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Abstract
We provide optimal bounds for the sine and hyperbolic tangent means in terms of various
weighted means of the arithmetic and centroidal means
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1 Introduction, definitions and notations

The means

Msin(x, y) =

⎧
⎪⎨

⎪⎩

x − y

2 sin x−y
x+y

x �= y

x x = y
(sine mean)

and

Mtanh(x, y) =

⎧
⎪⎨

⎪⎩

x − y

2 tanh x−y
x+y

x �= y

x x = y
(hyperbolic tangent mean)

defined for positive arguments, have been introduced in [19], where one of the authors
investigates means of the form

M f (x, y) =

⎧
⎪⎨

⎪⎩

|x − y|
2 f

( |x−y|
x+y

) x �= y

x x = y

. (1)

B Monika Nowicka
monika.nowicka@utp.edu.pl

Alfred Witkowski
audomat.aw@gmail.com

1 Institute of Mathematics and Physics, UTP University of Science and Technology, al. prof.
Kaliskiego 7, 85-796 Bydgoszcz, Poland

2 AUDoMAT, ul. Mielczarskiego 4/29, 85-796 Bydgoszcz, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13398-021-01020-8&domain=pdf
http://orcid.org/0000-0001-8193-4080
https://orcid.org/0000-0003-1901-013X


79 Page 2 of 11 M. Nowicka, A. Witkowski

It was shown that every symmetric and homogeneous mean of positive arguments can be
represented in the form (1) and that every function f : (0, 1) → R (called Seiffert function)
satisfying

z

1 + z
≤ f (z) ≤ z

1 − z

produces a mean. The correspondence between means and Seiffert functions is given by the
formula

f (z) = z

M(1 − z, 1 + z)
, where z = |x − y|

x + y
.

Comparing the means and examining the relationships between them is considered impor-
tant. A cursory overview of MathSciNet shows over 200 papers on this subject, and the
number is constantly growing. The aim of this paper is to determine various optimal bounds
for the Mtanh and Msin with the arithmetic and centroidal means (denoted here by A and
Ce). Similar bounds by the arithmetic and contraharmonic means were obtained in [12], and
by arithmetic and quadratic means in [11]. For other bounds of Seiffert-like means by the
arithmetic and centroidal means, see e.g. [7,8,17,20]. Similar subjects were considered also
in [2–6,10,13–16,18,21].

For twomeansM, N , the symbolM < N denotes that for all positive x �= y the inequality
M(x, y) < N (x, y) holds.

Our main tool will be the obvious fact that if for two Seiffert functions the inequality
f < g holds, then their corresponding means satisfy M f > Mg . Thus every inequality
between means can be replaced by the inequality between their Seiffert functions.

Remark 1 Throughout this paper all means are defined on (0,∞)2.

Remark 2 Note that the Seiffert function of the centroidal mean Ce(x, y) = 2
3
x2+xy+y2

x+y is

ce(z) = 3z
3+z2

and that of the arithmeticmeanA(x, y) = x+y
2 is the identity function a(z) = z.

Clearly, the Seiffert functions of Msin and Mtanh are the functions sin and tanh, respectively.

For the reader’s convenience, in the following sections we place the main results with
their proofs, while all lemmas and technical details can be found in the last section of this
paper.

The motivation for our research are the inequalities A < Msin < Mtanh < Ce proven in
[19, Lemma 3.1] and Lemma 1.

2 Linear bounds

Given three means K < L < M , one may try to find the best α, β satisfying the double
inequality (1 − α)K + αM < L < (1 − β)K + βM or equivalently α < L−K

M−K < β. If
k, l,m are respective Seiffert functions, then the latter can be written as

α <

1
l − 1

k
1
m − 1

k

< β. (2)

Therefore the problem reduces to finding upper and lower bounds for certain functions defined
on the interval (0, 1).

123



Optimal bounds for the sine and hyperbolic tangent means IV Page 3 of 11 79

Theorem 1 The inequalities

(1 − α)A + αCe < Msin < (1 − β)A + βCe

hold if, and only if, α ≤ 1
2 and β ≥ 3

sin 1 − 3 ≈ 0.5652.

Proof By formula (2) and Remark 2, we investigate the function

h(z) =
1

sin z − 1
z

3+z2
3z − 1

z

= 3

z sin z
− 3

z2
.

