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Abstract
In the present note we prove the non set-stability of the AFPP under isometric renormings in
the setting of Banach spaces containing a complemented isomorphic copy of c0 or �1
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1 Introduction

Let X be a Banach space which has a property P . One of the fundamental problems in
metric fixed point theory is to determine if P is stable, that is, if the property P is shared
by all the spaces ‘near enough’ to X . To make precise the problem of stability usually we
consider the following definition of distance introduced by Stefan Banach in [1] and known
as Banach-Mazur distance.

Definition 1 Let X and Y be Banach spaces. The Banach-Mazur distance between X and Y ,
denoted by d(X , Y ) is defined as:

d(X , Y ) = inf {‖T ‖ · ‖T−1‖ : T is an isomorphism from X toY }.
When X and Y are not isomorphic, we say that d(X , Y ) = ∞.

We say that P is stable if for every Banach space X which satisfies P , there exists γ > 0
such that d(X , Y ) < γ implies that Y verifies P . All those properties that are invariant
under isomorphism are stable in this sense, for instance reflexivity, super reflexivity, Banach-
Saks property, Krein-Milman property, Radon-Nykodým property, Shur property, property
of being a weakly compactly generated space, stable weak∗ fixed point property ([2,3]),
uniform normal structure, uniform non-squareness among others.
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Since by definition d(X , Y ) ≥ 1 we can restrict the mentioned notion of stability to the
case in which d(X , Y ) = 1.

Definition 2 We say that a property P is invariant under Banach-Mazur distance 1 if for
every pair of Banach spaces X , Y , with d(X , Y ) = 1, X has the property P if and only if Y
has the property P .

In [17] Ł. Piasecki proved that the weak∗ fixed point property (w∗-fpp), w∗-normal
structure (w∗-NS), theweak∗ Kadec-Klee property (w∗-KK), theweak∗ GeneralizedGossez-
Lami Dozo property (w∗-GGLD), the finite dimensional norm preserving extension property
(FNEP) and the compact norm preserving extension property (CNEP) are not invariant under
Banach-Mazur distance 1, even in the framework of separable Lindenstrauss spaces. In the
general setting of Banach spaces, he proved also that uniform convexity in every direction,
local uniform rotundity, uniform smoothness, the Kadec-Klee property, the weak∗-Opial
property, the Opial property, the weak fixed point property and weak normal structure are
not invariant under Banach-Mazur distance 1.

Let C be a closed convex subset of a Banach space X and T : C → C a nonexpansive
function, that is, for every x, y ∈ C , ‖T x − T y‖ ≤ ‖x − y‖. Whenever inf {‖T x − x‖ : x ∈
C} = 0, we say that C satisfies the almost fixed point property (AFPP). In relation to this
concept, in [9] it was studied the following notion of stability:

Definition 3 We denote by C(X , ‖ · ‖) the collection of closed convex sets with the AFPP in
(X , ‖ · ‖). We will say that (X , ‖ · ‖) has stability of the AFPP if for any norm ‖ · ‖1 on X
equivalent to ‖ · ‖, we have that C(X , ‖ · ‖) = C(X , ‖ · ‖1). If ‖ · ‖1 is a norm on X equivalent
to ‖ · ‖, we say that the collections of sets with the AFPP in (X , ‖ · ‖) and (X , ‖ · ‖1) differ
when C(X , ‖ · ‖) 	= C(X , ‖ · ‖1).
Goebel and Kuczumow in [13] proposed the problem of characterizing those closed convex
subsets of a Banach space verifying the AFPP. Regarding this, a result obtained by S. Reich
in [18] establishes that if X is a reflexive space, a closed convex set C ⊂ X has the AFPP if
and only if C is linearly bounded (it contains no ray). Observe that the condition of linearly
boundedness is invariant under isomorphisms and consequently if (X , ‖ · ‖) is a reflexive
space, X has stability of the AFPP.

