0 → [0,∞) which
satisfy

ν(δx ) ≤ ‖x‖ (3.5)

for every x ∈ E , and define

‖ f ‖D = sup
{

ν( f ) : ν ∈ ND
}

(3.6)

for f ∈ Y0.We claim that this quantity is finite. Indeed, (3.4) implies that f = h(δx1 , . . . , δxm )

for some m ∈ N, h ∈ Hm , and x1, . . . , xm ∈ E . Then, applying Lemma 2.1(iii), we obtain
‖ f ‖e ≤ ‖h‖Hm , where e = ∨m

i=1|δxi |. By the definition (2.2) of the norm ‖ · ‖e, this means
that

| f | ≤ ‖h‖Hm e ≤ ‖h‖Hm

m
∑

i=1

|δxi |,

and therefore we have

ν( f ) ≤ ‖h‖Hm

m
∑

i=1

ν
(|δxi |

) ≤ ‖h‖Hm

m
∑

i=1

‖xi‖

for every ν ∈ ND . Since the right-hand side of this estimate is independent of ν, we conclude
that ‖ f ‖D is finite, as claimed.

Consequently, being the supremum over a family of D-convex lattice seminorms, ‖ · ‖D
is itself a D-convex lattice seminorm. It is in fact a norm, as we shall show next. For every
x∗ ∈ BE∗ , we can define a lattice seminorm νx∗ on Y0 by

νx∗( f ) = ∣

∣ f (x∗)
∣

∣. (3.7)

Clearly νx∗ satisfies (3.5). Moreover, using (3.3), we find

νx∗
(

g( f1, . . . , fm)
) =

∣

∣

∣g
(

f1(x
∗), . . . , fm(x∗)

)

∣

∣

∣ = g
(

νx∗( f1), . . . , νx∗( fm)
)

for every m ∈ N, g ∈ H>0
m and f1, . . . , fm ∈ (Y0)+. This implies that νx∗ is D-convex

because the constant M(g) in (3.2) is at least 1, and therefore νx∗ ∈ ND .
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Suppose that f ∈ Y0 with ‖ f ‖D = 0. Then 0 = νx∗( f ) = ∣

∣ f (x∗)
∣

∣ for every x∗ ∈ BE∗ ,
so f = 0. Hence ‖ · ‖D is a D-convex lattice norm on Y0. We can now define FBLD[E] as
the completion of Y0 with respect to this norm.

Lemma 3.2 shows that FBLD[E] is a D-convex Banach lattice. Moreover, the map
φD
E : E → FBLD[E] defined by φD

E (x) = δx is clearly linear. To see that it is isometric,
for x ∈ E , choose x∗ ∈ BE∗ such that x∗(x) = ‖x‖. Then, using (3.5), (3.6), and (3.7), we
obtain

‖δx‖D ≤ ‖x‖ = νx∗(δx ) ≤ ‖δx‖D,

so that
∥

∥φD
E (x)

∥

∥D = ‖x‖.
It remains to verify the universal property. Let T : E → X be an operator into a D-

convex Banach lattice X . We may suppose that ‖T ‖ = 1. Recall from the Introduction
that the original construction of FBL[E] in [7, Section 2] defines it as a certain sublattice
of positively homogeneous, real-valued functions defined on E∗. Since such a function is
uniquely determined by its action on BE∗ , we may regard FBL[E] as a sublattice of R

BE∗

simply by restricting its elements to BE∗ . The universal property of FBL[E]means that there
is a unique lattice homomorphism S : FBL[E] → X such that S(δx ) = T x for every x ∈ E ,
and ‖S‖ = 1. (This lattice homomorphism is usually denoted ̂T ; we use S here to avoid
confusion with the lattice homomorphism that we seek to construct.)

We observe that FBL[E] contains Y0 because δx ∈ FBL[E] for every x ∈ E and FBL[E]
is closed under positively homogeneous continuous function calculus because it is a Banach
lattice. Hence we may consider the restriction S0 : Y0 → X of the lattice homomorphism S
to Y0. We claim that S0 is bounded with operator norm at most one. To verify this, we observe
that ν( f ) = ‖S0 f ‖ defines a lattice seminorm ν on Y0 which satisfies (3.5) because

ν(δx ) = ∥

∥S0(δx )
∥

∥ = ‖T x‖ ≤ ‖x‖
for every x ∈ E . To show that ν is D-convex, write D = (G, M, ϑ), and let m ∈ N, g ∈ Gm ,
and f1, . . . , fm ∈ (Y0)+, where we assume that f1, . . . , fm are pairwise disjoint if ϑ(g) = 0;
note that in that case S0 f1, . . . , S0 fm are also pairwise disjoint. Therefore, using Corollary
2.3 and the D-convexity of X , we obtain

ν
(

g( f1, . . . , fm)
) =

∥

∥

∥S0
(

g( f1, . . . , fm)
)

∥

∥

∥ = ∥

∥g(S0 f1, . . . , S0 fm)
∥

∥

≤ M(g) · g(‖S0 f1‖, . . . , ‖S0 fm‖) = M(g) · g(ν( f1), . . . , ν( fm)
)

.

It follows that ν ∈ ND , and therefore ‖ f ‖D ≥ ν( f ) = ‖S0 f ‖ for every f ∈ Y0, which
proves the claim.

Hence S0 extends uniquely to a lattice homomorphism ̂T : FBLD[E] → X , and ‖̂T ‖ =
‖S0‖ ≤ 1. We have ̂T ◦ φD

E = T because ̂T (δx ) = S0(δx ) = T x for every x ∈ E . This
implies in particular that ‖̂T ‖ ≥ ‖T ‖ = 1, so ‖̂T ‖ = 1.

Finally, to prove the uniqueness of ̂T , suppose that U : FBLD[E] → X is any lattice
homomorphism satisfying U (δx ) = T x for every x ∈ E . Then Corollary 2.3 implies that

U
(

h(δx1 , . . . , δxm )
) = h

(

U (δx1), . . . ,U (δxm )
)

= h(T x1, . . . , T xm) = ̂T
(

h(δx1 , . . . , δxm )
)

for every m ∈ N, h ∈ Hm , and x1, . . . , xm ∈ E , so U and ̂T agree on Y0. Since Y0 is dense
in FBLD[E] and U and ̂T are bounded, we conclude that U = ̂T . �
Remark 3.4 It follows from general principles that the pair

(

FBLD[E], φD
E

)

constructed in
Theorem 3.3 is essentially unique.
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Corollary 3.5 Let E be a Banach space and D a convexity condition.