We shall show that h increases. Observe that

h′(z) = 3
2 sin2 z − z2 cos z − z sin z

z3 sin2 z
=: 3 s(z)

z3 sin2 z
.

Using the known inequalities x − x3/3! < sin x < x − x3/3! + x5/5! and cos x < 1 −
x2/2! + x4/4! we get

s(z) > 2

(

z − z3

3!
)2

− z2
(

1 − z2

2! + z4

4!
)

− z

(

z − z3

3! + z5

5!

)

= z6

180
> 0,

so h′(z) > 0. We complete the proof by noting that limz→0 h(z) = 1/2. 	

Theorem 2 The inequalities

(1 − α)A + αCe < Mtanh < (1 − β)A + βCe

hold if, and only if, α ≤ 3
tanh 1 − 3 ≈ 0.9391 and β ≥ 1.

Proof We use Remark 2 and formula (2) once more and investigate the function

h(z) =
1

tanh z
− 1

z

1+z2/3
z − 1

z

= 3

z

(
1

tanh z
− 1

z

)

=: 3s(z)
z

.

The function s satisfies limz→0 s(z) = 0 and s′′(z) = 2
sinh3 z

(
cosh z − sinh3 z

z3

)
< 0 (by

Lemma 2), so s is concave and, by Property 2, its divided difference (and consequently the
function h) decreases. To complete the proof note that limz→0 h(z) = 1. 	


3 Harmonic bounds

In this section, we look for optimal bounds for means K < L < M of the form 1−α
M + α

K <
1
L <

1−β
M + β

K or, in terms of their Seiffert functions,

α <
l − m

k − m
< β. (3)

We shall use the above to prove two theorems.

Theorem 3 The inequalities

1 − α

Ce
+ α

A
<

1

Msin
<

1 − β

Ce
+ β

A

hold if, and only if, α ≤ 4 sin 1 − 3 ≈ 0.3659 and β ≥ 1
2 .
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Proof According to formula (3), we investigate the function

h(z) = sin z − 3z
z2+3

z − 3z
z2+3

= (z2 + 3) sin z − 3z

z3
.

We shall show that h decreases. We have

h′(z) = (z3 + 3z) cos z − (z2 + 9) sin z + 6z

z4
=: s(z)

z4
.

The function s satisfies s(0) = s′(0) = s′′(0) = 0 and

s′′′(z) = z
(
(z2 − 9) sin z − 8z cos z

)
< 0.

Thus s is negative and so is h′. We complete the proof by noting that limz→0 h(z) = 1/2. 	

Theorem 4 The inequalities

1 − α

Ce
+ α

A
<

1

Mtanh
<

1 − β

Ce
+ β

A

hold if, and only if, α ≤ 0 and β ≥ 4 tanh 1 − 3 ≈ 0.0464.

Proof We use Remark 2 and formula (3) once more and investigate the function

h(z) = tanh z − 3z
3+z2

z − 3z
3+z2

= (3 + z2) tanh z − 3z

z3
.

We shall show that h increases. We have

h′(z) =
6z + z(3 + z2) 1

cosh2 z
− (9 + z2) sinh z

cosh z

z4

= 12z + 2z3 + 6z cosh 2z − (9 + z2) sinh 2z

2z4 cosh2 z
=: s(z)

2z4 cosh2 z
.

By Lemma 4 we get

s(z) > 12z + 2z3 + 6z

(

1 + (2z)2

2! + (2z)4

4! + (2z)6

6!
)

− (9 + z2)

(

2z + (2z)3

3! + (2z)5

5! + 2
(2z)7

7!

)

= 4z5

315
(21 − 15z2 − 4z4) > 0.

Therefore h increases from limz→0 h(z) = 0 to h(1). 	


4 Quadratic bounds

Given three means K < L < M , one may try to find the best α, β satisfying the
double inequality

√
(1 − α)K 2 + αM2 < L <

√
(1 − β)K 2 + βM2 or equivalently

α < L2−K 2

M2−K 2 < β. If k, l,m are respective Seiffert functions, then the latter can be writ-
ten as

α <

1
l2

− 1
k2

1
m2 − 1

k2
< β. (4)
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Thus, the problem reduces to finding upper and lower bounds for certain functions defined
on the interval (0, 1).