Afterwards in [19] I. Shafrir introduced the concept of directionally boundedness and
proved, without assumptions of reflexivity, that a closed convex subset C of a Banach space
X has the AFPP if and only if C is directionally bounded. In the last years techniques
involving the AFPP have been very useful in the study of various problems in fixed point
theory [4,7,8,10,15].

Recently in [9] the authors proved the following characterization of reflexivity in terms
of the AFPP:

Theorem 1 Let X be a Banach space. Then X is reflexive if and only if X has stability of the
AFPP. Moreover, if (X , ‖ · ‖) is not reflexive, for every δ > 0, there exists an equivalent norm
| · | in X such that d((X , ‖ · ‖), (X , | · |)) < 1 + δ and the respective collections of sets with
the AFPP differ.

Considering the problem posed by Piasecki in [17] of determining geometrical properties that
are not invariant under Banach-Mazur distance 1, we propose the following strengthening of
definition 1.1 in [9]:

Definition 4 We say that a Banach space (X , ‖ · ‖) has set-stability of the AFPP under
isometric renormings, if for every norm | · | on X such that (X , ‖ · ‖) and (X , | · |) are
isometric spaces, we have that C(X , ‖ · ‖) = C(X , | · |).
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Observe that every reflexive Banach space has set-stability of the AFPP under isometric
renormings.

Bearing in mind Definition 4 and the last conclusion in Theorem 1, we can ask if any
Banach space has set-stability of the AFPP under isometric renormings.

The purpose of the present note is to give a negative answer to this question by showing
a wide class of spaces which have not set-stability of the AFPP under isometric renormings.

2 Preliminaries

In [19] I. Shafrir introduced the following concept:

Definition 5 A sequence (xn) in a Banach space X is called a directional sequence if:

(i) ‖xn‖ → ∞
(ii) There is b ≥ 0 such that for all n1 < n2 < · · · < nl

‖xn1 − xnl‖ ≥
l−1∑

i=1

‖xni − xni+1‖ − b.

He called a closed convex set C ⊂ X directionally bounded if it contains no directional
sequences and proved the following criterium to determine when C verifies this property.

Theorem 2 A closed convex set C in a Banach space X is directionally bounded if for every
sequence {xn} in C such that ‖xn‖ → ∞ and for every f in the unitary ball of X∗,

lim sup
n

f (xn/‖xn‖) < 1.

In the same work he showed that the condition of directionally boundedness is equivalent to
the AFPP in Banach spaces.

Theorem 3 A closed convex set C in a Banach space X has the AFPP if and only if it is
directionally bounded.

Using some of the tools developed by Shafrir in his study of the AFPP, in [9] the authors
proved the following characterization for reflexive spaces in terms of the AFPP.

Theorem 4 Let (X , ‖ · ‖) be a non-reflexive Banach space. Then for every ε > 0 there is a
renorming (X , | · |) with d((X , ‖ · ‖), (X , | · |)) < 1 + ε such that the respective families of
closed convex subsets with the AFPP differ.

The space of sequences of summable modulus and the space of sequences converging to 0
are denoted respectively by �1 and c0. If wewrite �1 or c0 it is understood that �1 = (�1, ‖·‖1)
and c0 = (c0, ‖ · ‖∞) where ‖x‖1 = ∑∞

i=1 |x(i)| and ‖x‖∞ = sup
i∈N

|x(i)|.
The following results give conditions under which a (isomorphic) copy of c0 or �1 is

complemented in aBanach space X .We include them in order to exemplify some applications
of our main result. The first result is an immediate consequence of Proposition 1.8 in [14].

Theorem 5 Let X be a Banach space X with an unconditional basis. Then every copy of �1
in X contains a complemented copy of �1 (complemented in X).
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Theorem 6 ([5, Theorem 2.2]) Let X be a real Banach space that does not contain a copy
of �1. If X contains a copy of c0, then X contains a complemented isomorphic copy of c0.

Theorem 7 ([6, Theorem 10 p. 48]) Let X be a Banach space. Then X∗ contains an isomor-
phic copy of c0 if and only if X contains a complemented isomorphic copy of �1.

