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Abstract
In the paper, Wisła (J Math Anal Appl 483(2):123659, 2020, 10.1016/j.jmaa.2019.123659),
it was proved that the classical Orlicz norm, Luxemburg norm and (introduced in 2009) p-
Amemiya norm are, in fact, special cases of the s-norms defined by the formula ‖x‖�,s =
infk>0

1
k s

(∫
T �(kx)dμ

)
, where s and � are an outer and Orlicz function respectively and x

is a measurable real-valued function over a σ -finite measure space (T , �,μ). In this paper
the strict monotonicity, lower and upper uniform monotonicity and uniform monotonicity of
Orlicz spaces equipped with the s-norm are studied. Criteria for these properties are given. In
particular, it is proved that all of these monotonicity properties (except strict monotonicity)
are equivalent, provided the outer function s is strictly increasing or the measure μ is atom-
less. Finally, some applications of the obtained results to the best dominated approximation
problems are presented.

Keywords Banach lattice · Uniform monotonicity · Strict monotonicity · Lower locally
uniform monotonicity · Upper locally uniform monotonicity · Orlicz space, s-Norm

Mathematics Subject Classification 46B20 · 46E30

1 Introduction

Many geometric properties of Banach spaces are directly related to the property of its norm.
One such important property is the property of the existence of an element that realizes the
distance of a set from a point (the so-called solvability of best approximation problem). More
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precisely, for a given nonempty proper subset A of a Banach space X and x /∈ A the question
is stated whether there exists z ∈ A such that

‖x − z‖ = inf {‖x − y‖ : y ∈ A} .

In this paper, we will give results on solvability (even more, on strong solvability) of the
dominated best approximation problem, i.e., for the case when A is a closed sublattice of an
Orlicz space X and z is an upper or lower boundary of A.

The dominated best approximation problem is strictly connected with the monotonicity
properties of the norm. Thus in the first part of the paper we will investigate the strict mono-
tonicity, uniform monotonicity, local lower uniform monotonicity and upper local uniform
monotonicity of Orlicz spaces equipped with the so-called s-norms [36].

Orlicz spaces L�, introduced byW. Orlicz in 1932 (see [33]) form a wide class of Banach
spaces of measurable functions or sequences. Originally W. Orlicz defined the norm as
follows

‖x‖o� = sup

{∫

T
|x(t)y(t)|dμ :

∫

T
�(y(t))dμ ≤ 1

}
,

where � is the complementary function to � in the sense of Young defined by

�(u) = sup {|u|v − �(v) : v ≥ 0} , u ∈ R.

In 1955, Luxemburg [25] investigated topologically equivalent norm to the Orlicz one which
was defined as follows

‖x‖� = inf
{
λ > 0 : I�

( x
λ

)
≤ 1

}
,

where I�(x) = ∫
T �(x(t))dμ. In the fifties Ichiro Amemiya (see [30, p. 218]) considered

the norm defined by the following formula

‖x‖A
� = inf

k>0

1

k
(1 + I� (kx)) .

Krasnoselskii and Rutickii [18], Nakano [30], Luxemburg and Zaanen [26] proved, under
additional assumptions on the function �, that the Orlicz norm can be expressed exactly by
the Amemiya formula, i.e. ‖·‖o� = ‖·‖A

�. In the most general case of Orlicz function �, the
similar result was obtained by Hudzik and Maligranda [12]. Moreover, it is not difficult to
verify that the Luxemburg norm can also be expressed by an Amemiya-like formula (see
[4,32]), namely

‖x‖� = inf
k>0

1

k
max {1, I� (kx)} . (1)

In the paper, Hudzik and Maligranda [12] proposed to investigate another class of norms
given by the so-called p-Amemiya formula

‖x‖�,p = inf
k>0

1

k
(1 + I p�(kx))1/p, (2)

where 1 ≤ p ≤ ∞ (if p = ∞ then we use the formula (1)).
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However it is easy to observe that both formulae (1) and (2) can be expressed by the norm
(called s-norm) defined by

‖x‖�,s = inf
k>0

1

k
s(I�(kx)), (3)

where s is the so-called outer function (see [36]). Let us underline that this concept covers
all the previously investigated cases of norms. Moreover, each outer function corresponds to
a random nonnegative variable X (over a probability space (�,M,P)) with expected value
0 ≤ E(X ) ≤ 1 (see the Preliminaries chapter below). So the results presented in this paper
may find applications in probability theory or stochastic modelling.

In recent years several papers have been published devoted to the study of the problem
of monotonicity of Orlicz space equipped with a certain norm (and often under additional
assumptions about the function � or the measure μ) see, e.g., [2,6,9,11,19–21,24]. In this
paper we consider the most general case of s-norms and Orlicz functions. Moreover, we
will investigate the general case of measure space—in particular, there may be atoms among
measurable sets.

In the section 3 it was proved that strict monotonicity of the function � on (0,∞) is
necessary for L�,s (the Orlicz space L� equipped with the s-norm ‖·‖�,s) to be strictly
monotone, for all possible choices of the outer function s (Lemma 3.7). The strict mono-
tonicity of � is also sufficient for L�,s to be strictly monotone as long the outer function s
is strictly increasing on (0,∞) (Theorem 3.9). If the outer function s is constant on some
nontrivial interval (0, ε) and the Orlicz function � takes finite values only, then the Orlicz
space L�,s is strictly monotone if and only if � is strictly increasing on (0,∞), � satisfies
the 	2-condition (Theorem 3.9).

The uniform monotonicity of L�,s does not depend on the outer function s in the case
of atomless measure μ. Namely, if the measure μ is atomless (and for any choice of s) or
s is strictly increasing on (0,∞) (and for any choice of measure μ), the Orlicz space L�,s

is uniformly monotone if and only if � is strictly increasing on (0,∞) and satisfies the
	2-condition (Theorem 4.10).

Finally, using the results in [19] we proved that, if s is an outer function strictly increasing
on (0,∞) or μ is an atomless measure then, for every closed sublattice A of L�,s , the
dominated best approximation problem is strongly solvable for any (lower or upper) boundary
of A as long as � is strictly increasing on (0,∞) and satisfies the 	2-condition (Corollary
5.5).

2 Preliminaries

For any map � : R → [0,∞] define
a� = sup{u ≥ 0 : �(u) = 0}, b� = sup{u > 0 : �(u) < ∞}.

If a� = 0 then � is positive and strictly increasing on (0,∞). We will also write � > 0 in
that case. Analogously, we will write � < ∞, provided b� = ∞. A map � : R → [0,∞]
is said to be an Orlicz function if �(0) = 0, � is not identically equal to zero, it is even,
convex on the interval (−b�, b�) and left-continuous at b�, i.e., limu→b−

�
�(u) = �(b�).

Throughout the paper we will assume that (T , �,μ) is a non-trivial measure space with
a σ -finite and complete measure μ. By Ta we will denote the (countable) set of all μ-atoms.
Wewill say that the atomless part of T is not empty, if T contains a measurable set of positive
measure that does not contain any atoms. Moreover we will always assume that either the
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atomless part of T is not empty or Ta does not reduce to a finite set of atoms. Thus the
σ -algebra� is non-trivial, i.e., it contains a nonempty and proper subset of T of positive and
finite measure (indeed, otherwise T would be an atom or μ would not be σ -finite).

By L0 = L0(μ) we will denote the set of all μ-equivalence classes of �-measurable real
functions defined on T equipped with the topology of convergence in measure on μ-finite
sets. For a given Orlicz function�, on the space L0(μ)we define a convex functional (called
a pseudomodular [29]) by

I�(x) =
∫

T
�(x(t))dμ.

The Orlicz space L� generated by an Orlicz function � is a linear lattice of measurable
functions defined by the formula

L� = {
x ∈ L0 : ∃λ > 0 I�(λx) < ∞}

with the μ-a.e. partial order, i.e., x ≤ y if and only if y(t) − x(t) ≥ 0 for μ-a.e. t ∈ T . By
the space E� we will mean a linear subspace of L� defined as follows

E� = {x ∈ L� : ∀λ > 0 I� (λx) < ∞} .

