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Abstract
In this paper, we formulate necessary and sufficient conditions for relative compactness in
the space BG(R+, E) of regulated and bounded functions defined on R+ with values in
the Banach space E . Moreover, we construct four new measures of noncompactness in the
space BG(R+, E). We investigate their properties and we describe relations between these
measures. We provide necessary and sufficient conditions so that the superposition operator
(Niemytskii) maps BG(R+, E) into BG(R+, E) and, additionally, be compact.

Keywords Space of regulated functions · Criterion of relative compactness · Measure of
noncompactness · Nemytskii operator

Mathematics Subject Classification 47H30 · 46E40

1 Introduction

The measures of noncompactness and fixed point theorems are often chosen to investigate
solvability of the nonlinear equations. Using a suitable function space together with con-
venient measures of noncompactness we can obtain elegant existence theorems. In recent
years, there have appeared a lot of papers concerning the space G(J , E) of regular functions
defined on a bounded interval J and with values in the Banach space E [2,4–11,14]. On
the other hand, there have not been any papers focused on the space of regular functions
on an unbounded interval R+. Throughout this paper we are going to fill this gap. We will
investigate the space BG(R+, E) of regular and bounded functions defined on R+ and with
values in the Banach space E .

In Sect. 3 we formulate necessary and sufficient relative compactness conditions in the
space BG(R+, E). In the sequel we construct four new and convenient measures of non-
compactness in BG(R+, E) and investigate their properties.

B Szymon Dudek
sdudek@prz.edu.pl

Leszek Olszowy
lolszowy@prz.edu.pl

1 Faculty of Mathematics and Applied Physics, Rzeszów University of Technology, al. Powstańców
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In Sect. 4 we present necessary and sufficient conditions for superposition operator so
that it maps BG(R+, E) into BG(R+, E). Moreover, we formulate necessary and sufficient
conditions so that the superposition operator Ff : BG(R+, E) → BG(R+, E) is compact.

Finally, Sect. 5 shows the applicability one of the mentioned measures of noncompactness
to the existence result for some nonlinear integral equation.

2 Notation, definitions and auxiliary facts

This section is devoted to recalling some facts whichwill be used in our further investigations.
Assume that E is a real Banach space with the norm ‖ · ‖ and the zero element θ . Denote
by BE (x, r) the closed ball centered at x and with radius r . The symbol BE (r) stands for
the ball BE (θ, r). We write X , convX ,ConvX to denote the closure, convex hull and the
convex closure of a set X , respectively. Further, letME denote the family of all nonempty
and bounded subsets of E and NE its subfamily consisting of all relatively compact sets.
The characteristic function of the set A is denoted by 1A.

We accept the following definition of the notion of a measure of noncompactness [3].

Definition 2.1 A mapping μ : ME → R+ := [0,∞) is said to be a measure of noncom-
pactness in a Banach space E if it satisfies the following conditions:

1◦ The family kerμ := {X ∈ ME : μ(X) = 0} is nonempty and kerμ ⊂ NE .

2◦ X ⊂ Y ⇒ μ(X) ≤ μ(Y ).

3◦ μ(ConvX) = μ(X).

4◦ μ(λX + (1 − λ)Y ) ≤ λμ(X) + (1 − λ)μ(Y ) for λ ∈ [0, 1].
5◦ If {Xn} is a sequence of closed sets from ME such that Xn+1 ⊂ Xn for n = 1, 2, . . .

and if limn→∞ μ(Xn) = 0, then the intersection X∞ := ⋂∞
n=1 Xn is nonempty.

In the sequel we will use measures of noncompactness having some additional properties.
Namely, a measure μ is said to be sublinear if it satisfies the following two conditions:

6◦ μ(λX) = |λ|μ(X), λ ∈ R.

7◦ μ(X + Y ) ≤ μ(X) + μ(Y ).

A sublinear measure of noncompactness μ satisfying the condition (maximum property)

8◦ μ(X ∪ Y ) = max{μ(X), μ(Y )}
and such that kerμ = NE is said to be regular.

For a given nonempty bounded subset X of E we denote by βE (X) the so-calledHausdorff
measure of noncompactness of X . This quantity is defined by the formula

βE (X) := inf{r > 0 : X has a finite r -net in E}.
The function βE is an example of the regular measure of noncompactness in E .

Let J denote the interval, bounded J = [0, T ] or unbounded J = R+ := [0,∞).
We use the following notation which will be needed further on: if J = [0, T ], then we
put J+ := [0, T ) and J− := (0, T ], but if we take J = R+, then J+ := [0,∞) and
J− := (0,∞).

Now we recall some facts concerning regulated functions.

Definition 2.2 A function x : J → E , where E is a topological vector space, is said to be
a regulated function if for every t ∈ J+ the right-sided limit x(t+) := lims→t+ x(s) exists
and for every t ∈ J− the left-sided limit x(t−) := lims→t− x(s) exists.
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From now on, E denotes a real Banach space.
Denote by G(J , E) the space consisting of all regulated functions defined on the interval

J with values in a Banach space E . Obviously, G(J , E) is a linear space.
In the case of J = [0, T ], every function x ∈ G([0, T ], E) is bounded. Hence,

G([0, T ], E) can be equipped with the classical supremum norm ‖x‖T := sup{‖x(t)‖ :
t ∈ J }. It is easy to show that G([0, T ], E) is a Banach space.

Compactness criteria and measures of noncompactness in the space G([0, T ], E) were
investigated in several research papers (see [4–6,11]). First, we recall the concept of a equireg-
ulated subset of the space G([0, T ], E).

Definition 2.3 We will say that the set X ⊂ G([0, T ], E) is equiregulated on the interval
J = [0, T ] if the following two conditions are satisfied:

∀t∈(0,T ] ∀ε>0 ∃δ>0 ∀x∈X ∀t1,t2∈(t−δ,t)∩[0,T ] ‖x(t2) − x(t1)‖ ≤ ε,

∀t∈[0,T ) ∀ε>0 ∃δ>0 ∀x∈X ∀t1,t2∈(t,t+δ)∩[0,T ] ‖x(t2) − x(t1)‖ ≤ ε.

Let us recall the compactness criterion in G([0, T ], E). This result was formulated by
Fraňková [11], (see also [4–6]).

Theorem 2.4 A nonempty subset X ⊂G([0, T ], E) is relatively compact in G([0, T ], E) if
and only if X is equiregulated on the interval [0, T ] and the sets X(t) are relatively compact
in E for t ∈ [0, T ].

Now we are going to recall the construction of regular measure of noncompactness in the
space G([0, T ], E). To this end, let us take a set X ∈ MG([0,T ],E). For x ∈ X and ε > 0 let
us denote the following quantities:

ω−
T (x, t, ε) := sup{‖x(t2) − x(t1)‖ : t1, t2 ∈ (t − ε, t) ∩ [0, T ]}, t ∈ (0, T ],

ω+
T (x, t, ε) := sup{‖x(t2) − x(t1)‖ : t1, t2 ∈ (t, t + ε) ∩ [0, T ]}, t ∈ [0, T ).

The quantities ω−(x, t, ε) and ω+(x, t, ε) can be interpreted as left-hand and right-hand
sided moduli of convergence of the function x at the point t . Further, let us put:

ω−
T (X , t, ε) := sup{ω−

T (x, t, ε) : x ∈ X}, t ∈ (0, T ],
ω+
T (X , t, ε) := sup{ω+

T (x, t, ε) : x ∈ X}, t ∈ [0, T ),

ω−
T (X , t) := lim

ε→0+ ω−
T (X , t, ε), t ∈ (0, T ],

ω+
T (X , t) := lim

ε→0+ ω+
T (X , t, ε), t ∈ [0, T ),

ω−
T (X) := sup

t∈(0,T ]
ω−
T (X , t),

ω+
T (X) := sup

t∈[0,T )

ω+
T (X , t),

βT (X) := sup
t∈[0,T ]

βE (X(t)).

