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Abstract
We introduce and study some operational quantities which characterize the disjointly non-
singular operators from a Banach lattice E to a Banach space Y when E is order continuous,
and some other quantities which characterize the disjointly strictly singular operators for
arbitrary E .
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1 Introduction

The disjointly strictly singular operators (DSS operators) were introduced in [12] as those
operators T : E → Y from a Banach lattice E into a Banach space Y such that T is not
an isomorphism in any subspace of E generated by a disjoint sequence of non-zero vectors.
These operators have been useful in the study of the structure of Banach lattices (see [2], [3]
and references therein).More recently, the disjointly non-singular operators (DN-S operators)
where introduced in [6] (see also [1]) as those operators T : E → Y that are not strictly
singular in any subspace of E generated by a disjoint sequence of non-zero vectors. Note
that the properties in the definition of these two classes are opposite.

In this paper we study the classes of operators DSS and DN-S from a quantitative point of
view by introducing four operational quantities �d(T ), �d(T ), τd(T ) and κd(T ). When E
is order continuous, T ∈ DN-S(E, Y ) is equivalent to �d(T ) > 0, or κd(T ) > 0; and for E
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arbitrary, T ∈ DSS(E, Y ) is equivalent to �d(T ) = 0, or τd(T ) = 0. These four quantities
are inspired by some others introduced by Schechter [19] in his study of Fredholm theory.

In [6], the quantity β(T ) = inf(xn) lim infn→∞ ‖T xn‖, where the infimum is taken over
the normalized disjoint sequences (xn) in E , was defined. We show that T ∈ DN-S(E, Y ) if
and only if β(T ) > 0when E is order continuous. This result was proved in [1][Theorem 5.3]
using different techniques. We also prove that β(T ) ≤ �d(T ), but there is no C > 0 such
that �d(T ) ≤ Cβ(T ) for each T ∈ L(�2, Y ); hence �d and β are not equivalent. Moreover,
τd(T ) ≤ �d(T ), but the quantities τd and �d are not equivalent.

We also prove some inequalities for these operational quantities; e.g., for T , S ∈ L(E, Y ),
we have �d(T + S) ≤ �d(T ) + �d(S). When E is order continuous, this inequality allows
us to improve the stability result for DN-S operators under DSS perturbations obtained in [6].

Notation

Throughout the paper X and Y are Banach spaces, and E is a Banach lattice. The unit sphere
of X is SX = {x ∈ X : ‖x‖ = 1}, and for a sequence (xn) in X , [xn] denotes the closed
subspace generated by (xn).

All the operators are linear and bounded, and L(X , Y ) denotes the set of all the operators
from X into Y . Given T ∈ L(X , Y ), its injection modulus is j(T ) := inf‖x‖=1 ‖T x‖. Recall
that j(T ) > 0 if and only if T is an isomorphism from X onto T X . We denote by TM the
restriction of T ∈ L(X , Y ) to a closed subspace M of X .

If (�,	,μ) is a measure space, the domain of a measurable function f : � → R is the
set D( f ) = {t ∈ � : f (t) �= 0}, and 1A denotes the characteristic function of A ∈ 	. We
write L p for L p[0, 1], 1 ≤ p ≤ ∞.

2 Preliminaries

An operator T ∈ L(X , Y ) is strictly singular if there is no closed infinite dimensional
subspace M of X such that the restriction TM is an isomorphism, and T is upper semi-
Fredholm if its kernel is finite dimensional and its range is closed.

An operator T ∈ L(E, Y ) is disjointly strictly singular if there is no disjoint sequence of
non-zero vectors (xn) in E such that T[xn ] is an isomorphism. We denote by DSS(E, Y ) the
set of all T ∈ L(E, Y ) which are disjointly strictly singular. The class DSS was introduced
by Hernández and Rodríguez-Salinas in [12]. More information on this class can be found
in [11].

An operator T ∈ L(E, Y ) is disjointly non-singular if there is no disjoint sequence of non-
zero vectors (xn) in E such that T[xn ] is strictly singular. We denote DN-S(E, Y ) the set of all
T ∈ L(E, Y ) which are disjointly non-singular. These operators were recently introduced in
[6], and have been studied by Bilokopytov in [1]. They are related to the tauberian operators,
defined by Kalton and Wilansky [13]; in fact, they coincide when E = L1 (see [4] and [6]).
We refer to [9] and [5] for additional information on tauberian operators.

