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Abstract
Twoq-supercongruences of truncated basic hypergeometric series containing two free param-
eters are established by employing specific identities for basic hypergeometric series. The
results partly extend two q-supercongruences that were earlier conjectured by the same
authors and involve q-supercongruences modulo the square and the cube of a cyclotomic
polynomial. One of the newly proved q-supercongruences is even conjectured to hold mod-
ulo the fourth power of a cyclotomic polynomial.
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1 Introduction

In 1914, Ramanujan [25] listed a number of representations of 1/π , including

∞∑

k=0

(6k + 1)

( 1
2

)3
k

k!34k = 4

π
, (1.1)

where (a)n = a(a + 1) · · · (a + n − 1) denotes the Pochhammer symbol. Ramanujan’s
formulas gained unprecedented popularity in the 1980’swhen theywere discovered to provide
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fast algorithms for calculating decimal digits of π . See, for instance, the monograph [2] by
the Borwein brothers.

In 1997, Van Hamme [29] conjectured 13 intriguing p-adic analogues of Ramanujan-type
formulas, such as

(p−1)/2∑

k=0

(6k + 1)
( 12 )

3
k

k!34k ≡ p(−1)(p−1)/2 (mod p4), (1.2)

where p > 3 is a prime. Van Hamme himself supplied proofs for three of them. Supercon-
gruences like (1.2) are called Ramanujan-type supercongruences (see [33]). The proof of the
supercongruence (1.2) was first given by Long [22]. As of today, all of Van Hamme’s 13
supercongruences have been confirmed by various techniques (see [24,28]).

In recent years, q-congruences and q-supercongruences have been established by different
authors (see, for example, [5–13,15–21,23,27,30–32,34]). In particular, the present authors
[9] proved that, for any odd integer d ≥ 5,

n−1∑

k=0

[2dk + 1] (q; qd)dk
(qd ; qd)dk

qd(d−3)k/2 ≡
{
0 (mod �n(q)2), if n ≡ −1 (mod d),

0 (mod �n(q)3), if n ≡ −1/2 (mod d).

(1.3)
Here and in what follows, we adopt the standard q-notation: [n] = 1 + q + · · · + qn−1 is
the q-integer; (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) is the q-shifted factorial, with
the compact notation (a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n used for their
products; and �n(q) denotes the n-th cyclotomic polynomial in q , which may be defined as

�n(q) =
∏

1≤k≤n
gcd(k,n)=1

(q − ζ k),

where ζ is an n-th primitive root of unity.
We should point out that the q-congruence (1.3) does not hold for d = 3. The present

authors [9] also established the following companion of (1.3): for any odd integer d ≥ 3 and
integer n > 1,

n−1∑

k=0

[2dk−1] (q
−1; qd)dk

(qd ; qd)dk
qd(d−1)k/2 ≡

{
0 (mod �n(q)2), if n ≡ 1 (mod d),

0 (mod �n(q)3), if n ≡ 1/2 (mod d).
(1.4)

They also proposed the following conjectures [9, Conjectures 1 and 2], which are general-
izations of (1.3) and (1.4).

Conjecture 1 Let d ≥ 5 be an odd integer. Then

n−1∑

k=0

[2dk + 1] (q; qd)dk
(qd ; qd)dk

qd(d−3)k/2 ≡
{
0 (mod �n(q)3), if n ≡ −1 (mod d),

0 (mod �n(q)4), if n ≡ −1/2 (mod d).

Conjecture 2 Let d ≥ 5 be an odd integer and let n > 1. Then

n−1∑

k=0

[2dk − 1] (q
−1; qd)dk

(qd ; qd)dk
qd(d−1)k/2 ≡

{
0 (mod �n(q)3), if n ≡ 1 (mod d),

0 (mod �n(q)4), if n ≡ 1/2 (mod d).

q-Supercongruences such as those above (modulo a third and even fourth power of a
cyclotomic polynomial) are rather special. In fact, concrete results for truncated basic hyper-
geometric sums being congruent to 0 modulo a high power of a cyclotomic polynomial are
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very rare. See [8,10–12,14,18] for recent papers featuring such results. The main goal of this
paper is to add two complete two-parameter families of q-supercongruences to the list of
such q-supercongruences (see Theorems 1 and 2).

