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Abstract
A topological space is Suslin (Lusin) if it is a continuous (and bijective) image of a Polish
space. For aTychonoff space X letC p(X),Ck(X) andC↓F(X) be the space of continuous real-
valued functions on X , endowed with the topology of pointwise convergence, the compact-
open topology, and the Fell hypograph topology, respectively. For a metrizable space X we
prove the equivalence of the following statements: (1) X is σ -compact, (2) C p(X) is Suslin,
(3)Ck(X) is Suslin, (4)C↓F(X) is Suslin, (5)C p(X) is Lusin, (6)Ck(X) is Lusin, (7)C↓F(X)

is Lusin, (8) C p(X) is Fσ -Lusin, (9) Ck(X) is Fσ -Lusin, (10) C↓F(X) is Cδσ -Lusin. Also we
construct an example of a sequential ℵ0-space X with a unique non-isolated point such that
the function spaces C p(X), Ck(X) and C↓F(X) are non-Suslin.

Keywords Fell hypograph topology · Compact-open topology · pointwise convergence
topology · Lusin space · Suslin space · ℵ0-Space · Cosmic space · ωω-Base

Mathematics Subject Classification 54C35 · 54H05

1 Introduction

In this paper we study the descriptive properties of the spaces C p(X), Ck(X) and C↓F(X) of
continuous real-valued functions on a Tychonoff space X .

The function space C p(X) is the space C(X) of continuous real-valued functions on X ,
endowed with the topology of pointwise convergence. This topology is generated by the
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subbase consisting of the sets

�x; r� := { f ∈ C(X) : f (x) > r} and �x; r� := { f ∈ C(X) : f (x) < r}
where x ∈ X and r is a real number. The function spaces C p(X) were thoroughly studied in
the monographs [1] and [16–18].

The function space Ck(X) is the space C(X) endowed with the compact-open topology.
This topology is generated by the subbase consisting of the sets

�K ; r� := { f ∈ C(X) : min f [K ] > r} and �K ; r� := { f ∈ C(X) : max f [K ] < r}
where K is a nonempty compact set in X and r is a real number. The function spaces Ck(X)

are also well-studied in General Topology [7,12, §3.4] and Functional Analysis [9].
Our third object of study is the function space C↓F(X). It is the space C(X) endowed

with the Fell hypograph topology. This topology is generated by the subbase consisting of
the sets

�K ; r� := { f ∈ C(X) : max f [K ] < r} and �U ; r� := { f ∈ C(X) : sup f [U ] > r}
where K is a nonempty compact subset of X , U is a nonempty open set in X , and r is a real
number.

The study of the function spaces C↓F(X) was initiated by McCoy and Ntantu [11] and
continued in [19–25].

The function spaces C p(X) and Ck(X) are Tychonoff for any topological space X . In
contrast, C↓F(X) is Tychonoff only for weakly locally compact spaces X .

A space X is defined to be weakly locally compact if for every compact set K in X there
exists an open set U in X such that K ⊆ U and U is compact. The Fréchet–Urysohn fan (see
[1, III.1.8]) is an example of a weakly locally compact space, which is not locally compact.

The following characterization of the (complete) regularity of the function spaces C↓F(X)

can be found in [11, Theorem 3.7].

Theorem 1.1 (McCoy, Ntantu) For a Tychonoff space X, the following statements are equiv-
alent:

(1) C↓F(X) is a Tychonoff space.
(2) C↓F(X) is a regular space.
(3) The space X is weakly locally compact.

In this paper we shall be interested in descriptive properties of the function spaces, i.e.,
properties that can be described in terms of Borel sets.

Let us recall that a set A in a topological space X is called

– Borel if A belongs to the smallest σ -algebra of sets in X , containing all open subsets in
X ;

– constructible if A belongs to the smallest algebra of sets in X , containing all open sets
in X ;

– clopen if it is both open and closed;
– an Fσ -set if A is a countable union of closed sets in X ;
– a Gδ-set if A is a countable intersection of open sets in X ;
– a Cσ -set if A is a countable union of constructible sets in X ;
– a Cδ-set if A is a countable intersection of constructible sets in X ;
– an Cσδ-set (resp. Fσδ-set) if A is a countable intersection of Cσ -sets (resp. Fσ -sets) in

X ;
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– an Cδσ -set (resp. Gδσ -set) if A is a countable union of Cδ-sets (resp. Gδ-sets) in X .

De Morgan’s laws imply that each constructible set in a topological space can be written as
a finite union (U1 ∩ F1) ∪ · · · ∪ (Un ∩ Fn) of intersections Ui ∩ Fi of open and closed sets.

For any set in a topological space we have the following implications.

Fσ Fσδ

closed Cσ Cσδ

clopen constructible Cσ and Cδ Borel

open Cδ Cδσ

Gδ Gδσ

A topological space X is called perfect if each open set in X is of type Fσ . For example, each
metrizable space is perfect. In perfect spaces the above diagram simplifies to the following
form.

closed Fσ Cσ Fσδ Cσδ

clopen constructible Cσ and Cδ Borel

open Gδ Cδ Gδσ Cδσ

Let Γ be a class of Borel sets in topological spaces. A function f : X → Y between
topological spaces is called Γ -measurable if for any open set U ⊆ Y the preimage f −1[U ]
is Borel of class Γ in X . In particular, a function f : X → Y is continuous if and only if it
is G-measurable for the class G of open sets in topological spaces.

A topological space X is defined to be

– Polish if it is homeomorphic to a separable complete metric space;
– Suslin if it is the image of a Polish space under a continuous map;
– Lusin if it is the image of a Polish space under a continuous bijective map;
– Γ -Lusin for a Borel class Γ if it is the image of a Polish space P under a continuous

bijective map f : P → X such that the inverse map f −1 : X → P is Γ -measurable.

In the role of the class Γ we shall consider the (additive) Borel classes G, Fσ , Cσ , Cδσ ,
Gδσ , B of open sets, Fσ -sets, Cσ -sets, Cδσ -sets, Gδσ -sets, Borel sets in topological spaces,
respectively.

For any topological space we have the implications:

Polish ⇔ G-Lusin ⇒ Fσ -Lusin ⇒ Cσ -Lusin ⇒ Cδσ -Lusin ⇒ Lusin ⇒ Suslin.
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For regular spaces some implications in this chain turn into equivalences (see Theorem 3.4):

Fσ -Lusin ⇔ Cσ -Lusin ⇒ Gδσ -Lusin ⇔ Cδσ -Lusin ⇒ B-Lusin ⇔ Lusin ⇒ Suslin.

By Lusin–Suslin Theorem [10, 15.1], a subspace X of a Polish space P is Lusin if and
only if X is a Borel subset of P . By the famous result of Suslin [10, 14.2], each uncountable
Polish space contains a Suslin subset, which is not Borel and hence is not Lusin. In the class
of metrizable spaces, Lusin and Suslin spaces were defined by Bourbaki in [5].