In the case of purely atomic measure (i.e., if T \Ta = ∅), the spaces L� and E� are usually
denoted by 
� and h� respectively. We will use this notation only if it is more convenient
or necessary. Let us note that the space E� may degenerate into one element set {0}. For
instance, this is what happens when the � values jump to infinity (i.e., b� < ∞).

We say that an Orlicz function � satisfies the condition 	2 if

(a) there exists a constant K > 0 such that �(2u) ≤ K�(u) for every u ∈ R (resp., for
every |u| ≥ u0, where �(u0) < ∞) provided the measure μ is atomless and μ(T ) = ∞
(resp. μ(T ) < ∞),

(b) there are constants a > 0, K > 0 and a nonnegative sequence (cn) ∈ 
1 such that

�(2u)μ(en) ≤ K�(u)μ(en) + cn

for every u ≥ 0 with �(u)μ(en) ≤ a and every n ∈ N , provided the measure μ is
purely atomic and {en : n ∈ N } is the set of atoms of T (this condition is known as the
δ2-condition),

(c) both conditions (a) and (b) are satisfied in the case when T contains an atomless part and
the set of atoms is not empty.

It is well known that L� = E� if and only if � ∈ 	2 and � < ∞ (see, e.g., [3,34] for
the atomless measure case and [15] for the purely atomic case). Note that � ∈ 	2 implies
that � < ∞ provided the measure μ is atomless. But this implication is not true for purely
atomic measures.

A function s : [0,∞) → [1,∞) is said to be an outer function, if it is convex and

max {1, u} ≤ s(u) ≤ u + 1 for all u ≥ 0.

To simplify notations, we extend the domain and range of s to the interval [0,∞] by setting
s(∞) = ∞.

Let us note that each outer function corresponds to a random nonnegative variableX (over
a probability space (�,M,P)) with the expected value 0 ≤ E(X ) ≤ 1 in the sense that

sX (u) = 1 + F (2)
X (u)
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for u ≥ 0, where F (2)
X : R → [0,∞) denotes the the second performance function of X ,

which is defined as the integral of the cumulative distribution function FX : R → [0, 1],
FX (u) = P(X ≤ u), over the half-line (−∞, u), i.e.,

F (2)
X (u) =

∫ u

−∞
FX (t)dt, u ∈ R

(see the O-R diagram in [31]). Indeed, the second performance function F (2)
X is nonnegative,

finite, convex on R and admits an asymptote at infinity with the slope 1 and the y-intercept
−E(X ) [31]. Moreover, if the random variable X is nonnegative and E(X ) ∈ [0, 1] then
F (2)
X (u) = 0 for all u ≤ 0, so the function sX (u) = 1 + F (2)

X (u) restricted to [0,∞) is an
outer function. In particular, if X ≡ 0 then sX (u) = 1+ u for u ≥ 0. Analogously, if X ≡ 1
then sX (u) = max {1, u} for u ≥ 0.

If s is an outer function and � is an Orlicz function then the functional

‖x‖�,s = inf
k>0

1

k
s(I�(kx))

is a norm on the Orlicz space L� [36]. In the following by L�,s (resp. E�,s) we will denote
the Orlicz space L� (resp. E�) equipped with the s-norm ‖·‖�,s .

Put sL(u) = max {1, u} and so(u) = 1 + u. Then the norms ‖·‖�,sL and ‖·‖�,so are the
Luxemburg norm ‖·‖� and the Orlicz norm ‖·‖o� respectively [25,32]. Since, for any outer
function s, sL(u) ≤ s(u) ≤ so(u) for all u ≥ 0, we have the following inequality

‖x‖� = ‖x‖�,sL ≤ ‖x‖�,s ≤ ‖x‖�,so = ‖x‖o� ≤ 2 ‖x‖�

for all x ∈ L�, so all s-norms are (topologically) equivalent to each other. In general, for
a fixed Orlicz function � two different outer functions s1 �= s2 create two different norms
‖·‖�,s1 �≡ ‖·‖�,s2 . But in the case of power functions �(u) = c |u|p , 1 ≤ p < ∞, c > 0,
all Orlicz spaces L�,s , no matter how the outer function s is chosen, coincide with the
Lebesgue spaces L p and ‖·‖�,s ≡ d ‖·‖p up to a some constant d > 0 depending on p and s.
Analogously, if�(u) = 0 for |u| ≤ 1 and�(u) = ∞ for |u| > 1 then, for all outer functions
s, the Orlicz space L�,s coincides with the Lebesgue space L∞ and ‖·‖�,s = ‖·‖∞ (see
[36]).

Note that, for any outer function s, the s-norm convergence to 0 of a sequence (xn)
of functions of L� implies its modular convergence to 0. Moreover, these two types of
convergence are equivalent, i.e.,

‖xn‖�,s → 0 ⇐⇒ ∃ λ > 0 I� (λxn) → 0

as n → ∞ if and only if � ∈ 	2 and, in the case of purely atomic measure, � > 0 (see,
e.g., [3,15]).

Recall that an element x of a Banach lattice (X , ‖·‖) is said to be order continuous if
‖xn‖ → 0 for any sequence (xn) in X such that 0 ≤ xn ≤ |x | and xn → 0 μ-a.e. By Xa we
will denote the subspace of all order continuous elements in X . If X = Xa then the Banach
lattice X is called order continuous (OC).

If μ is purely atomic, then (L�)a = (
�)a �= {0} for any Orlicz function � (consider
finite sequences of numbers). In general E� ⊂ (L�)a ⊂ L�.

It is well known that if � < ∞ then (L�)a = E� [37]. Moreover, L� = (L�)a if and
only if � ∈ 	2 (see [3,16,19]).
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Another nice characterization of 	2-condition is as follows: the modular unit sphere and
the Luxemburg-norm unit sphere coincide, i.e.,

‖x‖� = 1 ⇔ I� (x) = 1 (4)

for all x ∈ L� if and only if � ∈ 	2 and, if the measure μ is purely atomic, on each atom
e ∈ Ta the function u → �(u)μ(e) achieves the value 1, i.e., �(b�)μ(e) ≥ 1 for all e ∈ Ta
(see [3,6,16]).

More details about Orlicz spaces equipped with the Luxemburg or the Orlicz norm, can
be found in [3,18,22,23,27–29,34]. In the paper [12] Hudzik and Maligranda proposed to
investigate the family of so-called p-Amemiya normsgenerated by the outer functions defined
by sp(u) = (1 + u p)1/p . Then several geometric properties of p-Amemiya norms were
investigated in a number of papers, e.g., [4,6,7,13,14,35]. Basic properties of Orlicz spaces
equipped with the s-norm (and, among others, the theorem on duality) are presented in [36].

3 Strict monotonicity properties of Orlicz spaces L8,s

Let X be a Banach lattice with a norm ‖·‖. By X+ we will denote the positive cone of X ,
i.e. X+ = {x ∈ X , x ≥ 0} and by S(A) the interception of the unit sphere of X with the set
A ⊂ X , i.e., S(A) = {x ∈ A : ‖x‖ = 1}. A Banach lattice X is said to be strictly monotone
(SM for short) if ‖x − y‖ < ‖x‖ for all x ≥ y ≥ 0 and y �= 0.

In order to calculate the value of s-norm it is important to know whether the infimum in
the formula (3) is achieved at some k > 0. Denote

K (x) =
{
0 < k < ∞ : ‖x‖�,s = 1

k
s(I�(kx))

}

and let k∗(x) = inf {k > 0 : k ∈ K (x)} and k∗∗(x) = sup {k > 0 : k ∈ K (x)} with the con-
vention that k∗(x) = k∗∗(x) = ∞ as long as K (x) = ∅. We shall say that the s-norm
is k∗-finite (resp. k∗∗-finite) if k∗(x) < ∞ (resp. k∗∗(x) < ∞) for every x ∈ L�\ {0}. If
k∗(x) = k∗∗(x) < ∞ for all L�\ {0} then we say that the s-norm is k-unique. In [36], it was
proved, that K (x) = [k∗(x), k∗∗(x)] ∩ (0,∞). Moreover, the criteria for s-norm to be k∗-
finite and k∗∗-finite were also established in that paper. We will start with a characterization
of the set of those function x for which k∗∗(x) = ∞.