Finally, let us define quantity

μT (X) := max{ω−
T (X), ω+

T (X)} + βT (X). (1)

Theorem 2.5 [14] The function μT given by formula (1) satisfies conditions 1◦–7◦ in the
space G([0, T ], E).
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Further, we define the space mentioned in the title of this paper. Denote by BG(R+, E)

the space consisting of all bounded and regulated functions defined on the interval R+ with
values in a Banach space E , equipped with the norm ‖x‖∞ := sup{‖x(t)‖ : t ∈ R+}. It is
easy to show that BG(R+, E) is a Banach space. In the next section we are going to introduce
a simple criterion of compactness in BG(R+, E) and a few measures of noncompactness in
this space.

3 Measures of noncompactness in BG(R+, E)

For fixed x ∈ BG(R+, E) and T > 0 we put

‖x‖T := sup{‖x(t)‖ : t ∈ [0, T ]}.
Further, we give the following compactness criterion based on ideas from [16].

Theorem 3.1 Let E be a real Banach space. Then a nonempty subset X ⊂ BG(R+, E) is
relatively compact iff the following three conditions are satisfied:

(a) The set X(t) is relatively compact in E for each t ∈ R+.
(b) For each T > 0 the set X |[0,T ] is equiregulated.
(c) For each ε > 0 there are δ > 0 and T > 0 such that, for any x1, x2 ∈ X, if ‖x1−x2‖T < δ

then ‖x1 − x2‖∞ < ε.

Proof (⇒) In view of the fact that X is a totally bounded set, we obtain that the sets X(t) for
arbitrary t ∈ R+ and X |[0,T ] for arbitrary T > 0 have this property as well. Therefore, we
obtain (a) and, in virtue of Theorem, 2.4 we have (b). Let us assume that (c) is not fulfilled.
Then, there exist ε0 > 0 and two sequences {xn}, {yn} ⊂ X such that

‖xn − yn‖∞ ≥ ε0 (2)

and

‖xn − yn‖n ≤ 1

n
, n ∈ N. (3)

Relative compactness of the set X implies the existence of convergent subsequences
{xkn }, {ykn } of the sequences {xn} and {yn}, i.e. xkn → x ∈ BG(R+, E) and ykn → y ∈
BG(R+, E). However, we obtain a contradiction. Namely, taking n → ∞ we obtain from
(2) inequality ‖x − y‖∞ ≥ ε0. On the other hand, in view of (3) we get ‖x − y‖∞ = 0.

(⇐) Let us consider an arbitrary sequence {xn} ⊂ X . Conditions (a) and (b) connected
with Theorem 2.4 imply that the sequence {xn} has a subsequence {x1,n} converging on
[0, 1] with respect to the pseudonorm ‖ · ‖1 to some regulated function defined on [0, 1].
Similarly, the sequence {x1,n} has a subsequence {x2,n} converging on [0, 2] with respect to
the pseudonorm ‖ · ‖2 to some regulated function defined on [0, 2]. Therefore, we obtain
the sequence of subsequences {xi,n}, i = 1, 2, . . . converging on the interval [0, i] with
respect to the pseudonorm ‖ · ‖i to some regulated function defined on R+. Next, putting
zn := xn,n, n = 1, 2, . . . we obtain the sequence {zn}, uniformly convergent on bounded
intervals to some regulated function z : R+ → E . Let us fix ε > 0. Further, if T > 0 and
δ > 0 are like in (c), then for sufficiently big n we have ‖z − zn‖T ≤ δ and in virtue of
(c) we obtain ‖z − zn‖∞ ≤ ε for sufficiently big n. This yields that z ∈ BG(R+, E) and
zn → z with respect to the norm ‖ · ‖∞ which implies relative compactness of the set X in
BG(R+, E). ��
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Using this theorem we introduce the first measure of noncompactness in the space
BG(R+, E). For this purpose we define several symbols. For a given set X ∈ MBG(R+,E)

and δ > 0 let us denote

ω−∞(X) := lim
T→∞ ω−

T (X), ω+∞(X) := lim
T→∞ ω+

T (X),

β∞(X) := lim
T→∞ βT (X),

ϕT (X , δ) := sup{‖x − y‖∞ : x, y ∈ convX , ‖x − y‖T < δ},
ϕT
0 (X) := lim

δ→0+ ϕT (X , δ),

ϕ∞
0 (X) := lim

T→∞ ϕT
0 (X). (4)

Using the above quantities we define the mapping μ : MBG(R+,E) → R+ given by the
formula

μ(X) := max{ω−∞(X), ω+∞(X)} + β∞(X) + ϕ∞
0 (X). (5)

Remark 3.2 In the definition of the quantity ϕT (X , δ) in the formula (4) the convex hull
convX appears. It is caused by the fact that without it the function μ would not fulfil the
condition 3◦ of Definition 2.1. This condition, in turn, is necessary to use many fixed point
theorems.

The main properties of the function μ are contained in the below given theorem.

Theorem 3.3 The function μ : MBG(R+,E) → R+ given by the formula (5) satisfies the
conditions 2◦, 3◦, 5◦, 6◦ and the equality kerμ = NBG(R+,E) holds.

Proof The equality kerμ = NBG(R+,E) is a simple consequence of Theorem 3.1.
We gather several facts concerning the function ϕ∞

0 . First, let us notice that the properties

ϕ∞
0 (X) ≤ ϕ∞

0 (Y ) for X ⊂ Y , (6)

ϕ∞
0 (convX) = ϕ∞

0 (X), (7)

ϕ∞
0 (λX) = |λ|ϕ∞

0 (X) for λ ∈ R, (8)

are obvious.
Now we will show that

ϕ∞
0 (X) = ϕ∞

0 (X). (9)

Let us fix X ∈ MBG(R+,E), T > 0, δ > 0 and take x, y ∈ convX such that ‖x− y‖T < δ.
Then there exist {xn}, {yn} ⊂ convX such that xn → x , yn → y. Thismeans that for arbitrary
ε > 0 there exists n0 ∈ N such that for each n ≥ n0 we have

‖x − xn‖∞ ≤ ε

2
, ‖yn − y‖∞ ≤ ε

2
.

Hence

‖x − y‖∞ ≤ ‖xn − yn‖∞ + ε. (10)

Since xn− yn → x− y, then wemay choose sufficiently big n ∈ N such that ‖xn− yn‖T < δ.
Therefore, in virtue of inequality (10) we obtain

‖x − y‖∞ ≤ ‖xn − yn‖∞ + ε ≤ ϕT (X , δ) + ε
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and hence

ϕT (X , δ) ≤ ϕT (X , δ) + ε.

Letting δ → 0 and T → ∞ we obtain (in view of arbitrariness of ε)

ϕ∞
0 (X) ≤ ϕ∞

0 (X),

which together with (6) confirms (9). Further, the property (7) in connection with (9) give us

ϕ∞
0 (ConvX) = ϕ∞

0 (X). (11)

Keeping in mind Theorem 2.5 we have that the mapping μT given by the formula (1)
satisfies conditions 1◦–7◦. Hence, to obtain the properties 2◦, 6◦, 3◦ for the measure μ, it is
sufficient to join (6), (8), (11) to the conditions 2◦, 6◦, 3◦ for the measure μT and to take
limit T → ∞.

Further, the property 5◦ will be proved. Let us assume that {Xn} is a decreasing sequence
of closed and bounded subsets of the space BG(R+, E) and limn→∞ μ(Xn) = 0. Let us
take arbitrarily xn ∈ Xn . In particular, it follows that limn→∞ μT ({xi : i ≥ n})=0 for each
T > 0. Since the measure μT satisfies the condition 5◦ in the space G([0, T ], E), putting
T = 1, 2, . . . and applying the diagonal method we ensure the existence of subsequence {un}
of the sequence {xn}, which is uniformly convergent on bounded intervals to the function
u ∈ BG(R+, E). In view of limn→∞ϕ∞

0 ({ui : i ≥ n}) = 0 we conclude that {un} is also
convergent in the norm ‖ · ‖∞ to u. This means that

u ∈
∞⋂

n=1

{ui : i ≥ n} ⊂
∞⋂

n=1

Xn �= ∅. ��

In what follows we provide two examples illustrating that the mapping μ does not fulfil
the conditions 4◦, 7◦ and 8◦.