It is well-known [7, 4.3.26] that each Polish (= G-Lusin) space X is a Gδ-set in any
Tychonoff space containing X as a subspace. In Theorem 3.1 we shall prove that each Fσ -
Lusin space X is a Cσδ-set in each Hausdorff space containing X as a subspace.

Let us observe that each Suslin space has a countable network, being a continuous image
of a Polish space (which has a countable base).

We recall that a family N of subsets of a topological space X is called

– a network if for every open set U ⊆ X and point x ∈ U , there is a set N ∈ N such that
x ∈ N ⊆ U ;

– a k-network if for every open set U ⊆ X and compact subset K ⊆ U , there is a finite
subfamily F ⊆ N such that K ⊆ ⋃F ⊆ U .

A topological space X is called

– cosmic if X is regular and has a countable network;
– an ℵ0-space if X is regular and has a countable k-network.

For any topological space we have the following implications (see [8, §4]):

metrizable separable space ⇒ ℵ0-space ⇒ cosmic space.

Function spaces C↓F(X) and Ck(X) possessing countable networks were characterized in
[11, Theorem 3.7 and 4.5] and [13] (see also [12, §4.1]).

Theorem 1.2 (McCoy, Ntantu, Michael) For a Tychonoff space X the following conditions
are equivalent:

(1) the function space C↓F(X) has a countable network;
(2) the function space Ck(X) is cosmic;
(3) the function space Ck(X) is an ℵ0-space;
(4) X is an ℵ0-space.

The following characterization of cosmic spaces C p(X) is well-known and can be found
in [12, 4.1.3] or [1, I.1.3].

Theorem 1.3 A Tychonoff space X is cosmic if and only if C p(X) is cosmic.

The following fundamental result is due to Calbrix [6] (see also Theorem 9.7 in [9, p.208]).

Theorem 1.4 (Calbrix) If for a Tychonoff space X the function space C p(X) is Suslin, then
X is σ -compact.

For anAscoli space X the Suslin property of the function spaceCk(X) can be characterized
in terms of R-universal ωω-based uniformities.

Let us recall that a topological space X is called

– Fréchet–Urysohn if for each set A ⊆ X andpointa ∈ Ā there exists a sequence {an}n∈ω ⊆
A that converges to a;
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– sequential if a subset A ⊆ X is closed in X if and only if A contains the limits of all
sequences {an}n∈ω ⊆ A that converge in X ;

– a k-space if a subset A ⊆ X is closed in X if and only if for any compact subset K ⊆ X
the intersection A ∩ K is closed in K ;

– a kR-space if a function f : X → R is continuous if and only if for every compact subset
K ⊆ X the restriction f �K is continuous;

– Ascoli if the canonical map δ : X → Ck(Ck(X)), δ : x �→ δx , is continuous.
The canonical map assigns to each point x the Dirac functional δx : Ck(X) → R,
δx : f �→ f (x).

By [15], each Tychonoff kR-space is Ascoli. Therefore, for any Tychonoff space we obtain
the following implications:

first-countable ⇒ Fréchet-Urysohn ⇒ sequential ⇒ k-space ⇒ kR-space ⇒ Ascoli.

None of these implications can be reversed, see Examples 1.6.18, 1.6.19 in [7,14], and [4,
6.7].

Next, we recall some information on ωω-based uniformities. Here we consider ωω as a
partially ordered space endowed with the partial order ≤ defined by α ≤ β iff α(n) ≤ β(n)

for all n ∈ ω.
A uniformity U on a set X is calledωω-based if it has a base (Uα)α∈ωω such thatUβ ⊆ Uα

for any α ≤ β in ωω. For example, any metrizable uniformity is ωω-based.
A uniformity U on a topological space X is calledR-universal if it generates the topology

of X and every continuous function f : X → R is uniformly continuous in the uniformity
U .

A topological space X is called universally ωω-based if its universal uniformity is
ωω-based. The universal uniformity of X is generated by the family of all continuous pseu-
dometrics on X .

Theorem 1.5 For an (Ascoli) Tychonoff space X the function space Ck(X) is Suslin if (and
only if) X is separable and has an R-universal ωω-based uniformity.

This theorem will be proved in Sect. 2. Now we discuss the descriptive properties of
function spaces on Γ -quotient spaces.

We say that a topological space X is a quotient of a topological space M if there exists a
surjective quotient map f : M → X . The quotient property of f means that a subset U ⊆ X
is open if and only if its preimage f −1[U ] in open in M .

A topological space X is called Γ -quotient for a Borel class Γ if X is a quotient of some
space of class Γ in a compact metrizable space.

In particular, a G-quotient space is a quotient of a locally compact Polish space and an
Fσ -quotient space is a quotient of a σ -compact metrizable space.

We recall that a topological space is Lashnev if it is the image of ametrizable space under a
continuous closed map. It is known (see [8, 11.3] or [2, §8.2]) that separable Lashnev spaces
are Fréchet–Urysohn ℵ0-spaces.

The following characterization is proved in [2, 7.8.10 and 8.3.1].

Proposition 1.6 A (separable Lashnev) Tychonoff space X is universally ωω-based if (and
only if) X is Fσ -quotient.

We recall that a Tychonoff space is universally ωω-based if its universal uniformity of X
has an ωω-base.
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Therefore, for any Tychonoff space X we have the implications:

G-quotient ⇒ Fσ -quotient ⇒ universally ωω-based,

where the last implication can be reversed for separable Lashnev spaces.
The following theorem is the main result of this paper.

Theorem 1.7 For a Tychonoff space X consider the following statements:

(1) X is G-quotient;
(2) Ck(X) is Polish;
(3) C↓F(X) is Cσ -Lusin;
(4) X is Fσ -quotient;
(5) C p(X), Ck(X) are Fσ -Lusin and C↓F(X) is Cδσ -Lusin;
(6) C p(X) is Lusin and X is an ℵ0-space;
(7) Ck(X) is Lusin;
(8) C↓F(X) is Lusin;
(9) C p(X) is Suslin and X is an ℵ0-space;

(10) Ck(X) is Suslin;
(11) C↓F(X) is Suslin;
(12) X is σ -compact.

Then (3) ⇐ (2) ⇔ (1) ⇒ (4) ⇒ (5) ⇒ (6) ⇔ (7) ⇔ (8) ⇒ (9) ⇔ (10) ⇔ (11) ⇒ (12).

Theorem 1.7 will be proved in Sect. 6 after some preliminary work done in Sects. 3, 4 and
5. This theorem implies the following characterization.

Corollary 1.8 For a metrizable space X the following statements are equivalent:

(1) X is σ -compact;
(2) C p(X) is Fσ -Lusin;
(3) Ck(X) is Fσ -Lusin;
(4) C↓F(X) is Cδσ -Lusin;
(5) C p(X) is Lusin;
(6) Ck(X) is Lusin;
(7) C↓F(X) is Lusin;
(8) C p(X) is Suslin;
(9) Ck(X) is Suslin;

(10) C↓F(X) is Suslin.