Theorem 5 The inequalities
√

(1 − α)A2 + αCe2 < Msin <

√

(1 − β)A2 + βCe2

hold if, and only if, α ≤ 1
2 and β ≥ 9

7 cot
2 1 ≈ 0.5301.

Proof Using formula (4) we investigate the function

h(z) =
1

sin2 z
− 1

z2

(z2 + 3)2

9z2
− 1

z2

=
z2

sin2 z
− 1

(z2 + 3)2

9
− 1

.

To show that h increases we use Lemma 3. A simple calculation shows that

r(z) =
(

z2

sin2 z
− 1

)′

(
(z2 + 3)2

9
− 1

)′ = 9(sin z − z cos z)

2(z2 + 3) sin3 z

and

r ′(z) = 9
2(2z3 + 5z) − (z2 + 9) sin 2z + 2z(z2 + 4) cos 2z

4(z2 + 3)2 sin4 z
=: 9 s(z)

4(z2 + 3)2 sin4 z
.

From sin 2x < 2x − (2x)3/3! + (2x)5/5! and cos 2x > 1− (2x)2/2! + (2x)4/4! − (2x)6/6!
we get

s(z) > 2(2z3 + 5z) − (z2 + 9)

(

2z − (2z)3

3! + (2z)5

5!

)

+ 2z(z2 + 4)

(

1 − (2z)2

2! + (2z)4

4! − (2z)6

6!
)

= 4

45
z5(−2z4 + 4z2 + 3) > 0.

Thus r ′ is positive and both r and h increase. We complete the proof by noting that
limz→0 h(z) = 1/2. 	


And here comes the hyperbolic tangent version of the previous theorem.

Theorem 6 The inequalities
√

(1 − α)A2 + αCe2 < Mtanh <

√

(1 − β)A2 + βCe2

hold if, and only if, α ≤ 9
7 (coth

2 1 − 1) ≈ 0.9309 and β ≥ 1.

Proof We shall use the identity tanh2 z = cosh 2z−1
cosh 2z+1 .

The function to be considered here is

h(z) =
1

tanh2 z
− 1

z2

(z2 + 3)2

9z2
− 1

z2

= 9
1 + z2 + (z2 − 1) cosh 2z

(z4 + 6z2)(cosh 2z − 1)
,

123
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and its derivative equals

h′(z) = − 18z sinh z

(z4 + 6z2)2(cosh 2z − 1)2
s(z),

where

s(z) = 4z3(z2 + 6) cosh z + (z4 + 6z2 + 18) sinh z − (6 + 2z2 − z4) sinh 3z

and by Lemma 4

s(z) >

⎛

⎜
⎜
⎜
⎝

4z3(z2 + 6)
(
1 + z2

2! + z4
4! + z6

6! + z8
8!

)

+(z4 + 6z2 + 18)
(
z + z3

3! + z5
5! + z7

7!
)

−(6 + 2z2 − z4)
(
3z + (3z)3

3! + (3z)5

5! + (3z)7

7! + 2 (3z)9

9!
)

⎞

⎟
⎟
⎟
⎠

= z7
2189z6 + 4502z4 + 14430z2 + 21504

20160
> 0.

This shows that h′ < 0 so h decreases from limz→0 h(z) = 1 to h(1) = 9
7 (coth

2 1 − 1) ≈
0.9309. 	


5 Bounds with the weighted powermean of order−2

In this section,we look for optimal bounds formeans K < L < M of the form
√

1−α
M2 + α

K 2 <

1
L <

√
1−β

M2 + β

K 2 or, in terms of their Seiffert functions,

α <
l2 − m2

k2 − m2 < β. (5)

Theorem 7 The inequalities
√
1 − α

Ce2
+ α

A2
<

1

Msin
<

√
1 − β

Ce2
+ β

A2

hold if, and only if, α ≤ 16 sin2 1−9
7 ≈ 0.3327 and β ≥ 1

2 .

Proof Taking formula (5) into account we should investigate the function

h(z) =
sin2 z − 9z2

(z2+3)2

z2 − 9z2
(z2+3)2

= (z2 + 3)2 sin2 z − 9z2

z4(z2 + 6)
.