Example 3.4 Let us fix arbitrarily e ∈ E, ‖e‖ = 1 and put λ := 1
2 ,

X :=
{
xn := 1( n−1

n , n
n+1 )(t)e + 1(n,n+1)(t)e : n ∈ N

}
,

Y :=
{
yn := −1( n−1

n , n
n+1 )(t)e + 1(n,n+1)(t)e : n ∈ N

}
.

Then we get

sup
t∈R+

βE (X(t)) = 0, sup
t∈R+

βE (Y (t)) = 0, (12)

ω+∞(X) = 0, ω−∞(X) = 1, ω+∞(Y ) = 0, ω−∞(Y ) = 1. (13)

Let us notice that if T > 1, αi ≥ 0, i = 1, . . . , N , γ j ≥ 0, j = 1, . . . , M,
∑N

i=1 αi = 1 and
∑M

j=1 γ j = 1, then
∥
∥
∥
∥
∥
∥

N∑

i=1

αi xni −
M∑

j=1

γ j xm j

∥
∥
∥
∥
∥
∥
T

=
∥
∥
∥
∥
∥
∥

N∑

i=1

αi xni −
M∑

j=1

γ j xm j

∥
∥
∥
∥
∥
∥∞

.
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Thus, if ‖x − y‖T < δ for some x, y ∈ convX , then ‖x − y‖∞ < δ and finally ϕ∞
0 (X) = 0.

Reasoning similarly, we infer that ϕ∞
0 (Y ) = 0. Now, combining it with (12) and (13) we

obtain

μ(X) = 1, μ(Y ) = 1. (14)

Further, we have

sup
t∈R+

βE

(
1

2
X(t) + 1

2
Y (t)

)

= 0,

ω+∞
(
1

2
X + 1

2
Y

)

= 0, ω−∞
(
1

2
X + 1

2
Y

)

= 1.

Moreover,

1 = ϕ∞
0

({
1

2
(xn + yn) : n ∈ N

})

≤ ϕ∞
0

(
1

2
X + 1

2
Y

)

.

Hence, we obtain μ( 12 X + 1
2Y ) ≥ 2 which together with (14) proves that the property 4◦ is

not fulfilled for λ = 1
2 .

The above mentioned sets X and Y show that the property 7◦ does not hold either.
Now, let us consider the set X ∪ Y . We have

sup
t∈R+

βE ((X ∪ Y )(t)) = 0,

ω+∞(X ∪ Y ) = 0, ω−∞(X ∪ Y ) = 1,

1 = ϕ∞
0

({
1

2
(xn + yn) : n ∈ N

})

≤ ϕ∞
0 (X ∪ Y ).

The above properties yields μ(X ∪ Y ) ≥ 2 which together with (14) gives a contradiction to
8◦.

Open question It is not known if the measure μ satisfies the weak maximum property. In
other words, whether the condition

μ(X ∪ {x}) = μ(X)

holds for X ∈ MBG(R+,E), x ∈ E?

Remark 3.5 Although themappingμ given by the formula (5) does not fulfil some conditions
fromDefinition 2.1, the conditions which are satisfied are sufficient to apply basic fixed point
theorems (i.e. Darbo, Sadovskii). Moreover, the fact kerμ = NBG(R+,E) is undoubtedly an
advantage of the function μ. Indeed, this means that μ “catches” every relative compact
subset of BG(R+, E).

The below given result presents a relationship between the function μ and the Hausdorff
measure of noncompactness in BG(R+, E). As it turns out, in spite of having identical
kernels, they are not equivalent.

Theorem 3.6 For each nonempty and bounded set X ⊂ BG(R+, E) we have the inequality

μ(X) ≤ 7βBG(R+,E)(X).
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The above estimation is optimal (see Example 3.7).
However, there does not exist a constant k > 0 such that

kβBG(R+,E)(X) ≤ μ(X)

for bounded X ⊂ BG(R+, E).

Proof Let us denote R := βBG(R+,E)(X) and fix ε > 0. Then there exists a cover X ⊂
∪n
i=1BBG(R+,E)(ai , R + ε), where ai ∈ BG(R+, E).

Since X(t) ⊂ ∪n
i=1BBG(R+,E)(ai (t), R + ε), we obtain

sup
t∈R+

βE (X(t)) ≤ R + ε. (15)

Further, we will show that

ω+∞(X) ≤ 2R + 3ε. (16)

Let us fix t ∈ R+. Since {ai : i = 1, . . . , n} is a compact set, Theorem 2.4 yields that there
exists δ > 0 such that

‖ai (t1) − ai (t2)‖ ≤ ε, t1, t2 ∈ (t, t + δ), i = 1, . . . , n.

Let us take x ∈ X . There exists i such that x ∈ BBG(R+,E)(ai , R + ε). Using these consid-
erations we have

‖x(t1) − x(t2)‖ ≤ ‖x(t1) − ai (t1)‖ + ‖ai (t1) − ai (t2)‖ + ‖ai (t2) − x(t2)‖ ≤ 2R + 3ε,

which confirms (16). Similarly, we can show that ω−∞(X) ≤ 2R + 3ε, hence we obtain

max{ω−∞(X), ω+∞(X)} ≤ 2R + 3ε. (17)

In the sequel we show that

lim
T→∞ lim

δ→0
sup{‖x − y‖∞ : x, y ∈ convX , ‖x − y‖T < δ} ≤ 4R + 5ε. (18)

Since βBG(R+,E)(convX) = βBG(R+,E)(X) there exist vectors b1, . . . , bm ∈ BG(R+, E)

such that

convX ⊂ ∪m
i=1BBG(R+,E)(bi , R + ε).

Let us denote the left side of the inequality (18) by g.Hence, there exist sequences {xn}, {yn} ⊂
convX such that

‖xn − yn‖∞ → g (19)

and

‖xn − yn‖n ≤ 1

n
, n = 1, 2, . . . . (20)

We may further choose an increasing subsequence of natural numbers {kn} such that there
exist indexes i and j which give us

{xkn } ⊂ BBG(R+,E)(bi , R + ε), {ykn } ⊂ BBG(R+,E)(b j , R + ε), n = 1, 2, . . . . (21)

We will show that

‖bi − b j‖∞ ≤ 2R + 3ε. (22)
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Suppose, on the contrary, that ‖bi − b j‖∞ > 2R + 3ε. Then, for some t ∈ R+ we would
have

‖bi (t) − b j (t)‖ > 2R + 3ε.

Thus

‖xkn (t) − ykn (t)‖ ≥ ‖bi (t) − b j (t)‖ − ‖bi (t) − xkn (t)‖ − ‖b j (t) − ykn (t)‖
> 2R + 3ε − (R + ε) − (R + ε) = ε.

In connection with (20) we have (for n ∈ N such that kn ≥ t)

1

kn
≥ ‖xkn (t) − ykn (t)‖ > ε

which under n → ∞ is a contradiction and confirms (22). Combining (21) and (22) we
conclude that

‖xkn − ykn‖∞ ≤ ‖xkn − bi‖∞ + ‖bi − b j‖∞ + ‖b j − ykn‖∞ ≤ 4R + 5ε.

Letting n → ∞ and applying (19) we have (18).
Summing the inequalities (15), (17) and (18), in view of arbitrariness of ε > 0 we obtain the
first part of thesis.