Theorem 1.7(3), Corollary 1.8(3) (and Theorem 1.1) suggest the following open problem.

Problem 1.9 Is the function space C↓F(X) Fσ -Lusin for any metrizable σ -compact (weakly
locally compact) space X?
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The implications of Theorems 1.7, 1.4 and 1.5 are represented in the following diagram
holding for any Tychonoff space X .

Ck (X) is Polish X is G-quotient C↓F(X) is Cσ -Lusin

X is Fσ -quotient

Ck (X) is Fσ -Lusin C p(X) is Fσ -Lusin and
X is an ℵ0-space

C↓F(X) is Cδσ -Lusin

Ck (X) is Lusin C p(X) is Lusin and
X is an ℵ0-space

C↓F(X) is Lusin

Ck (X) is Suslin C p(X) is Suslin and
X is an ℵ0-space

+Ascoli

C↓F(X) is Suslin

X is separable and has an
R-universal ωω-based uniformity

C p(X) is Suslin

X is σ -compact

The following proposition shows that the last implication in the diagram (established by
Calbrix’s Theorem1.4) cannot be reversed even for countable Lashnev (and henceℵ0-spaces)
with a unique non-isolated point. This proposition also implies that Theorem 5.7.4 in [12]
is incorrect (that theorem claims that for any sequential σ -compact ℵ0-space X the function
space Ck(X) is Suslin).

Proposition 1.10 Let X = M/A be the quotient space of a metrizable space M by a closed
nowhere dense subset A ⊂ M. If the function space Ck(X) is Suslin, then the space M is
σ -compact and hence X is an Fσ -quotient space.

Proof The quotient space X = M/A of the metrizable space M is a sequential Tychonoff
space and henceAscoli. If the function spaceCk(X) is Suslin, then X cosmic by Theorem 1.3,
and by Theorem 1.5, the topology of X is generated by some ωω-based uniformity. By
Corollary 8.2.3 [2], the set A isσ -compact. ByTheorem1.4, the cosmic space X isσ -compact
and so is its open subspace X\{A}, which is homeomorphic to M\A. Then M = A ∪ (M\A)

is σ -compact and hence X is Fσ -quotient. ��
Example 1.11 Letω<ω = ⋃

n∈ω ωn be the family of all functions x : n → ω defined on finite
ordinals n ∈ ω. Letω≤ω = ω<ω∪ωω. For any function x ∈ ω≤ω defined on an ordinal n ≤ ω

and any ordinal k ≤ ω denote by x�k the restriction of x to the ordinal k ∩ n = min{n, k}.
The set ω≤ω carries a natural partial order ≤ defined by x ≤ y iff there exists an ordinal
n ≤ ω such that x = y�n. The space ω≤ω is endowed with the topology τ generated by
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the countable base consisting of the sets ↑x = {y ∈ ω≤ω : x ≤ y} where x ∈ ω<ω. It is
easy to see that (ω≤ω, τ) is a Polish space, ω<ω is a dense discrete subspace in ω≤ω and ωω

is a closed nowhere dense subset in ω≤ω. Consider the quotient space X = ω≤ω/ωω and
observe that X is a countable sequential ℵ0-space with a unique non-isolated point. Since the
space ω≤ω is not σ -compact, the function spaces C p(X), Ck(X) and C↓F(X) are not Suslin
according to Proposition 1.10. In Sect. 7 we shall present an alternative self-contained proof
of this fact.

Observe that the space X = M/A in Proposition 1.10 is Lashnev, i.e., the image of a
metrizable space under a closed continuous map.

Problem 1.12 Assume that a Tychonoff space X is Lashnev and its function space Ck(X) is
Suslin. Is X an Fσ -quotient space?

2 The Suslin property of the function spaces on Ascoli spaces

In this section we shall prove Theorem 1.5. To prove the “if” part of this theorem, assume that
a Tychonoff space X is separable and has an R-universal ωω-based uniformity. By Theorem
7.5.1(18) of [2], the function space Ck(X) is Suslin.

To prove the “only if” part of Theorem 1.5, assume that the space X is Ascoli and the
function spaceCk(X) is Suslin. ByTheorem1.2, the space X is separable. By the definition of
anAscoli space, the canonicalmap δ : X → Ck(Ck(X)) is continuous. Since the spaceCk(X)

is Suslin, there exists a continuous surjective map ξ : ωN → Ck(X). Here N = ω \ {0}. For
any α ∈ ωN the subspace ↓α = {β ∈ ωN : β ≤ α} of ωN is compact and so is its continuous
image Kα = ξ(↓α) ⊆ Ck(X). Observe that Kα ⊆ Kβ for any α ≤ β in ωω.

For every α ∈ ωω consider the entourage

Uα =
{

(x, y) ∈ X × X : sup
f ∈Kα�N

| f (x) − f (y)| < 2−α(0)

}

of the diagonal in X × X . The continuity of the map δ : X → Ck(Ck(X)) implies that Uα

is an open neighborhood of the diagonal in X × X . It is easy to see that (Uα)α∈ωω is an
ωω-base of some uniformity U on X . To see that this uniformity in R-universal, we need to
show that every function f ∈ C(X) is uniformly continuous with respect to the uniformity
U . Given any ε > 0, find α ∈ ωω such that 2−α(0) < ε and f = ξ(α�N). Then for any pair
(x, y) ∈ Uα ∈ U , we get

| f (x) − f (y)| ≤ sup
g∈Kα�N

|g(x) − g(y)| < 2−α(0) < ε,

which means that f is uniformly continuous.

3 Some results on Lusin and Suslin spaces

Theorem 3.1 Each Fσ -Lusin subspace X of a Hausdorff topological space Y is a Cσδ-set in
Y . More precisely, X = A ∩ B for some Gδ-set A ⊆ Y and some Fσδ-set B ⊆ Y .

Proof Write X as the image of a Polish space P under a continuous bijectivemap f : P → X
with Fσ -measurable inverse f −1 : X → P . Fix a complete metric d that generates the
topology of the Polish space X .
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For every n ∈ ω fix a countable open cover Un of X by sets of d-diameter < 2−n . By the
choice of the map f , for every U ∈ Un the image f [U ] is an Fσ -set in X . Consequently,
f [U ] = ⋃Fn,U for some countable familyFn,U of closed sets in X . LetFn = ⋃

U∈Un
Fn,U

and F = ⋃
n∈ω Fn . Therefore, F is a countable family of closed sets in X . It follows that

each set F ∈ F is equal to the intersection X ∩ F̄ of X and the closure F̄ of F in the space
Y . Observe that for any sets F1, . . . , Fn ∈ F we get F̄1 ∩ . . . F̄n ∩ X = F1 ∩ · · · ∩ Fn .