The disjointly non-singular operators can be characterized as follows.
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Theorem 2.1 [6][Theorem 2.8] For T ∈ L(E, Y ), the following assertions are equivalent:

(1) T is disjointly non-singular.
(2) There is no disjoint sequence of non-zero vectors (xn) in E such that the restriction

T[xn ] is a compact operator.
(3) For every disjoint sequence of non-zero vectors (xn) in E, the restriction T[xn ] is an

upper semi-Fredholm operator.
(4) For every normalized disjoint sequence (xn) in E, lim infn→∞ ‖T xn‖ > 0.

It was proved in [4][Proposition 14] and [6] [Theorem 3.15] that, for 1 ≤ p < ∞,
DSS(L p, Y ) is the perturbation class of DN-S(L p, Y ).

Representation of Banach lattices

It is well-known (see [16][Theorem 1.b.14]) that every order continuous Banach lattice with
a weak unit E admits a representation as a Köthe function space, in the sense that there exists
a probability space (�,	,μ) so that

• L∞(μ) ⊂ E ⊂ L1(μ) with E dense in L1(μ) and L∞(μ) dense in E ,
• ‖ f ‖1 ≤ ‖ f ‖E ≤ 2‖ f ‖∞ when f ∈ L∞(μ),

and the order in E is the order induced by L1(μ).
The following fact will allow us to state some of our results omitting the existence of a

weak unit in the Banach lattice.

Lemma 2.2 Let E be a Banach lattice. Then each sequence in E is contained in a closed
ideal of E with a weak unit.

Proof If ( fn) is a bounded sequence in E , then e = ∑∞
n=1 | fn |/2−n is a weak unit in the

closed ideal generated by ( fn). 	

We also will need the following result.

Lemma 2.3 Let E be an order continuous Banach lattice with a weak unit, and let f ∈ E.
If (Ak) is a disjoint sequence in the σ -algebra 	 associated to the representation of E, then
limk→∞ ‖ f 1Ak‖E = 0.

Proof Let Bk = ∪∞
i=k Ai . Since the norm on E is order continuous, (Bk) is decreasing and

limk→∞ μ(Bk) = 0 we have limk→∞ ‖ f 1Bk‖E = 0, hence limk→∞ ‖ f 1Ak‖E = 0. 	


3 Operational quantities

An operational quantity is a map a : L(X , Y ) → [0,∞) satisfying certain conditions. Given
two operational quantities a and b, wewrite a ≤ bwhen a(T ) ≤ b(T ) for each T ∈ L(X , Y ).
Moreover, the quantities a and b are equivalent if there exist positive constants c1 < c2 such
that c1a ≤ b ≤ c2a.

We are interested in some classical operational quantities and some new ones that we
introduce here. To describe the classical ones, let S(X) be set of all closed infinite dimensional
subspaces of X . Then, given an operational quantity a : L(X , Y ) → [0,∞), we define two
derived quantities i a and s a as follows:

i a(T ) := inf
M∈S(X)

a(TM ) and s a(T ) := sup
M∈S(X)

a(TM ), (1)
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where T ∈ L(X , Y ).
Note that a ≤ b implies ia ≤ ib and sa ≤ sb. Taking the operator norm as a in (1), for

T ∈ L(X , Y ) we obtain

• �(T ) := i ‖T ‖ = infM∈S(X) ‖TM‖ and
• �(T ) := s �(T ) = supM∈S(X) �(TM ) = supM∈S(X) infN∈S(M) ‖TN‖.

The quantities � = i ‖ · ‖ and � = i � were introduced by Gramsch and Schechter (see
[19,20]), who proved that �(T ) > 0 if and only if T is upper semi-Fredholm, and �(T ) = 0
if and only if T is strictly singular.

To introduce the new quantities, we denote by d(E) the set of all sequences of disjoint
non-zero vectors of E . Now, given an operational quantity a : L(F, Y ) → [0,∞) defined
for F = E and F ∈ d(E), for each T ∈ L(E, Y ) we define two derived quantities id a and
sd a as follows:

id a(T ) := inf
(xn)∈d(E)

a(T[xn ]) and sd a(T ) := sup
(xn)∈d(E)

a(T[xn ]) . (2)

Again, a ≤ b implies ida ≤ idb and sda ≤ sdb. We are interested in two operational
quantities derived from the norm, whose notation is inspired by that of Schechter:

• �d(T ) := id ‖T ‖ = inf(xn)∈d(E) ‖T[xn ]‖ and
• �d(T ) := sd �d(T ) = sup(xn)∈d(E) �d(T[xn ]) = sup(xn)∈d(E) inf(yn)∈d([xn ]) ‖T[yn ]‖,

that will allow us to characterize the operators in DN-S and DSS.
In a similar way, for T ∈ L(X , Y )we consider two classical operational quantities derived

from the injection modulus j :