We shall prove that the respective first cases of Conjectures 1 and 2 are true by establishing
the following more general result.

Theorem 1 Let d and r be odd integers satisfying d ≥ 3, r ≤ d − 4 (in particular, r may be
negative) and gcd(d, r) = 1. Let n be an integer such that n ≥ d − r and n ≡ −r (mod d).
Then

M∑

k=0

[2dk + r ] (q
r ; qd)dk

(qd ; qd)dk
qd(d−r−2)k/2 ≡ 0 (mod [n]�n(q)2), (1.5)

where M = (dn − n − r)/d or n − 1.

We shall also prove the following q-supercongruences.

Theorem 2 Let d and r be odd integers satisfying d ≥ 3, r ≤ d − 4 (in particular, r may be
negative) and gcd(d, r) = 1. Let n be an integer such that n ≥ (d − r)/2 and n ≡ −r/2
(mod d). Then

M∑

k=0

[2dk + r ] (q
r ; qd)dk

(qd ; qd)dk
qd(d−r−2)k/2 ≡ 0 (mod [n]�n(q)), (1.6)

where M = (dn − 2n − r)/d or n − 1.

The following generalization of the respective second cases of Conjectures 1 and 2 should
be true.

Conjecture 3 The q-supercongruence (1.6) holds modulo [n]�n(q)3 for d ≥ 5.

We shall prove Theorems 1 and 2 in Sections 2 and 3, respectively, by making use of
Andrews’ multiseries extension (2.2) of the Watson transformation [1, Theorem 4], along
with Gasper’s very-well-poised Karlsson–Minton type summation [3, Eq. (5.13)]. It should
be pointed out that Andrews’ transformation plays an important part in combinatorics and
number theory (see [7] and the introduction of [12] for more such examples).

2 Proof of Theorem 1

We need a simple q-congruence modulo �n(q)2, which was already used in [10,12].

Lemma 1 Let α, r be integers and n a positive integer. Then

(qr−αn, qr+αn; qd)k ≡ (qr ; qd)2k (mod �n(q)2). (2.1)
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Wewill further utilize a powerful transformation formula due to Andrews [1, Theorem 4],
which may be stated as follows:

∑

k≥0

(a, q
√
a,−q

√
a, b1, c1, . . . , bm, cm, q−N ; q)k

(q,
√
a,−√

a, aq/b1, aq/c1, . . . , aq/bm, aq/cm, aqN+1; q)k

(
amqm+N

b1c1 · · · bmcm
)k

= (aq, aq/bmcm; q)N

(aq/bm, aq/cm; q)N

∑

j1,..., jm−1≥0

(aq/b1c1; q) j1 · · · (aq/bm−1cm−1; q) jm−1

(q; q) j1 · · · (q; q) jm−1

× (b2, c2; q) j1 . . . (bm, cm; q) j1+···+ jm−1

(aq/b1, aq/c1; q) j1 . . . (aq/bm−1, aq/cm−1; q) j1+···+ jm−1

× (q−N ; q) j1+···+ jm−1

(bmcmq−N /a; q) j1+···+ jm−1

(aq) jm−2+···+(m−2) j1q j1+···+ jm−1

(b2c2) j1 · · · (bm−1cm−1) j1+···+ jm−2
. (2.2)

This transformation is a multiseries generalization of Watson’s 8φ7 transformation formula
(listed in [4, Appendix (III.18)]; cf. [4, Chapter 1] for the notation of a basic hypergeometric
rφs series we are using),

8φ7

[
a, qa

1
2 , −qa

1
2 , b, c, d, e, q−n

a
1
2 , −a

1
2 , aq/b, aq/c, aq/d, aq/e, aqn+1

; q,
a2qn+2

bcde

]

= (aq, aq/de; q)n

(aq/d, aq/e; q)n
4φ3

[
aq/bc, d, e, q−n

aq/b, aq/c, deq−n/a
; q, q

]
, (2.3)

to which it reduces for m = 2.
Next, we require a very-well-poised Karlsson–Minton type summation due to Gasper [3,