Consequently,

A := Y \ ⋃{F̄1 ∩ · · · ∩ F̄n : F1, . . . , Fn ∈ F, F1 ∩ · · · ∩ Fn = ∅}
is a Gδ-set in Y containing X . Now consider the Fσδ-set B = ⋂

n∈ω

⋃
F∈Fn

F̄ in Y and
observe that A ∩ B is a Cσδ-set in Y . We claim that X = A ∩ B. The inclusion X ⊆ A ∩ B
is obvious. Assuming that X �= A ∩ B, find a point y ∈ A ∩ B\X .

Then for every n ∈ ω there exists a set Fn ∈ Fn such that y ∈ F̄n . For the set Fn find an
open set Un ∈ Un such that Fn ⊆ f [Un] and hence f −1[Fn] ⊆ Un has d-diameter < 2−n .

We claim that for every n ∈ ω the intersection F0 ∩ · · · ∩ Fn is not empty. Assuming
that this intersection is empty, we would conclude that y ∈ F̄0 ∩ · · · ∩ F̄n is contained in
Y \ A, which contradicts the choice of y. Therefore, the family of closed sets (Fn)n∈ω is
centered and so is the family ( f −1[Fn])n∈ω. Since each set f −1[Fn] has d-diameter < 2−n ,
the completeness of the metric d ensures that the intersection

⋂
n∈ω f −1[Fn] contains a

unique point x ∈ X .
By the Hausdorff property of Y , the point f (x) has an open neighborhood V ⊆ Y whose

closure does not contain the point y. By the continuity of f at x , there exists n ∈ ω such that
f −1[V ] contain the ball B(x; 2−n) = {z ∈ X : d(x, z) < 2−n}. Then f −1[Fn] ⊆ B(x; 2−n)

and hence Fn = f [ f −1[Fn]] ⊆ V . Finally, y ∈ F̄n ⊆ V̄ , which contradicts the choice of V .
This contradiction completes the proof of the equality X = A ∩ B. ��

We do not know if Theorem 3.1 generalizes to higher Borel classes.

Problem 3.2 Let X be a Gδσ -Lusin subspace of a regular topological space Y . Is X a Cδσδ-set
(=a countable intersection of Cδσ -sets) in Y ?

Let us recall that a map f : X → Y between topological spaces is Borel if for any open
set U ⊆ Y the preimage f −1[U ] is a Borel subset of X .

The following characterization of Suslin spaces was proved in [3, 2.5].

Theorem 3.3 A cosmic space X is Suslin if and only if it is the image of a Suslin space Z
under a surjective Borel map f : Z → X.

A similar characterization holds for Lusin spaces.

Theorem 3.4 For a cosmic space X the following conditions are equivalent:

(1) X is Lusin;
(2) X is B-Lusin;
(3) X is the image of a Lusin space Z under a bijective Borel map f : Z → X.

Proof (1) ⇒ (2): Assuming that X is Lusin, find a Polish space P and a continuous bijective
map f : P → X . The space X is cosmic, being a continuous image of the Polish space. By
[8, 2.9], the cosmic space X is submetrizable and hence admits a continuous injective map
g : X → Y to a Polish space Y . By Lusin–Suslin Theorem [10, 15.1], for every open set
U ⊆ P the image g ◦ f [U ] is a Borel subset of the Polish space Y . The continuity of the
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map g implies that the set f [U ] = g−1[g ◦ f [U ]] is Borel in X . This means that the space
X is B-Lusin.

The implication (2) ⇒ (3) is trivial.
(3) ⇒ (1): Assume that the cosmic space X is the image of a Lusin space L under a

bijective Borel map f : L → X . By the definition, the Lusin space L is the image of a Polish
space P under a continuous bijective map g : P → L . Then X is the image of the Polish
space under the Borel bijective map h = f ◦ g : P → X . Being cosmic, the space X has a
countable network N consisting of closed subsets of X . Since the map h is Borel, for every
N ∈ N the preimage h−1[N ] is a Borel subset of the Polish space P . By [10, 13.5], there
exists a continuous bijective map ξ : Z → P from a Polish space Z such that for every
N ∈ N the Borel set ξ−1[h−1[N ]] is open in Z . Consider the map ϕ = h ◦ ξ : Z → X and
observe that for any open setU ⊆ X the preimage ϕ−1[U ] = ⋃{ϕ−1[N ] : N ∈ N , N ⊆ U }
is open in Z , witnessing that the bijective map ϕ : Z → X is continuous and hence X is
Lusin. ��

4 Borel properties of the identity maps between various function
spaces

It is clear that for any Tychonoff space X the identity maps Ck(X) → C p(X) and Ck(X) →
C↓F(X) are continuous.

Lemma 4.1 For any ℵ0-space X, the identity map C p(X) → Ck(X) is Fσ -measurable.

Proof By Theorem 1.2, the function space Ck(X) has a countable network and hence is
hereditarily Lindelöf. Then it suffices to find a subbase of the topology of Ck(X) consisting
of the sets which are Borel in the topology of the space C p(X). We claim that the standard
subbase of Ck(X) has this property. Given a compact set K ⊆ X and a real number r , we
need to check that the open sets

�K ; r� := { f ∈ Ck(X) : max f [K ] < r} and

�K ; r� := { f ∈ Ck(X) : min f [K ] > r}
are Borel in C p(X). The compact subset K of the ℵ0-space has a countable network and
hence is separable. Consequently, we can fix a countable dense set {xm}m∈ω in K .

Now observe that the sets

�K ; r� =
∞⋃

n=1

⋂

m∈ω

(C p(X) \ �xm; r − 1
n �) and �K ; r� =

∞⋃

n=1

⋂

m∈ω

(C p(X) \ �xm; r + 1
n �)

are Borel of type Fσ in C p(X). ��
Lemma 4.2 For any cosmic space X, the identity map C↓F(X) → C p(X) is Cσ -measurable.

Proof By Theorem 1.3, the function space C p(X) has a countable network and hence is
hereditarily Lindelöf. Then it suffices to find a subbase of the topology of C p(X) consisting
of sets which are of type Cσ in the Fell hypograph topology. We claim that the standard
subbase of C p(X) has this property. Given a point x ∈ X and a real number r , we need to
check that the open sets

�x; r� := { f ∈ C(X) : f (x) < r} and �x; r� := { f ∈ C(X) : f (x) > r}
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are Borel of type Cσ in C↓F(X). The set �x; r� is open in C↓F(X) and hence Cσ by the
definition of the Fell hypograph topology. Since

C(X) \ �x; r� = { f ∈ C(X) : f (x) ≤ r} =
∞⋂

n=1

{ f ∈ C(X) : f (x) < r + 1
n } =

∞⋂

n=1

⌈
x; r + 1

n

⌉
,

the set �K ; r� is Borel of type Fσ in C↓F(X). ��
Lemma 4.3 For any ℵ0-space X, the identity map C↓F(X) → Ck(X) is Cσ -measurable.