• τ(T ) := s j(T ) = supM∈S(X) j(TM ) and
• κ(T ) := i τ(T ) = infM∈S(X) τ (TM ) = infM∈S(X) supN∈S(M) j(TN ),

and derive two new quantities for T ∈ L(E, Y ):

• τd(T ) := sd j(T ) = sup(xn)∈d(E) j(T[xn ]) and
• κd(T ) := id τd(T ) = inf(xn)∈d(E) τd(T[xn ]) = inf(xn)∈d(E) sup(yn)∈d([xn ]) j(T[yn ]),

The operational quantities τ = s j and κ = i τ were introduced in [19] and [7], where
it was proved that τ(T ) = 0 if and only if T is strictly singular, and κ(T ) > 0 if and only
if T is upper semi-Fredholm. We will show that the quantities τd and κd characterize the
operators in DSS and DN-S, respectively.

The proof of the next lemma shows that for each closed infinite dimensional subspace
of a Banach space with a monotone basis (xn), in particular with a 1-unconditional basis,
there is a block basis (yk) such that [yk] is ‘arbitrarily close’ (in the sense of the gap between
subspaces; see [14] [Section IV.2]) to a subspace N of M ; so the action of an operator on
[yk] is also close to its action on N . This idea will appear several times in our arguments.

Lemma 3.1 Let X be a Banach space with a monotone basis (xn), let M ∈ S(X) and
0 < ε < 1. Then there exist a normalized block basis (yk) of (xn) and a subspace N ∈ S(M)

such that for every operator T ∈ L(X , Y ),
∣
∣‖T[yk ]‖ − ‖TN‖∣∣ ≤ ε‖T ‖ and

∣
∣ j(T[yk ]) − j(TN )

∣
∣ ≤ ε‖T ‖.

Proof Wewill choose (yk) and N so that the distance between the unit spheres of N and [yk]
is smaller than ε; hence for each n ∈ SN there is y ∈ S[yk ] with ‖n − y‖ < ε, and for each
z ∈ S[yk ] there is m ∈ SN with ‖z − m‖ < ε. Clearly this fact implies our result.
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Let r = ε/8. Inductively, we will find integers 1 = j1 ≤ l1 < j2 ≤ l2 ≤ · · · and a
sequence (ai ) of scalars so that yk = ∑lk

i= jk
ai xi satisfies ‖yk‖ = 1 and dist(yk, M) <

r/2k+1.
Clearly, y1 exists; so assume that yk has been found for k ≤ k0. Let (x∗

i ) be the sequence

in X∗ such that x∗
i (x j ) = δi, j . Since M ∩

(
∩lk0
i=1N (x∗

i )
)
is infinite dimensional, yk0+1 exists.

Since (yk) is a monotone basic sequence (comment after [15][Definition 1.a.10]), there
exists a sequence (y∗

k ) in X∗ with ‖y∗
k ‖ ≤ 2 and y∗

k (y j ) = δk, j .
For each k ∈ N we choose mk ∈ M with ‖yk −mk‖ < r/2k+1, and define K ∈ L(X) by

Kx :=
∞∑

k=1

y∗
k (x)(yk − mk).

Then K is bounded with ‖K‖ ≤ ∑∞
k=1 ‖y∗

k ‖ · ‖yk − mk‖ < r ; hence I − K is bijective.
Moreover (I − K )yk = mk for each k ∈ N. We take N = [mk] = (I − K )([yk]). Note that

(I − K )−1 =
∞∑

l=0

Kl = I − L with ‖L‖ ≤
∞∑

l=1

rl = r/(1 − r) < 2r .

Forn ∈ SN we take y = ‖(I−L)n‖−1(I−L)n ∈ S[yk ]. Then1−2r < ‖(I−L)n‖ < 1+2r
and

‖n − y‖ =
∥
∥(‖(I − L)n‖ − 1)n + Ln

∥
∥

‖(I − L)n‖ ≤ 4r

1 − 2r
< 8r = ε.

Similarly, for each z ∈ S[yk ], we havem = ‖(I−K )z‖−1(I−K )z ∈ SN and ‖z−m‖ < ε.
	


A Banach lattice is called atomic if its order is induced by a 1-unconditional basis.

Proposition 3.2 Let E be an atomic Banach lattice. For an operator T ∈ L(E, Y ),

�d(T ) = �(T ) , �d(T ) = �(T ) , τd(T ) = τ(T ) and κd(T ) = κ(T ) .

