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Abstract
In the present paper we study the pointwise and uniform convergence properties of a family
of multidimensional sampling Kantorovich type operators. Moreover, besides convergence,
quantitative estimates and a Voronovskaja type theorem have been established.
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1 Introduction

In the last years there was an increasing interest in approximation by means of families
of discrete operators in several function spaces both in the one-dimensional case and in
multidimensional setting, also thanks to the applicative outcome of such results (see, e.g.,
[18,27,28,36,37,41]). For example, the generalized sampling series defined as

(Sw f )(t) =
∑

k∈ZN

f

(
k

w

)
χ(wt − k), (�)

t ∈ R
N , w > 0, where χ is a kernel, have been widely studied with respect to several

notions of convergence, such as pointwise, uniform, L p , modular convergence [23–25] and
also, recently [5,7], convergence in variation (for other approximation results in BV-spaces
see, e.g., [9–13]). The interest of such operators is also due to their deep connections with
problems of Signal and Image Processing: indeed they furnish an approximate version of
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the Shannon Sampling Theorem (see, e.g., [46,47]) that allows to reconstruct not necessarily
band-limited signals (images).

In order to obtain convergence in variation for the operators (�), in [7] a new family of
discrete operators has been introduced:

(Kw, j f )(t) :=
∑

k∈ZN

⎡

⎣w

∫ k j+1
w

k j
w

f

(
k1
w

, . . . , u . . . ,
kN
w

)
du

⎤

⎦χ(wt − k), (∗)

for everyt ∈ R
N , w > 0 and j = 1, . . . , N . The operators (∗), that here will be calledmixed

sampling-Kantorovich operators, are essentially a Kantorovich version of the generalized
sampling series where the integral mean is computed on just one section of the function
involved,while the usualKantorovich version replaces thewhole value f

( k
w

)
with an integral

mean on a multidimensional interval around the sampling node k
w
, i.e.,

(Kw f )(t) :=
∑

k∈ZN

[
wN

∫
∏N

j=1[
k j
w

,
k j+1

w
]
f (u) du

]
χ(wt − k), (∗∗)

for every t ∈ R
N , w > 0.

The introduction of the operators (∗)wasnaturallymotivated by the fact that such operators
allow to obtain a multidimensional generalization of the classical relation proved by Lorentz
among the derivative of the Bernstein polynomials and the Kantorovich polynomials acting
on the derivative of the function, in the one-dimensional case: in particular, in [7] it is proved
that the j-th partial derivative of the generalized sampling series ∂Sw f

∂x j
coincides with a

combination of shifted mixed sampling-Kantorovich operators
(
Kw, j

∂ f
∂x j

)
acting on the

j-th partial derivative of f in case of kernels of averaged type.
Nevertheless, the family of operators (∗) appear as an interesting intermediate case

between the generalized sampling series (�) and the classical Kantorovich operators (∗∗)

and therefore the approximation results that we will present cannot be derived by the anal-
ogous results that have been previously obtained in the literature for the operators (�) or
(∗∗).

We recall that the study of the approximation properties of the Kantorovich version of
families of operators is a widely investigated topic in the literature. Just to mention some
examples, in [3,35] approximation results of the Stancu–Kantorovich operators based on
Polya–Eggenberger distribution are presented; in [40] it is established an inverse result for
bivariate Kantorovich type sampling series and for their generalized Boolean sum (see also,
e.g., [42,43,45] for some modifications and generalizations), while in [4] the rate of con-
vergence of perturbed Kantorovich–Choquet univariate and multivariate normalized neural
network operators with respect to the uniform norm is obtained. About the Kantorovich
version of the generalized sampling series (∗∗), results about pointwise and uniform con-
vergence, L p-convergence, modular convergence, rate of approximation and inverse results
have been obtained (see, e.g, [6,15,26,28–33].