Proof By Theorem 1.2, the function space Ck(X) has a countable network and hence is
hereditarily Lindelöf. Then it suffices to find a subbase of the topology of Ck(X) consisting
of sets which are of type Fσ in the Fell hypograph topology. We claim that the standard
subbase of Ck(X) has this property. Given a nonempty compact set K ⊆ X and a real
number r , we need to check that the open sets

�K ; r� := { f ∈ C(X) : max f [K ] < r} and �K ; r� := { f ∈ C(X) : min f [K ] > r}
are Borel of class Cσ in C↓F(X). The set �K ; r� is open in C↓F(X) by the definition of the
Fell hypograph topology.

The compact subset K of the ℵ0-space has a countable network {Kn}n∈ω consisting of
closed (and hence compact) sets in K .

Since

�K ; r� =
⋃

n∈ω

{ f ∈ C(X) : min f [K ] ≥ r + 1
2n } =

⋃

n∈ω

(
C(X) \

⋃

m∈ω

�Km; r + 1
2n �),

the set �K ; r� is Borel of type Fσ in C↓F(X). ��

5 Function spaces on F�-quotient spaces

Lemma 5.1 For any Fσ -quotient Tychonoff space X, the function spaces C p(X) and Ck(X)

are Fσ -Lusin and C↓F(X) is Cδσ -Lusin.

Proof By the definition of an Fσ -quotient space, there exists a quotient surjective map q :
M → X defined on a σ -compact metrizable space M . First we establish two properties of
the quotient map q .

Claim 5.2 For any sequence {xn}n∈ω ⊆ X that accumulates at some point x ∈ X there exists
a sequence {zk}k∈ω ⊆ q−1[{xn}n∈ω] that converges to a point z ∈ q−1(x).

Proof If the set Ω = {n ∈ ω : xn = x} is infinite, then take any point z ∈ q−1(x)

and put zk = z for all k ∈ Ω . It is clear that the sequence (zk)k∈Ω converges to z and
{zk}k∈Ω ⊆ q−1[{xn}n∈Ω ] ⊆ q−1[{xn}n∈ω].

So, we assume that the set Ω is finite. Then the set A = {xn : n ∈ ω \ Ω} is not closed
in X and by the quotient property of q , the preimage q−1(A) is not closed in M . Since M
is metrizable, there exists a sequence {zk}k∈ω ⊆ q−1[A], convergent to a point z /∈ q−1[A].
The continuity of q implies that q(z) ∈ Ā \ A = {x}. ��
Claim 5.3 For every compact set K ⊆ X and a cover U of the set q−1[K ] by open subsets of
M there exists a finite subfamily F ⊆ U such that K ⊆ ⋃

U∈F q[U ].
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Proof Since the σ -compact space M is Lindelöf, the open cover U of the closed set q−1[K ]
contains a countable subcover V . We can choose an enumeration {Un}n∈ω of the countable
family V such that q−1[K ] ⊆ ⋃∞

n=k Un and hence K ⊆ ⋃∞
n=k q[Un] for every k ∈ ω.

To finish the proof of the claim, it suffices to find n ∈ ω such that K ⊆ ⋃
k≤n q[Uk].

Assuming that no such number n exists, for every n ∈ ω we can choose a point xn ∈
K \⋃

k≤n q[Uk]. By the compactness of K , the sequence (xn)n∈ω accumulates at some point
x ∈ K . Since K ⊆ ⋃

n∈ω q[Un], there exists a number k ∈ ω such that x ∈ q[Uk]. Then
x /∈ {xn}n>k .

By Claim 5.2, there exists a sequence {zn}n∈ω ⊆ q−1[{xn}n>k] that converges to a point
z ∈ q−1(x) ⊆ q−1[K ]. Since {Un}n>k is a cover of q−1[K ], the point z belongs to some set
Un with n > k. Since the sequence (zm)m∈ω converges to the point z ∈ Un , there exists a
number m > n such that zm ∈ Un \ q−1[{xk+1, . . . , xn}]. Then q(zm) = xi for some i > n
and hence xi = q(zm) ∈ q[Un], which contradicts the choice of xi . ��

Write the σ -compact space M as the countable union M = ⋃
n∈ω Mn of an increasing

sequence (Mn)n∈ω of compact subsets of M . Fix a countable subset D ⊆ M such that for any
n ∈ ω the intersection D ∩ Mn is dense in Mn . Also fix a metric d generating the topology
of M . For a point x ∈ M and a positive real number ε let B(x; ε) = {y ∈ M : d(y, x) < ε}
be the ε-ball centered at x and D(x; ε) := D ∩ B(x; ε) be the trace of the ball B(x, ε) on
D. For every n ∈ ω let Qn = {(x, y) ∈ Mn × Mn : q(x) = q(y)}.

In the Polish space ωω × R
D consider the Gδ-subset

P :={(α, f ) ∈ ωω × R
D : ∀n ∈ ω ∀x ∈ D ∩ Mn ∀y ∈ D(x; 1

2α(n) ) (| f (x) − f (y)| ≤ 1
2n )}

∩ {(α, f ) ∈ ωω × R
D : ∀n ∈ ω ∃x ∈ D ∩ Mn ∃y ∈ D(x; 2

2α(n) ) (| f (x) − f (y)| > 1
2n )}

∩ {(α, f ) ∈ ωω × R
D : ∀n∈ω ∀(x, y)∈Qn ∀x ′∈D(x; 1

2α(n))

∀y′∈D(y; 1
2α(n)) | f (x ′)− f (y′)|≤ 3

2n }.
Observe that for every (α, f ) ∈ P and every n ∈ ω the restriction f �D ∩ Mn is a uniformly
continuous function, which admits a uniformly continuous extension f̄n : Mn → R to Mn

(by the density of D∩Mn in Mn). Taking into account that D∩Mn ⊆ D∩Mn+1, we conclude
that f̄n = f̄n+1�Mn , which allows us to define a function f̄ : M → R such that f̄ �Mn = fn

for all n ∈ ω. We claim that the function f̄ is continuous. Indeed, for any x ∈ M and any
ε > 0, we can find n ∈ ω such that x ∈ Mn and 1

2n < 1
3ε. We claim that | f̄ (x) − f̄ (y)| < ε

for any y ∈ M with d(x, y) < 1
2α(n) . Find a number m ≥ n such that y ∈ Mm . By the

continuity of the map f̄ �Mm and the density of D ∩ Mk in Mk for k ∈ {n, m}, there exist
points x ′ ∈ D ∩ Mn and y′ ∈ D ∩ Mm such that d(x ′, y′) < 1

2α(n) , | f̄ (x) − f̄ (x ′)| < 1
3ε and

| f̄ (y) − f̄ (y′)| < 1
3ε. Then

| f̄ (x)− f̄ (y)| ≤ | f̄ (x) − f̄ (x ′)| + | f̄ (x ′) − f̄ (y′)| + | f̄ (y′) − f̄ (y)| < 1
3ε + 1

2n + 1
3ε < ε.