Proof The inequality �d(T ) ≥ �(T ) is valid in general. The converse inequality is obtained
by applying Lemma 3.1. Suppose without loss generality that ‖T ‖ = 1. Given 0 < ε < 1
and a subspace M of E , there is a block basis (yk) of the unconditional basis of E such that
[yk] is arbitrarily close to some subspace N of M , and consequently

∣
∣‖T[yk ]‖ − ‖TN‖∣∣ ≤ ε .

Hence �d(T ) ≤ ‖T[yk ]‖ ≤ ‖TN‖ + ε ≤ ‖TM‖ + ε. Therefore �d(T ) ≤ �(T ).
The other equalities can be proved in a similar way. 	


Corollary 3.3 We have sd �d = sd � and id τd = id τ . Moreover �d = id �d = id � and
τd = sd τd = sd τ .

Proof For each (xn) ∈ d(E), (xn) is a 1-unconditional basis; hence [xn] is an atomic Banach
lattice. Therefore

sd �d(T ) = sup
(xn)∈d(E)

�d(T[xn ]) = sup
(xn)∈d(E)

�(T[xn ]) = sd �(T ).

The proof of id τd = id τ , id �d = id � and sd τd = sd τ is identical, and for the remaining
equalities, note that id id a = id a and sd sd a = sd a for any quantity a. 	
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4 Operational quantities derived from the norm

Our first result gives some alternative expressions for �d(T ) in terms of the classical quan-
tities.

Proposition 4.1 For T ∈ L(E, Y ), we have �d(T ) = id�(T ) = id�(T ).

Proof Note that �d = id ‖ · ‖. Applying id to the inequalities � ≤ � ≤ ‖ · ‖, we obtain
id � ≤ id � ≤ id ‖ · ‖, and Corollary 3.3 completes the proof. 	


It was proved in [6] that T ∈ L(E, Y ) is disjointly non-singular if and only if for every
( fn) ∈ d(E), the restriction T[ fn ] is upper semi-Fredholm. Next we give a quantitative
version of this result when E is an order continuous Banach lattice. Since �d(T ) = id�(T )

by Proposition 4.1, our result says that if T ∈ DN-S(E, Y ) then the restrictions T[xn ] are
“uniformly" upper semi-Fredholm, in the sense that inf(xn)∈d(E) �(T[xn ]) > 0.

Theorem 4.2 Let E be an order continuous Banach lattice, and let T ∈ L(E, Y ). Then
T ∈ DN-S if and only if �d(T ) > 0.

Proof Suppose that �d(T ) > 0. For every ( fn) ∈ d(E) we have that �(T[ fn ]) > 0, hence
T[ fn ] is upper semi-Fredholm. Consequently, T is disjointly non-singular (Theorem 2.1).

Conversely, we assume that �d(T ) = 0. By Theorem 2.1, it is enough to construct a
normalized sequence (hn) ∈ d(E) such that limn→∞ ‖Thn‖ = 0.

For each n ∈ N there exists a normalized sequence ( fn,k)k ∈ d(E) such that ‖T[( fn,k )k ]‖ <

1/n, and by Lemma 2.2 we can assume that the functions fn,k (n, k ∈ N) are contained in a
closed ideal of E which has a representation as a Köthe space.

Let g1 = f1,1. As limk→∞ μ(D( f2,k)) = 0, by Lemma 2.3 we have limk→∞ ‖g11D( f2,k )

‖E = 0. So we can find k2 > 1 such that

‖g1‖ = 1 , ‖Tg1‖ < 1 and ‖g11D( f2,k2 )‖E <
1

22
.

Then, taking g2 = f2,k2 , a similar argument using Lemma 2.3 shows that there exists
k3 > k2 such that

‖g2‖ = 1 , ‖Tg2‖ <
1

2
and ‖gi1D( f3,k3 )‖E <

1

23
for1 ≤ i < 3.

In this way we find a sequence k1 = 1 < k2 < k3 < · · · such that, taking gl = fl,kl for
each l ∈ N, we have

‖gl‖ = 1 , ‖Tgl‖ <
1

l
and ‖gi1D( fl,kl+1 )‖ <

1

2l+1 (1 ≤ i < l + 1).