It is well-known that approximation by means of the Kantorovich version of the sampling
operators presents several advantages with respect to the class {Sw f }w>0, also from the point
of view of the applications to Signal Processing (see, e.g., [15,39,44]), due to the presence of
the integral mean. For instance, this allows to reduce the so-called time-jitter error that occurs
when, in the practice, the sampled values are not computed exactly over the sample nodes.
Nevertheless, since the mixed operators (∗) appear to be an intermediate class among the
sampling series and the Kantorovich operators, they can be applied in situations in which, in
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Approximation properties of mixed… Page 3 of 14 4

the approximation process, it is more suitable to keep the value of the function on the sample
nodes except just one direction, where the integral mean is computed. For example, this can
be useful in situations in which the interest is to reduce time-jitter error in just one direction
to guarantee a good reconstruction saving computational operations with respect to the usual
sampling-Kantorovich operators.

In [7] convergence in L p(RN ) for the family of operators (∗) is proved. Here we give
results about pointwise and uniform convergence. Moreover, we establish a quantitative
estimate in terms of the modulus of continuity of the function that, as a consequence, gives a
result about the order of approximation if the function belongs to a Lipschitz class. Finally,
we prove an asymptotic expansion for (Kw, j f ) that allows us to obtain a Voronovskaja type
theorem.

2 Notations and preliminaries

We will denote by C(RN ) the space of all the bounded and uniformly continuous functions
f : RN → R endowed with the supremum norm ‖ f ‖∞.
We will study the family of mixed sampling-Kantorovich operators recently introduced

in [7], defined as

(Kw, j f )(t) :=
∑

k∈ZN

⎡

⎣w

∫ k j+1
w

k j
w

f

(
k1
w

, . . . , u . . . ,
kN
w

)
du

⎤

⎦χ(wt − k), (∗)

for every t ∈ R
N , w > 0 and j = 1, . . . , N .

Hereχ is a kernel, that is, a functionχ : RN → R that satisfies the following assumptions:

(χ1) χ is continuous and such that
∑

k∈ZN χ(t − k) = 1, for every t ∈ R
N ;

(χ2) M0(χ) := supu∈RN
∑

k∈ZN |χ(u − k)| < +∞, where the convergence of the series∑
k∈ZN |χ(u − k)| is uniform on the compact subsets of RN .

We point out that above assumptions are standard working with discrete families of oper-
ators (see, e.g., [7,8,17,20,21]) and it is easy to provide examples of kernels that fulfill them.
Among them, for example we can mention the multivariate version of the Jackson, Fejér,
and central B-spline (product) kernels, or the well-known Bochner–Riesz (radial) kernels.
For more details, see, e.g., [16,19,22,30,34,38,48].

It is easy to see that mixed sampling-Kantorovich operators (∗) are well-defined if, for
example, f is bounded. Indeed, if | f (t)| ≤ L , for every t ∈ R

N ,

|(Kw, j f )(t)| ≤
∑

k∈ZN

⎡

⎣w

∫ k j+1
w

k j
w

∣∣∣∣ f
(
k1
w

, . . . , u . . . ,
kN
w

)
du

∣∣∣∣

⎤

⎦ |χ(wt − k)|

≤ L
∑

k∈ZN

|χ(wt − k)| ≤ L M0(χ) < +∞,

(1)

by (χ2), for every t ∈ R
N , w > 0, j = 1, . . . , N .

We finally recall the following multidimensional notations that we will use in the paper:
for a function f : RN → R and x = (x1, . . . , xN ) ∈ R

N , we will write

x′
j = (x1, . . . , x j−1, x j+1, . . . , xN ) ∈ R

N−1, x = (x′
j , x j ), f (x) = f (x′

j , x j ),

to emphasize the j-th coordinate of x, j = 1, . . . , N and, for x ∈ R
N and α ∈ R, we will

use the usual notation for products and quotients, i.e., αx = (αx1, . . . , αxN ) and, for α 	= 0,
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x
α

= ( x1
α

, . . . ,
xN
α

)
. Finally, [x] = ([x1], . . . , [xN ]) will denote the integer part of x ∈ R

N ,

‖x‖ will denote the usual Euclidean norm of RN , and xy =∏N
i=1 x

yi
i , x, y ∈ R

N , when the
power is well-defined.

3 Pointwise and uniform convergence

We will first prove pointwise convergence for the mixed sampling-Kantorovich operators
{Kw, j f }w>0, j = 1, . . . , N .