Therefore the function f̄ is continuous.
Next, we show that f̄ (x) = f̄ (y) for any x, y ∈ M with q(x) = q(y). Assuming

that f̄ (x) �= f̄ (y), we can find n ∈ ω such that x, y ∈ Mn and | f (x) − f (y)| > 3
2n .

Then (x, y) ∈ Qn . By the density of D in M , there exist points x ′ ∈ D(x; 1
2α(n) ) and

y′ ∈ D(y; 1
2α(n) ) such that | f (x ′) − f (y′)| = | f̄ (x ′) − f̄ (y′)| > 3

2n . But this contradicts the

inclusion (α, f ) ∈ P . This contradiction shows that f̄ = f̃ ◦q for some function f̃ : X → R.
Since the map q is quotient, the function f̃ : X → R is continuous.
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So, we can consider the function ξ : P → C(X) assigning to each pair (α, f ) the (unique)
continuous function f̃ : X → R such that f = f̃ ◦ q�D.

Claim 5.4 The function ξ : P → C(X) is surjective.

Proof Let ϕ : X → R be any continuous function. For every n ∈ ω, the continuity of the
function ψ = ϕ ◦ q at points of the compact set Mn yields a number α(n) ∈ ω such that
|ψ(x)−ψ(y)| ≤ 2−n for any x ∈ Mn and y ∈ M with d(x, y) < 2−α(n). We can assume that
α(n) is the smallest possible number with this property. Then there exists x ∈ Mn and y ∈ M
such that d(x, y) < 21−α(n) and |ψ(x) − ψ(y)| > 2−n . By the density of the sets D ∩ Mn

in Mn and D in M , there are points x ′ ∈ Mn ∩ D and y′ ∈ D such that d(x ′, y′) < 21−α(n)

and |ψ(x ′) − ψ(y′)| > 2−n . It is easy to see that the pair (α, ψ�D) belongs to the first two
sets in the definition of the set P .

Let us show that (α, ψ�D) also belongs to the third set. Assuming that this is not true,
we can find n ∈ ω, (x, y) ∈ Qn and points x ′ ∈ D(x; 2−α(n)), y′ ∈ D(y; 2−α(n)) such that
|ψ(x ′) − ψ(y′)| > 3

2n . It follows that x ∈ Mn ∩ D(x ′; 2−α(n)) and y ∈ Mn ∩ D(y′; 2−α(n)).
By the density of the set D ∩ Mn in M , there are points x ′′ ∈ Mn ∩ D(x ′; 2−α(n)) and
y′′ ∈ Mn ∩ D(y′; 2−α(n)) such that max{|ψ(x) − ψ(x ′′)|, |ψ(y) − ψ(y′′)|} < 1

2n+1 . Since

x ′ ∈ D(x ′′; 2−α(n)) and y′ ∈ D(y′′; 2−α(n)), the choice of α(n) ensures that max{|ψ(x ′′) −
ψ(x ′)|, |ψ(y′′) − ψ(y′)|} ≤ 1

2n . It follows from (x, y) ∈ Qn that q(x) = q(y) and hence
ψ(x) = ϕ(q(x)) = ϕ(q(y)) = ψ(y). Then

3
2n < |ψ(x ′) − ψ(y′)| ≤ |ψ(x ′) − ψ(x ′′)| + |ψ(x ′′) − ψ(x)| + |ψ(x) − ψ(y)|

+|ψ(y) − ψ(y′′)| + |ψ(y′′) − ψ(y′)| < 1
2n + 1

2n+1 + 0 + 1
2n+1 + 1

2n = 3
2n ,

which is a contradiction finishing the proof of the inclusion (α, ψ�D) ∈ P .
Observe that for the function f = ψ�D, we get f̄ = ψ and ϕ = f̃ = ξ(α, f ), which

means that the function ξ is surjective. ��

Claim 5.5 The function ξ : P → C(X) is injective.

Proof Assume that (α, f ), (β, g) ∈ P are two pairs such that f̃ = g̃, where f̃ = ξ(α, f )

and g̃ = ξ(β, g). Then f = f̃ ◦ q�D = g̃ ◦ q�D = g.
It remains to prove that α = β. Assuming that α �= β, we can find n ∈ ω such that

α(n) �= β(n).We lose no generality assuming thatα(n) < β(n). Since (β, g) ∈ P , there exist
points x ∈ D∩Mn and y ∈ D(x; 21−β(n)) such that |g(x)−g(y)| > 2−n . The strict inequality
α(n) < β(n) implies 2−α(n) ≥ 21−β(n) and hence y ∈ D(x; 21−β(n)) ⊆ D(x; 2−α(n)). Then
we get points x ∈ D ∩ Mn and y ∈ D(x; 2−α(n)) such that | f (x)− f (y)| = |g(x)− g(y)| >

2−n . But this contradicts the inclusion (α, f ) ∈ P . ��

Claim 5.6 The function ξ : P → Ck(X) is continuous.

Proof By [8, 11.3], the Fσ -quotient space X is an ℵ0-space. By Theorem 1.2, the function
space Ck(X) is cosmic and hence hereditarily Lindelöf. So, it suffices to show that for any
nonempty compact set K ⊆ X and any real number r the sets ξ−1

[�K ; r�] and ξ−1
[�K ; r�]

are open in P .
To see that ξ−1

[�K ; r�] is open, take any pair (α, f ) ∈ ξ−1
[�K ; r�]. Consider the

function f̃ = ξ(α, f ). Since f̃ ∈ �K ; r�, there exists an open neighborhood U ⊆ X of K
and a number n ∈ ω such that r + 2

2n < inf f̃ (U ).
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For every z ∈ q−1[K ] we can find a number k ≥ n such that z ∈ Mk . By the density
of the set D ∩ Mk in Mk , there exists a point x ∈ D ∩ Mk ∩ q−1[U ] ∩ B(z; 2−α(k)). Then
z ∈ B(x; 2−α(k)). Therefore,

q−1[K ] ⊆
∞⋃

k=n

{B(x; 2−α(k)) : x ∈ D ∩ Mk ∩ q−1[U ]}.

By Claim 5.3, there exists m ≥ n and a finite subset F ⊆ D ∩ q−1[U ] such that

K ⊆
m⋃

k=n

⋃

x∈F∩Mk

q
[
B(x; 2−α(k))

]
.

Consider the open neighborhood

W :=
⋂

k≤m

⋂

x∈F

{
(β, g) ∈ P : β(k) = α(k), g(x) > r + 1

2n

}

of (α, f ) in P .
We claim that ξ [W ] ⊆ �K ; r�. Take any pair (β, g) ∈ W and consider the function

g̃ = ξ(β, g). Given any point y ∈ K we should prove that g̃(y) > r . Find k ∈ [n, m] and
x ∈ F ∩ Mk such that y ∈ q[B(x, 2−α(k))]. Then y = q(z) for some z ∈ B(x, 2−α(k)). The
inclusion (β, g) ∈ W ensures that g(x) > r + 1

2n . Let ḡ : X → R be the (unique) continuous
function extending the function g.We claim that |ḡ(z)−g(x)| ≤ 1

2k . To derive a contradiction,

assume that |ḡ(z)−g(x)| > 1
2k . By the continuity of ḡ and the density of D in M , there exists

a point t ∈ D such that d(t, z) < 2−α(k) − d(z, x) and |ḡ(t) − ḡ(z)| < |ḡ(z) − g(x)| − 1
2k .