Let Ak = ∪∞
j=k+1D(g j ) and h̃k := gk − gk1Ak . For k < l we have D(h̃k) ∩ D(gl) = ∅

and D(h̃l) ⊂ D(gl), hence D(h̃k) ∩ D(h̃l) = ∅. Thus the sequence (h̃k) is disjoint. Since
‖gn‖ = 1,

|1 − ‖h̃n‖| ≤ ‖gn − h̃n‖ = ‖gn1An‖

≤
∥
∥
∥
∥
∥

∞∑

i=n+1

gn1D(gi )

∥
∥
∥
∥
∥

≤
∞∑

i=n+1

‖gn1D(gi )‖

≤
∞∑

i=n+1

1

2i
= 1

2n
.
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Taking hn = ‖h̃n‖−1h̃n , we obtain (hn) ∈ d(E) is normalized and

‖hn − gn‖ ≤
∥
∥
∥
∥
∥

h̃n

‖h̃n‖
− gn

‖h̃n‖

∥
∥
∥
∥
∥

+
∥
∥
∥
∥

gn

‖h̃n‖
− gn

∥
∥
∥
∥

= ‖h̃n − gn‖
‖h̃n‖

+ |1 − ‖h̃n‖| ‖gn‖
‖h̃n‖

≤ 2‖h̃n − gn‖
‖h̃n‖

≤ 1

2n−1‖h̃n‖
.

Consequently limn→∞ ‖hn − gn‖ = 0, and ‖Thn‖ ≤ ‖T (hn − gn)‖ + ‖Tgn‖ and ‖Tgn‖ <

1/n; hence limn→∞ ‖Thn‖ = 0. 	

Next we give some alternative expressions for �d(T ).

Proposition 4.3 For T ∈ L(E, Y ), we have �d(T ) = sd�(T ) = sd�(T ).

Proof Note that �d(T ) = sd�d(T ) and, by Corollary 3.3, sd �(T ) = sd �d(T ). So it is
enough to observe that sd a(T ) = sd sd a for any quantity a. 	

Proposition 4.4 T ∈ L(E, Y ) is disjointly strictly singular if and only if �d(T ) = 0.

Proof As �d(T ) = sd�(T ), we have that �d(T ) = 0 means that for every (xn) ∈ d(E)

we have that �(T[xn ]) = 0; that is, all the restrictions T[xn ] are strictly singular. By
[6][Proposition 2.6], that is equivalent to T being disjointly strictly singular. 	


Obviously, given T ∈ L(E, Y ) and a scalar λ, �d(λT ) = |λ|�d(T ) and �d(λS) =
|λ|�d(S). The following result complements these facts.

Proposition 4.5 For operators T , S ∈ L(E, Y ), we have the following inequalities:

(1) �d(T + S) ≤ �d(T ) + �d(S) and
(2) �d(T + S) ≤ �d(T ) + �d(S).

Proof Let (xn) ∈ d(E). Then ‖(T + S)[xn ]‖ ≤ ‖T ‖ + ‖S[xn ]‖, and taking the infimum over
(xn) ∈ d(E) we obtain �d(T + S) ≤ ‖T ‖ + �d(S). Therefore

�d(T + S) ≤ �d
(
(T + S)[xn ]

) ≤ ‖T[xn ]‖ + �d(S[xn ]) ≤ ‖T[xn ]‖ + �d(S),

and taking again the infimum over (xn) ∈ d(E) we get (1).
Let (xn) ∈ d(E). From (1) we derive

�d((T + S)[xn ]) ≤ �d(T[xn ]) + �d(S[xn ]) ≤ �d(T[xn ]) + �d(S),

and taking the supremum over (xn) we get �d(T + S) ≤ �d(T ) + �d(S). 	

Since �d(T ) ≤ ‖T ‖, Theorem 4.2 and part (1) of Proposition 4.5 improve the results

proved in [6] that, under some conditions, DN-S(E, Y ) is stable under perturbation by small
norm operators and DSS operators.

Corollary 4.6 Let E be an order continuous Banach lattice. Then

(1) DSS(E, Y ) is a closed subspace of L(E, Y );
(2) DN-S(E, Y ) is an open subset of L(E, Y );
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(3) If S ∈ DSS(E, Y ), then �d(T + S) = �d(T ), for all T ∈ L(E, Y );
in particular, T ∈ DN-S(E, Y ) implies T + S ∈ DN-S(E, Y ).

Proof (1) If T , S ∈ DSS(E, Y ), then �d(T + S) ≤ �d(T ) + �d(S) = 0, so T + S ∈
DSS(E, Y ); and �d(λT ) = |λ|�d(T ) implies λT ∈ DSS(E, Y ).