For further purposes let us assume that there exists k > 0 such that

kβBG(R+,E)(X) ≤ μ(X) for X ∈ MBG(R+,E). (23)

Without loss of generality we may assume that k ≤ 1. Let us fix arbitrarily e ∈ E , ‖e‖ = 1
and put

X :=
{

xn := k

3
1( n−1

n , n
n+1 )(t)e + 1(n,n+1)(t)e : n ∈ N

}

.

Hence

βBG(R+,E)(X) = 1

2
, sup

t∈R+
βE (X(t)) = 0, ω+∞(X) = 0, ω−∞(X) = k

3
. (24)

Let us notice that if T > 1, αi ≥ 0, i = 1, . . . , N , γ j ≥ 0, j = 1, . . . , M,
∑N

i=1 αi = 1 and
∑M

j=1 γ j = 1, then
∥
∥
∥
∥
∥
∥

N∑

i=1

αi xni −
M∑

j=1

γ j xm j

∥
∥
∥
∥
∥
∥
T

≥ k

3

∥
∥
∥
∥
∥
∥

N∑

i=1

αi xni −
M∑

j=1

γ j xm j

∥
∥
∥
∥
∥
∥∞

.

Thus, if ‖x − y‖T < δ for x, y ∈ convX , then ‖x − y‖∞ < 3
k δ and this implies ϕ∞

0 (X) = 0.
Combining this fact with (24) we get μ(X) = k

3 . Hence, in virtue of (23) and (24) we have
k
2 ≤ k

3 , which yields a contradiction. ��
Now, we show that upper estimation from Theorem 3.6 is attained.

Example 3.7 Let e ∈ E is such that ‖e‖ = 1 and let us denote by ê the function ê : R+ → E
given by the formula ê(t) := e, t ∈ R+. Next, let us put

X := BBG(R+,E)(θ̂ , 1) ∪ BBG(R+,E)(2̂e, 1).

Then we get βBG(R+,E)(X) = 1, max{ω−∞(X), ω+∞(X)} = 2, supt∈R+ βE (X(t)) = 1.
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Further, for arbitrarily fixed T > 0 we define two functions of a real variable t ∈ R+, i.e.

x(t) :=
{
e for t ∈ [0, T ]
−e for t ∈ (T ,∞)

,

y(t) :=
{
e for t ∈ [0, T ]
3e for t ∈ (T ,∞)

.

Since x, y ∈ X , ‖x − y‖T = 0, ‖x − y‖∞ = 4, we get

ϕ∞
0 (X) = limT→∞ limδ→0 sup{‖x − y‖∞ : x, y ∈ convX , ‖x − y‖T < δ} = 4

and then μ(X) = 7. ��
Inspired by somemeasures in the space BC(R+, E) of bounded and continuous functions

(see [3]), we will introduce several new measures of noncompactness in BG(R+, E). For
this purpose we will define a few new set functions. Let us take arbitrarily X ∈ MBG(R+,E).
So, for a fixed T > 0 let us define

aT (X) := sup
x∈X

{
sup{‖x(t)‖ : t ≥ T }}. (25)

Next, notice that there exists the limit

a∞(X) := lim
T→∞ aT (X). (26)

Moreover we put

b∞(X) := lim
T→∞ bT (X), (27)

where

bT (X) := sup
x∈X

{
sup{‖x(t) − x(s)‖ : t, s ≥ T }}, (28)

and we can also define

c(X) := lim sup
t→∞

diam X(t), (29)

where diam X(t) is understood as

diam X(t) := sup{‖x(t) − y(t)‖ : x, y ∈ X}. (30)

And now let us consider the functions γa , γb, γc defined on the familyMBG(R+,E) as follows

γa(X) := max{ω−∞(X), ω+∞(X)} + β∞(X) + a∞(X), (31)

γb(X) := max{ω−∞(X), ω+∞(X)} + β∞(X) + b∞(X), (32)

γc(X) := max{ω−∞(X), ω+∞(X)} + β∞(X) + c(X). (33)

The main properties of the above mentioned mappings are contained in the below given
theorem.

Theorem 3.8 The mappings γa, γb, γc satisfy axioms 1◦ − 7◦ of Definition 2.1.

Proof First, let us assume that γ (X) = 0, where X ∈ MBG(R+,E) and γ is one of the
measures γa, γb, γc. Since equalities max{ω−∞(X), ω+∞(X)} = 0 and β∞(X) = 0 are
equivalent to conditions (a) and (b) from Theorem 3.1 respectively and each of the con-
ditions a∞(X) = 0, b∞(X) = 0, c(X) = 0 implies (c) from Theorem 3.1, we have
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ker γ ⊂ NBG(R+,E). Moreover, let us notice that each of the functions a∞, b∞ and c satis-
fies axioms 2◦ − 7◦. The proof of this fact is simple and will be omitted. Since, in view of
Theorem 2.5 the componentμT = max{ω−

T , ω+
T }+βT satisfies axioms 2◦−7◦, it is sufficient

to add the appropriate conditions for components a∞, b∞, c and to take limit T → ∞.
Now,we prove 5◦. Let us assume that {Xn} is a decreasing sequence of closed and bounded

subsets of the space BG(R+, E) and limn→∞ γ (Xn) = 0, where γ is one of the measures
γa, γb, γc. Let us take arbitrarily xn ∈ Xn . Reasoning similarly as in the proof of Theorem3.3,
we can state that the sequence {xn} contains subsequence which is convergent in the norm
‖ · ‖∞ to some element u ∈ BG(R+, E), and it implies that u ∈ ⋂∞

n=1 Xn �= ∅. ��
Remark 3.9 The above mentioned measures γa, γb, γc satisfy several additional conditions
(for example 4◦, 7◦) that are not fulfilled by themeasureμ. However, themeasureμ “catches”
relative compact subsets in a better way than γa, γb and γc, namely ker γa, ker γb, ker γc �

NBG(R+,E). We omit the simple examples showing that there is no equality.

The mutual relations between these five measures βBG(R+,E), μ, γa, γb and γc are pre-
sented in the following theorem.

Theorem 3.10 For arbitrary X ∈ MBG(R+,E) the following inequalities are satisfied

μ(X) ≤ 2γa(X), μ(X) ≤ 2γb(X), μ(X) ≤ γc(X), (34)

γb(X) ≤ 2γa(X), γc(X) ≤ 2γa(X), (35)

βBG(R+,E)(X) ≤ γa(X), βBG(R+,E)(X) ≤ γb(X), βBG(R+,E)(X) ≤ γc(X). (36)

Proof To obtain the inequalities (34), it is sufficient to show that ϕ∞
0 (X) ≤ 2a∞(X),

ϕ∞
0 (X) ≤ 2b∞(X) and ϕ∞

0 (X) ≤ c(X). As an example we will prove only the second
inequality.Namely, let us fix arbitrarily ε > 0 and let T > 0 be such that bT (X) ≤ b∞(X)+ε.
Next, let x, y ∈ convX and ‖x − y‖T ≤ ε. Then we obtain

‖x − y‖∞ ≤ ε + sup
t≥T

‖x(t) − y(t)‖
≤ ε + sup

t≥T
(‖x(t) − x(T )‖ + ‖x(T ) − y(T )‖ + ‖y(T ) − y(t)‖)

≤ 2ε + sup
t≥T

(‖x(t) − x(T )‖ + ‖y(T ) − y(t)‖)
≤ 2ε + 2bT (convX) ≤ 4ε + 2b∞(X)

since bT (convX) = bT (X). Hence ϕT (X , ε) ≤ 4ε + 2b∞(X). Letting ε → 0 and T → ∞
we derive ϕ∞

0 (X) ≤ 2b∞(X).
It is sufficient to show that b∞(X) ≤ 2a∞(X), c(X) ≤ 2a∞(X) to obtain the inequalities

(35). We omit the simple calculations. ��
Now, let us fix ε > 0 and choose T > 0 such that

aT (X) ≤ a∞(X) + ε, bT (X) ≤ b∞(X) + ε, c(X) ≤ sup
t≥T

diam X(t) + ε.