Eq. (5.13)] (see also [4, Ex. 2.33 (i)]):

∞∑

k=0

(a, q
√
a,−q

√
a, b, a/b, d, e1, aqn1+1/e1, . . . , em, aqnm+1/em; q)k

(q,
√
a,−√

a, aq/b, bq, aq/d, aq/e1, e1q−n1 , . . . , aq/em, emq−nm ; q)k

(
q1−ν

d

)k

= (q, aq, aq/bd, bq/d; q)∞
(bq, aq/b, aq/d, q/d; q)∞

m∏

j=1

(aq/be j , bq/e j ; q)n j

(aq/e j , q/e j ; q)n j

, (2.4)

where n1, . . . , nm are non-negative integers, ν = n1 + · · · + nm , and the convergence
condition |q1−ν/d| < 1 is required if the series does not terminate. We point out that an
elliptic extension of the terminating d = q−ν case of (2.4) can be found in [26, Eq. (1.7)].

In particular, we note that for d = bq the right-hand side of (2.4) vanishes. Putting in
addition b = q−N we get the following terminating summation formula:

N∑

k=0

(a, q
√
a,−q

√
a, e1, aqn1+1/e1, . . . , em, aqnm+1/em, q−N ; q)k

(q,
√
a,−√

a, aq/e1, e1q−n1 , . . . , aq/em, emq−nm , aqN+1; q)k
q(N−ν)k = 0, (2.5)

which is valid for N > ν = n1 + · · · + nm .
A suitable combination of (2.2) and (2.5) yields the following multi-series summation

formula, derived in [12, Lemma 2] (whose proof we nevertheless give here, to make the
paper self-contained):
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Lemma 2 Let m ≥ 2. Let q, a and e1, . . . , em+1 be arbitrary parameters with em+1 = e1,
and let n1, . . . , nm and N be non-negative integers such that N > n1 + · · · + nm. Then

0 =
∑

j1,..., jm−1≥0

(e1q−n1/e2; q) j1 · · · (em−1q−nm−1/em; q) jm−1

(q; q) j1 · · · (q; q) jm−1

× (aqn2+1/e2, e3; q) j1 . . . (aqnm+1/em, em+1; q) j1+···+ jm−1

(e1q−n1 , aq/e2; q) j1 . . . (em−1q−nm−1 , aq/em; q) j1+···+ jm−1

× (q−N ; q) j1+···+ jm−1

(e1qnm−N+1/em; q) j1+···+ jm−1

(aq) jm−2+···+(m−2) j1q j1+···+ jm−1

(aqn2+1e3/e2) j1 · · · (aqnm−1+1em/em−1) j1+···+ jm−2
.

(2.6)

Proof By specializing the parameters in the multi-sum transformation (2.2) by bi �→
aqni+1/ei , ci �→ ei+1, for 1 ≤ i ≤ m (where em+1 = e1), and dividing both sides of
the identity by the prefactor of the multi-sum, we obtain that the series on the right-hand side
of (2.6) equals

(emq−nm , aq/e1; q)N

(aq, emq−nm /e1; q)N
×

N∑

k=0

(a, q
√
a, −q

√
a, e1, aqn1+1/e1, . . . , em , aqnm+1/em , q−N ; q)k

(q,
√
a, −√

a, aq/e1, e1q−n1 , . . . , aq/em , emq−nm , aqN+1; q)k
q(N−ν)k ,

with ν = n1+· · ·+nm . Now the last sum vanishes by the special case of Gasper’s summation
stated in (2.5). 	


Using [11, Lemma 2.1], we can prove the following result which is similar to [11, Lemma
2.2].

Lemma 3 Let d, n be positive integers with gcd(d, n) = 1. Let r be an integer. Then

m∑

k=0

[2dk + r ] (q
r ; qd)dk

(qd ; qd)dk
qd(d−r−2)k/2 ≡ 0 (mod [n]),

n−1∑

k=0

[2dk + r ] (q
r ; qd)dk

(qd ; qd)dk
qd(d−r−2)k/2 ≡ 0 (mod [n]),

where 0 ≤ m ≤ n − 1 and dm ≡ −r (mod n).