(2) If T ∈ DN-S(E, Y ) and S ∈ L(E, Y ) with ‖S‖ < �d(T ), then �d(T + S) ≥
�d(T ) − �d(S) ≥ �d(T ) − ‖S‖ > 0. Hence T + S ∈ DN-S(E, Y ).

(3) Let S ∈ DSS(E, Y ), so �d(S) = 0. For all T ∈ L(E, Y ),

�d(T + S) ≤ �d(T ) + �d(S) = �d(T ),

and similarly �d(T ) = �d(T + S − S) ≤ �d(T + S). 	

Part (2) of Corollary 4.6 was proved by Bilokopytov [1] using different techniques.
A closed subspace M of E is said to be dispersed if there is no sequence (xn) ∈ d(E)

such that limn→∞ dist(xn, M) = 0 (see [6][Definition 2.1]).

Remark 4.7 Let M be a non-dispersed closed subspace of E . Denoting by ND(M) the set of
all closed subspaces of M which are non-dispersed in E , it readily follows from Lemma 3.1
that, for T ∈ L(E, Y ),

�d(T ) = inf
M∈ND(E)

‖TM‖ and �d(T ) = sup
M1∈ND(E)

inf
M2∈ND(M1)

‖TM2‖.

5 Operational quantities derived from the injectionmodulus

Next result gives other expressions for the quantity τd .

Proposition 5.1 For T ∈ L(E, Y ), we have τd(T ) = sdκ(T ) = sdτ(T ).

Proof As j ≤ κ ≤ τ , we have τd = sd j ≤ sdκ ≤ sdτ . Moreover, sd τ = sd τd by
Corollary 3.3. Hence

sd τ(T ) = sd τd(T ) = sd sd j(T ) = sd j(T ) = τd(T ),

because sd sd a = sd a for every quantity a. 	

Proposition 5.2 Let T ∈ L(E, Y ). Then T ∈ DSS if and only if τd(T ) = 0.

Proof We have that τd(T ) = 0 is equivalent to j(T[xn ]) = 0, for every sequence (xn) ∈ d(E).
This means that T is not an isomorphism on any subspace [xn] generated by a disjoint
sequence. That is, T is disjointly strictly singular. 	

Proposition 5.3 For an operator T ∈ L(E, Y ), we have κd(T ) = idκ(T ) = idτ(T ).

Proof By Proposition 5.1, κ ≤ τd ≤ τ , hence idκ ≤ idτd = κd ≤ idτ . Moreover, arguing
as in the proof of Corollary 3.3 we get idκ = id κd = id id τd = id τd = id τ , and the result
is proved. 	


Like Theorem 4.2, by Proposition 5.3 the following result says that T ∈ DN-S(E, Y ) if
and only if the restrictions T[xn ] with (xn) ∈ d(E) are “uniformly” upper semi-Fredholm, in
the sense that inf(xn)∈d(E) κ(T[xn ]) > 0.

123



A quantitative approach to disjointly... Page 9 of 12 185

Theorem 5.4 Let E be an order continuous Banach lattice and let T ∈ L(E, Y ). Then
T ∈ DN-S if and only if κd(T ) > 0.

Proof By Proposition 5.3, κd(T ) = idτ(T ). Then if κd(T ) > 0 and ( fn) ∈ d(E), τ(T[ fn ]) >

0. Hence T[ fn ] is not strictly singular, and T is disjointly non-singular by Theorem 2.1.
Conversely, suppose that κd(T ) = 0. By Theorem 2.1, in order to show that T is

not disjointly non-singular, it is enough to find a normalized (hn) ∈ d(E) such that
limn→∞ Thn = 0.

For each n ∈ N there exists a normalized sequence ( fn,k)k ∈ d(E) such that

τd(T[ fn,k ]k ) <
1

n
,

and by Lemma 2.2 we can assume that the vectors fn,k are contained in a closed ideal that
admits a representation as a Köthe space.

As j(T[ f1,k ]k ) < 1, there exists g1 ∈ [( f1,k)k]with ‖Tg1‖ < 1. From limk→∞ μ(D( f2,k))
= 0, by Lemma 2.3 we have limk→∞ ‖g11D( f2,k )‖E = 0. So we can to take k2 > 1 such
that

‖g1‖ = 1 , ‖Tg1‖ < 1 and ‖g11D( f2,k2 )‖E <
1

22
.