Theorem 1 If f : RN → R is bounded, then, for every j = 1, . . . , N,

lim
w→+∞(Kw, j f )(t0) = f (t0),

at each point t0 ∈ R
N where f is continuous.

Proof Let t0 ∈ R
N be a point of continuity for f and let us fix j = 1, . . . , N and ε > 0.

Let δ > 0 be such that, for every t ∈ R
N for which ‖t − t0‖ < δ,

| f (t) − f (t0)| <
ε

2M0(χ)
, (2)

where M0(χ) is the absolute moment of order 0 of χ of assumption (χ2). By (χ1) there
holds, for w > 0,

|(Kw, j f )(t0) − f (t0)| ≤

≤

⎧
⎪⎨

⎪⎩

∑

‖k−wt0‖≤ wδ
2

+
∑

‖k−wt0‖> wδ
2

⎫
⎪⎬

⎪⎭

⎧
⎨

⎩w

∫ k j+1
w

k j
w

∣∣∣∣ f
(
k1
w

, . . . , u . . . ,
kN
w

)
− f (t0)

∣∣∣∣ du

⎫
⎬

⎭ |χ(wt0 − k)|

:= Σ1 + Σ2.

About the first sum, for k ∈ Z
N such that ‖k − wt0‖ ≤ wδ

2 , there holds
∥∥∥∥∥

(
k′
j

w
, u

)
− t0

∥∥∥∥∥ ≤
∥∥∥∥∥

(
k′
j

w
, u

)
− k

w

∥∥∥∥∥+
∥∥∥∥
k

w
− t0

∥∥∥∥ < δ,

for sufficiently large w > 0. Therefore, by (2) and (χ2), Σ1 < ε
2 .

AboutΣ2 notice that (seeRemark3.3of [28]), by (χ2), limR→+∞
∑

‖u−k‖>R |χ(u − k)| =
0 uniformly on u ∈ R

N , and hence, for sufficiently largew > 0,
∑

‖wt−k‖> wδ
2

|χ(u − k)| <
ε

4‖ f ‖∞ (without any loss of generality, ‖ f ‖∞ > 0). This implies that Σ2 < ε
2 and the proof

is complete. 
�

We now prove the uniform convergence result for the mixed sampling-Kantorovich oper-
ators {Kw, j f }w>0, for every j = 1, . . . , N .

Theorem 2 Let χ be a kernel such that χ ∈ C(RN ). If f ∈ C(RN ) then, for every j =
1, . . . , N, Kw, j f ∈ C(RN ) and

lim
w→+∞ ‖Kw, j f − f ‖∞ = 0. (3)
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Proof Let us fix ε > 0. By the uniform convergence of the series
∑

k∈ZN |χ(u − k)| on
[−2, 2]N , for example, there exists k0 ∈ Z such that, for every u ∈ [−2, 2]N ,

∑

‖k‖>k0

|χ(u − k)| <
ε

3‖ f ‖∞
. (4)

Since χ ∈ C(RN ) by assumption, there exists δ = δ(ε) > 0 such that, for every t,t0 ∈ R
N

with ‖t − t0‖ < δ, then

|χ(t) − χ(t0)| <
ε

3(2k0 + 1)N‖ f ‖∞
. (5)

Now (similarly to [21]) define δ̄ := min
{

δ
w

, 1
w

}
and consider t,t0 ∈ R

N with ‖t − t0‖ <

δ̄: thenwt0−[wt0] ∈ [−2, 2]N andwt−[wt0] = w(t−t0)+wt0−[wt0] ∈ [−2, 2]N ,
and therefore, putting n := k − [wt0] ∈ Z