Lemma 3.1 For any outer function s and any Orlicz function �, if the space L�,s is not
k∗∗-finite then � takes only finite values. Moreover

{
x ∈ L�\ {0} : k∗∗(x) = ∞} ⊂ E�.

In consequence, the s-norm ‖·‖�,s may be not k
∗∗-finite only if the set E�\ {0} is not empty.

Proof Let x ∈ L�\ {0} be such that k∗∗(x) = ∞ and suppose that b� < ∞. Then ‖x‖∞ <

∞, whence k∗∗(x) ≤ b� ‖x‖−1∞ < ∞, a contradiction. Thus � < ∞. In order to prove the
inclusion of sets, take any x ∈ L�\E�. Then there exists k0 > 0 such that I�(k0x) = ∞.
Then

‖x‖�,s = inf
k>0

1

k
s(I�(kx)) = inf

0<k<k0

1

k
s(I�(kx)),

i.e., k∗∗(x) ≤ k0 < ∞. ��
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To make this paper clearer, we present the following lemma here, although some of its
statements can also be deduced form the results given in [36].

Lemma 3.2 Let s be an outer function and � an Orlicz function. If the space L�,s is not
k∗∗-finite then

(i) the limit c = limu→∞ �(u)
u is positive and finite,

(ii) � admits an oblique asymptote at infinity if and only if �(c) < ∞, where � is the
Orlicz function complementary to � in the sense of Young, in fact, the slope and the
y-intercept of the asymptote are equal to c > 0 and −�(c) respectively,

(iii) the Lebesgue space L1 is continuously imbedded into the Orlicz space L�,s and
‖y‖�,s ≤ c ‖y‖1 for every y ∈ L1,

(iv) ‖x‖�,s = c ‖x‖1 for every x ∈ L�\ {0}, with k∗∗(x) = ∞.

Proof Let x ∈ L�\ {0} be such that k∗∗(x) = ∞. Then, by Lemma 3.1, � has to take finite
values only and x ∈ E�\ {0}. Moreover,

lim
k→∞

1

k
I�(kx) ≤ lim

k→∞
1

k
s(I� (kx)) = inf

k>0

1

k
s(I� (kx)) = ‖x‖�,s < ∞.

(i). Suppose that limu→∞ �(u)
u = ∞. Since � is convex and �(0) = 0, the function

u → �(u)/u is nondecreasing on the half-line (0,∞). By the Beppo Levy theorem,

lim
k→∞

1

k
I�(kx) = lim

k→∞

∫

supp(x)

�(kx(t))

|kx(t)| |x(t)| dμ =
∫

supp(x)
lim

k→∞
�(kx(t))

|kx(t)| |x(t)| dμ = ∞,

a contradiction. Thus c = limu→∞ �(u)
u < ∞. Evidently, since � �≡ 0, c > 0 as well.

(ii). If� admits an oblique asymptote then, by (i), its slope is equal to c = limu→∞ �(u)/u
and 0 < c < ∞. Since � is convex, the slope of each secant of � is less or equal to c. Thus
�(u2)−�(u1)

u2−u1
≤ c for all 0 ≤ u1 < u2, what implies that the function u → cu − �(u) is

nondecreasing on (0,∞). Therefore

�(c) = sup
u≥0

(cu − �(u)) = lim
u→∞(cu − �(u)) = − lim

u→∞(�(u) − cu).

Thus � admits the oblique asymptote with the slope c if and only if �(c) < ∞ and its
y-intercept is equal to −�(c).

(iii). By virtue of (ii), for any measurable function y ∈ L0\ {0} we have

‖y‖�,s ≤ ‖y‖o� = inf
k>0

1

k
(1 + I�(k(y)) ≤ lim

k→∞
1

k

(
1 +

∫

{t :y(t)�=0}
�(ky(t))dμ

)

= lim
k→∞

∫

{t :y(t)�=0}
�(ky(t))

k |y(t)| |y(t)| dμ = c ‖y‖1 .

Thus the Lebesgue space (L1, ‖·‖1) is continuously imbedded into the Orlicz space
(L�, ‖·‖�,s).

(iv). By Lemma 3.1, x ∈ L�\ {0} and k∗∗(x) = ∞ imply that � < ∞ and x ∈ E�\ {0}.
Moreover I�(kx) > 0 for all k > 0 large enough and I�(kx) → ∞ as k → ∞, whence

‖x‖�,s = lim
k→∞

1

k
s(I�(kx)) = lim

k→∞
1

k

s(I�(kx))

I�(kx)
I�(kx)

= lim
k→∞

s(I�(kx))

I�(kx)

∫

supp(x)

�(kx(t))

|kx(t)| |x(t)| dμ = c ‖x‖1 .

��
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Let us underline that the existence of finite limit of the quotient �(u)/u at infinity is not
sufficient for � to admit an oblique asymptote. For example, let �(u) = |u| − ln(1 + |u|).
Evidently, limu→∞ �(u)/u = limu→∞(1 − ln(1 + u)/u) = 1 and limu→∞(�(u) − u) =
limu→∞(− ln(1 + u)) = −∞, whence � does not attend an asymptote at infinity.

Observe that�(1) = ∞ in this case aswell,where� is theOrlicz function complementary
to � in the sense of Young. Indeed, the right-hand derivative p+ of � is equal to p+(u) =
u/(1 + u) for all u ≥ 0. Hence the inverse function q+ = (p+)−1, which is the right-hand
derivative of �, is given by the formula q+(v) = v/(1 − v) for all 0 ≤ v < 1. Therefore,
for every |v| < 1,

�(v) = −
∫ |v|

0

t

1 − t
dt = − ln(1 − |v|) − |v| .

Evidently �(1) = limv→1− �(v) = +∞ (in fact, �(v) = +∞ for all v ≥ 1).
In order to illustrate the relationship between k∗∗-finiteness of the s-norm and the space

E� consider the following example.

Example 3.3 Letμ be an atomless measure withμ(T ) = ∞ and let�(u) = max {0, |u| − 1}
for allu ∈ R. Then L� = L1+L∞ and L1 � E�. If,moreover, the space L� is equippedwith
the Orlicz norm, i.e., s(u) = 1+ u, then {0} � E�\K ∗∗ � L1 � E� and E� ∩ K ∗∗ �= {0},
where K ∗∗ = {

x ∈ L�,s\ {0} : k∗∗(x) < ∞}
. Further, for any measurable subset A ∈ �,

‖χA‖�,s = min {μ(A), 1} .

(Note: the set K ∗∗ depends on � and s, but the sets L�, E� depend on � only.)

Proof Let x = y + z, where y ∈ L1, z ∈ L∞. If ‖z‖∞ = 0 then I� (x) = I� (y) ≤ ‖y‖1 <

∞, so x ∈ L�. If ‖z‖∞ > 0 then

I�

(
y + z

2 ‖z‖∞

)
≤ 1

2
I�

(
y

‖z‖∞

)
+ 1

2
I�

(
z

‖z‖∞

)
≤ ‖y‖1

2 ‖z‖∞
+ 0 < ∞,

i.e., x ∈ L�.
Conversely, let x ∈ L0 and k > 0 be such that I� (kx) < ∞. Define

Ak = {t ∈ T : |kx(t)| ≤ 1} , yk = (x − sgn x

k
)χT \Ak , zk = xχA + sgn x

k
χT \Ak .

Evidently x = yk+zk and‖zk‖∞ ≤ 1
k , so zk ∈ L∞.Moreover, |yk | = ∣∣sgn x(|x | − 1

k )
∣∣ χT \Ak

= (|x | − 1
k )χT \Ak , so

‖yk‖1 = 1

k

∫

T
|kyk(t)| dμ = 1

k

∫

T \Ak

(|kx(t)| − 1)dμ = 1

k
I� (kx) < ∞,

whence yk ∈ L1. We have proved that L� = L1 + L∞.
If x ∈ L1 then, since �(u) ≤ u for all u ≥ 0, we have I� (kx) ≤ ‖kx‖1 < ∞ for every

k > 0, so L1 ⊂ E�. We will show that L1 � E�. Let (an) be any sequence of positive
numbers converging to 0. Without loss of generality we can assume that (an) decreases to
0. Take a sequence (An) of pairwise disjoint measurable sets such that μ(An) = 1

an
for

all n ∈ N and define x = ∑∞
n=1 anχAn . Evidently x /∈ L1. For any k > 0 put nk =

min {n ∈ N : kan ≤ 1}. If nk = 1 then kan ≤ 1 for all n ∈ N , whence I� (kx) = 0 < ∞.
So, assume that nk > 1. Then
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I� (kx) =
∞∑

n=1

�(kan)μ(An) =
nk−1∑

n=1

(kan − 1)μ(An) < ∞.