Moreover, from

j(T[( f2,k )k≥k2 ]) ≤ τd(T[( f2,k )k ]) <
1

2
,

we obtain that there is g2 ∈ [( f2,k)k≥k2 ] with ‖Tg2‖ < 1/2. As limk→∞ μ(D( f3,k)) = 0,
by Lemma 2.3 we get limk→∞ ‖gi1D( f3,k )‖E = 0, so we can take k3 > k2 such that

‖g2‖ = 1 , ‖Tg2‖ <
1

2
and ‖gi1D( f3,k3 )‖E <

1

23
(i ≤ i < 3) .

Now, proceeding as in the proof of Theorem 4.2, we take An = ∪∞
j=n+1D(g j ) and obtain a

normalized sequence hn := ‖gn − gn1An‖−1(gn − gn1An ) in d(E). Since limn→∞ ‖Thn‖ =
0, we conclude that T /∈ DN-S(E, Y ). 	


To compare Theorem 5.4 with Theorem 4.2, observe that κd ≤ �d .

Proposition 5.5 For operators T , S ∈ L(E, Y ), we have the following inequalities:

(1) τd(T + S) ≤ τd(T ) + �d(S) and
(2) κd(T + S) ≤ κd(T ) + �d(S).

Proof Since j(T + S) ≤ j(T ) + ‖S‖, for each (xn) ∈ d(E) we get

j(T + S) ≤ j((T + S)[xn ]) ≤ j(T[xn ]) + ‖S[xn ]‖ ≤ τd(T ) + ‖S[xn ]‖,
and taking the infimum over (xn) we obtain j(T + S) ≤ τd(T ) + �d(S).

(1) For (xn) ∈ d(E), we have j((T + S)[xn ]) ≤ τd(T[xn ]) + �d(S[xn ]) ≤ τd(T ) + �d(S[xn ]),
and taking the supremum over (xn) we get τd(T + S) ≤ τd(T ) + �d(S).

(2) Applying (1), τd((T + S)[xn ]) ≤ τd(T[xn ]) + �d(S[xn ]) ≤ τd(T[xn ]) + �d(S) for each
(xn) ∈ d(E). So taking the infimum over (xn), we obtain κd(T + S) ≤ κd(T ) + �d(S).

	

From Proposition 5.5, we could derive an alternative proof of Corollary 4.6.
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Remark 5.6 As in Remark 4.7, we can give expressions for κd(T ) and τd(T ) in terms of the
restrictions of T to non-dispersed subspaces. For T ∈ L(E, Y ),

τd(T ) = supM∈ND(E) j(TM ) and κd(T ) = infM1∈ND(E) supM2∈ND(M1)
j(TM2).

6 The quantityˇ

For an operator T ∈ L(E, Y ), the following quantity was defined in [6]:

β(T ) := inf
{
lim inf
n→∞ ‖T xn‖ : (xn)normalized disjoint in E

}
.

We have shown in Theorem 4.2 that the quantity �d characterizes DN-S(E, Y ) for E an
order continuous Banach lattice. Moreover, it is related with β as follows:

Proposition 6.1 Every operator T ∈ L(E, Y ) satisfies β(T ) ≤ �d(T ).

Proof Note that
β(T ) = inf(xn)∈d(E) lim infn→∞

∥
∥
∥T xn‖xn‖

∥
∥
∥ ≤ inf(xn)∈d(E) ‖T[xn ]‖ = �d(T ). 	


It was proved in [6][Proposition 3.1] (see [4] for p = 1) that, for 1 ≤ p < ∞, an operator
T ∈ L(L p, Y ) is disjointly non-singular if and only if β(T ) > 0. Now we extend this result.

Proposition 6.2 Let E be an order continuous Banach lattice. Then an operator T ∈ L(E, Y )

is disjointly non-singular if and only if β(T ) > 0.

Proof If β(T ) > 0, then condition (4) in Theorem 2.1 is satisfied, hence T ∈ DN-S(E, Y ).
Suppose that β(T ) = 0. Then for every n ∈ Nwe can find a normalized disjoint sequence

( fn,k)k∈Nwith‖T fn,k‖ < 1/n for every k ∈ N, andproceeding as in the proof ofTheorem4.2,
for each n we select kn so that taking gn = fn,kn we have ‖gi1D(gn)‖ < 2−n for 1 ≤ i < n.
The sequence (gn) is almost disjoint (there exists a normalized disjoint sequence (hn) in E
such that limn→∞ ‖gn − hn‖E = 0). Then limn→∞ ‖Thn‖ = 0, hence T /∈ DN-S(E, Y ). 	