(i) The sublattice generated by the set {δx : x ∈ E} is dense in FBLD[E].
(ii) Suppose that S, T : FBLD[E] → X are lattice homomorphisms into a Banach lattice X

satisfying S ◦ φD
E = T ◦ φD

E . Then S = T .
(iii) FBLD[E] is separable if and only if E is separable.

Proof (i) The closure of the sublattice of FBLD[E] generated by {δx : x ∈ E} is a
Banach lattice and thus closed under positively homogeneous continuous function calcu-
lus. Hence it contains the sublattice Y0 defined by (3.4). This proves the claim because Y0
is dense in FBLD[E] by definition.

(ii) This is immediate from (i) because lattice homomorphisms are automatically bounded.
(iii) This follows by combining (i) with [3, p. 204, Exercise 9]. �
Example 3.6 Let p ∈ [1,∞]. Taking D = (G p, M, ϑ) for G p = {‖ · ‖�mp

: m ∈ N
}

,
M ≡ C ∈ [1,∞) and ϑ ≡ 1 gives the free p-convex Banach lattice with p-convexity con-
stant C (cf. Remark 3.1). For C = 1, we denote this space by FBL(p)[E] and observe that,
together with the map φE = φD

E , it has the properties stated in Theorem 1.1 because every
p-convex Banach lattice X can be renormed to have p-convexity constant 1, with the new
norm being M (p)(X)-equivalent to the original norm. An explicit description of FBL(p)[E]
and its norm will be given in Sect. 6.

Taking instead ϑ ≡ 0 (and G p andM ≡ C ∈ [1,∞) as above), we obtain the free Banach
lattice satisfying upper p-estimates with constant C .

4 Basic properties of FBLD[E]
The aim of this section is to establish some basic properties of FBLD[E]. Throughout,
D = (G, M, ϑ) denotes a convexity condition, and in situations where no confusion can
arise, we will write φE for the canonical map φD

E : E → FBLD[E].

Complementation

We begin with a generalization of [7, Corollary 2.7]. Recall that a Banach space F is C-
isomorphic to a complemented subspace of a Banach space E for some constant C ≥ 1 if
there are operators U : F → E and V : E → F such that IF = V ◦ U and ‖U‖ ‖V ‖ ≤ C ,
where IF denotes the identity operator on F . In the case where E and F are Banach lattices,
we say that F is C-lattice complemented in E if the operators U and V can be chosen to
be lattice homomorphisms. Note that the condition IF = V ◦U implies that P := U ◦ V is
idempotent, and U is an isomorphism of F onto the range of P .

Proposition 4.1 Let E and F be Banach spaces, where F is C-isomorphic to a comple-
mented subspace of E for some constant C ≥ 1. Then FBLD[F] is C-lattice complemented
in FBLD[E].
Proof LetU : F → E and V : E → F be operators such that IF = V ◦U and ‖U‖ ‖V ‖ ≤ C .
SinceφE ◦U : F → FBLD[E] is an operator into aD-convexBanach lattice, there is a unique
lattice homomorphism ˜U := φ̂E ◦U : FBLD[F] → FBLD[E] such that ˜U ◦ φF = φE ◦U ,
and ‖˜U‖ = ‖φE ◦U‖ = ‖U‖ (the last equality follows because φE is an isometry). Similarly
we obtain a unique lattice homomorphism ˜V := φ̂F ◦ V : FBLD[E] → FBLD[F] such that
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˜V ◦ φE = φF ◦ V , and ‖˜V ‖ = ‖V ‖. Now we check that

˜V ◦ ˜U ◦ φF = ˜V ◦ φE ◦U = φF ◦ V ◦U = φF ,

so ˜V ◦ ˜U = IFBLD[F] by Corollary 3.5(ii). �
We next characterize when φE (E) is complemented in its free space, cf. [7, Corollary 2.5].

Proposition 4.2 Let E be a Banach space and C ≥ 1. Then E is C-isomorphic to a comple-
mented subspace of a D-convex Banach lattice if and only if φE (E) is C-complemented in
FBLD[E].
Proof Suppose that E is C-isomorphic to a complemented subspace of a D-convex Banach
lattice X , so that IE = V ◦ U for some operators U : E → X and V : X → E with
‖U‖ ‖V ‖ ≤ C . Then the inclusion map J : φE (E) → FBLD[E] and the composite operator
W := φE ◦ V ◦ ̂U : FBLD[E] → φE (E) satisfy W ◦ J = IφE (E) and ‖W‖ ‖J‖ ≤ C , so
φE (E) is C-complemented in FBLD[E].

The converse is immediate because E is isometric to φE (E) and FBLD[E] is aD-convex
Banach lattice. �
Remark 4.3 It is a famous open question whether every complemented subspace of a Banach
lattice is isomorphic to a Banach lattice. Proposition 4.2 reduces this to a question about free
Banach lattices, and extends the question to the D-convex case.

Projectivity

We shall next study the projective objects in the category of D-convex Banach lattices,
beginning with a result which recovers and extends one of the main results of [14].

In line with general conventions, we say that a Banach lattice Z is projectively universal
for the class of separable, D-convex Banach lattices if Z is separable and D-convex, and
every separable, D-convex Banach lattice X is lattice isometric to a quotient of Z . Note that
this is equivalent to the existence of a lattice homomorphism from Z onto X which maps the
open unit ball of Z onto the open unit ball of X .

Theorem 4.4 The Banach lattice FBLD[�1] is projectively universal for the class of separa-
ble, D-convex Banach lattices.

Proof Let X be a separable,D-convex Banach lattice. Using the separable projective univer-
sality of�1,we canfinda linear surjectionT : �1 → X whichmaps the openunit ball of�1 onto
the open unit ball of X , and hence the induced lattice homomorphism ̂T : FBLD[�1] → X
maps the open unit ball of FBLD[�1] onto the open unit ball of X . That FBLD[�1] is separable
follows from Corollary 3.5(iii). �
Remark 4.5 In Theorem 4.4, one can of course replace �1 with any separable Banach space
which has every separable, D-convex Banach lattice as a quotient. For example, one can
iterate the process to get that FBL

[

FBL[�1]
]

is projectively universal for the class of separable
Banach lattices.

Remark 4.6 Similar arguments establish an analogous result for arbitrary density character κ ,
replacing �1 with �1(κ).
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We present the next simple lemma due to its relevance to Theorem 4.4, and because it will
be needed for subsequent results. It shows that the separable, D-convex Banach lattices are
exactly the lattice quotients of FBLD[�1].
Lemma 4.7 A quotient of a D-convex Banach lattice by a closed ideal is D-convex.