N ,
∑

k∈ZN

|χ(wt − k) − χ(wt0 − k)|

≤
⎛

⎝
∑

‖n‖≤k0

+
∑

‖n‖>k0

⎞

⎠ |χ(wt − [wt0] − n) − χ(wt0 − [wt0] − n)|

≤
∑

‖n‖≤k0

ε

3(2k0 + 1)N‖ f ‖∞
+ 2

ε

3‖ f ‖∞
≤ ε

‖ f ‖∞
,

by (4) and (5). Therefore we conclude that

|(Kw, j f )(t) − (Kw, j f )(t0)| ≤ ‖ f ‖∞
∑

k∈ZN

|χ(wt − k) − χ(wt0 − k)| < ε

for every t,t0 ∈ R
N with ‖t − t0‖ < δ̄, that is, Kw, j f ∈ C(RN ), for every w > 0,

j = 1, . . . , N , taking into account that (Kw, j f ) is bounded (see (1)).
Now, to prove that limw→+∞ ‖Kw, j f − f ‖∞ = 0 it is sufficient to follow the proof of

Theorem 1 taking into account of the uniform continuity of f . 
�

4 Estimates and order of approximation

In this section we first establish a quantitative estimate for the above operators. We recall
that

ω( f , δ) := sup
{
| f (x) − f (y)| : ‖x − y‖ ≤ δ, x, y ∈ R

N
}

, δ > 0,

denotes the usualmodulus of continuity of the function f . It iswell-known that, if f ∈ C(RN )

then ω( f , δ) → 0 as δ → 0+, and moreover, the following estimate there holds

ω( f , λ δ) ≤ (1 + λ)ω( f , δ), λ > 0. (6)

Now we are able to prove the following result.

Theorem 3 Let χ be a kernel that satisfies the following assumption:

M1(χ) := sup
t∈RN

∑

k∈ZN

|χ(t − k)| · ‖t − k‖ < +∞.
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Then, for any f ∈ C(RN ) there holds

|(Kw, j f )(t) − f (t)| ≤ ω( f , 1/w)

{
3

2
M0(χ) + M1(χ)

}
,

w > 0, 1 ≤ j ≤ N.

Proof Proceeding as in the proof of Theorem 1, for every t ∈ R
N we can write

|(Kw, j f )(t) − f (t)| ≤
∑

k∈ZN

⎧
⎨

⎩w

∫ k j+1
w

k j
w

∣∣∣∣ f
(
k1
w

, . . . , u . . . ,
kN
w

)
− f (t)

∣∣∣∣ du

⎫
⎬

⎭ |χ(wt − k)|,

w > 0. By using inequality (6) it is easy to see that

|(Kw, j f )(t) − f (t)| ≤
∑

k∈ZN

⎧
⎨

⎩w

∫ k j+1
w

k j
w

ω

(
f ,

∥∥∥∥∥

(
k′
j

w
, u

)
− t

∥∥∥∥∥

)
du

⎫
⎬

⎭ |χ(wt − k)|,

≤ ω( f , 1/w)
∑

k∈ZN

⎧
⎨

⎩w

∫ k j+1
w

k j
w

(
1 + w

∥∥∥∥∥

(
k′
j

w
, u

)
− t

∥∥∥∥∥

)
du

⎫
⎬

⎭ |χ(wt − k)|

≤ ω( f , 1/w)
∑

k∈ZN

|χ(wt − k)|
⎧
⎨

⎩1 + w2
∫ k j+1

w

k j
w

∥∥∥∥∥

(
k′
j

w
, u

)
− k

w

∥∥∥∥∥ du + ‖k − w t‖
⎫
⎬

⎭

= ω( f , 1/w)
∑

k∈ZN

|χ(wt − k)|
⎧
⎨

⎩1 + w2
∫ k j+1

w

k j
w

|u − k j/w| du + ‖k − w t‖
⎫
⎬

⎭

≤ ω( f , 1/w)

{
3

2
M0(χ) + M1(χ)

}
,

w > 0. This completes the proof. 
�
Note that the requirement of Theorem 3 about the finiteness of the discrete absolute

moment M1(χ) is quite standard and not restrictive. Indeed in general, if we define

Mj (χ) := sup
t∈RN

∑

k∈ZN

|χ(t − k)| ‖t − k‖ j , j > 0,

and χ is a kernel such that χ(t) = O(‖t‖−r−1−ε), as ‖t‖ → +∞, for some r > 0, ε > 0,
it turns out that

Mj (χ) < +∞, 0 ≤ j ≤ r

(see [30]).
Now, recalling the definition of the spaces

Lip (α) :=
{
f ∈ C(RN ) : ω( f , δ) = O(δα), as δ → 0+} ,

for 0 < α ≤ 1, as a consequence of Theorem 3, we can immediately obtain the following
corollary.