It has been shown (see [14]) that βG([0,T ],E)(X |[0,T ]) ≤ μT (X |[0,T ]). Thus there exist func-
tions u1, . . . , un ∈ G([0, T ], E) such that

X |[0,T ] ⊂
n⋃

i=1

B(ui , μT (X |[0,T ]) + ε). (37)
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Now, let uai be a function belonging to the space BG(R+, E) formed by the function ui by
extension on the interval (T ,∞) using vector θ . Then the functions {uai : i = 1, . . . , n} form
μT (X)+ a∞(X)+ 2ε-net of the set X in the space BG(R+, E). Indeed, let us fix arbitrarily
x ∈ X and let i be such that

‖x − ui‖T ≤ μT (X |[0,T ]) + ε. (38)

Then, for t > T we get

‖x(t) − uai (t)‖ ≤ ‖x(t)‖ ≤ aT (X) ≤ a∞(X) + ε.

Combining this fact with (38) we obtain ‖x − uai ‖∞ ≤ μT (X |[0,T ]) + a∞(X) + 2ε, and
hence βBG(R+,E)(X) ≤ μT (X |[0,T ]) + a∞(X) + 2ε. Letting T → ∞ and ε → 0 we get the
first of inequalities (36).

Now, we prove the second of the inequalities (36). Let us extend each function ui on the
interval (T ,∞) using vector ui (T ). We denote such a function by ubi , i = 1, . . . , n. We
show that {ubi : i = 1, . . . , n} forms μT (X |[0,T ])+ b∞(X)+ 2ε-net of the set X in the space
BG(R+, E). To do this let us take an arbitrary x ∈ X and let i be such that (38) holds. Since
ubi (t) = ui (T ) for t > T , we get

‖x(t) − ubi (t)‖ ≤ ‖x(t) − x(T )‖ + ‖x(T ) − ui (T )‖ ≤ bT (X) + μT (X |[0,T ]) + ε

≤ μT (X |[0,T ]) + b∞(X) + 2ε

for t > T . Hence βBG(R+,E)(X) ≤ μT (X |[0,T ]) + b∞(X) + 2ε and letting T → ∞ and
ε → 0 we obtain βBG(R+,E)(X) ≤ γb(X). We omit similar proof of the last inequality from
(36). ��
Remark 3.11 Below is given an example showing that the estimations from Theorem 3.10
are optimal. Moreover, let us notice that it is not possible to majorize any of the measures
γa, γb, γc by βBG(R+,E) or μ. The lack of such an estimation is a consequence of the sharp
inclusions ker γa, ker γb, ker γc � NBG(R+,E).

Example 3.12 Let us put E := R. We define two sets X , Y ⊂ BG(R+, R) as follows

X := {1 − 2 · 1[0,n](t) : n ∈ N},
Y := {(−1)n · 1[n,∞)(t) : n ∈ N}.

It is not difficult to show that

μ(X) = 2, γa(X) = 1, γb(X) = 2, γc(X) = 2, βBG(R+,R)(X) = 1, (39)

μ(Y ) = 2, γa(Y ) = 1, γb(Y ) = 1, γc(Y ) = 2. (40)

Now let dim E = ∞ and we put

Z := {x ∈ BG(R+, E) : x(0) ∈ BE (1), x(t) = θ for t > 0}.
We can easily show that

γa(Z) = 1, γb(Z) = 1, γc(Z) = 1, βBG(R+,E)(Z) = 1. (41)

Applying (39), (40) and (41) we obtain

μ(X) = 2γa(X), μ(Y ) = 2γb(Y ), μ(Y ) = γc(Y ),

γb(X) = 2γa(X), γc(X) = 2γa(X),

βBG(R+,R)(X) = γa(X), βBG(R+,E)(Z) = γb(Z), βBG(R+,E)(Z) = γc(Z).
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4 Superposition operator in BG(R+, E)

The properties of the superposition operator in the space G([0, T ], E) of regulated func-
tions on bounded interval have been studied by several authors (for instance [2,5–7,13,15]).
However, there are not any results concerning this operator acting in the space of regulated
functions on unbounded interval. The results obtained in this section fill the gap. Let us con-
sider a function f : R+ × E → E . Then, for every function x : R+ → E , we can define the
function (Ff x)(t) := f (t, x(t)), t ∈ R+. Operator Ff defined in such a way is called the
superposition (or Nemytskii) operator generated by the function f (see [1]).

In connection with the space BG(R+, E), the natural question appears: what properties
must the function f satisfy so that operator Ff maps the space BG(R+, E) into itself?

A further part of this section is based on the concepts contained in the paper [15]. Inspired
by the result obtained in the paper [13], concerning the space G([0, T ], E), we have the
following theorem.

Theorem 4.1 The superposition operator F f maps BG(R+, E) into itself if and only if the
function f has the following properties:

(a) the limit lim[0,t)×E�(s,v)→(t,x) f (s, v) exists for every (t, x) ∈ (0,∞) × E,

(b) the limit lim(t,∞)×E�(s,v)→(t,x) f (s, v) exists for every (t, x) ∈ R+ × E,

(c) ∀r>0 lim supt→∞ ‖ f (t, BE (r))‖ < ∞.

Proof As it has been shown in [13], the conditions (a) and (b) are equivalent to the fact that for
each regulated function x : R+ → E (unnecessarily bounded) the function Ff x is regulated
on R+, but unnecessarily bounded. If the operator Ff maps BG(R+, E) into itself, then the
condition (c) has to be satisfied, since in the opposite case the function x ∈ BG(R+, E) such
that Ff x /∈ BG(R+, E) could be constructed. Conversely, if the conditions (a)-(c) hold,
then for x ∈ BG(R+, E) the function Ff x is regulated on R+ and consequently bounded on
bounded intervals. Using this fact together with (c) we infer that Ff x is bounded on R+. ��

Using the notation

gt (x) := lim
(t,∞)×E�(s,v)→(t,x)

f (s, v), t ∈ R+, x ∈ E, (42)

the condition (b) from Theorem 4.1 can be described as follows

∀x∈E∀t∈R+∃gt (x)∈E∀ε>0∃δ>0∃τ>0∀v∈BE (x,δ)∀s∈(t,t+τ) ‖gt (x) − f (s, v)‖ ≤ ε. (43)

Similarly, we can describe the condition (a) of Theorem 4.1—we omit the details.
Let us denote by EE the linear space consisted of all, not necessarily continuous functions

h : E → E . In this space we introduce uniform compact convergence, i.e. for a given family
{hs}s∈R+ ⊂ EE , the uniform compact convergence {hs} to h ∈ EE with s → t ∈ R+ means
uniform convergence hs to h on all compact subsets in E when s → t .

Furthermore, for a fixed function f : R+ × E → E and for each t ∈ R+ we shall denote

f t (x) := f (t, x), x ∈ E .

Hence, we have f t ∈ EE for t ∈ R+.
Now we can formulate a theorem that gives (in terms of the function f t ) necessary

conditions for any Banach space E and the sufficient ones, when dim E < ∞ such that the
superposition operator Ff maps BG(R+, E) into itself.
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Theorem 4.2 Let the superposition operator F f maps BG(R+, E) into itself, where E is a
Banach space. Then the family of functions { f t }t∈R+ ⊂ EE satisfies the following conditions:

(a) The mapping R+ � t �→ f t ∈ EE is a regulated function.
(b) The following limits of pointwise convergence exist and

(b1) lims→t+ f s is continuous in E for t ∈ R+,
(b2) lims→t− f s is continuous in E for t ∈ (0,∞),

(c) ∀r>0 lim supt→∞ ‖ f t (BE (r))‖ < ∞.

Conversely, if additionally E is a finitely dimensional Banach space and conditions (a), (b)
and (c) are satisfied, then the superposition operator F f maps BG(R+, E) into itself.