By Proposition 6.1, β ≤ �d . In some cases, these two quantities coincide; for example, if
1 ≤ p < 2 and M is a dispersed subspace of L p , then the quotient map QM : L p → L p/M
satisfies β(QM ) = 1 (see [6]), hence �d(QM ) = ‖QM‖ = 1. However, using the fact
proved by Odell and Schlumprecht in [18] that the Banach space �2 is arbitrarily distortable,
we show that these two quantities are not equivalent:

Example 6.3 For every λ > 1 and ε > 0, there exists a Banach space Yλ isomorphic to �2 and
an operator Tλ ∈ L(�2, Yλ) such that 0 < λ · β(Tλ) ≤ �d(Tλ) + ε. Thus there is no C > 0
such that �d ≤ C · β.

Proof Since �2 is arbitrarily distortable [18], for every λ > 1 there is a norm | · |λ on �2
equivalent to the usual one ‖ · ‖2 such that, for each closed infinite dimensional subspace M
of �2,

sup

{ |x |λ
|y|λ : x, y ∈ M, ‖x‖2 = ‖y‖2 = 1

}

> λ. (3)

We denote Yλ = (�2, | · |λ) and Tλ the identity operator from �2 onto Yλ.
Note that the operator Tλ is bounded below, and passing to a closed infinite dimensional

subspace of �2 (that we can identify with �2, with the lattice structure determined by any
orthonormal basis) we can assume that ‖Tλ‖ < �d(Tλ) + ε.
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By inequality (3), λ j(Tλ) ≤ ‖Tλ‖ and there exists g1 with ‖g1‖2 = 1 and λ · |g1|λ <

�d(Tλ) + ε. Moreover, by the denseness of the span of the basis (en) of �2, we can choose
g1 ∈ [e1, . . . , em1 ] for some m1 ∈ N. Similarly, there exists g2 ∈ [ei : i > m1] with
‖g2‖2 = 1 and λ · |g2|λ < �d(Tλ) + ε, and again we can choose g2 ∈ [em1+1, . . . , em2 ] for
some m2 > m1 in N.

In this way we get a sequence (gn) ∈ d(�2) such that λ · |gn |λ = λ · |Tλgn |λ ≤ �d(Tλ)+ε,
which implies λ · β(Tλ) ≤ �d(Tλ) + ε. 	


7 Order between operational quantities

The order between the operational quantities derived from the norm and the injectionmodulus
j is showed in the following diagram, where “ →′′ means “ ≤′′:

j κ κd τd τ

� �d �d � ‖ · ‖

The vertical arrows in the above diagram connect quantities that characterize the same
classes of operators: upper semi-Fredholm, DN-S, DSS and strictly singular. We observe that
none of these pairs are equivalent quantities.

Indeed, the quantities κ and � are not equivalent because �2 is arbitrarily distortable.
Hence, by [8] [Theorem 3.4 and Corollary 3.5], there exist spaces Yn � �2 and operators
Tn ∈ L(�2, Yn) (n ∈ N) such that n · κ(Tn) ≤ �(Tn). Since �2 is an atomic Banach lattice,
κd(Tn) = κ(Tn) and �d(Tn) = �(Tn); hence κd and �d are not equivalent.

Similarly, by [17][Proposition 1], the operators Tn ∈ L(�2, Yn) in the previous paragraph
satisfy n · τ(Tn) ≤ �(Tn), showing that τ and � are not equivalent, and also that τd and �d

are not equivalent.

7.1 Open questions

We finish the paper stating some open questions.

Question 1 Is κd ≤ D · β for some constant D > 0?

If E is an order continuous Banach lattice then E is an ideal in E∗∗ [16][Theorem 1.b.16],
hence the quotient E∗∗/E is a Banach lattice [16][Sect. 1.a]. Moreover, every operator T ∈
L(E, Y ) induces a residuum operator T co ∈ L(E∗∗/E, Y ∗∗/Y ) defined by T co(x∗∗ + E) =
T ∗∗x∗∗ + Y .

Question 2 Suppose that E is order continuous and T ∈ DN-S(E, Y ). Is T co ∈ DN-S?

It was proved in [4] that the answer is positive in the case E = L1. We refer to [10] for
information on the residuum operator T co.

In [6][Theorem 3.16] it is shown that for 1 ≤ p < ∞, DSS(L p, Y ) is the perturbation
class of DN-S(L p, Y ) in the sense that when DN-S(L p, Y ) �= ∅, K ∈ L(L p, Y ) is DSS if
and only if T + K ∈ DN-S for each T ∈ DN-S(L p, Y ).

Question 3 Suppose that E is an order continuous Banach lattice and DN-S(E, Y ) �= ∅.
Is DSS(E, Y ) the perturbation class of DN-S(E, Y )?
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