Proof Let J be a closed ideal of a D-convex Banach lattice X , and denote the quotient
homomorphism by Q : X → X/J . Further, let g ∈ Gm for some m ∈ N, and take
ϕ1, . . . , ϕm ∈ (X/J )+, where we suppose that ϕ1, . . . , ϕm are pairwise disjoint if ϑ(g) = 0.
For ε > 0, we can choose x1, . . . , xm ∈ X+ such that ‖xk‖ ≤ (1 + ε)‖ϕk‖ and Qxk = ϕk

for each k, and we can also arrange that x1, . . . , xm are pairwise disjoint if ϑ(g) = 0 (cf.
[17, Section 9]). Then, using Corollary 2.3, we have

∥

∥g(ϕ1, . . . , ϕm)
∥

∥ =
∥

∥

∥Q
(

g(x1, . . . , xm)
)

∥

∥

∥ ≤ M(g) · g(‖x1‖, . . . , ‖xm‖)

≤ M(g) · g
(

(1 + ε)‖ϕ1‖, . . . , (1 + ε)‖ϕm‖
)

ε→0−−→ M(g) · g(‖ϕ1‖, . . . , ‖ϕm‖),
and the conclusion follows. �

The notion of a projective Banach lattice was introduced in [17]. Informally, a Banach
lattice P is projective if every lattice homomorphism from P to a quotient of a Banach lattice
X can be lifted to a lattice homomorphism into X , with control of the norm. As a consequence
of the fact that �1(A) is a projective Banach space for any nonempty set A, it was shown in
[17] that FBL

[

�1(A)
]

is a projective Banach lattice. Other examples of projective Banach
lattices include all finite dimensional Banach lattices [17] andC(K ) spaces for every compact
Hausdorff space K which is an absolute neighbourhood retract; see [4,17], as well as [5] for
more recent related results.

To conclude this section, we find a Banach space property of E which characterizes when
FBL[E] is projective. Note in this connection that it was shown in [4] that if FBL[E] is
projective, then necessarily E has the Schur property. Since we now also have the spaces
FBLD[E] — and our characterizations extend to these spaces in the appropriate way — we
introduce two new definitions. Part (i) extends the definition of projectivity in [17], while (ii)
is a variant that makes sense for arbitrary Banach spaces.

Definition 4.8 (i) ABanach lattice P is projective forD-convexBanach lattices if, for every
closed ideal J of a D-convex Banach lattice X , every lattice homomorphism T : P →
X/J , and every ε > 0, there is a lattice homomorphism ̂T : P → X such that T = Q ◦̂T
and ‖̂T ‖ ≤ (1 + ε)‖T ‖, where Q : X → X/J denotes the quotient homomorphism.

(ii) ABanach space E is linearly projective forD-convex Banach lattices if, for every closed
ideal J of aD-convex Banach lattice X , every operator T : E → X/J , and every ε > 0,
there is an operator ̂T : E → X such that T = Q ◦̂T and ‖̂T ‖ ≤ (1+ ε)‖T ‖, again with
Q : X → X/J denoting the quotient homomorphism.

Note that in the above definitions we require that X is D-convex and this implies that
X/J is as well, by Lemma 4.7. For convenience, given convexity conditions D and D′, let
us write D′ ≤ D whenever D-convexity implies D′-convexity. The following result (applied
withD = D′) clarifies the relationship between these two notions, as well as a third “hybrid”
notion.

Proposition 4.9 Suppose that D and D′ are convexity conditions with D′ ≤ D. Then the
following three conditions are equivalent for a Banach spaceE :
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(i) E is linearly projective for D-convex Banach lattices.
(ii) FBLD′ [E] is projective for D-convex Banach lattices.
(iii) For every closed ideal J of a D-convex Banach lattice X , every lattice homomorphism

T : FBLD′ [E] → X/J , and every ε > 0, there is an operator ̂T : FBLD′ [E] → X
such that T = Q ◦̂T and ‖̂T ‖ ≤ (1+ ε)‖T ‖, where Q : X → X/J denotes the quotient
homomorphism.

Proof (i) ⇒ (ii) Suppose that E is linearly projective for D-convex Banach lattices, and
let T : FBLD′ [E] → X/J be a lattice homomorphism, where J is a closed ideal of a
D-convex Banach lattice X . By the hypothesis, for every ε > 0, we can lift the operator
S := T ◦φD′

E : E → X/J to an operator̂S : E → X with Q ◦̂S = S and ‖̂S‖ ≤ (1+ ε)‖S‖,
where Q : X → X/J is the quotient homomorphism. Since X is D′-convex,Theorem 3.3
implies that ̂S lifts to a lattice homomorphism ̂T : FBLD′ [E] → X with ̂T ◦ φD′

E = ̂S and
‖̂T ‖ = ‖̂S‖. We check that ̂T has the required properties: Q ◦ ̂T = T by Corollary 3.5(ii)
because

Q ◦ ̂T ◦ φD′
E = Q ◦̂S = S = T ◦ φD′

E ,

and

‖̂T ‖ ≤ (1 + ε)‖S‖ = (1 + ε)
∥

∥T ◦ φD′
E

∥

∥ ≤ (1 + ε)‖T ‖.
(ii) ⇒ (iii) is obvious.
(iii) ⇒ (i) Suppose that (iii) is satisfied, and let T : E → X/J be an operator, where J is

a closed ideal of a D-convex Banach lattice X . Using Lemma 4.7 and Theorem 3.3, we can
find a lattice homomorphism S : FBLD′ [E] → X/J with S ◦ φD′

E = T and ‖S‖ = ‖T ‖.
By (iii), for every ε > 0, there is an operator ̂S : FBLD′ [E] → X such that S = Q ◦̂S and
‖̂S‖ ≤ (1 + ε)‖S‖. Then the operator ̂T : = ̂S ◦ φD′

E : E → X has the desired properties:
Its norm is at most (1 + ε)‖T ‖ and

Q ◦ ̂T = Q ◦̂S ◦ φD′
E = S ◦ φD′

E = T .

�
Remark 4.10 One may now wonder when FBL[E] is linearly projective for Banach lattices.
This will essentially never happen. Indeed, if it were then FBL[E] would have the Schur
property, so in particular would be order continuous. However, FBL[E] will not be order
continuous as long as dim E > 1. It is also not true that linear projectivity implies lattice
projectivity: �1(A) is a linearly projective Banach space, but it follows from [17, Corollary
10.5] that it is not a projective Banach lattice when A is uncountable.

5 Free AM-spaces

An AM-space is a Banach lattice X for which ‖x ∨ y‖ = ‖x‖∨‖y‖whenever x, y ∈ X+ are
disjoint. A unital AM-space is a nonzero AM-space X which contains a positive element e
such that Ie = X and the norm ‖ · ‖e defined by (2.2) is equal to the given norm on X .