Therefore x ∈ E�, whence L1 � E�.
Let A be any measurable subset of T (with finite or infinite measure). Take k = 1. Since

�(1) = 0, for any outer function s we have

1 = max {1,�(1)μ(A)} ≤ s(I� (χA)) = 1 + �(1)μ(A) = 1, (5)

whence ‖χA‖�,s ≤ 1. Further, for every 0 < k < 1,

1

k
s(I� (kχA)) ≥ 1

k
> 1 ≥ ‖χA‖�,s (6)

so the norm ‖χA‖�,s cannot be achieved at any 0 < k < 1.
From now on we will assume that s(u) = 1 + u. Finally, for every k > 1 put

C(k) = 1

k
s(I� (kχA)) = 1

k
(1 + �(k)μ(A)) = 1

k
+

(
1 − 1

k

)
μ(A).

If μ(A) = ∞ then C(k) ≡ ∞, if μ(A) = 1 then C(k) ≡ 1 and if 1 �= μ(A) < ∞ then
C(k) > min {μ(A), 1} for all k > 1 and limk→∞ C(k) = μ(A). Therefore ‖χA‖�,s =
min {μ(A), 1} and

k∗(χA) =
{
1 when μ(A) ≥ 1,
∞ otherwise.

k∗∗(χA) =
{
1 when μ(A) > 1,
∞ otherwise.

Thus

K (χA) =
⎧
⎨

⎩

{1} when μ(A) > 1,
[1,∞) when μ(A) = 1,
∅ otherwise.

Evidently, χA ∈ E� for all measurable sets A with μ(A) < ∞. Thus E� ∩ K ∗∗ �= {0} (take
χA with 1 < μ(A) < ∞) and {0} � E�\K ∗∗ (take χA with μ(A) ≤ 1).

The inclusion E�\K ∗∗ ⊂ L1 follows directly fromLemma 3.2.Moreover,χA ∈ L1∩K ∗∗
for all A ∈ � with 1 < μ(A) < ∞, so E�\K ∗∗ � L1. ��
Example 3.4 If the space L1+L∞ is equippedwith the Luxemburg norm, i.e., in the Example
3.3 we consider the outer function s(u) = max {1, u}, then the Orlicz space L�,s is k∗∗-finite
and, for all measurable sets A ∈ �,

‖χA‖�,s =
{
1 when μ(A) = ∞,

μ(A)
1+μ(A)

otherwise.

Proof The k∗∗-finitness follows from the definition of the outer function s (see [36]). Let
A ∈ �. For any 0 < λ < ∞ define

C(λ) = λmax
{
1,�(λ−1)μ(A)

} = max {λ, (1 − λ) μ(A)} .

By (5) and (6) we get that C(1) = 1 and C(λ) ≥ λ > 1 for all λ > 1. If μ(A) = ∞
then C(λ) = ∞ for all 0 < λ < 1, whence ‖χA‖�,s = infλ>0 C(λ) = C(1) = 1 and
k∗(χA) = k∗∗(χA) = 1.
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If μ(A) < ∞ then the infimum of values of the function C(λ) on the interval (0, 1) is
achived at the intersection point of the graphs of the identity function λ → λ and the function
λ → (1 − λ)μ(A), i.e., at the point λ = μ(A)

1+μ(A)
∈ (0, 1). Thus

‖χA‖�,s = inf
λ>0

C(λ) = C

(
μ(A)

1 + μ(A)

)
= μ(A)

1 + μ(A)

and k∗(χA) = k∗∗(χA) = μ(A)+1
μ(A)

. ��
As it was pointed out in the previous section, the 	2-condition plays an importatnt role

in Orlicz spaces. In the sequel, we will need the following lemma.

Lemma 3.5 Let s be an outer function. If � /∈ 	2 then, for every 0 < ε < 1, we can find
x ∈ L�\ {0} such that I� (x) < ε < ‖x‖�,s = 1.

Proof Let 0 < ε < 1. If a� = b� then, putting x = a�χT , we have I� (x) = 0 < ε < 1 =
‖x‖�,s . Hence, in the following, we will assume that d = b� − a� > 0.

In the case of Luxemburg norm it is well known that if � /∈ 	2 then there exists x ∈
L�\ {0} such that I� (x) < ‖x‖� = 1 (see [3,16]). This implies that I� (kx) = ∞ for all
k > 1 (otherwise, applying the Lebesgue dominated convergence theorem we would get that
‖x‖� < 1).

Put A0 = {t ∈ T : |x(t)| ≤ a�}. If I�
(
kxχA0

) = ∞ for every k > 1, then

I�
(
xχA0

) = 0 < ε < 1 = inf
0<k≤1

1

k
s(I�

(
kxχA0

)
) = ∥∥xχA0

∥∥
�,s

and the thesis is proved. Thus we can assume that I�
(
k0xχA0

)
< ∞ for some k0 > 1. For

each n ≥ 1 define

an =
{
a� + 1

n , i f b� = ∞,

a� + d
2n , otherwise,

bn =
{
a� + n, i f b� = ∞,

b� − d
2n , otherwise,

and

An = {t ∈ Tn : an+1 < |x(t)| ≤ an} ∪ {t ∈ Tn : bn ≤ |x(t)| < bn+1} .

Evidently, the sets A0, A1, ... are pairwise disjoint, {t ∈ T : |x(t)| > a�} ⊂ ⋃∞
n=0 An and

I� (x) =
∞∑

n=0

I�
(
xχAn

)
< ∞.

Thus we can find m > 1 such that I� (y) < ε, where y = ∑∞
n=m xχAn .

Suppose that I� (ky) < ∞ for some k > 1. Without loss of generality we can assume
that 1 < k < k0 and, if b� < ∞, that k < b�

bm
. For every n ≥ 1 we have

0 < �(an+1)μ(An) ≤ I�
(
xχAn

) ≤ I� (x) < ∞,

whence μ(An) < ∞. Thus

I� (kx) =
∞∑

n=0

I�
(
kxχAn

) ≤ I�
(
k0xχA0

) +
m−1∑

n=1

�(kbn+1)μ(An) + I� (ky) < ∞,

and this contradicts to the assumption that I� (kx) = ∞ for all k > 1. Thus
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‖y‖�,s = inf
0<k≤1

1

k
s(I� (ky)) ≥ inf

0<k≤1

1

k
= 1,

whence, putting z = y · ‖y‖−1
�,s ,

I� (z) ≤ I� (y) < ε < 1 = ‖z‖�,s

and the proof is completed. ��
As the immediate consequence of Lemma 3.5 we get the following corollary.

Corollary 3.6 If � /∈ 	2 then, for any outer function s, there exists a sequence (xn) of
functions in the unit sphere S(L�,s) such that the modular I� (xn) converges to 0, i.e.,
‖xn‖�,s = 1 for all n ∈ N and I� (xn) → 0 as n → ∞.

Now we turn back to the monotonicity properties of Orlicz spaces. We will start with the
lemma that will allow us to restrict the number of cases of outer and Orlicz functions that we
have to dealt with.

Lemma 3.7 Let s and � be an outer and Orlicz function respectively and denote as =
sup {u ≥ 0 : s(u) = 1}. The space L�,s is not strictly monotone if one of the following con-
ditions is satisfied

(i) a� > 0,
(ii) as > 0 and � /∈ 	2,
(iii) as > 0, the set of atoms Ta of μ is infinite and infe∈Ta �(b�)μ(e) < as .

If a� > 0 and E� �= {0} then the space E�,s is not strictly monotone.

Proof If T contains a nonempty atomless subset T0 then take a set A ⊂ T0 such thatμ(A) > 0
and μ(T0\A) > 0. In the other case, the set of atoms Ta is infinite, so take A ⊂ Ta such that
the set A is infinite and Ta\A �= ∅. Moreover, let B ⊂ Ta\A be such that 0 < μ(B) < ∞.