Proof (⇒) Let us fix t ∈ R+. Using condition (b) of Theorem 4.1 and based on notation (42)
we have the following equality

gt (x) = lim
s→t+

f s(x), x ∈ E .

In the sequel we will prove (b1). To do this, let us take an arbitrary x ∈ E and ε > 0. Keeping
in mind (43) we infer that there are δ > 0 and τ > 0 such that

‖gt (x) − f s(v)‖ ≤ ε, s ∈ (t, t + τ), v ∈ B(x, δ).

Now, letting s → t+ we have ‖gt (x) − gt (v)‖ ≤ ε which proves continuity of gt in x and
thereby on E . Reasoning similarly, we can prove (b2).

Now, we will prove (a), i.e. that f s tends to gt in the compact convergence topology on
E when s → t+. Let us fix a non-empty and compact set K ⊂ E and ε > 0. Then, in
view of (43) and already proven continuity of gt , we have that for each x ∈ K there exist
δx > 0, τx > 0 such that concurrently

∀s∈(t,t+τx ) ∀v∈BE (x,δx ) ‖gt (x) − f s(v)‖ ≤ ε

2
(44)

and

‖gt (x) − gt (v)‖ ≤ ε

2
, v ∈ BE (x, δx ). (45)

From the family {BE (x, δx )}x∈K covering compact set K we choose a finite subcover
{BE (xi , δxi )}ni=1. Let us denote τ := min{τxi : i = 1, . . . , n} and fix arbitrary v ∈ K .
Then there exists i such that v ∈ BE (xi , δxi ). Hence, for s ∈ (t, t + τ) taking into account
(44) and (45) we infer that the following estimation

‖gt (v) − f s(v)‖ ≤ ‖gt (v) − gt (xi )‖ + ‖gt (xi ) − f s(v)‖ ≤ ε

2
+ ε

2
= ε

holds for any v ∈ K . In other words, we have uniformly convergence on K . Similarly, we
can prove the existence of the limit lims→t− f s in the topology of compact convergence.

The condition (c) is a consequence of the Theorem 4.1. Indeed, the condition (c) from
Theorem 4.2 is equivalent to (c) from Theorem 4.1.

(⇐) Let us assume that dim E < ∞ and fix t ∈ R+. Condition (a) implies the existence
of the limit gt := lims→t+ f s which, based on (b) is continuous on E . Let us fix x ∈ E and
ε > 0. Continuity of gt means that for some r > 0 we get

‖gt (x) − gt (v)‖ ≤ ε

2
, v ∈ BE (x, r). (46)
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Moreover, (a) implies that for a given compact set BE (x, r) there is a number τ > 0 such
that

‖gt (v) − f s(v)‖ ≤ ε

2
, v ∈ BE (x, r), s ∈ (t, t + τ).

Combining it with (46), for v ∈ BE (x, r), s ∈ (t, t + τ) we derive the following estimate

‖gt (x) − f (s, v)‖ ≤ ‖gt (x) − gt (v)‖ + ‖gt (v) − f (s, v)‖ ≤ ε

2
+ ε

2
= ε,

i.e. condition (43) is satisfied and thereby (b) in Theorem 4.1 holds. Similarly, we can prove
(a) in Theorem 4.1, so actually Ff maps BG(R+, E) into BG(R+, E). ��
Corollary 4.3 If a Banach space E is finitely dimensional then the superposition operator
F f maps BG(R+, E) into BG(R+, E) if and only if three conditions (a), (b) and (c) in
Theorem 4.2 are satisfied.

Now, we give the compactness criterion for the superposition operator Ff .

Theorem 4.4 Let f : R × E → E. Assume that E is a separable Banach space and the
superposition operator F f : BG(R+, E) → BG(R+, E) is continuous and compact (i.e.
F f transforms bounded sets in relatively compact sets). Then

(H1) there exists a function g ∈ BG(R+, E),
(H2) there exists a sequence {tn} ⊂ R+,
(H3) there exist functions hn : E → E, n = 1, 2, . . . that are continuous, compact and

∀r>0 lim
n→∞ ‖hn(BE (r))‖ = 0 (47)

such that

f (t, x) = g(t) +
∞∑

n=1

1tn (t)hn(x), t ∈ R+, x ∈ E . (48)

Conversely, if the conditions (H1)–(H3) are satisfied and E is a Banach space then the
formula (48) gives such a function f (t, x), that operator F f : BG(R+, E) → BG(R+, E)

and it is continuous and compact.

Remark 4.5 Obviously the case when all hn functions in the previous theorem are equal to θ ,
that is when f (t, x) = g(t), or only a finite number of them is not equal to θ is also allowed.

The proof of Theorem 4.4 will be preceded by two lemmas. However, in order to make our
considerations more transparent, we will give a useful notation. For fixed x ∈ BG(R+, E)

we will put

supp x := {t ∈ R+ : x(t) �= θ}.
In contrast to standard definition of a support we do not require the closure.

Lemma 4.6 If E is a Banach space and F f : BG(R+, E) → BG(R+, E) is compact, then
for each x, y ∈ BG(R+, E) the set supp(Ff x − Ff y) is at most countable and for each
injective sequence {tn} ⊂ R+ we have

lim
n→∞ ( f (tn, x(tn)) − f (tn, y(tn))) = θ. (49)
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Proof If the set supp(Ff x − Ff y) was uncountable or if (49) was not satisfied, then there
would exist an injective sequence {sn} ⊂ R+ and a number ε0 > 0 such that

‖ f (sn, x(sn)) − f (sn, y(sn))‖ ≥ ε0, n = 1, 2, . . . .

Let us introduce the sequence of functions un : R+ → E, n = 1, 2, . . . defined by the
formula

un(t) :=
{
x(sn) for t = sn,
y(t) for t �= sn .

Obviously un ∈ BG(R+, E). For n �= m we have

‖Ff un − Ff um‖∞ ≥ ‖(Ff un)(sn) − (Ff um)(sn)‖
= ‖ f (sn, x(sn)) − f (sn, y(sn))‖ ≥ ε0.

This means that the sequence {Ff un} is ε0-separable, hence Ff is not compact, which ends
the proof. ��

We remind that for arbitrary u ∈ E , the symbol û denotes the function û : R+ → E given
by û(t) ≡ u, t ∈ R+.

Lemma 4.7 If E is a separable Banach space and F f : BG(R+, E) → BG(R+, E) is
compact and continuous, then there exists a sequence T = {tn} ⊂ R+ such that

∀x∈E supp(Ff x̂ − Ff θ̂ ) ⊂ T . (50)

Proof Let A = {an : n ∈ N} ⊂ E be a countable dense subset of E . Let us put T :=
∪∞
n=1supp(Ff ân−Ff θ̂ ). Keeping inmind Lemma 4.6we conclude that the set T is countable

or finite. If there existed x ∈ E such that (50) did not hold, then there would exist s ∈ R+
such that s ∈ supp(Ff x̂ − Ff θ̂ ) \ T . Thus ‖(Ff x̂ − Ff θ̂ )(s)‖ = ε0 for some ε0 > 0 and
additionally (Ff ân − Ff θ̂ )(s) = θ for n ∈ N. If we took such a subsequence {akn } that
akn → x in E , we would have

‖Ff x̂ − Ff âkn‖∞ ≥ ‖(Ff x̂ − Ff θ̂ )(s) − (Ff âkn − Ff θ̂ )(s)‖ = ε0

which is in contradiction to the continuity of Ff . ��
Proof of Theorem 4.4 (⇒) First let us assume that E is a separable Banach space and Ff :
BG(R+, E) → BG(R+, E) is compact and continuous. Let T = {tn} be the sequence
such as in Lemma 4.7. We define the function g : R+ → E and the sequence of functions
hn : E → E, n = 1, 2, . . . by the following formulas

g(t) := f (t, θ), t ∈ R+,

hn(x) := f (tn, x) − f (tn, θ), x ∈ E, n ∈ N.