We shall show that h decreases. We have

h′(z) = (z2 + 3)
(−z4 + 27z2 − 36 + (z2 + 3)(z2 + 6)z sin 2z + (z4 + 9z2 + 36) cos 2z

)

z5(z2 + 6)2

=: (z2 + 3)s(z)

z5(z2 + 6)2
.
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From sin 2x < 2x−(2x)3/3!+(2x)5/5!−(2x)7/7!+(2x)9/9! and cos 2x < 1−(2x)2/2!+
(2x)4/4! − (2x)6/6! + (2x)8/8! we obtain

s(z) < −z4 + 27z2 − 36 + (z2 + 3)(z2 + 6)z

(

2z − (2z)3

3! + (2z)5

5! − (2z)7

7! + (2z)9

9!

)

+ (z4 + 9z2 + 36)

(

1 − (2z)2

2! + (2z)4

4! − (2z)6

6! + (2z)8

8!
)

= 2

2835
z6(2z8 − 9z6 + 45z4 + 999z2 − 6237) < 0.

Thus h′(z) < 0. We complete the proof by noting that limz→0 h(z) = 1/2. 	

Theorem 8 The inequalities

√
1 − α

Ce2
+ α

A2
<

1

Mtanh
<

√
1 − β

Ce2
+ β

A2

hold if, and only if, α ≤ 0 and β ≥ 16 tanh2 1−9
7 ≈ 0.0401.

Proof This time we investigate the function

h(z) =
tanh2 z − 9z2

(3+z2)2

z2 − 9z2

(3+z2)2

= (z2 + 3)2 tanh2 z − 9z2

z6 + 6z4
.

This function increases, because by Lemma 4

h′(z) = z2 + 3

2z5(z2 + 6)2 cosh3 z

⎛

⎝
4z(z2 + 3)(z2 + 6) sinh z
+(z4 + 63z2 + 36) cosh z
−(z4 − 9z2 + 36) cosh 3z

⎞

⎠

>
z2 + 3

2z5(z2 + 6)2 cosh3 z

⎛

⎜
⎜
⎜
⎝

4z(z2 + 3)(z2 + 6)
(
z + z3

3! + z5
5! + z7

7!
)

+(z4 + 63z2 + 36)
(
1 + z2

2! + z4
4! + z6

6! + z8
8!

)

−(z4 − 9z2 + 36)
(
1 + (3z)2

2! + (3z)4

4! + (3z)6

6! + 3
2 × (3z)8

8!
)

⎞

⎟
⎟
⎟
⎠

= z(z2 + 3)

2(z2 + 6)2 cosh3 z
× −19617z6 + 99001z4 − 156324z2 + 258048

80640
> 0.

So the function h assumes values between limz→0 h(z) = 0 and h(1). 	


6 Bounds with varying arguments

If N is a mean, then the formula N {t}(x, y) = N
( x+y

2 + t x−y
2 ,

x+y
2 − t x−y

2

)
defines a

homotopy between the arithmetic mean A = N {0} and N = N {1}. Therefore, if A < M < N ,
it makes sense to ask what the optimal numbers α, β are satisfying N {α} < M < N {β}.
Theorem 6.1 from [19] gives a method for finding such numbers in terms of the Seiffert
functions of the means involved. It says

Theorem 9 For a Seiffert function k, denote k̂(z) = k(z)/z. Let M and N be two means
with Seiffert functions m and n, respectively. Suppose that n̂(z) is strictly monotone and let

p0 = inf
z

n̂−1(m̂(z))
z and q0 = sup

z

n̂−1(m̂(z))
z .
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If A(x, y) < M(x, y) < N (x, y) for all x �= y, then the inequalities

N {p}(x, y) ≤ M(x, y) ≤ N {q}(x, y)

hold if, and only if, p ≤ p0 and q ≥ q0.
If N (x, y) < M(x, y) < A(x, y) for all x �= y, then the inequalities

N {q}(x, y) ≤ M(x, y) ≤ N {p}(x, y)

hold if, and only if, p ≤ p0 and q ≥ q0.

In the case of N = Ce we see that ĉe(z) = 3
z2+3

and ĉe−1(x) = √
3x−1 − 3.

Theorem 10 The inequalities

Ce
( x+y

2 + α
x−y
2 ,

x+y
2 − α

x−y
2

)
< Msin < Ce

( x+y
2 + β

x−y
2 ,

x+y
2 − β

x−y
2

)

hold if, and only if, α ≤
√

1
2 ≈ 0.7071 and β ≥

√
3

sin 1 − 3 ≈ 0.7518.