We have collected enough ingredients which enables us to prove Theorem 1.

Proof of Theorem 1 The q-congruence (1.5) modulo [n] follows from Lemma 3 immediately.
In what follows, we shall prove the modulus �n(q)3 case of (1.5).

For M = (dn − n − r)/d , the left-hand side of (1.5) can be written as the following
multiple of a terminating d+5φd+4 series:

[r ]
(dn−n−r)/d∑

k=0

(qr , qd+r/2,−qd+r/2, qr , . . . , qr , q(d+r)/2, qd+(d−1)n, qr−(d−1)n; qd )k
(qd , qr/2,−qr/2, qd , . . . , qd , q(d+r)/2, qr−(d−1)n, qd+(d−1)n; qd )k qd(d−r−2)k/2.

Here, the qr , . . . , qr in the numerator means d − 1 instances of qr , and similarly, the
qd , . . . , qd in the denominator means d − 1 instances of qd . By Andrews’ transformation
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(2.2), we may rewrite the above expression as

[r ] (q
d+r , q(r−d)/2−(d−1)n; qd)(dn−n−r)/d

(q(d+r)/2, qr−(d−1)n; qd)(dn−n−r)/d

∑

j1,..., jm−1≥0

(qd−r ; qd) j1 · · · (qd−r ; qd) jm−1

(qd ; qd) j1 · · · (qd ; qd) jm−1

× (qr , qr ; qd) j1 . . . (qr , qr ; qd) j1+···+ jm−2(q
(d+r)/2, qd+(d−1)n; qd) j1+···+ jm−1

(qd , qd ; qd) j1 . . . (qd , qd ; qd) j1+···+ jm−1

× (qr−(d−1)n; qd) j1+···+ jm−1

(q(3d+r)/2; qd) j1+···+ jm−1

q(d−r)( jm−2+···+(m−2) j1)+d( j1+···+ jm−1), (2.7)

where m = (d + 1)/2.
It is easy to see that the q-shifted factorial (qd+r ; qd)(dn−n−r)/d contains the factor 1 −

q(d−1)n which is a multiple of 1 − qn . Moreover, since none of (r − d)/2, (d + r)/2 and
(d + r)/2 + dn − n − r − d are multiples of n, the q-shifted factorials

(q(r−d)/2−(d−1)n; qd)(dn−n−r)/d and (q(d+r)/2; qd)(dn−n−r)/d

have the same number (0 or 1) of factors of the form 1− qαn (α ∈ Z). Besides, the q-shifted
factorial (qr−(d−1)n; qd)(dn−n−r)/d is relatively prime to �n(q). Thus we conclude that the
fraction before the multi-sum in (2.7) is congruent to 0 modulo �n(q).

Note that the non-zero terms in the multi-summation in (2.7) are those indexed by
( j1, . . . , jm−1) that satisfy the inequality j1 + · · · + jm−1 ≤ (dn − n − r)/d because
the factor (qr−(d−1)n; qd) j1+···+ jm−1 appears in the numerator. None of the factors appearing
in the denominator of the multi-sum of (2.7) contain a factor of the form 1 − qαn (and are
therefore relatively prime to �n(q)), except for (q(3d+r)/2; qd) j1+···+ jm−1 when

(dn − d − n − r)/(2d) ≤ j1 + · · · + jm−1 ≤ (dn − n − r)/d.

Since

(q(d+r)/2; qd) j1+···+ jm−1

(q(3d+r)/2; qd) j1+···+ jm−1

= 1 − q(d+r)/2

1 − q(d+r)/2+( j1+···+ jm−1)d
,

the denominator of the above fraction contains a factor of the form 1 − qαn if and only
if j1 + · · · + jm−1 = (dn − d − n − r)/(2d) (in this case, the denominator contains the
factor 1 − q(d−1)n/2). Writing n = ad − r (with a ≥ 1), we have j1 + · · · + jm−1 =
a(d − 1)/2 − (r + 1)/2. Noticing that m − 1 = (d − 1)/2 and r ≤ d − 4, there must exist
an i such that ji ≥ a. Then (qd−r ; qd) ji has the factor 1 − qd−r+d(a−1) = 1 − qn which is
divisible by �n(q). Hence the denominator of the reduced form of the multi-sum in (2.7) is
relatively prime to�n(q). It remains to show that the multi-sum in (2.7), without the previous
fraction, is congruent to 0 modulo �n(q)2.