(i) Assume that a� > 0. Put z = χB . Then z ∈ L�\ {0}. Further, let ε > 0 be a fixed
arbitrary positive number and take kz > 0 such that 1

kz
s (I� (kzz)) ≤ ‖z‖�,s + ε. Define

y = a�k−1
z χA and x = y + z. Evidently x, y ∈ L�, 0 ≤ y ≤ x and y �= 0. Moreover,

‖x − y‖�,s = ‖z‖�,s ≥ 1

kz
s(I�(kzz)) − ε = 1

kz
s(I�(kz(z + a�k

−1
z χA)) − ε ≥ ‖x‖�,s − ε,

whence, by arbitrariness of ε > 0, ‖x − y‖�,s ≥ ‖x‖�,s . Since y �= 0, the space L�,s is not
strictly monotone.

(ii) Since� /∈ 	2, byLemma3.5 (with themeasure space restricted to (T∩A, �∩A, μ|A))
we can find z ∈ L�\ {0} such that suppz ⊂ A and I� (z) < as ≤ ‖z‖�,s = 1. This implies
that I�(kz) = ∞ for all k > 1.

Take ε > 0 such that �(ε)μ(B) < as − I�(z). Put y = εχB and x = z + y. Then,
evidently, 0 ≤ y ≤ x and y �= 0. Since s(u) = 1 for all 0 ≤ u ≤ as ,

I� (kx) ≤ I� (x) ≤ I�(z) + �(ε)μ(B) < as

for all 0 < k ≤ 1. Further, I�(kx) ≥ I�(kz) = ∞ for all k > 1, so

‖x − y‖�,s = ‖z‖�,s = 1 = inf
0<k≤1

1

k
s(I�(kx)) = ‖x‖�,s .

Since y �= 0, the space L�,s is not strictly monotone.
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(iii) If the set of atoms Ta is infinite and�(b�)μ(e) < as for an atom e ∈ Ta then, putting
z = b�χ{e}, we have I� (z) < as ≤ 1 and ‖z‖�,s = 1. Without loss of generality we can
assume that e ∈ A. Thus, we can repeat the part (ii) of the proof to conclude that L�,s is not
strictly monotone.

Assume that E� �= {0}. This implies that� takes only finite values, whence the functions
z = χB and y = a�k−1

z χA in the part (i) of the proof belong to E�\ {0}. Repeating the
arguments of (i) we conclude that E�,s is not strictly monotone. ��

In the proof of the theorem on strict monotonicity of the Orlicz space L�,s we will need
the following lemma.

Lemma 3.8 Let s be an outer function, 0 < c < ∞ and let Ta be the (empty or infinite) set
of atoms of T . If � ∈ 	2 and infe∈Ta �(b�)μ(e) ≥ c then, for every x ∈ L�,

I� (x) < c �⇒ I� (kx) < c f or some k > 1.

Proof Let x ∈ L� be such that I� (x) < c. We claim that there exists k > 1 such that
I� (kx) < ∞. If T \Ta �= ∅ then, by 	2-condition, I�

(
2xχT \Ta

)
< ∞.

Now, assume that the set of atoms Ta is infinite. For simplicity, put Ta = ⋃
n en , en = {n}

and an = x(n) for all n ∈ N . Let a, K > 0 be constants and (cn) ∈ 
1 a sequence that
appear in 	2-condition. Since

∞∑

n=1

�(an)μ(en) ≤ I� (x) < c < ∞,

there exists m ∈ N such that �(an)μ(en) ≤ a for all n ≥ m. Thus

∞∑

n=m

�(2an)μ(en) ≤ K
∞∑

n=m

�(an)μ(en) +
∞∑

n=m

cn < ∞.

Moreover, for each n ∈ N ,

�(an)μ(en) ≤ I� (x) < c ≤ �(b�)μ(en).

Thus |an | < b� for all n ∈ N . Hence, for each 1 ≤ n < m we can find kn > 1 such that
kn |an | < b�. Put k0 = min {k1, . . . , km−1, 2}. Then k0 > 1 and

I� (k0x) = I�
(
k0xχT \Ta

) + I�
(
k0xχTa

)

≤ I�
(
2xχT \Ta

) +
m−1∑

n=1

�(knan)μ(en) +
∞∑

n=m

�(2an)μ(en) < ∞

and the claim is proved.
Therefore k → I�(kx) is a nondecreasing continuous function on the interval (1, k0) and

I� (x) < c. Hence we can find k ∈ (1, k0) such that I� (kx) < c as well. ��
The next theorem provides criteria for the Orlicz space equipped with the s-norm to be

strictly monotone.

Theorem 3.9 Let s and � be an outer and Orlicz function respectively and let as =
sup {0 ≤ u ≤ 1 : s(u) = 1}.
(a) The Orlicz space L�,s is strictly monotone if and only if � vanishes only at 0 and one of

the following conditions is satisfied:
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(i) s is strictly increasing on [0,∞) (i.e., as = 0),
(ii) as > 0 and

(a) � ∈ 	2,
(b) �(b�)μ(e) ≥ as for all atoms e ∈ Ta.

(b) For any outer function s, the space E�,s is strictly monotone if and only if either �

vanishes only at 0 or E� = {0}.
Proof The necessity part of the proof follows directly from Lemma 3.7.

Sufficiency. Assume that � vanishes only at 0. Take any x, y ∈ L� (respectively, x, y ∈
E�, provided E� �= {0}) with 0 ≤ y ≤ x and y �= 0. Since � vanishes only at 0, we have
0 < I�(k(x − y)) < I�(kx) for all k > 0. Without loss of generality we can also assume
that ‖x‖�,s = 1.

If K (x) = ∅ then, by Lemma 3.2, � admits an asymptote at infinity with the slope c > 0
and x ∈ L1. By strict monotonicity of the L1-norm, ‖x − y‖1 < ‖x‖1 < ∞, so x − y ∈ L1

and, again by Lemma 3.2,

‖x − y‖�,s ≤ c ‖x − y‖1 < c ‖x‖1 = ‖x‖�,s .

Thus, in the following part of the proof we can assume that K (x) �= ∅, i.e., kx ∈ K (x) for
some 1 ≤ kx < ∞. Put as = sup {0 ≤ u ≤ 1 : s(u) = 1}.

If I�(kx (x− y)) ≥ as then I�(kx x) > as and, applying the fact that s is strictly increasing
on (as,∞), we get

‖x − y‖�,s ≤ 1

kx
s(I�(kx (x − y))) <

1

kx
s(I�(kx x)) = ‖x‖�,s .

If as = 0, the above inequality completes the sufficiency part of the proof.
So, let 0 < as ≤ 1 and assume that I�(kx (x − y)) < as . If x, y ∈ E� then we can find

k0 > kx such that I�(k0(x − y)) < as . Therefore

‖x − y‖�,s ≤ 1

k0
s(I�(k0(x − y))) = 1

k0
<

1

kx
≤ 1

kx
s(I�(kx x)) = ‖x‖�,s , (7)

whence E�,s is strictly monotone and the statement (b) is proved.
If x, y ∈ L� then, by (i)(a), (i)(b) and Lemma 3.8, we can also find k0 > kx such that

I�(k0(x − y)) < as . Thus (7) holds true and the proof is completed. ��

4 Uniform, lower local uniform and upper local uniformmonotonicity
of Orlicz spaces L8,s

A Banach lattice (X , ‖·‖) is said to be

– uniformly monotone (UM) if for any ε ∈ (0, 1) there exists δ(ε) ∈ (0, 1) such that

‖y‖ ≥ ε �⇒ ‖x − y‖ ≤ 1 − δ(ε) (8)

for all x ∈ S(X+), 0 ≤ y ≤ x . Recall that Birkhoff [1] defined a Banach lattice X to be
uniformly monotone if for any ε > 0 there exists η(ε) > 0 such that

‖y‖ ≥ ε �⇒ ‖x + y‖ > 1 + η(ε) (9)

for all x, y ∈ X+, x ∈ S(X+). Kurc [19] showed that the definitions (8) and (9) are
equivalent.
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– lower locally uniformly monotone (LLUM) if for every ε ∈ (0, 1] and x ∈ S(X+) there
exists δ(x, ε) > 0 such that

‖y‖ ≥ ε �⇒ ‖x − y‖ ≤ 1 − δ(x, ε)

for every 0 ≤ y ≤ x ,
– upper locally uniformly monotone (ULUM) if for every ε > 0 and x ∈ S(X+) there

exists δ(x, ε) > 0 such that

‖y‖ ≥ ε �⇒ ‖x + y‖ ≥ 1 + δ(x, ε)

whenever y ∈ X+.
It is known that a Banach lattice X is LLUM (resp. ULUM) if and only if for every

x ∈ S(X+) and every sequence (xn) with 0 ≤ xn ≤ x (resp. 0 ≤ x ≤ xn) the implication

‖xn‖ → 1 �⇒ ‖xn − x‖ → 0

holds true. Evidently, each of the properties UM, LLUM and ULUM of X implies strict
monotonicity (SM) of X .