Theorem 8 ([12, Corollary 2.2]) Let X be a separable Banach space and let Y be a subspace
of X which is isomorphic to c0. Then Y is complemented in X.

Throughout thisworkwe consider only real Banach spaces.We denote byP(X) the collection
of equivalent norms to a fixed norm of a Banach space X .

3 Non stability of the AFPP under Banach-Mazur distance 1

We start proving our main result for the particular cases of �1 and c0.

Lemma 1 Let (X , ‖ · ‖) = �1 or (X , ‖ · ‖) = c0. Then there is a norm ‖ · ‖1 ∈ P(X) such
that (X , ‖ · ‖1) has not set-stability of the AFPP under isometric renormings.

Proof Let (en) denote the canonical basis of X and let W = [e2n−1], where [e2n−1] denotes
the closed linear span of {e2n−1 : n ∈ N}. By Theorem 4 there is an equivalent norm
|‖ · ‖| ∈ P(W ) such that the collections of directionally bounded sets in (W , ‖ · ‖) and
(W , |‖ · ‖|) differ, so without loss of generality we may assume that there is a closed convex
unbounded set C ⊂ W which is directionally bounded with respect to the norm ‖ · ‖ but it
is not with respect to the norm |‖ · ‖|. Let P : X → W be such that if x = ∑∞

n=1 anen ∈ X ,
then Px = ∑∞

n=1 a2n−1e2n−1. Define ‖ · ‖1 and ‖ · ‖2 ∈ P(X) such that

‖x‖1 = ‖Px‖ + |‖(I − P)x‖|
and

‖x‖2 = |‖Px‖| + ‖(I − P)x‖.
Since the inclusions i1 : (W , ‖ · ‖) → (X , ‖ · ‖1) and i2 : (W , |‖ · ‖|) → (X , ‖ · ‖2)
are isometries on their images, C has the AFPP with respect to the norm ‖ · ‖1, but it has
not the AFPP for the norm ‖ · ‖2. Observe that if x = ∑∞

n=1 anen ∈ X , the function
T : (X , ‖ · ‖1) → (X , ‖ · ‖2) defined as

(T x)(i) =
{
a2 j−1, ifi = 2 j for some j ∈ N,

a2 j , if i = 2 j − 1 for some j ∈ N,

is an onto linear isometry. ��
We can generalize the conclusion in Lemma 1 to the class of spaces containing a comple-
mented subspace isomorphic to c0 or �1.

Theorem 9 Let (X , ‖ · ‖) be a Banach space containing a complemented isomorphic copy of
c0 or �1. Then there is ‖ · ‖1 ∈ P(X) such that (X , ‖ · ‖1) has not set-stability of the AFPP
under isometric renormings.

Proof Let V be a complemented subspace of X isomorphic to Y , where Y is c0 or �1 and
denote by | · |1, | · |2 the two norms on Y , garanteed by Lemma 1, such that the families of sets
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with theAFPP in (Y , |·|1) and (Y , |·|2) differ. Let T1 : V → (Y , |·|1) and T2 : V → (Y , |·|2)
be isomorphisms. If we consider on V the norms |‖ · ‖|1 and |‖ · ‖|2 ∈ P(V ) such that

|‖x‖|1 = |T1x |1 and |‖x‖|2 = |T2x |2,
then R1 : (V , |‖ · ‖|1) → (Y , | · |1) and R2 : (V , |‖ · ‖|2) → (Y , | · |2) such that Ri x = Ti x ,
i = 1, 2, are linear onto isometries. Let T : (Y , | · |1) → (Y , | · |2) be the isometry considered
in Lemma 1. Since T is an onto linear isometry, we have that L : (V , |‖ · ‖|1) → (V , |‖ · ‖|2)
defined as L = R−1

2 T R1 is an onto linear isometry. Let P : X → V be a linear bounded
projection from X onto V and define ‖ · ‖1, ‖ · ‖2 ∈ P(X) such that