By repeated applications of Lemma 1, the multi-sum in (2.7) (without the previous frac-
tion), modulo �n(q)2, is congruent to

∑

j1,..., jm−1≥0

q(d−r)( jm−2+···+(m−2) j1)+d( j1+···+ jm−1)
(qd−r ; qd) j1 · · · (qd−r ; qd) jm−1

(qd ; qd) j1 · · · (qd ; qd) jm−1

× (qr+(m+1)n, qr−(m+1)n; qd) j1 . . . (qr+(2m−2)n, qr−(2m−2)n; qd) j1+···+ jm−2

(qd−mn, qd+mn; qd) j1 . . . (qd−(2m−3)n, qd+(2m−3)n; qd) j1+···+ jm−2

× (qd+(d−1)n, q(d+r)/2; qd) j1+···+ jm−1(q
r−(d−1)n; qd) j1+···+ jm−1

(qd−(2m−2)n, qd+(2m−2)n; qd) j1+···+ jm−1(q
(3d+r)/2; qd) j1+···+ jm−1

,
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where m = (d + 1)/2. However, this sum vanishes in light of the m = (d + 1)/2, q �→ qd ,
a = qr , e1 = q(d+r)/2, em = qr−(2m−2)n , ei = qr−(m+i−2)n , n1 = (dn − d + n + r)/(2d),
nm = 0, ni = (n + r − d)/d , 2 ≤ i ≤ m − 1, N = (dn − n − r)/d case of Lemma 2. (It is
easy to verify that N − n1 − · · · − nm = d(d − r − 2)/2 > 0.) This proves that (1.5) holds
modulo �n(q)3 for M = (dn − n − r)/d .

Since (qr ; qd)k/(qd ; qd)k is congruent to 0modulo�n(q) for (dn−n−r)/d < k ≤ n−1,
we conclude that (1.5) also holds modulo �n(q)3 for M = n − 1. 	


3 Proof of Theorem 2

We first give a simple lemma on a property of certain arithmetic progressions.

Lemma 4 Let d and r be odd integers satisfying d ≥ 3, r ≤ d − 4 and gcd(d, r) = 1. Let n
be an integer such that n ≥ (d − r)/2 and n ≡ −r/2 (mod d). Then there are no multiples
of n in the arithmetic progression

d + r

2
,
d + r

2
+ d, . . . ,

d + r

2
+ dn − 2n − r − d. (3.1)

Proof By the condition gcd(d, r) = 1, we have gcd((d+r)/2, (d−r)/2) = 1. Suppose that

(d + r)/2 + ad = bn (3.2)

for some integers a and b with a ≥ 0. Then (d +r)/2+ad > (r −d)/2 ≥ −n and so b ≥ 0.
Since n ≡ (d − r)/2 (mod d), we deduce from (3.2) that b ≡ −1 (mod d) and thereby
b ≥ d − 1. But we have

d + r

2
+ dn − 2n − r − d = dn − 2n + d − r

2
− d ≤ (d − 1)n − d,

thus implying that no number in the arithmetic progression (3.1) is a multiple of n. 	

Proof of Theorem 2 As before, the q-congruence (1.6) modulo [n] can be deduced from
Lemma 3. It remains to prove the modulus �n(q)2 case of (1.6).

For M = (dn − 2n − r)/d , the left-hand side of (1.6) can be written as the following
multiple of a terminating d+5φd+4 series (this time we changed the position of q(d+r)/2):

[r ]
(dn−2n−r)/d∑

k=0

(qr , qd+r/2,−qd+r/2, q(d+r)/2, qr , . . . , qr , qd+(d−2)n, qr−(d−2)n; qd)k
(qd , qr/2,−qr/2, q(d+r)/2, qd , . . . , qd , qr−(d−2)n, qd+(d−2)n; qd)k

× qd(d−r−2)k/2.