Kakutani’s famous representation theorem for AM-spaces states that a Banach lattice is
an AM-space if and only if it admits an isometric lattice homomorphism into C(K ) for some
compact Hausdorff space K , and it is a unital AM-space if and only if it is isometrically
lattice isomorphic to C(K ) for some K (see, e.g., [15, Theorem 1.b.6]).
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We begin this section by identifying the convexity conditions D which correspond to
AM-spaces, and we then show that, for a given Banach space E , they all give rise to the same
D-convex free Banach lattice. For the avoidance of any doubt in the following definition,
recall that

∥

∥(s, t)
∥

∥

�2∞
= |s| ∨ |t | for s, t ∈ R.

Definition 5.1 An AM-convexity condition is a convexity condition D = (G, M, ϑ) for
which ‖ · ‖�2∞ ∈ G with M(‖ · ‖�2∞) = 1.

Lemma 5.2 The following conditions are equivalent for a Banach lattice X :
(i) X is an AM-space.
(ii) X is D-convex for every convexity condition D.
(iii) X is D-convex for some AM-convexity condition D.

Proof (i) ⇒ (ii): Suppose that X is an AM-space, and take an isometric lattice homomor-
phism T : X → C(K ) for some compact Hausdorff space K . Let m ∈ N, g ∈ H>0

m ,
and x1, . . . , xm ∈ X+. Since 0 ≤ (T x j )(t) ≤ ‖T x j‖∞ = ‖x j‖ for every t ∈ K and
j = 1, . . . ,m, we have

g
(‖x1‖, . . . , ‖xm‖) ≥ g

(

(T x1)(t), . . . , (T xm)(t)
) = T

(

g(x1, . . . , xm)
)

(t) ≥ 0,

where the equality follows from Corollary 2.3 and the fact that the positively homogeneous
continuous function calculus is defined pointwise in C(K ). Taking the supremum over all
t ∈ K , we obtain

g
(‖x1‖, . . . , ‖xm‖) ≥

∥

∥

∥T
(

g(x1, . . . , xm)
)

∥

∥

∥∞ = ∥

∥g(x1, . . . , xm)
∥

∥,

which shows that (3.2) is satisfied becauseM(g) ≥ 1. Hence X isD-convex, nomatter which
convexity condition D we consider.

(ii) ⇒ (iii) is trivial.
(iii) ⇒ (i) Suppose that X is D-convex for some AM-convexity condition D. Then we

have ‖x ∨ y‖ ≤ ‖x‖ ∨ ‖y‖ whenever x, y ∈ X+ are disjoint. The opposite inequality is
always true by monotonicity of the norm, so X is an AM-space. �

Let E be a Banach space and D a convexity condition. Corollary 3.5(i) shows that we
may view FBLD[E] as the completion of the sublattice L of R

BE∗ generated by the set
{δx : x ∈ E} with respect to the norm ‖ · ‖D given by (3.6). In fact L ⊆ C(BE∗), where BE∗
is equippedwith the relativeweak∗ topology, because δx isweak∗ continuous for every x ∈ E ,
and using the seminorms νx∗ defined by (3.7) for x∗ ∈ BE∗ , we see that ‖ f ‖∞ ≤ ‖ f ‖D for
every f ∈ L . Hence the inclusion map

(

L, ‖ · ‖D
) → (

L
‖ · ‖∞

, ‖ · ‖∞
)

extends to a lattice homomorphism of norm at most 1 defined on FBLD[E]. Despite this, it
is not clear if this map is injective — we do not even know this for the free Banach lattice
satisfying an upper p-estimate with constant 1. It is, however, an isometric isomorphism
provided that D is an AM-convexity condition, as we shall prove next. For that reason, we

term L
‖ · ‖∞ the free AM-space over E .

Theorem 5.3 Let E be a Banach space and D an AM-convexity condition. Then FBLD[E]
is isometrically lattice isomorphic to the ‖ · ‖∞-closed sublattice of C(BE∗) generated by
{δx : x ∈ E}.
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15 Page 16 of 25 H. Jardón-Sánchez, N. J. Laustsen

Proof By the above remarks, it suffices to show that ‖ f ‖∞ ≥ ‖ f ‖D for every f ∈ L .
Write f as f = ∨n

j=1 δx j − ∨n
j=1 δy j , where n ∈ N and x1, . . . , xn, y1, . . . , yn ∈ E ,

using (2.1). Since FBLD[E] is D-convex, Lemma 5.2 implies that it is an AM-space, so
we can find an isometric lattice homomorphism U : FBLD[E] → C(K ) for some compact
Hausdorff space K . For t ∈ K , let ηt ∈ BC(K )∗ be the evaluation functional at t , and define
x∗ = ηt ◦U ◦ φD

E ∈ BE∗ . Then we have

δx (x
∗) = (ηt ◦U ◦ φD

E )(x) = (Uδx )(t)

for every x ∈ E , so that

f (x∗) =
n
∨

j=1

δx j (x
∗) −

n
∨

j=1

δy j (x
∗) =

n
∨

j=1

(Uδx j )(t) −
n
∨

j=1

(Uδy j )(t) = (U f )(t).

It follows that

‖ f ‖∞ ≥ sup
t∈K

|(U f )(t)| = ‖U f ‖∞ = ‖ f ‖D,

as required. �
Our next result complements Theorem 5.3 by identifying the free unital AM-space over a

Banach space E . More precisely, in the light of Kakutani’s representation theorem for unital
AM-spaces stated above, it can be paraphrased as saying that the pair

(

C(BE∗), φE
)

is the
free unital AM-space over E , where BE∗ is equipped with the relative weak∗ topology and
φE : E → C(BE∗) denotes the linear isometry given by φE (x) = δx , as usual.

Theorem 5.4 Let E be aBanach space. For every compactHausdorff space K and every norm
one operator T : E → C(K ), there exists a unique lattice homomorphism ̂T : C(BE∗) →
C(K ) such that ̂T ◦φE = T and ̂T1 = 1, where 1 denotes the constant function 1. Moreover,
̂T is an algebra homomorphism with ‖̂T ‖ = 1.