‖x‖1 = |‖Px‖|1 + ‖(I − P)x‖
and

‖x‖2 = |‖Px‖|2 + ‖(I − P)x‖.
If S : (X , ‖ · ‖1) → (X , ‖ · ‖2) is defined as Sx = (I − P)x + LPx it is easy to check that
S is an isomorphism and furthermore

‖Sx‖2 = |‖PLPx‖| + ‖(I − P)x‖ = |‖LPx‖|2 + ‖(I − P)x‖
= |‖Px‖|1 + ‖(I − P)x‖ = ‖x‖1,

since L is an isometry. Cleary C(X , ‖ · ‖1) 	= C(X , ‖ · ‖2). ��
Below we show a wide variety of cases in which we can apply Theorem 9.

Lemma 2 Let X be a non reflexive Banach space that satisfies any of the following conditions:

(i) X has an unconditional Schauder Basis.
(ii) X contains an isomorphic copy of c0 and X does not contain an isomorphic copy of �1.
(iii) X is separable and contains an isomorphic copy of c0.
(iv) X∗ contains an isomorphic copy of c0.
(v) X has an uncountable unconditional Schauder basis [11] and contains an isomorphic

copy of �1.

Then there is a norm ‖ · ‖1 ∈ P(X) such that (X , ‖ · ‖1) has not set-stability of the AFPP
under isometric renormings.

Proof (i) By James theorem ([16, Corollary 4.4.23]) X contains a subspace Y isomorphic
to c0 or �1. If Y is isomorphic to c0, Theorem 8 implies that Y is complemented. If Y is
isomorphic to �1, by Theorem 5 we can assume that Y is complemented. So in either case,
the hypotheses of Theorem 9 are satisfied. Similarly we prove (ii)–(v) using Theorem 6,
Theorem 8, Theorem 7 and Theorem 1a in [11] respectively. ��

Lemma 2 offers a large class of examples of Banach spaces in which we can conclude the
non set-stability of the AFPP under isometric renormings. However, it is still possible that
given a Banach space X , we can find two non-isometric norms ‖·‖1, ‖·‖2 inP(X), such that
(X , ‖ · ‖1) and (X , ‖ · ‖2) share the collection of sets with the AFPP and d((X , ‖ · ‖1), (X , ‖ ·
‖2)) = 1. In the following, we illustrate this situation in the particular case of X = c0.

Lemma 3 Consider the spaces X = (c0, ‖ · ‖) and Y = (c0, |‖ · ‖|) where

‖x‖ = ‖x‖∞ +
∞∑

j=1

|x( j)|
2 j
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and

|‖x‖| = ‖x‖∞ +
∞∑

j=2

|x( j)|
2 j−1

then d(X , Y ) = 1.

Proof Let Tn : X → Y be such that

Tn(x) = (x(n), x(1), . . . , x(n − 1), x(n + 1), . . .).

It is easy to see that Tn is an isomorphism such that ‖Tn‖ → 1 and ‖T−1
n ‖ → 1. ��

We want to compare the collections of directionally bounded sets of the spaces X and Y
defined in Lemma 3. In order to do this, by Theorem 2, it is very useful to know X∗ and
Y ∗. The space X∗ was described in [4], so we proceed to determine Y ∗. Straightforward
calculations allow us to prove the following result:

Proposition 1 Let N ∈ N, ZN = {x ∈ Y : x(i) = 0, ∀i > N } and YN =
(
ZN , |‖ · ‖||ZN

)
.

Then the set of extreme points with non-negative coordinates in the unitary ball of YN(
denoted as ξ+(YN )

)
satisfies:

ξ+(YN ) ⊂
{(

1
∑

i∈F 1
2i−1

)
∑

i∈F
ei : F ⊂ {1, . . . , N }, 1 ∈ F

}
.

Where (en) is the canonical basis of c0.