We will say that an Orlicz function � satisfies the Kamińska condition for a constant
0 < d ≤ 1 if �(b�)μ(e) ≥ d and for each ε ∈ (0, d) there exists δ > 0 such that

�(u)μ(e) < d − ε �⇒ �((1 + δ)u)μ(e) ≤ 1

for all u > 0 and each atom e ∈ Ta (this condition, for d = 1, was introduced by Kamińska
in the paper [17] and it was denoted by (*) there).

An important consequence of Kamińska condition is a significant simplification of 	2-
condition in the purely atomic measure case.

Lemma 4.1 Let Ta = {en : n ∈ N } and let theOrlicz function� satisfiesKamińska condition
with a constant d > 0. Then � satisfies 	2-condition on Ta if and only if for each ε > 0
there exist constants δ > 0, K > 1 and a sequence (cn) ∈ 
1 such that

�((1 + δ)u)μ(en) ≤ K�(u)μ(en) + cn (10)

for each n ∈ N and all u > 0 with �(u)μ(en) < d − ε.

Proof By 	2-condition, there exist constants a > 0, K0 > 1 and a sequence (cn) ∈ 
1 such
that

�(2u)μ(en) ≤ K0�(u)μ(en) + cn

for all u > 0 with �(u)μ(en) ≤ a and n ∈ N . Let ε > 0 and let d > 0, δ > 0 be taken from
Kamińska condition. Without loss of generality we can assume that δ < 1. If d − ε ≤ a then
(10) is evident. So, let d − ε > a. Then, for all u > 0 with a < �(u)μ(en) < d − ε and
each n ∈ N we have

�((1 + δ)u)μ(en) ≤ 1 = 1

a
a <

1

a
�(u)μ(en),

whence

�((1 + δ)u)μ(en) ≤ K�(u)μ(en) + cn,

where K = max
{
K0,

1
a

}
.

Conversely, if (10) holds then, using the fact that 2 ≤ (1 + δ)i for some i ∈ N and
modifying (decreasing) the number a = d − ε > 0 if necessary, we get 	2-condition on Ta
(for detailed proof see Lemma 4 in [16]). ��
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Before we prove the criteria for the Orlicz space L�,s to be uniformly monotone, we need
three more result on s-norms generated by outer functions that are constant nearby 0.

Lemma 4.2 Let s be an outer function, as = sup {u ≥ 0 : s(u) = 1} > 0 and let us assume
that � satisfies 	2-condition.

(i) For all x ∈ L�, ‖x‖�,s ≥ 1 �⇒ I�(x) ≥ as ,
(ii) If Ta = ∅ then, for any 0 < ε < as we can find η > 0 such that

I�(x) < as − ε �⇒ ‖x‖�,s < 1 − η (11)

for all x ∈ L�.
(iii) If Ta �= ∅ then (11) holds true if and only if � also satisfies Kamińska condition with the

constant as .

Proof (i) Let ‖x‖�,s ≥ 1 and suppose that I� (x) < as . By Lemma 3.8, we can find k > 1
such that I� (kx) < as , whence

1 ≤ ‖x‖�,s ≤ 1

k
s(I� (kx)) = 1

k
< 1,

a contradiction.
(ii) (also proof of the sufficiency part of (iii)). Suppose that we can find ε ∈ (0, as) and a

sequence (xn) of elements of L�\ {0} such that I� (xn) ≤ as − ε and ‖xn‖�,s ≥ (1 − 1
n+2 )

for all n ∈ N . By (i) we infer that ‖xn‖�,s < 1 for all n ∈ N .
If μ(T \Ta) > 0 then, by 	2-condition, there exist u0 ≥ 0 and K1 > 0 such that

I�
(
2xnχT \Ta

) ≤ K1 I�
(
xnχT \(Ta∪An)

) + I�
(
2xnχAn

)

< K1(as − ε) + �(2u0)μ(T \Ta) < ∞
for all n ∈ N , where An = {t ∈ T \Ta : |xn(t)| < u0} and �(u0)μ(T \Ta) < ∞ (with the
convention 0 · ∞ = ∞).

Further, if Ta �= ∅ then, by Kamińska condition with d = as and Lemma 4.1, � < ∞
and there exist δ > 0, K2 > 0 and a sequence (cn) ∈ 
1 such that

I�
(
(1 + δ)xnχTa

) ≤ K2 I�
(
xnχTa

) +
∞∑

m=1

cm ≤ K2(as − ε) + ‖(cm)‖1 < ∞

for every n ∈ N . Put

K = max {K1(as − ε) + �(2u0)μ(T \Ta), K2(as − ε) + ‖(cm)‖1}
and αn = ‖xn‖−1

�,s − 1 for n ∈ N . Then 0 < αn < 1 and αn → 0, so αn < δ for all n large
enough. Applying (i) we obtain

as ≤ I�

(
xn

‖xn‖�,s

)
= I� ((αn + 1)xn) = I�

(αn

δ
(1 + δ)xn + (1 − αn

δ
)xn

)

≤ αn

δ
I� ((1 + δ)xn) + (1 − αn

δ
)I� (xn) ≤ αn

δ
K + (1 − αn

δ
)(as − ε) < as

for all n large enough, a contradiction. Thus the condition (11) holds true.
Proof of the necessity part of (iii). Suppose that �(b�)μ(e) < as for an atom e ∈ Ta .

Denote x = b�χe and ε = 1
2 (as − I� (x)). Then, evidently, I� (x) < as − ε. Moreover,

s(I� (x)) = s(as − ε) = 1, 1
k s(I� (kx)) ≥ 1

k > 1 for all 0 < k < 1 and 1
k s(I� (kx)) =
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s(∞) = ∞ for all k > 1. Therefore ‖x‖�,s = 1 and this equality contradicts to the condition
(11).

Let 0 < ε < as . Take any u > 0 and n ∈ N such that �(u)μ(en) ≤ as − ε. For
x = uχen we have I� (x) ≤ as − ε, whence, by (11), ‖x‖� ≤ ‖x‖�,s < 1 − η for some
0 < η < 1. Thus, putting δ = η

1−η
, and applying the fact, that (for the Luxemburg norm

‖·‖�) if ‖z‖� ≤ 1 then I� (z) ≤ ‖z‖� ≤ 1, we obtain

�((1 + δ)u)μ(en) = �

(
u

1 − η

)
μ(en) = I�

(
x

1 − η

)
≤

∥
∥
∥
∥

x

1 − η

∥
∥
∥
∥

�

≤ 1,

so Kamińska condition with the constant d = as holds true. ��

Lemma 4.3 Let s be an outer function with as > 0 and let � satisfy 	2-condition. If the
Orlicz space L�,s is uniformly monotone then the condition (11) holds true. If, moreover, the
set of atoms Ta is not empty then the Kamińska condition is satisfied with the constant as .

Proof Suppose that (11) does not hold. Then we can find a sequence (zn) of nonnegative
functions in L� such that I� (zn) < as − ε and ‖zn‖�,s > 1 − 1

n . Since the measure
μ is σ -finite, without loss of generality we can assume that T \supp(zn) �= ∅. Note that
‖zn‖�,s ≤ s(as − ε) = 1.