Corollary 1 Under the assumptions of Theorem 3 and for every f ∈ Lip (α), 0 < α ≤ 1, it
turns out that:
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‖Kw, j f − f ‖∞ = O(w−α), as w → +∞,

j = 1, . . . , N.

Now, we aim to prove an asymptotic expansion for the above operators. First of all we
recall that, for a function f : RN → R, we denote by

Dh f := ∂ |h|

∂xh
f = ∂ |h|

∂xh11 . . . ∂xhN1
f (|h| = h1 + · · · + hN = r)

the r -th order derivatives of f , h ∈ N
N
0 .

In order to reach the above aim, we need the following multivariate version of the Taylor
formula for f ∈ Cr (RN ), r ∈ N:

f (u) = f (t) +
r∑

ν=1

∑

|h|=ν

Dh f (t)

h! (u − t)h + Rr (u;t), u,t ∈ R
N , (7)

where the term Rr (u,t) denotes a suitable remainder, and

h! := h1! h2! . . . hN !.
Now, for any given kernel χ , the multivariate algebraic moments, for ν ∈ N and h =

(h1, . . . , hN ) with |h| = ν, are defined as

mν
h(χ,u) :=

∑

k∈ZN

χ(u − k) (k − u)h, u ∈ R
N .

Now, the following asymptotic expansion can be proved.

Theorem 4 Let χ be a kernel such that, for every γ > 0,

lim
w→+∞

∑

‖wt−k‖>γ w

|χ(wt − k)| · ‖wt − k‖r = 0, (8)

uniformly with respect to t ∈ R
N , for a certain r ∈ N. Moreover, we also assume that

Mr (χ) < +∞. Then, for any f ∈ Cr (RN ) there holds:

(Kw, j f )(t) = f (t) +
r∑

ν=1

∑

|h|=ν

Dh f (t)

h!

[
N∏

i=1

w−hi

] h j∑

�=0

(
h j

�

)mν−h j+�

(h′
j ,�)

(χ,wt)

(h j − � + 1)
+ o(w−r ),

as w → +∞, t ∈ R
N , j = 1, . . . , N.

Proof Expanding f

(
k′
j

w
, u

)
by the Taylor formula (7) with remainder of the form

Rr

((
k′
j

w
, u

)
;t
)

= λ

((
k′
j

w
, u

)
− t

) ∥∥∥∥∥

((
k′
j

w
, u

)
− t

)∥∥∥∥∥

r

,
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where λ is a bounded function such that limv→0 λ(v) = 0, we can write what follows:

(Kw, j f )(t) = f (t) +
r∑

ν=1

∑

|h|=ν

Dh f (t)

h!
∑

k∈ZN

×
⎡

⎣
N∏

i=1,i 	= j

(
ki
w

− ti

)hi
w

∫ (k j+1)/w

k j /w
(u − t j )

h j du

⎤

⎦χ(wt − k)

+
∑

k∈ZN

χ(wt − k)

[
w

∫ (k j+1)/w

k j /w
λ

((
k′
j

w
, u

)
− t

) ∥∥∥∥∥

((
k′
j

w
, u

)
− t

)∥∥∥∥∥

r

du

]
=: f (t) + I1 + I2.

For 0 ≤ h j ≤ r we have:

w

∫ (k j+1)/w

k j /w
(u − t j )

h j du = w

h j∑

�=0

(
h j

�

)(
k j
w

− t j

)� ∫ (k j+1)/w

k j /w

(
u − k j

w

)h j−�

du

=
h j∑

�=0

(
h j

�

)(
k j
w

− t j

)�
w−h j+�

(h j − � + 1)
= w−h j

h j∑

�=0

(
h j

�

) (
k j − wt j

)�

(h j − � + 1)
.