Proof Since ‖T ‖ = 1, the map t 
→ ηt ◦T , where ηt is the evaluation functional at t , maps K
into BE∗ , and it is continuous with respect to the relative weak∗ topology on BE∗ , so we can
define a map ̂T : C(BE∗) → C(K ) by ̂T ( f )(t) = f (ηt ◦ T ) for f ∈ C(BE∗) and t ∈ K .
Since the algebraic and lattice operations in both C(BE∗) and C(K ) are defined pointwise,
it is easy to check that ̂T is a lattice and algebra homomorphism with ̂T1 = 1 (see also [16,
Theorem 3.2.12] for a more global picture of these maps). Moreover, we have

(

̂T ◦ φE
)

(x)(t) = δx (ηt ◦ T ) = (ηt ◦ T )(x) = (T x)(t)

for every x ∈ E and t ∈ K , so that ̂T ◦φE = T . This implies in particular that ‖̂T ‖ ≥ ‖T ‖ =
1. On the other hand,

∣

∣(̂T f )(t)
∣

∣ = ∣

∣ f (ηt ◦ T )
∣

∣ ≤ ‖ f ‖∞ for every t ∈ K and f ∈ C(BE∗),
so that ‖̂T f ‖∞ ≤ ‖ f ‖∞, and therefore ‖̂T ‖ = 1.

Finally, to prove uniqueness, suppose that U : C(BE∗) → C(K ) is any lattice homomor-
phism satisfyingU ◦φE = T andU1 = 1. Then ̂T andU agree on the sublattice of C(BE∗)
generated by {δx : x ∈ E}∪{1}. The Stone–Weierstrass Theorem implies that this sublattice
is dense in C(BE∗), and therefore, being bounded, ̂T and U are equal. �

6 An explicit formula for the norm of the free p-convex Banach lattice

The aim of this section is to verify the explicit formula (1.1) for the norm of the free p-convex
Banach lattice FBL(p)[E]. Throughout, p ∈ (1,∞), E is a Banach space, H [E] denotes the
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vector lattice of all positively homogeneous functions E∗ → R, ‖ f ‖p is defined by (1.1)
for every f ∈ H [E], and L denotes the sublattice of H [E] generated by the evaluation
maps δx for x ∈ E . Note that this definition of L differs slightly from the one we used in the
previous section, where the functions in L were defined on BE∗ , not E∗. However, as already
remarked in the proof of Theorem 3.3, this difference is purely formal because a positively
homogeneous function E∗ → R is uniquely determined by its action on BE∗ .

To simplify notation, we write

μp(x
∗
1 , . . . , x

∗
n ) = sup

x∈BE

(
n
∑

k=1

|x∗
k (x)|p

) 1
p

for the weak p-summing norm of a finite sequence (x∗
k )

n
k=1 in E∗.

Let us begin by trying tomotivate the expression (1.1) for the normof FBL(p)[E]. Consider
an operator T : E → �np for some n ∈ N. Writing (ek)nk=1 for the unit vector basis of �np , we
can express T as

T (x) =
n
∑

k=1

x∗
k (x)ek

for a certain finite sequence (x∗
k )

n
k=1 in E∗ and every x ∈ E , and we have ‖T ‖ =

μp(x∗
1 , . . . , x

∗
n ) in the notation introduced above. (In fact x∗

k = T ∗e∗
k , but this formula

will not be helpful for our purposes.) It is easy to check that the only way to extend T to a
lattice homomorphism ̂T : L → �np is by defining

̂T f =
n
∑

k=1

f (x∗
k )ek

for every f ∈ L . Thus, we must have

(
n
∑

k=1

∣

∣ f (x∗
k )
∣

∣

p
) 1

p = ‖̂T f ‖�np
≤ ‖̂T ‖ ‖ f ‖FBL(p)[E] = μp(x

∗
1 , . . . , x

∗
n ) ‖ f ‖FBL(p)[E].

Taking the supremum over all possible choices of the operator T subject to ‖T ‖ ≤ 1, we
conclude that ‖ f ‖p defined by (1.1) satisfies the inequality ‖ f ‖p ≤ ‖ f ‖FBL(p)[E]. Morally
speaking, establishing equality of these two norms means that extending operators into arbi-
trary p-convex Banach lattices can in a certain sense be reduced to the extension of operators
into the spaces �np for n ∈ N.

We now turn to the explicit description of FBL(p)[E]. It is easy to see that

Hp[E] := {

f ∈ H [E] : ‖ f ‖p < ∞}

is a sublattice of H [E] and that ‖ · ‖p defines a complete p-convex lattice normon Hp[E]with
p-convexity constant one. Moreover, ‖δx‖p = ‖x‖ for every x ∈ E , so Hp[E] contains L
as a sublattice. Hence we can define FBLp[E] as the closure of L in Hp[E], and the map
φE : E → FBLp[E] given by φE (x) = δx is a linear isometry. Note the position of the
index p: We write FBLp[E] for the Banach lattice that we have just defined to distinguish
it from the previously defined Banach lattice FBL(p)[E]. However, our next theorem will
identify the pair (FBLp[E], φE ) as the free p-convex Banach lattice generated by E , so once
we have proved it, this distinction will no longer be necessary.

123



15 Page 18 of 25 H. Jardón-Sánchez, N. J. Laustsen

Theorem 6.1 Let X be a p-convex Banach lattice and T : E → X an operator. There is
a unique lattice homomorphism ̂T : FBLp[E] → X such that ̂T ◦ φE = T , and ‖̂T ‖ ≤
M (p)(X) ‖T ‖, where M (p)(X) denotes the p-convexity constant of X.

Proof As in the proof of [7, Theorem2.5], there is a unique lattice homomorphism̂T : L → X
such that ̂T (δx ) = T x for every x ∈ E . Our objective is to show that

‖̂T f ‖X ≤ M (p)(X) ‖T ‖ ‖ f ‖p (6.1)

for every f ∈ L , as this will ensure that ̂T extends uniquely to a lattice homomorphism
defined on all of FBLp[E], and the extension has norm at most M (p)(X) ‖T ‖.

We split the proof of the inequality (6.1) in two parts: First we establish it in the special
case where X = L p(μ) for somemeasure space (�,�,μ), and then we show how to deduce
the general version from the special case.

Thus, suppose first that X = L p(μ) for some measure space (�,�,μ), and let f ∈ L .
By (2.1), we can write f = ∨n

i=1 δxi − ∨n
j=1 δy j for some n ∈ N and (xi )ni=1, (y j )

n
j=1 in

E . Consider the family of sets (Ai j )
n
i, j=1 ⊂ � defined by

Ai j =
{

ω ∈ � :
n
∨

k=1

T xk(ω) = T xi (ω),

n
∨

l=1

T yl(ω) = T y j (ω)

}

.

Clearly
⋃n

i, j=1 Ai j = �. By a standard disjointification process, replacing Ai j with

Ai j\⋃(k,l)≺(i, j) Akl , where ≺ is any total order on the index set
{

(i, j) : 1 ≤ i, j ≤ n
}

, we
may arrange that the sets (Ai j )

n
i, j=1 are pairwise disjoint.