By Lemma 4.7, for each x ∈ E the mapping R+ � t → f (t, x) − f (t, θ) can be non-zero
only on the set T and its formula is given by

∑∞
n=1 1tn (t)hn(x). Therefore

f (t, x) = f (t, θ) + f (t, x) − f (t, θ) = g(t) +
∞∑

n=1

1tn (t)hn(x). (51)

Since Ff is continuous, the functions hn must be also continuous. Moreover, since Ff is
compact, the functions hn must also be compact. Further, in virtue of Lemma 4.6 we infer
that limn→∞( f (tn, x) − f (tn, θ)) = θ for x ∈ E , i.e.

lim
n→∞ hn(x) = θ, x ∈ E . (52)
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We have only (47) left to be proved. Suppose the contrary. Then there would exist r > 0, a
number ε0 > 0 and such a subsequence of the sequence {hn}, (also denoted by {hn}), that

‖hn(BE (r))‖ ≥ ε0, n = 1, 2, . . . . (53)

Let k1 = 1. We choose x1 ∈ BE (r) such that ‖hk1(x1)‖ ≥ ε0
2 . In view of (52) we obtain

that there exists k2 ∈ N such that k2 > k1 and ‖hi (x1)‖ ≤ ε0
4 for i ≥ k2. Invoking (53) we

conclude that there exists x2 ∈ BE (r) such that ‖hk2(x2)‖ ≥ ε0
2 . Further, by (52) we know

that there exists k3 ∈ N such that k3 > k2 and ‖hi (x2)‖ ≤ ε0
4 for i ≥ k3. Continuing this

reasoning we obtain a strictly increasing sequence {kn} ⊂ N and the sequence {xn} ⊂ BE (r)
such that

‖hkn (xn)‖ ≥ ε0

2
, n = 1, 2, . . . ,

‖hi (xn)‖ ≤ ε0

4
, i ≥ kn+1, n = 1, 2, . . . .

Let n > m. Then we have

‖Ff x̂n − Ff x̂m‖∞ ≥ ‖(Ff x̂n)(tkn ) − (Ff x̂m)(tkn )‖
= ‖hkn (xn) − hkn (xm)‖ ≥ ‖hkn (xn)‖ − ‖hkn (xm)‖ ≥ ε0

2
− ε0

4
= ε0

4
,

i.e. {Ff x̂n} is positively separated and Ff is not relatively compact which contradicts the
assumptions.

(⇐) Now, let us assume that the conditions (H1)-(H3) hold, E is a Banach space and
the function f (t, x) is given by the formula (48). First, we are going to show that Ff :
BG(R+, E) → BG(R+, E). To do this, let us fix x ∈ BG(R+, E), t ∈ R+ and the
sequence {t ′j } convergent to t from one side, e.g. t ′j → t+. Since the sequence {x(t ′j )} is
bounded, then using (47) we get lim j→∞

∑∞
n=1 1tn (t

′
j )hn(x(t

′
j )) = θ and in view of (48) we

have (Ff x)(t+) = limn→∞(Ff x)(t ′n) = limn→∞ g(t ′n) = g(t+). Similarly we prove that
(Ff x)(t−) = g(t−) i.e. Ff x is regulated on R+. Moreover, in virtue of (H1) and (H3) Ff x
is bounded and therefore Ff x ∈ BG(R+, E).

In the next step we prove that the operator Ff is compact. Let us fix a bounded sequence
{xn} ⊂ BBG(R+,E)(r), where r > 0 is a number. Since the operator h1 is compact, we are
able to choose such a subsequence {xn,1} of a sequence {xn} that the sequence {h1(xn,1(t1))}
is convergent. Further, the operator h2 is also compact so we are able to choose a subsequence
{xn,2} such that the sequence {h2(xn,2(t2))} is convergent. Moreover, {h1(xn,2(t1))} is also
convergent. Continuing this procedure we have a sequence of sequences {xn,i }∞n=1, i =
1, 2, . . . for which {xn,i+1}∞n=1 is a subsequence of the sequence {xn,i }∞n=1 and there exists a
limit limn→∞ h j (xn,i (t j )) for i = 1, 2, . . . , j = 1, 2, . . . , i . Next, using a diagonal method
we define the sequence {yn} by yn := xn,n, n = 1, 2, . . .. Obviously {yn} is a subsequence of
{xn}. Moreover, the limit limn→∞ hi (yn(ti )) exists for each i = 1, 2, . . .. This fact together
with (Ff yn)(t) = g(t) for t /∈ T implies that the limit limn→∞(Ff yn)(t) exists for each
t ∈ R+. We are able now to introduce the function z : R+ → E defined by the formula
z(t) := limn→∞(Ff yn)(t), i.e.

z(t) =
{
g(t) for t ∈ R+ \ T ,

g(ti ) + lim
n→∞ hi (yn(ti )) for t = ti , i = 1, 2, . . . .

Keeping in mind (47) we get

‖z(ti ) − g(ti )‖ = ‖ lim
n→∞ hi (yn(ti ))‖ ≤ ‖hi (BE (r))‖ −→

i→∞ 0.
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This implies that z is regulated on R+, Moreover, in view of (H1) and (H3) the function z
belongs to the space BG(R+, E). Using (48) we obtain

‖z − Ff yk‖∞ = sup
ti∈T

‖ lim
n→∞ hi (yn(ti )) − hi (yk(ti ))‖. (54)

Let us fix ε > 0. In virtue of (47) we conclude that there existsm ∈ N such that for i > m we
have ‖hi (BE (r))‖ ≤ ε and therefore supi>m ‖limn→∞ hi (yn(ti )) − hi (yk(ti ))‖ ≤ 2ε. Since
there exists a limit limn→∞ hi (yn(ti )), i = 1, 2, . . ., there is k0 ∈ N such that for k ≥ k0
and for i = 1, 2, . . . ,m we have

∥
∥
∥ lim
n→∞ hi (yn(ti )) − hi (yk(ti ))

∥
∥
∥ ≤ ε.

Combining the above obtained estimation and (54) we get for k ≥ k0 the inequality ‖z −
Ff yk‖∞ ≤2ε which proves that Ff yk → z in BG(R+, E) for k → ∞.

Continuity of the operator Ff is a consequence of condition (H3) and the equalities (47)
and (48)—we omit a simple proof of this fact. ��
Corollary 4.8 Let Banach space E be separable. Then F f (BG(R+, E))⊂ BG(R+, E) and
the superposition operator F f : BG(R+, E) → BG(R+, E) is continuous and compact if
and only if the conditions (H1)-(H3) of Theorem 4.4 are satisfied and

f (t, x) = g(t) +
∞∑

n=1

1tn (t)hn(x), t ∈ R+, x ∈ E,

for some function g ∈ BG(R+, E).