We claim that for each n ∈ N we can find a set An ⊂ T \supp(zn) of positive and finite
measure and a constant un > 0 such that I� (zn + wn) = as , where wn = unχAn . Indeed,
if An ⊂ T \Ta then the atomless part of T is not empty, whence, by 	2-condition, � < ∞
and the claim follows directly from continuity of the function �.

If An contains atoms then, without loss of generality, we can assume that An consists of
one atom only, i.e., An = {en} ⊂ Ta . Since (UM) property implies (SM), by Theorem 3.9,
�(b�)μ(e) ≥ as for each atom e ∈ Ta and the claim is proved.

Since I� (zn) ≤ as − ε we have I� (wn) ≥ ε. Hence, by 	2-condition, we can find η > 0
such that ‖wn‖�,s ≥ η for all n ∈ N . Define

xn = zn + wn

‖zn + wn‖�,s
, yn = wn

‖zn + wn‖�,s
.

Evidently 0 ≤ yn ≤ xn and ‖xn‖�,s = 1. Moreover

‖yn‖�,s = ‖wn‖�,s

‖zn + wn‖�,s
≥ ‖wn‖�,s

s(I� (zn + wn))
≥ η > 0.

Finally,

‖xn − yn‖�,s = ‖zn‖�,s

‖zn + wn‖�,s
≥ 1 − 1

n

s(I� (zn + wn))
= 1 − 1

n
→ 1

as n → ∞, and this contradicts to the assumption that L�,s is uniformly monotone. The
Kamińska condition follows directly from the Lemma 4.2. ��

Lemma 4.4 Let s be an outer function and let as = sup {u ≥ 0 : s(u) = 1}. For every v > as
and ε ∈ (0, v − as) we can find δ ∈ (0, 1) such that

s(v − u) ≤ (1 − δ)s(v)

for every u ∈ [ε, v].
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Proof Suppose that there are v > as , ε ∈ (0, v − as) and a sequence (un) of numbers from
the interval [ε, v] such that s(v) ≥ s(v−un) > (1− 1

n )s(v) for all n ∈ N . Since the sequence
(un) is bounded, passing to a subsequence if necessary, we can assume that un → u0 ∈ [ε, v]
as n → ∞. Letting n → ∞ and applying the continuity of s, we get s(v − u0) = s(v).
Since u0 > 0, the last equality can hold true only if v − u0, v ∈ [0, as], whence v ≤ as , a
contradiction. ��

Now we will prove the main theorem of this section.

Theorem 4.5 For any outer function s,
the Orlicz space L�,s is uniformly monotone if and only if the following conditions are

satisfied

(i) the Orlicz function � vanishes only at 0,
(ii) � satisfies 	2-condition,
(iii) � satisfies Kamińska condition with the constant as provided as > 0 and the set of atoms

Ta is not empty.

Proof Necessity. Since UM implies SM, by Theorem 3.9 we infer that � > 0. Moreover,
UM implies LLUM and this property implies order continuity of the norm (see [8]), so
the s-norm norm ‖·‖�,s is order continuous. In consequence, the Luxemburg norm ‖·‖� is
order continuous as well, whence � ∈ 	2 (see, e.g., [3,5]). Finally, if as > 0 and Ta �= ∅,
Kamińska condition with the constant as follows from Lemma 4.3.

Sufficiency. Let ε > 0. Take any x ∈ S((L�)+) and let y ∈ (L�)+ be such that 0 ≤ y ≤ x
and ‖y‖�,s ≥ ε.

If K (x) = ∅ then x ∈ L1. Hence x − y ∈ L1 as well because 0 ≤ x − y ≤ x . Thus
applying Lemma 3.2 and the fact that the Lebesgue space L1 is UM, we can find 0 < η1 < 1
such that

‖x − y‖�,s ≤ c ‖x − y‖1 < c(1 − η1) ‖x‖1 = (1 − η1) ‖x‖�,s ,

where c > 0 is the slope of the oblique asymptote of � at infinity. Hence, in the following,
we can assume that K (x) �= ∅.

Let k ≥ 1 be such that k ∈ K (x) and let us assume that I� (kx) − I� (ky) ≥ as . Since
� ∈ 	2 and � > 0, the modular convergence of a sequence of functions to 0 implies its
norm convergence to 0. Hence we can find δ > 0 such that I� (y) > δ for all ‖y‖�,s ≥ ε.
Thus I� (ky) > δ as well, whence I� (kx) > as . Moreover, δ < I� (ky) ≤ I� (kx) − as .
By superaddtivity of � and by Lemma 4.4, we can find 0 < η2 < 1 such that

‖x − y‖�,s ≤ 1

k
s (I� (k(x − y))) ≤ 1

k
s (I� (kx) − I� (ky))

< (1 − η2)
1

k
s(I� (kx)) = (1 − η2) ‖x‖�,s .

That completes the proof in the case when the outer function s is strictly increasing (i.e,
as = 0).

Now, assume that as > 0 and I� (kx) − I� (ky) < as . If I� (kx) ≤ as + δ/2 then

I� (k(x − y)) ≤ I� (kx) − I� (ky) < as + δ/2 − δ = as − δ/2.

By Lemma 4.2, we can find η3 > 0 such that

‖x − y‖�,s < 1 − η3 = (1 − η3) ‖x‖�,s .
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Finally, assume that as > 0, I� (kx) − I� (ky) < as and I� (kx) > as + δ/2. Since
‖x‖�,s = 1 and k ∈ K (x), we have

k = s(I� (kx)) > s(as + δ/2) = 1

1 − η4
> 1,

where η4 = 1 − 1/s(as + δ/2) ∈ (0, 1). Thus

‖x − y‖�,s ≤ 1

k
s (I� (k(x − y))) = (1 − η4)s (I� (k(x − y)))

≤ (1 − η4)s (I� (kx) − I� (ky)) = 1 − η4 = (1 − η4) ‖x‖�,s .

Taking η = min {ηi : 1 ≤ i ≤ 4}we have ‖x − y‖�,s < (1−η) ‖x‖�,s for all x ∈ S((L�)+)

and all 0 ≤ y ≤ x with ‖y‖�,s ≥ ε, i.e., the space L�,s is uniformly monotone. ��
We say that a sequence (xn) of nonnegative elements of a Banach lattice X is nearly order

convergent to x ∈ X+ from below, if 0 ≤ xn ≤ x and ‖xn‖ → ‖x‖.
Lemma 4.6 If the outer function s is strictly monotone and the Orlicz function � vanishes
only at 0, then the nearly order convergence from below implies the convergence in measure
on the space L�,s .

Proof Let (xn) be a sequence of nonnegative elements of (L�)+, x ∈ (L�)+, 0 ≤ xn ≤ x
and ‖xn‖�,s → ‖x‖�,s . Without loss of generality we can assume that ‖x‖�,s = 1.

Suppose that (xn) does not converge to x inmeasureμ as n → ∞, i.e., we can find ε, δ > 0
and a strictly increasing sequence (nm) of natural numbers such that infm μ(Am) ≥ 2δ, where

Am = {
t ∈ T : x(t) − xnm (t) > ε

}
.

Then 0 ≤ εχAm ≤ x − xnm ∈ L�, whence εχAm ∈ L� and μ(Anm ) < ∞ for all m ∈ N .
If K (x) = ∅ then, by Lemma 3.2, x ∈ L1. Thus xn ∈ L1 as well and

∥∥xnm
∥∥

�,s ≤ ∥∥xnm
∥∥
1 ≤ ‖x‖1 − ∥∥εχAnm

∥∥
1 = 1 − εμ(Anm ) ≤ 1 − δ,

whence
∥∥xnm

∥∥
�,s �→ 1, a contradiction.