For every 1 ≤ i, j ≤ n, define

A+
i j = {

ω ∈ Ai j : T (xi − y j )(ω) ≥ 0
}

and A−
i j = Ai j\A+

i j ,

and choose positive functions gi j , hi j ∈ L p∗(μ) = L p(μ)∗, where p∗ ∈ (1,∞) is the
conjugate exponent of p, such that ‖gi j‖L p∗ = ‖hi j‖L p∗ = 1,

∥

∥

∥T (xi − y j )χA+
i j

∥

∥

∥

L p
= 〈

T (xi − y j )χA+
i j
, gi j

〉 =
∫

A+
i j

T (xi − y j )gi j dμ,

and
∥

∥

∥T (y j − xi )χA−
i j

∥

∥

∥

L p
= 〈

T (y j − xi )χA−
i j
, hi j

〉 =
∫

A−
i j

T (y j − xi )hi j dμ.

We may without loss of generality assume that gi j and hi j are supported in A+
i j and A−

i j ,

respectively. Then the set
{

gi j , hi j : 1 ≤ i, j ≤ n
}

is 1-equivalent to the unit vector basis

of �2n
2

p∗ , and consequently the functionals x∗
i j = T ∗gi j ∈ E∗ and y∗

i j = T ∗hi j ∈ E∗ satisfy

( n
∑

i, j=1

∣

∣x∗
i j (x)

∣

∣

p + ∣

∣y∗
i j (x)

∣

∣

p
) 1

p =
( n
∑

i, j=1

∣

∣

∣

∣

∫

A+
i j

(T x)gi j dμ

∣

∣

∣

∣

p

+
∣

∣

∣

∣

∫

A−
i j

(T x)hi j dμ

∣

∣

∣

∣

p) 1
p

= sup

{ n
∑

i, j=1

ai j

∫

A+
i j

(T x)gi j dμ + bi j

∫

A−
i j

(T x)hi j dμ : (ai j , bi j )
n
i, j=1 ∈ B

�2n
2

p∗

}

≤ sup
{〈T x, g〉 : g ∈ BL p∗(μ)

} = ‖T x‖L p
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for every x ∈ E . Taking the supremum over x ∈ BE , we conclude that

μp(x
∗
11, . . . , x

∗
nn, y

∗
11, . . . , y

∗
nn) ≤ ‖T ‖. (6.2)

Since gi j is positive, the definition of A+
i j yields that

∣

∣ f (x∗
i j )
∣

∣ =
∣

∣

∣

∣

n
∨

k=1

∫

(T xk)gi j dμ −
n
∨

l=1

∫

(T yl)gi j dμ

∣

∣

∣

∣

=
∫

T (xi − y j )gi j dμ = ∥

∥T (xi − y j )χA+
i j

∥

∥

L p
= ∥

∥(̂T f )χA+
i j

∥

∥

L p

and similarly
∣

∣ f (y∗
i j )
∣

∣ = ∥

∥(̂T f )χA−
i j

∥

∥

L p
for every 1 ≤ i, j ≤ n. Combining (1.1) and (6.2)

with these identities, we deduce that

‖T ‖ ‖ f ‖p ≥
( n
∑

i, j=1

∣

∣ f (x∗
i j )
∣

∣

p + ∣

∣ f (y∗
i j )
∣

∣

p
) 1

p

=
( n
∑

i, j=1

∥

∥(̂T f )χA+
i j

∥

∥

p
L p

+ ∥

∥(̂T f )χA−
i j

∥

∥

p
L p

) 1
p = ‖̂T f ‖L p ,

which establishes (6.1) for X = L p(μ) because M (p)(L p(μ)) = 1.
We are now ready to tackle the general case where X is an arbitrary p-convex Banach

lattice. Given f ∈ L , choose x∗ ∈ X∗+ with ‖x∗‖ = 1 and x∗(|̂T f |) = ‖̂T f ‖X . Let Nx∗
denote the null ideal generated by x∗, that is, Nx∗ = {

x ∈ X : x∗(|x |) = 0
}

, and let Y be
the completion of the quotient lattice X/Nx∗ with respect to the norm ‖x + Nx∗‖ := x∗(|x |).
Since this is an abstract L1-norm, Y is lattice isometric to L1(�,�,μ) for some measure
space (�,�,μ) (see, e.g., [15, Theorem 1.b.2]). The canonical quotient map of X onto
X/Nx∗ induces a lattice homomorphism Q : X → L1(�,�,μ) with ‖Q‖ = 1. For our
purposes, we may without loss of generality assume that (�,�,μ) is σ -finite, passing for
instance to the band generated by Q(̂T f ).

Since Q is a lattice homomorphism and X is p-convex, we have
∥

∥

∥

∥

(
n
∑

k=1

∣

∣Q(xk)
∣

∣

p
) 1

p

∥

∥

∥

∥

L1(μ)

≤
∥

∥

∥

∥

(
n
∑

k=1

|xk |p
) 1

p

∥

∥

∥

∥

X
≤ M (p)(X)

(
n
∑

k=1

‖xk‖p
X

) 1
p

for every n ∈ N and x1, . . . , xn ∈ X . Hence the Maurey–Nikishin Factorization The-
orem (see, e.g, [1, Theorem 7.1.2.], and recall that p < ∞) yields a positive function
h ∈ L1(�,�,μ) with

∫

�
h dμ = 1 such that Q is bounded if we regard it as an operator

into L p(h dμ). More precisely, we have a factorization diagram

X

S

Q
L1(μ)

L p(h dμ) L1(h dμ),

jh

where Sx = h−1Qx satisfies ‖S‖ ≤ M (p)(X) and jh(g) = gh is an isometric embedding.
Note in particular that S is also a lattice homomorphism.

Let us nowconsider the composite operator R = S◦T : E → L p(h dμ). By thefirst part of
the proof, we know that there is a unique lattice homomorphism ̂R : FBLp[E] → L p(h dμ)
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such that ̂R(δx ) = Rx for every x ∈ E , and ‖̂R‖ = ‖R‖ ≤ M (p)(X) ‖T ‖. Since S ◦̂T and ̂R
are lattice homomorphisms which agree on the set {δx : x ∈ E}, it follows that S ◦̂T = ̂R|L .
Hence we have

‖̂T f ‖X = x∗(|̂T f |) = ∥

∥Q(̂T f )
∥

∥

L1(μ)
≤ ∥

∥S(̂T f )
∥

∥

L p(hdμ)

= ‖̂R f ‖L p(h dμ) ≤ M (p)(X) ‖T ‖ ‖ f ‖p.

�
Remark 6.2 We do not know of an explicit formula for the norm of the free Banach lattice
with upper p-estimates, even if the constant is one. In fact, we do not know whether this
space—or FBLD[E] in general—can be realized as a lattice of functions on the ball of E∗.
Formulating the latter questionmore rigorously, we ask: Is it true that lattice homomorphisms
from FBLD[E] to R separate the points of FBLD[E]?