5 An application

As an example of application we consider equation

x(t) = f (t, x(t)) +
∞∫

0

u(t, s, x(s))ds, t ≥ 0. (55)

We will assume that the functions involved in Eq. (55) satisfy the following conditions:

(i) the function f : R+ × E → E has the following properties:

(i1) f is bounded on R+ × BE (r) for r > 0,
(i2) there is a constant q ≥ 0 such that

‖ f (t, x1) − f (t, x2)‖ ≤ q‖x1 − x2‖
for t ∈ R+, x1, x2 ∈ E ,

(i3) the family of functions { f (·, x) : x ∈ BE (r)} is equiregulated on R+ for all r > 0,

(ii) the mapping u : R+ × R+ × E → E has the following properties:

(ii1) the function u(t, ·, x(·)) is integrable on R+ for any t ∈ R+ and for all x ∈
BG(R+, E),

(ii2) u is bounded on R+ × R+ × BE (r) for all r > 0,
(ii3) the mapping u(t, s, x) is continuous with respect to the variable x ,
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(ii4) there exist functions: φ ∈ BG(R+, R+), g ∈ L1(R+, R+) and nondecreasing func-
tion h : R+ → R+ such that

‖u(t2, s, x) − u(t1, s, x)‖ ≤ |φ(t2) − φ(t1)|g(s)h(‖x‖)
for all t1, t2, s ∈ R+, x ∈ E ,

(ii5) the family of functions {u(t, ·, x) : t ∈ R+, x ∈ BE (r)} is equiregulated on R+ for
all r > 0,

(ii6) there is a function k : R+ × R+ → R+, integrable with respect to s on R+ for all
t ∈ R+, such that

βE
(
u(t, s, A)

) ≤ k(t, s)βE (A)

for all t, s ≥ 0, A ⊂ E, A is bounded,
(ii7) there are functions: k1 : R+ × R+ → R+, integrable with respect to s on R+ for all

t ∈ R+, and nondecreasing ψ : R+ → R+ such that

‖u(t, s, x)‖ ≤ k1(t, s)ψ(‖x‖)
for all t, s ∈ R+, x ∈ E , and moreover

lim
t→∞

∞∫

0

k1(t, s)ds = 0,

(iii) there is a constant r > 0 such that

sup

⎧
⎨

⎩

∥
∥ f (t, x(t)) +

∞∫

0

u(t, s, x(s))ds
∥
∥ : x ∈ BBG(R+,E)(r), t ∈ R+

⎫
⎬

⎭
≤ r

and

q + sup
t∈R+

∞∫

0

k(t, s)ds < 1.

For our further purposes we will need following fixed point theorem [3].

Theorem 5.1 Let Q be a nonempty bounded closed convex subset of the Banach space E
and let S : Q → Q be continuous and such that μ(SX) ≤ qμ(X) for any nonempty subset
X of Q, where q is a constant, q ∈ [0, 1) and μ is a measure of noncompactness. Then S
has a fixed point in the set Q.

Now we formulate our theorem as:

Theorem 5.2 Under the conditions (i)–(iii), Eq. (55) has at least one solution in BG(R+, E).

Proof Let r > 0 be as in (iii) and denote Br := BBG(R+,E)(r). For our further purposes we
denote by U the constant

U := sup{‖u(t, s, x(s))‖ : t, s ≥ 0, x ∈ Br }.
Keeping in mind the assumptions (ii2), we have U < ∞.
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Now we define three operators Ff ,U and S for x ∈ Br :

(Ff x)(t) := f (t, x(t)), (Ux)(t) :=
∞∫

0

u(t, s, x(s))ds for t ≥ 0, Sx := Ff x +Ux .

Firstly we show that Ff x,Ux ∈ BG(R+, E). To do this fix t ∈ R+. Next assume that
t1, t2 ∈ R+ are such that t < t1 < t2. Then, in view of (i2) we have

‖(Ff x)(t2) − (Ff x)(t1)‖ ≤ q‖x(t2) − x(t1)‖ + ‖ f (t2, x(t1)) − f (t1, x(t1))‖. (56)

Using condition (i3) we have that there is limit lims→t+(Ff x)(s). Similarly we obtain the
existence of lims→t−(Ff x)(s), so Ff x is regulated on R+. Moreover, in view of (i1), Ff x
is bounded and therefore Ff x ∈ BG(R+, E).

By virtue of (ii4) we get

‖(Ux)(t2) − (Ux)(t1)‖ ≤ |φ(t2) − φ(t1)|h(r)

∞∫

0

g(s)ds + (t2 − t1)U . (57)

The condition (ii4) implies that there exists lims→t+(Ux)(s) (and similarly for
lims→t−(Ux)(s)). Then, in view of (ii2), we get Ux ∈ BG(R+, E), and thus by (iii),
S : Br → Br . From the assumption (i2), (ii3) and Lebesgue’s dominated convergence theo-
rem we conclude that the operators Ff and U are continuous, and therefore S : Br → Br is
also continuous.

Now we are going to use Theorem 5.1 with the measure γc given in (33). Let us take a
nonempty set X ⊂ Br . From (i2), after standard calculation we get

β∞(Ff X) ≤ qβ∞(X), (58)

c(Ff X) ≤ qc(X). (59)

Next, fix arbitrarily T > 0, ε > 0 and t ∈ [0, T ). Applying (56) we get

ω+
T (Ff X , t, ε) ≤ qω+

T (X , t, ε)

+ sup{‖ f (t2, z) − f (t1, z)‖ : t1, t2 ∈ (t, T ], |t2 − t1| ≤ ε, z ∈ BE (r)}.
Then, using (i3) we derive ω+

T (Ff X , t) ≤ qω+
T (X , t) as ε → 0, and therefore ω+∞(Ff X) ≤

qω+∞(X). Similarly we derive ω−∞(Ff X) ≤ qω−∞(X). Thus

max{ω+∞(Ff X), ω−∞(Ff X)} ≤ q max{ω+∞(X), ω−∞(X)}.
This inequality, together with (58) and (59), imply

γc(Ff X) ≤ qγc(X). (60)

Let X ⊂ Br , T > 0, ε > 0, t ∈ [0, T ), t < t1 < t2 ≤ T , |t2 − t1| ≤ ε. Using (57) we have

ω+
T (UX , t, ε) ≤ sup

{|φ(t2) − φ(t1)| : t < t1 < t2 ≤ T , |t2 − t1| ≤ ε
}

· h(r)

∞∫

0

g(s)ds + εU .

Keeping in mind that φ ∈ BG(R+, R+) and tending with ε → 0 we get ω+
T (UX , t) = 0

and therefore ω+∞(UX) = 0. In similar way we get ω−∞(UX) = 0. Thus

max{ω+∞(UX), ω−∞(UX)} = 0. (61)
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Now let t ∈ R+ and x, y ∈ X . From (ii7) we have

‖(Ux)(t) − (Uy)(t)‖ ≤ 2ψ(r)

∞∫

0

k1(t, s)ds.

Hence lim supt→∞ diam(UX)(t) = 0, i.e.

c(UX) = 0. (62)

We now introduce an auxiliary operator UT : Br → BG(R+, E) for T > 0 by formula

(UT x)(t) :=
T∫

0

u(t, s, x(s))ds, x ∈ Br .

Let us fix X ⊂ Br , t ∈ [0, T ]. Keeping in mind (ii5), Theorem 3.1 [15], (ii6) we have

βE
(
(UT X)(t)

) = βE

⎛

⎝

T∫

0

u(t, s, X(s))ds

⎞

⎠ ≤
T∫

0

βE
(
u(t, s, X(s))

)
ds

≤
T∫

0

k(t, s)βE (X(s))ds

≤ sup
t∈R+

∞∫

0

k(t, s)ds · β∞(X). (63)

Next, using (ii7) we get for x ∈ X , t ∈ [0, T ]

‖(Ux)(t) − (UT x)(t)‖ ≤ ψ(r)

∞∫

T

k1(t, s)ds.

Hence we derive

dH
(
(UX)(t), (UT X)(t)

) ≤ ψ(r)

∞∫

T

k1(t, s)ds −→
T→∞ 0,

where dH
(
(UX)(t), (UT X)(t)

)
is the Hausdorff distance between the sets (UX)(t) and

(UT X)(t) ⊂ E . This implies

βE
(
(UX)(t)

) = lim
T→∞ βE

(
(UT X)(t)

)
.

Now, taking into account this equality, from (63) we obtain

β∞(UX) ≤ sup
t∈R+

∞∫

0

k(t, s)ds · β∞(X).

Linking this estimation with (61) and (62) we get

γc(UX) ≤ sup
t∈R+

∞∫

0

k(t, s)ds · γc(X).
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Thus, joining the above inequality with (60) we infer that

γc(SX) ≤ (
q + sup

t∈R+

∫ ∞

0
k(t, s)ds

)
γc(X),

and taking into account Theorem 5.1 we derive that S has at least one fixed point in the ball
Br ⊂ BG(R+, E). ��
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