Then t ∈ B(x; 2−α(k)) and |ḡ(t) − g(x)| > 1
2k . The inclusion (β, g) ∈ W guarantees

that β(k) = α(k). Then x ∈ D ∩ Mk and t ∈ D ∩ B(x; 2−β(k)) are two points with
|g(t) − g(x)| > 1

2k , which contradicts the inclusion (β, g) ∈ P . This contradiction shows

that |ḡ(z) − g(x)| ≤ 1
2k ≤ 1

2n . Then

g̃(y) = g̃ ◦ q(z) = ḡ(z) > g(x) − |ḡ(z) − g(x)| ≥ r + 1
2n − 1

2n = r .

Therefore, W ⊆ ξ−1
[�K ; r�] and the set ξ−1

[�K ; r�] is open in P . By analogy we can
prove that the set ξ−1

[�K ; r�] is open in P . ��
Claim 5.7 The function ξ−1 : C p(X) → P is Fσ -measurable.

Proof Since the Polish space P is hereditarily Lindelöf, it suffices to show that for any
(n, m) ∈ ω, point x ∈ D and real number r , the images of the subbasic open sets

Pn≤m := {(α, f ) ∈ P : α(n) ≤ m}, Pn≥m := {(α, f ) ∈ P : α(n) ≥ m}
and

Px<r := {(α, f ) ∈ P : f (x) < r}, Px>r := {(α, f ) ∈ P : f (x) > r}
under the map ξ are Fσ -sets in C p(X). We shall prove that the images of these sets are open
or closed (and hence Fσ ) in C p(X).

Observe that the set

– ξ [Pn≤m] = { f ∈ C(X) : ∀x ∈ D ∩ Xn ∀y ∈ D(x, 1
2m ) | f ◦ q(x) − f ◦ q(y)| ≤ 1

2n } is
closed in C p(X),
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– ξ [Pn≥m] = { f ∈ C(X) : ∃x ∈ D ∩ Xn ∃y ∈ D(x, 2
2m ) | f ◦ q(x) − f ◦ q(y)| > 1

2n } is
open in C p(X),

– ξ [Px<r ] = { f ∈ C(X) : f ◦ q(x) < r} and ξ(Px>r ) = { f ∈ C(X) : f ◦ q(x) > r}
are open in C p(X). ��

Claim 5.8 For every x, y ∈ X and ε > 0 the set E = { f ∈ C↓F(X) : | f (x) − f (y)| > ε} is
of type Cσ in C↓F(X).

Proof LetQ be the set of rational numbers and Q = {(p, q) ∈ Q×Q : p + ε < q}. Observe
that

E =
⋃

(p,q)∈Q

({ f ∈ C↓F(X) : f (x) < p, q ≤ f (y)} ∪ { f ∈ C↓F(X) : f (y) < p, q ≤ f (x)})

=
⋃

(p,q)∈Q

(�x; p� \ �y; q�) ∪ (�y; p� \ �x; q�)

is of type Cσ in C↓F(X). ��
Claim 5.9 The function ξ−1 : C↓F(X) → P is Cδσ -measurable.

Proof Similarly as in Claim 5.7, it suffices to check that for any (n, m) ∈ ω, point x ∈ D
and real number r , the images of the subbasic open sets Pn≤m, Pn≥m, Px>r , Px<r under the
map ξ are Cδσ -sets in C↓F(X). We shall prove that the images of these sets are of type Cσ or
Cδ in C↓F(X).

By Claim 5.8, the set

– ξ [Pn≤m] = { f ∈ C(X) : ∀x ∈ D ∩ Xn ∀y ∈ D(x, 1
2m ) | f ◦ q(x) − f ◦ q(y)| ≤ 1

2n }
is of type Cδ in C↓F(X),

– ξ [Pn≥m] = { f ∈ C p(X) : ∃x ∈ D ∩ Xn ∃y ∈ D(x, 2
2m ) | f (x) − f (y)| > 1

2n } is of
type Cσ in C↓F(X),

– ξ [Px<r ] = { f ∈ C(X) : f (q(x)) < r} is open in C↓F(X),
– ξ [Px>r ] = { f ∈ C(X) : f (q(x)) > r} = ⋃

n∈ω{ f ∈ C(X) : f (q(x)) ≥ r + 1
2n } =

⋃
n∈ω(C(X) \ �q(x); r + 1

2n �) is of type Fσ in C↓F(X). ��
Claim 5.10 The function space C p(X) is Fσ -Lusin.

Proof ByClaims 5.4, 5.5 and 5.6, the map ξ : P → Ck(X) is bijective and continuous. Since
the identity map Ck(X) → C p(X) is continuous, the map ξ : P → C p(X) is continuous as
the composition of two continuous maps. By Claim 5.7, the inverse map ξ−1 : C p(X) → P
is Fσ -measurable, which implies that the space C p(X) is Fσ -Lusin. ��
Claim 5.11 The function space Ck(X) is Fσ -Lusin.

Proof By Claims 5.4, 5.5 and 5.6, the map ξ : P → Ck(X) is bijective and continuous.
By Claim 5.7 the map ξ−1 : C p(X) → P is Fσ -measurable. The continuity of the identity
map Ck(X) → C p(X) implies that the map ξ−1 : Ck(X) → P is Fσ -measurable (as the
composition of a continuous and Fσ -measurable maps). Now we see that the Polish space P
and the map ξ : P → Ck(X) witness that the space Ck(X) is Fσ -Lusin. ��
Claim 5.12 The function space C↓F(X) is Cδσ -Lusin.

Proof By Claims 5.4, 5.5 and 5.6, the map ξ : P → Ck(X) is bijective and continuous.
Since the identity map Ck(X) → C↓F(X) is continuous, the map ξ : P → C↓F(X) is
continuous (as the composition of two continuous maps). By Claim 5.9, the inverse map
ξ−1 : C↓F(X) → P is Cδσ -measurable, which implies that the space C p(X) is Cδσ -Lusin. ��
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6 Proof of Theorem 1.7

In this section, for a Tychonoff space X we shall prove the implications

(3) ⇐ (2) ⇔ (1) ⇒ (4) ⇒ (6)

⇒ (7) ⇒ (8) ⇒ (6) ⇒ (7) ⇒ (10) ⇒ (11) ⇒ (9) ⇒ (10) ⇒ (12)

of Theorem 1.7.
(2) ⇒ (3) Assume that the function space Ck(X) is Polish. The continuity of the identity

map Ck(X) → C↓F(X) implies that the space C↓F(X) is Lusin. Since the identity map
C↓F(X) → Ck(X) is Cσ -measurable (by Lemma 4.3), the space C↓F(X) is Cσ -Lusin.