7 Nonlinear (p,q)-summingmaps and applications

The purpose of this section is to explore the norm (1.1) further. It has an obvious similarity
with the p-summing norm of a linear operator. A very substantial body of literature is devoted
to the study of p-summing norms, their applications, and generalizations in the linear case.We
refer to [11] for a comprehensive exposition of this theory. Our aim is to establish analogues
of a few of these classical results in our setting.

We begin by introducing a more general version of the norm (1.1) involving two indices
1 ≤ p, q < ∞ and investigating the fundamental properties of this new norm. For a Banach
space E and a function f ∈ H [E], define

‖ f ‖p,q = sup

{

(
n
∑

k=1

∣

∣ f (x∗
k )
∣

∣

p
) 1

p : n ∈ N, x∗
1 , . . . , x

∗
n ∈ E∗, μq(x

∗
1 , . . . , x

∗
n ) ≤ 1

}

(7.1)

and

Hp,q [E] = {

f ∈ H [E] : ‖ f ‖p,q < ∞}

.

Denote by ‖ · ‖∞ the supremum norm on BE∗ , and let H∞[E] be the sublattice of H [E] of
all positively homogeneous functions which are bounded on BE∗ . Note that ‖ f ‖∞ ≤ ‖ f ‖p,q

for every 1 ≤ p, q < ∞ and f ∈ H [E], and consequently Hp,q [E] ⊆ H∞[E]. Note also
that in the notation previously introduced, we have ‖ f ‖p = ‖ f ‖p,p and Hp[E] = Hp,p[E].

The following lemma is straightforward.

Lemma 7.1 Given 1 ≤ p, q < ∞ and a Banach space E, the space
(

Hp,q [E], ‖ · ‖p,q
)

equipped with the pointwise vector lattice operations is a p-convex Banach lattice with
p-convexity constant one.

It is also easy to see that this space is of interest only for p ≥ q .

Lemma 7.2 Let 1 ≤ p < q < ∞. Then Hp,q [E] = {0} for every Banach space E.

Proof Let p, q ∈ [1,∞), and suppose that Hp,q [E] contains a nonzero function f . Choose
x∗ ∈ E∗ such that f (x∗) �= 0. Then, for every n ∈ N, we have

n
1
p
∣

∣ f (x∗)
∣

∣ =
(

n
∑

k=1

∣

∣ f (x∗)
∣

∣

p
) 1

p ≤ ‖ f ‖p,q · μq( x
∗, . . . , x∗

︸ ︷︷ ︸

n

) = ‖ f ‖p,q n
1
q ‖x∗‖,
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which implies that

n
1
p − 1

q ≤ ‖x∗‖
∣

∣ f (x∗)
∣

∣

‖ f ‖p,q .

Since the right-hand side is independent of n, we conclude that 1
p − 1

q ≤ 0, that is, p ≥ q . �
Our next result provides the general comparison among these norms. The argument follows

the same approach as in the Inclusion Lemma [11, 2.8].

Proposition 7.3 Let 1 ≤ q j ≤ p j < ∞ for j = 1, 2, and suppose that p1 ≤ p2, q1 ≤ q2,
and 1

q1
− 1

p1
≤ 1

q2
− 1

p2
. Then

‖ f ‖p2,q2 ≤ ‖ f ‖p1,q1

for every f ∈ H [E]. In particular, Hp1,q1 [E] ⊆ Hp2,q2 [E].
Proof We begin by observing that the result follows easily for q1 = q2, and if p1 = p2, then
the inequalities q1 ≤ q2 and 1

q1
− 1

p1
≤ 1

q2
− 1

p2
imply that q1 = q2. Thus, we may assume

that p1 < p2 and q1 < q2, and then define

1

p
= 1

p1
− 1

p2
,

1

q
= 1

q1
− 1

q2
,

which satisfy 1 < p ≤ q < ∞ by the hypotheses.
Let f ∈ H [E] and fix any x∗

1 , . . . , x
∗
n ∈ E∗ with μq2(x

∗
1 , . . . , x

∗
n ) ≤ 1. For 1 ≤ k ≤ n,

define λk = ∣

∣ f (x∗
k )
∣

∣

p2/p . By the homogeneity of f , we have

n
∑

k=1

∣

∣ f (x∗
k )
∣

∣

p2 =
n
∑

k=1

∣

∣ f (λk x
∗
k )
∣

∣

p1 ≤ ‖ f ‖p1
p1,q1 μq1(λ1x

∗
1 , . . . , λnx

∗
n )

p1 . (7.2)

Hölder’s inequality shows that

(
n
∑

k=1

∣

∣λk x
∗
k (x)

∣

∣

q1
) 1

q1 ≤
(

n
∑

k=1

λ
q
k

) 1
q
(

n
∑

k=1

∣

∣x∗
k (x)

∣

∣

q2
) 1

q2 ≤
(

n
∑

k=1

λ
q
k

) 1
q ≤

(
n
∑

k=1

λ
p
k

) 1
p

for every x ∈ BE because μq2(x
∗
1 , . . . , x

∗
n ) ≤ 1 and p ≤ q . Taking the supremum over

x ∈ BE and using the definition of λk , we obtain

μq1(λ1x
∗
1 , . . . , λnx

∗
n ) ≤

(
n
∑

k=1

∣

∣ f (x∗
k )
∣

∣

p2
) 1

p
. (7.3)

We now substitute (7.3) into (7.2) and rearrange the inequality to conclude that

(
n
∑

k=1

∣

∣ f (x∗
k )
∣

∣

p2
)1− p1

p ≤ ‖ f ‖p1
p1,q1 .

This completes the proof because 1 − p1
p = p1

p2
. �

Proposition 7.4 Let E be a Banach space whose dual has finite cotype r ≥ 2, and suppose
that 1 ≤ q < p < ∞ satisfy 1

q − 1
p ≥ 1 − 1

r . Then Hp,q [E] = H∞[E] with equivalence of
norms.
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Proof By [11, Corollary 11.17], every weakly summable sequence in E∗ is strongly r -
summable, and there exists a constant K > 0 such that

(
n
∑

k=1

‖x∗
k ‖r

) 1
r ≤ Kμ1(x

∗
1 , . . . , x

∗
n )

for every finite sequence (x∗
k )

n
k=1 in E∗. Hence, for f ∈ H∞[E], we have

(
n
∑

k=1

∣

∣ f (x∗
k )
∣

∣

r
) 1

r ≤ ‖ f ‖∞
(

n
∑

k=1

‖x∗
k ‖r

) 1
r ≤ K ‖ f ‖∞ μ1(x

∗
1 , . . . , x

∗
n ).