Proof Using Theorem 9 we should find the range of the function

h(z) =
√
3 z
sin z − 3

z
.

The monotonicity of the function h2 follows from the proof of Theorem 1, so evaluation of
the values of h at the endpoints completes the proof. 	

Theorem 11 The inequalities

Ce
( x+y

2 + α
x−y
2 ,

x+y
2 − α

x−y
2

)
< Mtanh < Ce

( x+y
2 + β

x−y
2 ,

x+y
2 − β

x−y
2

)

hold if, and only if, α ≤ √
3 coth 1 − 3 ≈ 0.9691 and β ≥ 1.

Proof According to Theorem 9, we shall consider the function

h(z) =
√
3 z
tanh z − 3

z
,

but we found the range of its square in the proof of Theorem 2. 	


7 Tools and lemmas

In this section, we place all the technical details needed to prove our main results.

Property 1 A function f : (a, b) → R is convex if, and only if, for every a < θ < b its
divided difference f (x)− f (θ)

x−θ
increases for x �= θ .

A simple consequence of Property 1 is

Property 2 If a function f : (a, b) → R is convex and limx→a f (x) = �, then the function
f (x)−�
x−a increases.

Lemma 1 For all positive x �= y the inequality Mtanh(x, y) < Ce(x, y) holds.
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Proof Using Seiffert’s functions we have to proof that h(z) = tanh z − 3z
3+z2

> 0 for 0 <

z < 1. Note that

cosh z = 1 + z2

2! + z4

4! + z6

6! + z8

8! · · · (6)

< 1 + z2

2! + z4

4!
(

1 + 1

2
+ 1

4
+ · · ·

)

= 1 + z2

2
+ z4

12
.

This yields

h′(z) = 1

cosh2 z
− 9 − 3z2

(3 + z2)2
>

1

(1 + z2
2 + z4

12 )
2

− 9 − 3z2

(3 + z2)2

= 3z4(z6 + 9z4 + 24z2 + 12)

(3 + z2)2(12 + 6z2 + z4)2
> 0,

which, combined with h(0) = 0 completes the proof. 	

Lemma 2 (Lazarević [9]) Consider the functions gu : [0,∞) → R

gu(x) = coshu x sinh x − x, −1 < u < 0.

For −1/3 ≤ u < 0, the functions gu are positive. For −1 < u < −1/3, there exists xu > 0,
such that gu is negative in (0, xu) and positive in (xu,∞).

Proof We have gu(0) = g′
u(0) = 0 and

g′′
u (x) = u(u − 1) sinh x coshu x

[

tanh2 x + 1 + 3u

u(u − 1)

]

.

If −1/3 ≤ u < 0, we have 1+3u
u(u−1) ≥ 0, so gu is convex thus positive. For −1 < u < −1/3,

the equation tanh2 x + 1+3u
u(u−1) = 0 has exactly one solution ξu , so gu is concave and negative

on (0, ξu). Then it becomes convex and tends to infinity, thus assumes zero at exactly one
point xu . 	

The next lemma can be found in [1, Theorem 1.25].

Lemma 3 Suppose f , g : (a, b) → R are differentiable with g′(x) �= 0 and such that
limx→a f (x) = limx→a g(x) = 0 or limx→b f (x) = limx→b g(x) = 0. Then

1. if f ′
g′ is increasing on (a, b), then f

g is increasing on (a, b),

2. if f ′
g′ is decreasing on (a, b), then f

g is decreasing on (a, b).

Lemma 4 For 0 < x < 1, the following inequalities hold

(a) sinh 3x < 3x + (3x)3

3! + (3x)5

5! + (3x)7

7! + 2
(3x)9

9! ,

(b) sinh 2x < 2x + (2x)3

3! + (2x)5

5! + 2 (2x)7

7! ,

(c) cosh 3x < 1 + (3x)2

2! + (3x)4

4! + (3x)6

6! + 3
2 × (3x)8

8! .

Proof a)

sinh(3x) − 3x − (3x)3

3! − (3x)5

5! − (3x)7

7! − (3x)9

9!

123



79 Page 10 of 11 M. Nowicka, A. Witkowski

= (3x)11

11! + (3x)13

13! + · · · <
(3x)9

9!
(

32

10 · 11 + 34

10 · 11 · 12 · 13 + · · ·
)

<
(3x)9

9! .

Other proofs are similar. 	
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