Here, the qr , . . . , qr in the numerator stands for d − 1 instances of qr , and similarly, the
qd , . . . , qd in the denominator stands for d −1 instances of qd . By Andrews’ transformation
(2.2), we may rewrite the above expression as

[r ] (q
d+r , q−(d−2)n; qd )(dn−2n−r)/d

(qd , qr−(d−2)n; qd )(dn−2n−r)/d

∑

j1,..., jm−1≥0

(q(d−r)/2; qd ) j1 (q
d−r ; qd ) j2 · · · (qd−r ; qd ) jm−1

(qd ; qd ) j1 (q
d ; qd ) j2 · · · (qd ; qd ) jm−1

× (qr , qr ; qd ) j1 . . . (qr , qr ; qd ) j1+···+ jm−2 (q
r , qd+(d−2)n; qd ) j1+···+ jm−1

(q(d+r)/2, qd ; qd ) j1 (q
d , qd ; qd ) j1+ j2 . . . (qd , qd ; qd ) j1+···+ jm−1

× (qr−(d−2)n; qd ) j1+···+ jm−1

(qd+r ; qd ) j1+···+ jm−1

q(d−r)( jm−2+···+(m−2) j1)+d( j1+···+ jm−1), (3.3)

123
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where m = (d + 1)/2.
It is easily seen that the q-shifted factorial (qd+r ; qd)(dn−2n−r)/d has the factor 1−q(d−2)n

which is a multiple of 1− qn . Clearly, the q-shifted factorial (q−(d−2)n; qd)(dn−2n−r)/d has
the factor 1 − q−(d−1)n (again being a multiple of 1 − qn) since (dn − 2n − r)/d ≥ 1
holds according to the conditions d ≥ 3, r ≤ d − 4, and n ≥ (d − r)/2. This indicates that
the q-factorial (qd+r , q−(d−2)n; qd)(dn−2n−r)/d in the numerator of the fraction before the
multi-sum in (3.3) is divisible by �n(q)2. Further, it is not difficult to see that the q-factorial
(qd , qr−(d−2)n; qd)(dn−2n−r)/d in the denominator is relatively prime to �n(q).

Like the proof of Theorem 1, the non-zero terms in the multi-sum in (3.3) are those
indexed by ( j1, . . . , jm−1) satisfying the inequality j1 + · · · + jm−1 ≤ (dn − 2n − r)/d
because of the appearance of the factor (qr−(d−2)n; qd) j1+···+ jm−1 in the numerator. By
Lemma 4, the q-shifted factorial (q(d+r)/2, qd) j1 in the denominator does not contain a
factor of the form 1 − qαn for j1 ≤ (dn − 2n − r)/d (and are therefore relatively prime
to �n(q)). In addition, none of the other factors appearing in the denominator of the multi-
sum of (3.3) contain a factor of the form 1 − qαn , except for (qd+r ; qd) j1+···+ jm−1 when
j1 + · · · + jm−1 = (dn − 2n − r)/d (in this case the denominator contains the factor
1 − q(d−2)n).

Letting n = ad+(d−r)/2 (with a ≥ 0), we get j1+· · ·+ jm−1 = a(d−2)+(d−r)/2−1.
If j1 ≥ a + 1, then (q(d−r)/2; qd) j1 contains the factor 1− q(d−r)/2+ad = 1− qn . If j1 ≤ a,
then j2 + · · · + jm−1 ≥ a(d − 3) + (d − r)/2 − 1. Since m − 2 = (d − 3)/2, d ≥ 3, and
r ≤ d − 4, there must be an i with 2 ≤ i ≤ m − 1 and ji ≥ 2a + 1. Then (qd−r ; qd) ji
contains the factor 1 − qd−r+2ad = 1 − q2n which is a multiple of �n(q). Therefore, the
denominator of the reduced form of the multi-sum in (3.3) is relatively prime to �n(q). This
proves that (3.3) is congruent to 0 modulo �n(q)2.

For M = n − 1, since (qr ; qd)k/(qd ; qd)k is congruent to 0 modulo �n(q) for (dn −
2n − r)/d < k ≤ n − 1, we conclude that (1.6) is also true modulo �n(q)2 in this case. 	
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