Taking the supremum over all n ∈ N and x∗
1 , . . . , x

∗
n ∈ E∗ with μ1(x∗

1 , . . . , x
∗
n ) ≤ 1, we

conclude that ‖ f ‖r ,1 ≤ K‖ f ‖∞.
Since 1 ≤ q < p < ∞ satisfy 1

q − 1
p ≥ 1− 1

r , we can apply Proposition 7.3 with p2 = p,
q2 = q , p1 = r , and q1 = 1 to obtain ‖ f ‖p,q ≤ ‖ f ‖r ,1 ≤ K‖ f ‖∞, so that f ∈ Hp,q [E]
and the (p, q)- and supremum norms are equivalent. �

As in the classical setting, the Dvoretzky–Rogers Theorem can be used to show that in
general these norms are different:

Proposition 7.5 Let E be an infinite-dimensional Banach space, and suppose that 1 ≤ q ≤
p < ∞ satisfy 1

q − 1
p < 1

2 . Then Hp,q [E] � H∞[E].

Proof By the Dvoretzky–Rogers Theorem [11, Theorem 10.5], there exists a weakly q-
summable sequence (x∗

k )k∈N in E∗ which fails to be strongly p-summable. Now consider
the function f : E∗ → R defined via f (x∗) = ‖x∗‖. Clearly, f ∈ H∞[E], and for every
n ∈ N, we have

(
n
∑

k=1

‖x∗
k ‖p

) 1
p ≤ ‖ f ‖p,q μq(x

∗
1 , . . . , x

∗
n ).

Letting n → ∞, we see that ‖ f ‖p,q = ∞. Thus f /∈ Hp,q [E]. �

Pietsch’s Domination Theorem (see, e.g., [11, Theorem 2.12]) is a cornerstone of the
linear theory of p-summing operators with several important factorization results among its
consequences. We conclude by providing analogues of [7, Propositions 2.12 and 2.13] for
1 ≤ p < ∞.

Given a Banach space E , equip the unit ball BE∗∗ of its bidual with the relative weak∗
topology, and denote the set of regular Borel probability measures on BE∗∗ byP(BE∗∗). This
is a convex, weak∗ compact subset of the dual space ofC(BE∗∗). Eachmeasureμ ∈ P(BE∗∗)
induces a function f pμ : E∗ → R+ via the definition

f pμ (x∗) =
(∫

BE∗∗

∣

∣x∗∗(x∗)
∣

∣

p
dμ(x∗∗)

) 1
p

for every x∗ ∈ E∗. This provides a link between Hp[E]+ andP(BE∗∗), as we now explain.
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Proposition 7.6 Let 1 ≤ p < ∞ and μ ∈ P(BE∗∗). Then f pμ ∈ Hp[E]+ with ‖ f pμ ‖p ≤ 1.

Proof The function f pμ is clearly positive and positively homogeneous. For n ∈ N and
x∗
1 , . . . , x

∗
n ∈ E∗, we have

( n
∑

k=1

∣

∣ f pμ (x∗
k )
∣

∣

p
) 1

p =
(∫

BE∗∗

n
∑

k=1

∣

∣x∗∗(x∗
k )
∣

∣

p
dμ(x∗∗)

) 1
p

≤ sup
x∗∗∈BE∗∗

( n
∑

k=1

∣

∣x∗∗(x∗
k )
∣

∣

p
) 1

p = μp(x
∗
1 , . . . , x

∗
n ),

where the last equality follows from the weak∗ density of BE in BE∗∗ . Hence ‖ f pμ ‖p ≤ 1.
�

Proposition 7.7 Let 1 ≤ p < ∞. For every f ∈ Hp[E]+, there is a measure μ ∈ P(BE∗∗)
such that

f (x∗) ≤ ‖ f ‖p f pμ (x∗)

for every x∗ ∈ E∗.

Proof This proof is based on the proof of Pietsch’s Domination Theorem given in [11, 2.12].
For every nonempty finite subset M of E∗, define gM : BE∗∗ → R by

gM (x∗∗) =
∑

x∗∈M

(

f (x∗)p − ‖ f ‖p
p · ∣∣x∗∗(x∗)

∣

∣

p
)

.

Then gM is weak∗ continuous, and so the set Q of all such functions gM is contained
in C(BE∗∗). Given nonempty finite subsets M1 and M2 of E∗ and 0 < λ < 1, the positive
homogeneity of f implies that λ · gM1 + (1 − λ) · gM2 = gM3 , where

M3 = {

λ1/px∗ : x∗ ∈ M1
} ∪ {

(1 − λ)1/px∗ : x∗ ∈ M2
}

.

This shows that Q is a convex set.
The definition (1.1) of the norm ‖ · ‖p implies that Q is disjoint from the strictly positive

cone
P =

{

h ∈ C(BE∗∗) : h(x∗∗) > 0 for every x∗∗ ∈ BE∗∗
}

.

Since P is open and convex, the geometric version of the Hahn–Banach Theorem guarantees
the existence of a functionalμ ∈ C(BE∗∗)∗ and a constant c ∈ R such thatμ(g) ≤ c < μ(h)

for every g ∈ Q and h ∈ P .
Choosing M = {0} ⊆ E∗, we have gM = 0. Therefore 0 ∈ Q, and so c ≥ 0. On the

other hand, as every strictly positive constant function belongs to P , we must have c ≤ 0. It
follows that c = 0, which implies that μ(h) ≥ 0 for every h ∈ C(BE∗∗)+. In other words, μ
is a positive regular Borel measure such that

∫

BE∗∗
g dμ ≤ 0 <

∫

BE∗∗
h dμ

for every g ∈ Q and h ∈ P . This inequality is unaffected by scaling of μ, so we may assume
that μ ∈ P(BE∗∗). For every x∗ ∈ E∗, the function g{x∗} belongs to Q, and therefore

0 ≥
∫

BE∗∗

(

f (x∗)p − ‖ f ‖p
p · ∣∣x∗∗(x∗)

∣

∣

p
)

dμ(x∗∗) = f (x∗)p − ‖ f ‖p
p f pμ (x∗)p

because μ is a probability measure. �
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We can summarize the conclusions of Propositions 7.6 and 7.7 as follows.

Corollary 7.8 Let 1 ≤ p < ∞ and f ∈ H [E]+. Then f ∈ Hp[E]+ if and only if, for some
constant C > 0, there is a measure μ ∈ P(BE∗∗) such that

f (x∗) ≤ C · f pμ (x∗)

for every x∗ ∈ E∗. Furthermore, when f ∈ Hp[E], its norm ‖ f ‖p can be computed as the
infimum of all constants C for which such a measure μ exists.
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