(2) ⇒ (1) If the function space Ck(X) is Polish, then by Corollary 5.2.5 in [12], X is
a cosmic hemicompact k-space. The hemicompactness of X yields an increasing sequence
(Kn)n∈ω of compact sets in X such that each compact subset of X is contained in some set
Kn . Consider the locally compact subspace M = ⋃

n∈ω(Kn × {n}) of the product X × ω

where the ordinal ω is endowed with the discrete topology. Let q : M → X be the natural
projection. We claim that the map q is quotient. Indeed, take any subset A ⊆ X such
that the preimage q−1[A] is closed in X . Then A ∩ Kn is closed in Kn for every n ∈ ω.
Since each compact set K ⊆ X is contained in some Kn , the intersection A ∩ K = (A ∩
Kn) ∩ K is closed in K . Since X is a k-space, the set A is closed in X . Therefore, the
map q is quotient. Since M is open in its one-point compactification, the space X is G-
quotient.

(1) ⇒ (2) Assume that X is G-quotient and find a quotient surjective map q : M → X
defined on an open subspace M of a compact metrizable space. Write the locally com-
pact space M as the countable union M = ⋃

n∈ω Un of an increasing sequence (Un)n∈ω

of open sets such that each set Un has compact closure Un , contained in Un+1. By
Claim 5.3, for every compact set K ⊆ X there exists a number n ∈ ω such that
K ⊆ q[Un] ⊆ q[Un]. Now we see that the sequence of compact sets (q[Un])n∈ω wit-
nesses that the space X is hemicompact. By Theorem 11.3 [8], X is a cosmic k-space, and by
Corollary 5.2.5 of [12], for the cosmic hemicompact k-space X , the function space Ck(X) is
Polish.

The implication (1) ⇒ (4) is trivial, (4) ⇒ (5) is proved in Lemma 5.1 and (5) ⇒ (7) is
trivial. The implication (7) ⇒ (8) follows from the continuity of the identity map Ck(X) →
C↓F(X).

(8) ⇒ (6)Assume that the space C↓F(X) is Lusin. Then C↓F(X) has a countable network
and X is an ℵ0-space by Theorem 1.2. By Theorem 1.3, the function space C p(X) is cosmic.
By Lemma 4.2, the identity map C↓F(X) → C p(X) is Borel and by Theorem 3.4, the cosmic
space C p(X) is Lusin.

(6) ⇒ (7) Assume that C p(X) is Lusin and X is an ℵ0-space. By Theorem 1.2, the
function space Ck(X) is cosmic. By Lemma 4.1, the identity map C p(X) → Ck(X) is Borel
and by Theorem 3.4, the cosmic space Ck(X) is Lusin.

The implication (7) ⇒ (10) is trivial and (10) ⇒ (11) follows from the continuity of the
identity map Ck(X) → C↓F(X).

(11) ⇒ (9) Assume that the space C↓F(X) is Suslin. Then C↓F(X) has a countable
network and X is an ℵ0-space by Theorem 1.2. By Theorem 1.3, the function space C p(X)

is cosmic. By Lemma 4.2, the identity map C↓F(X) → C p(X) is Borel and by Theorem3.3,
the space C p(X) is Suslin.
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(9) ⇒ (10) Assume that C p(X) is Suslin and X is an ℵ0-space. By Theorem 1.2, the
function space Ck(X) is cosmic. By Lemma 4.1, the identity map C p(X) → Ck(X) is Borel
and by Theorem 3.3, the space Ck(X) is Suslin.

(10) ⇒ (12) If the space Ck(X) is Suslin, then so is the space C p(X) (being a continuous
image of Ck(X). By Calbrix’s Theorem 1.4, the space X is σ -compact.

7 Discussing Example 1.11

In this section we prove that for the quotient space X = ω≤ω/ωω from Example 1.11, the
function spaces C p(X), Ck(X) and C↓F(X) are non-Suslin.

For a topological space T denote by T ′ the set of non-isolated points of T and observe
that

C ′
p(T ) := { f ∈ C p(T ) : f (T ′) ⊆ {0}}

is a closed linear subspace of C p(T ).
We recall that the discrete subspace ω<ω of the Polish space ω≤ω = ω<ω ∪ωω carries the

partial order≤ defined by x ≤ y iff x = y�n for some n ∈ ω. Endowedwith this partial order,
the set ω<ω is a tree (which means that for any x ∈ ω<ω the set ↓x = {y ∈ ω<ω : y ≤ x}
is finite and linearly ordered). A subtree T of ω<ω is well-founded if it contains no infinite
linearly ordered subsets.

In the function space C p(ω
≤ω) consider the closed subspace

M0(ω
≤ω) = {

f ∈ C p(ω
≤ω) : f [ωω] ⊆ {0},

f [ω<ω] ⊆ {0, 1}, ∀x, y ∈ ω<ω
(
x ≤ y ⇒ f (x) ≥ f (y)

)}

consisting of non-increasing continuous functions f : ω≤ω → {0, 1} that vanish on the
subspace ωω.

For any function f ∈ M0(ω
≤ω) the preimage f −1(1) is a well-founded subtree of the tree

ω<ω. So, the space M0(ω
≤ω) can be identified with the space W F of well-founded trees on

ω. By [10, 32.B], the space W F is coanalytic but not analytic and so is the space M0(ω
≤ω).

Let us recall that a subset A of a Polish space P is analytic (resp. coanalytic) if the space A
(resp. P \ A) is Suslin.

Consider the quotient space X = ω≤ω/ωω of the Polish space ω≤ω by its closed nowhere
dense subspaceωω. It is clear that X is a countableTychonoff spacewith a unique non-isolated
point {ωω}. By [8, 11.3], X is a sequential ℵ0-space.

Claim 7.1 The function space C ′
p(X) = {

f ∈ C p(X) : f [X ′] ⊆ {0}} is not Suslin.

Proof Let q : ω≤ω → X be the quotient map. It induces a continuous map q∗ : C p(X) →
C p(ω

≤ω), q∗ : f �→ f ◦ q . Observe that q∗[C ′
p(X)] = C ′

p(ω
≤ω), where C ′

p(ω
≤ω) = { f ∈

C p(ω
≤ω) : f [ωω] ⊆ {0}}. Assuming that the space C ′

p(X) is Suslin, we would conclude
that its continuous image C ′

p(ω
≤ω) is Suslin. On the other hand, C ′

p(ω
≤ω) contains the

non-analytic space M0(ω
≤ω) as a closed subspace and hence C ′

p(ω
≤ω) cannot be Suslin. ��

Claim 7.2 The function spaces C p(X), Ck(X) and C↓F(X) are non-Suslin.

Proof The space C p(X) is not Suslin since it contains the closed subspace C ′
p(X) which is

not Suslin by Claim 7.1. By Theorem 1.7, the space Ck(X) and C↓F(X) are not Suslin, too.
��
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