From the last proposition it follows that:

Proposition 2 (c0, |‖ · ‖|)∗ = (�1, ‖ · ‖∗) where for f = (ci ) ∈ �1

‖ f ‖∗ = sup
F⊂N

1∈F, #F<∞

(
1

∑
i∈F 1

2i−1

)
∑

i∈F
|ci |.

The next proposition gives a criterium to distinguish between directional and non directional
sequences in the space (c0, |‖ · ‖|). Bearing in mind Proposition 2, the proof of this result is
analogous to the proof of proposition 9 in [4].

Proposition 3 Let C be a closed convex unbounded set in c0. Suppose that C is directionally
bounded in (c0, |‖ · ‖|). Let (xn) ⊂ C be a sequence such that limn→∞ ‖xn‖∞ = ∞, with
xn = (xn(k))∞k=1. Then for every n0, k0 ∈ N there exist n > n0 and k > k0 such that
‖xn‖∞ = |xn(k)|.
The following result describes a sufficient condition in c0 for an unbounded sequence not to
be directional.

Proposition 4 (Proposition10 in [4]) Let (xn) ⊂ c0 bea sequence such that limn→∞ ‖xn‖∞ =
∞. If for every n0, k0 ∈ N there exists n > n0 and k > k0 such that ‖xn‖∞ = |xn(k)|, then
(xn) is not a directional sequence in (c0, ‖ · ‖∞).

Using Propositions 3 and 4 we can establish a relationship between the collections of direc-
tionally bounded sets in (c0, |‖ · ‖|) and c0.
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Theorem 10 Let C be a convex, closed and unbounded subset of c0. Then C is directionally
bounded in (c0, ‖ · ‖∞) if and only if it is directionally bounded in (c0, |‖ · ‖|).

Proof Let C ⊂ (c0, |‖ · ‖|) be a closed convex unbounded and directionally bounded set and
(xn) ⊂ C a sequence such that |‖xn‖| → ∞. By Proposition 3 for every n0, k0 ∈ N there
are n > n0 and k > k0 such that ‖xn‖∞ = |xn(k)| and Proposition 4 implies that (xn) is not
a directional sequence in (c0, ‖ · ‖∞).

Conversely, suppose that C ⊂ (c0, ‖ · ‖∞) is a closed convex and unbounded set. If (xn) is
a directional sequence in (c0, |‖ · ‖|). Take b ≥ 0 as given by the definition of directional
sequence. Let n1 < n2 < · · · < ns . Then

b ≥
s−1∑

i=1

|‖xni − xni+1‖| − |‖xns − xn1‖|

=
s−1∑

i=1

‖xni − xni+1‖∞ − ‖xns − xn1‖∞

+
s−1∑

i=1

( ∞∑

m=2

|xni+1(m) − xni (m)|
2m−1

)
−

∞∑

m=2

|xn1(m) − xns (m)|
2m−1 .

By the triangle inequality:

∞∑

m=2

1

2m−1

(
s−1∑

i=1

|xni+1(m) − xni (m)| − |xn1(m) − xns (m)|
)

≥ 0.

From this:

s−1∑

i=1

‖xni+1 − xni ‖∞ − ‖xn1 − xns‖∞ ≤ b

and (xn) is a directional sequence in (c0, ‖·‖∞), so ifC is directionally bounded in (c0, ‖·‖∞),
it is in (c0, |‖ · ‖|). ��

Finally, from the above theorem, we conclude that there exist two equivalent renormings of
a Banach space X whose Banach-Mazur distance is 1 and they share the collection of sets
with the AFPP.

Corollary 1 A closed convex set C ⊂ c0 has the AFPP in (c0, ‖ · ‖) if and only if it has the
AFPP in (c0, |‖ · ‖|). Moreover, d((c0, ‖ · ‖), (c0, |‖ · ‖|)) = 1.

Proof Theorem 11 in [4] implies that C is directionally bounded in (c0, ‖ · ‖) if and only if
C is directionally bounded in c0. The conclusion follows from Theorems 3 and 10. The last
statement was proved in Lemma 3. ��
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