Now, assume that K (x) �= ∅, i.e., ‖x‖�,s = 1
kx
s(I� (kx x)) = 1 for some kx ≥ 1. Define

η = I� (kxεδ), v = I� (kx x) and um = I�
(
kxεχAm

)
for m ∈ N . Since � > 0 we have

0 < η < um ≤ v for all m ∈ N . Since as = 0, by Lemma 4.4 we can find γ > 0 such that
s(v − u) ≤ (1 − γ )s(v) for every u ∈ (η, v]. Thus, by superadditivity of �,

∥∥xnm
∥∥

�,s ≤ 1

kx
s(I�

(
kx xnm

)
) ≤ 1

kx
s(I�

(
kx (x − εχAm

)
)) ≤ 1

kx
s(v − um)

≤ (1 − γ )
1

kx
s(v) = (1 − γ )

1

kx
s(I� (kx x)) = 1 − γ

for all m ∈ N . Therefore
∥∥xnm

∥∥
�,s �→ 1, a contradiction that ends the proof. ��

Theorem 4.7 If the outer function s is strictly increasing and the Orlicz function � vanishes
only at 0, then the Orlicz space E�,s is lower locally uniformly monotone.

Proof Evidently we can assume that E� �= {0}. Let x ∈ S+(E�) and let (xn) be a sequence
of E� such that 0 ≤ xn ≤ x and ‖xn‖�,s → 1. Let λ > 0 be an arbitrary positive number.

We have 0 ≤ λ(x − xn) ≤ λx and, by Lemma 4.6, λxn
μ−→ λx . Since x ∈ E�, we have

I�(λx) < ∞ so, by the Lebesgue dominated convergence theorem, I�(λ(x − xn)) → 0,
whence, by arbitrariness of λ, ‖x − xn‖�,s → 0. Thus the space E�,s is lower locally
uniformly monotone. ��
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Corollary 4.8 If the outer function s is strictly increasing then the the following conditions
are equivalent

(i) E�,s is LLUM
(ii) E�,s is SM
(iii) � > 0.

Proof Evidently, we can assume that E�,s �= {0}. (i) ⇒ (i i) is obvious. (i i) ⇒ (i i i) follows
from Theorem 3.9. Finally, by Theorem 4.7 (i i i) ⇒ (i). ��
Theorem 4.9 Let s and� be an outer and Orlicz function respectively. If one of the following
conditions is satisfied

(i) L�,s is ULUM,
(ii) E�,s �= {0} and E�,s is ULUM

then � > 0 and � ∈ 	2.

Proof Denote by X the space L� in the case when L� is ULUM or the space E� whenever
E� �= {0} and E� is ULUM. Since ULUM property implies SM, by Lemma 3.7 we infer
that � > 0.

Suppose that � /∈ 	2. Then, since X �= {0}, we can find a sequence (zn) of elements of
X+ such that (zn) is modular convergent to 0 but it is not norm convergent to 0 with respect
to the norm ‖·‖�,s . Without loss of generality we can assume that μ(T \ ⋃

n suppzn) > 0,
I�(zn) ≤ 2−n and ‖zn‖�,s ≥ η for all n ∈ N and some η > 0.

Take x ∈ S+(X) such that supp(x) ⊂ T \ ⋃
n suppzn and let ε > 0 be an arbitrary

number. We can find kx ≥ 1 such that 1
kx
s (I� (kx x)) ≤ ‖x‖�,s + ε. Put yn = k−1

x zn . We

have I�(kx yn) = I� (zn) ≤ 2−n and ‖yn‖�,s = k−1
x ‖zn‖�,s ≥ k−1

x η > 0. Thus

‖x + yn‖�,s ≤ 1

kx
s(I�(kx (x + yn))) = 1

kx
s(I�(kx x) + I�(kx yn))

≤ 1

kx
s

(
I�(kx x) + 1

2n

)
,

whence

lim sup
n→∞

‖x + yn‖�,s ≤ 1

kx
s(I�(kx x)) ≤ ‖x‖�,s + ε = 1 + ε.

By arbitrariness of ε > 0 we infer that lim supn→∞ ‖x + yn‖�,p ≤ 1, whence the space X
is not ULUM, a contradiction. ��

The following theorem summarizes the relationship between uniformmonotonicity, lower
locally uniform monotonicity and upper local uniform monotonicity properties.

Theorem 4.10 Let s and � be an outer and Orlicz function respectively.

(a) If the outer function s is strictly increasing on (0,∞) or the measure μ is atomless then
the following conditions are equivalent

(i) L�,s is UM,
(ii) L�,s is LLUM,
(iii) L�,s is ULUM,
(iv) � > 0 and � ∈ 	2.
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(b) If all of the assumptions of (a) are satisfied and, moreover, � < ∞ then in each of the
conditions (i), (ii) and (iii) we can put the space E�,s instead of L�,s .

Proof (a) Evidently (i) ⇒ (i i) and (i) ⇒ (i i i). (i i i) ⇒ (iv) follows directly fromTheorem
4.9, while (iv) ⇒ (i) is a consequence of Theorem 4.5. (i i) ⇒ (iv) Since LLUM implies
SM, by Theorem 3.9, � > 0. Moreover, LLUM implies order continuity of the norm
(see [8]), whence (see [5,10]) � ∈ 	2.

(b) It suffices to note that if � < ∞ and � ∈ 	2 then E�,s = L�,s .
��

5 The dominated best approximation problem

Recall that if X = (X , ‖ · ‖) is a Banach space and ∅ �= A ⊂ X , then for any x ∈ X the
number

d(x, A) = inf{‖x − y‖ : y ∈ A}
is called the distance of x from A and the sequence (yn) of elements of A is said to be an
x-minimizing sequence whenever limn→∞ ‖x − yn‖ = d(x, A). It is obvious that for any
nonempty set A in X and any x ∈ X the distance d(x, A) is finite and d(x, A) = 0 for any
x ∈ A. Further, the function PA(x) = X → 2X defined by

PA(x) = {z ∈ A : d(x, A) = ‖x − z‖}
is called the projection from X onto A and, for any x ∈ X , the set PA(x) is called the
projection of x onto A.

The best approximation problem deals with the description of the elements of the set
PA(x). If PA(x) �= ∅ (resp. cardPA(x) = 1) then we say that the best approximation
problem is solvable (resp. uniquely solvable) for x ∈ X . Further, the best approximation
problem is said to be stable for x ∈ A, if for every x-minimizing sequence (yn) in A we have
d(yn,PA(x)) → 0 as n → ∞. Finally, the best approximation problem is called strongly
solvable if it is uniquely solvable and stable.

A set A is called a sublattice of the Banach lattice X , if A ⊂ X and for any x, y ∈ A
there exist x ∧ y ∈ A and x ∨ y ∈ A. The best approximation problem restricted to A
being a sublattice and x being a boundary (lower or upper) of A is called the dominated
best approximation problem. Let us recall theorems that present conditions under which the
dominated best approximation problem is solvable (see [9,11,19]).

Theorem 5.1 (See [19, Proposition 3.1]Let X be a Banach lattice. For every boundary (lower
or upper) of the sublattice A of X the dominated best approximation problem is uniquely
solvable if and only if it is solvable and X is a strictly monotone space.

Theorem 5.2 (See [11, Theorem 4.3]) Let X be a σ -Dedekind complete Banach lattice and
let A be a closed sublattice of X. If X is lower locally uniformly monotone then the dominated
best approximation property is uniquely solvable for any (lower or upper) boundary of A.

Theorem 5.3 (See [11, Theorem 4.4]) Let X be a σ -Dedekind complete Banach lattice and
let A be a closed sublattice of X. If X is order continuous and upper locally uniformly
monotone then the dominated best approximation property is strongly solvable for every
(lower or upper) boundary of A.
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Now, applying Theorem 3.9 and Theorem 4.10 we get the following corollaries on solv-
ability of the dominated best approximation problem inOrlicz spaces equippedwith s-norms.

Corollary 5.4 Let � be strictly increasing Orlicz function on (0,∞), s an outer function and
let as = sup {u ≥ 0 : s(u) = 1}. If the outer function s is strictly increasing on (0,∞) or
� satisfies the 	2-condition and �(b�)μ(e) ≥ as > 0 for all atoms e ∈ T then, for every
closed sublattice A of the Orlicz space L�,s , the dominated best approximation problem is
uniquely solvable for any (lower or upper) boundary of A if and only if it is solvable.

Corollary 5.5 Let � be a strictly increasing Orlicz function on (0,∞) that satisfies the 	2-
condition. If the outer function s is strictly increasing on (0,∞) or the measureμ is atomless
then for every closed sublattice A of the Orlicz space L�,s the dominated best approximation
property is strongly solvable for any boundary (lower or upper) of the sublattice A.
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