Hence for I1 we get

I1 =
r∑

ν=1

∑

|h|=ν

Dh f (t)

h! w−h j

h j∑

�=0

(
h j

�

) ∑

k∈ZN

⎡

⎢⎣

(
k j − wt j

)�∏N
i=1,i 	= j

(
ki
w

− ti
)hi

(h j − � + 1)

⎤

⎥⎦χ(wt − k)

=
r∑

ν=1

∑

|h|=ν

Dh f (t)

h!

[
N∏

i=1

w−hi

]

×
h j∑

�=0

(
h j

�

)
1

(h j − � + 1)

∑

k∈ZN

⎧
⎨

⎩
(
k j − wt j

)�
N∏

i=1,i 	= j

(ki − wti )
hi

⎫
⎬

⎭χ(wt − k),

and finally

I1 =
r∑

ν=1

∑

|h|=ν

Dh f (t)

h!

[
N∏

i=1

w−hi

] h j∑

�=0

(
h j

�

)mν−h j+�

(h′
j ,�)

(χ,wt)

(h j − � + 1)
.

Now we can estimate the remainder term I2. Since limv→0 λ(v) = 0 for a fixed ε > 0 there
exists γ > 0 such that, for ‖v‖ ≤ γ there holds |λ(v)| < ε. Thus:

I2 =
⎧
⎨

⎩
∑

‖wt−k‖≤wγ/2

+
∑

‖wt−k‖>wγ/2

⎫
⎬

⎭χ(wt − k)

×
[
w

∫ (k j+1)/w

k j /w
λ

((
k′
j

w
, u

)
− t

) ∥∥∥∥∥

((
k′
j

w
, u

)
− t

)∥∥∥∥∥

r

du

]

=: I2,1 + I2,2.

Concerning I2,1, for everyk ∈ Z
N such that ‖wt−k‖ ≤ wγ/2 and u ∈ [k j/w, (k j +1)/w]:

∥∥∥∥∥

((
k′
j

w
, u

)
− t

)∥∥∥∥∥ ≤
∥∥∥∥∥

((
k′
j

w
, u

)
− k

w

)∥∥∥∥∥+ ‖k/w − t‖ ≤
∣∣∣∣u − k j

w

∣∣∣∣+
γ

2
< γ,
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for w > 0 sufficiently large, hence:

∣∣I2,1
∣∣ < ε

∑

‖wt−k‖≤wγ/2

|χ(wt − k)|
[
w

∫ (k j+1)/w

k j /w

∥∥∥∥∥

((
k′
j

w
, u

)
− t

)∥∥∥∥∥

r

du

]

≤ ε 2r−1
∑

‖wt−k‖≤wγ/2

|χ(wt − k)|
[
w

∫ (k j+1)/w

k j /w

∥∥∥∥∥

(
k′
j

w
, u

)
− k

w

∥∥∥∥∥

r

du +
∥∥∥∥
k

w
− t

∥∥∥∥
r
]

≤ ε 2r−1
∑

‖wt−k‖≤wγ/2

|χ(wt − k)|
[

w−r

r + 1
+ w−r‖wt − k‖r

]

≤ ε w−r 2r−1
[
M0(χ)

r + 1
+ Mr (χ)

]
< +∞,

for w > 0 sufficiently large. Furthermore, by exploiting the above computations, and by
using assumption (8) we have:

|I2,2| ≤ ‖λ‖∞
∑

‖wt−k‖>wγ/2

|χ(wt − k)|
[
w

∫ (k j+1)/w

k j /w

∥∥∥∥∥

((
k′
j

w
, u

)
− t

)∥∥∥∥∥

r

du

]

≤ ‖λ‖∞ 2r−1 w−r
∑

‖wt−k‖>wγ/2

|χ(wt − k)|
[

1

r + 1
+ ‖wt − k‖r

]

≤ ‖λ‖∞ 2r−1 w−r
[(

2

γ w

)r 1

r + 1
+ 1

] ∑

‖wt−k‖>wγ/2

|χ(wt − k)| · ‖wt − k‖r

< ‖λ‖∞ 2r w−rε,

for w > 0 sufficiently large. This completes the proof. 
�
Now, from Theorem 4 it is easy to establish the following Voronovskaja type theorem.

Theorem 5 Under the assumption of Theorem 4 with r = 1, if we assume in addition that
the following algebraic moments:

m1
ei (χ,u) = A1

ei ∈ R, u ∈ R
N ,

are constants, where ei := (0, . . . , 0, 1, 0, . . . 0), i = 1, . . . , N, we have:

lim
w→+∞ w

{
(Kw, j f )(t) − f (t)

} =
N∑

i=1,i 	= j

∂1

∂xi
f (t) · A1

ei + ∂1

∂x j
f (t)

[
1

2
+ A1

e j

]
,

t ∈ R
N , 1 ≤ j ≤ N.

Proof By Theorem 4 in the case of r = 1 we know:

w
{
(Kw, j f )(t) − f (t)

} =
N∑

i=1,i 	= j

∂1

∂xi
f (t) · A1

ei + ∂1

∂x j
f (t)

[
1

2
+ A1

e j

]
+ w o(w−1),

then the proof follows immediately by passing to the limit for w → +∞. 
�
It can be useful to observe that the moment-type assumptions required in Theorems 4 and

Theorem 5 are quite standard and are satisfied by several examples of kernels, such as those
mentioned in Sect. 2. A wide list of them can be found, e.g., in [2,14,16,22].
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Fig. 1 The plot of the bi-dimensional function f

Fig. 2 On the left, we have the operator Kw,1 f , with w = 5, while on the right we have the operator Kw,1 f ,
with w = 10, both based upon the bi-dimensional central B-spline of order 3

Remark 1 Note that a quantitative version of Theorems 4 and 5 can be easily established by
repeating the above proof using the Lagrange remainder in the Taylor expansion (7) and by
using some well-known inequalities; for more details see, e.g., [1,16].

Further, we can also observe that Theorem 5 can be also generalized for higher orders
(i.e., r > 1). In order to get such generalization, we must require that the algebraic moments
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Fig. 3 On the left, we have the operator Kw,2 f , with w = 5, while on the right we have the operator Kw,2 f ,
with w = 10, both based upon the bi-dimensional central B-spline of order 3

of the kernel χ :

mν
h(χ,u) = Aν

h ∈ R, u ∈ R
N ,

are constants, for every ν = 1, . . . , r , and h ∈ N
N with |h| = ν, and that

h j∑

�=0

(
h j

�

) A
ν−h j+�

(h′
j ,�)

(h j − � + 1)
= 0,

for all ν = 1, . . . , r − 1, and h = (h1, . . . , hN ) ∈ N
N with |h| = ν, j = 1, . . . , N .

Examples of kernels satisfying the above conditions can be generated using product kernels,
in which the one-dimensional factors are given by suitable finite linear combination of well-
known univariate kernels. The procedure for the construction of such multivariate functions
is analogous to that one used in [16].

Finally, we give a numerical example showing the approximations that can be achieved
by the above theory. Consider the function f (x1, x2) := (sin x1 − x1 + 1)(x2 + cos x2),
(x1, x2) ∈ R

2 (see Fig. 1). The approximations obtained by the mixed sampling-Kantorovich
operators based upon the bi-dimensional central B-spline of order 3 are depicted in Figs. 2
and 3.
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distribution with error estimation. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114(75),
26 (2020)

123

https://doi.org/10.1007/s12215-020-00544-z


4 Page 14 of 14 L. Angeloni et al.

46. Smale, S., Zhou, D.X.: Shannon sampling and function reconstruction from point values. Bull. Am.Math.
Soc. 41(3), 279–305 (2004)

47. Smale, S., Zhou, D.X.: Shannon sampling II: connections to learning theory. Appl. Comput. Harmonic
Anal. 19(3), 285–302 (2005)

48. Wu, Q., Ying, Y., Zhou, D.X.: Multi-kernel regularized classifiers. J. Complex. 23(1), 108–134 (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Approximation properties of mixed sampling-Kantorovich operators
	Abstract
	1 Introduction
	2 Notations and preliminaries
	3 Pointwise and uniform convergence
	4 Estimates and order of approximation
	Acknowledgements
	References




