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Abstract
For analytic functions f in the unit diskD normalized by f (0) = 0 and f ′(0) = 1 satisfying
in D respectively the conditions Re{(1 − z) f ′(z)} > 0, Re{(1 − z2) f ′(z)} > 0, Re{(1 −
z + z2) f ′(z)} > 0, Re{(1 − z)2 f ′(z)} > 0, the sharp upper bound of the third logarithmic
coefficient in case when f ′′(0) is real was computed.

Keywords Univalent functions · Close-to-convex functions · Functions convex in the
direction of the imaginary axis · Logarithmic coefficients · Carathéodory class

Mathematics Subject Classification 30C45

1 Introduction

Let D := {z ∈ C : |z| < 1} , D := {z ∈ C : |z| ≤ 1} and T := ∂D. Let H be the class of
all analytic functions in D, A be its subclass of f normalized by f (0) := 0 and f ′(0) := 1,
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i.e., of the form

f (z) =
∞∑

n=1

anz
n, a1 := 1, z ∈ D. (1)

and S be the subclass of A of all univalent functions.
Given f ∈ S let

log
f (z)

z
= 2

∞∑

n=1

γnz
n, z ∈ D\{0}, log 1 := 0. (2)

The numbers γn are called logarithmic coefficients of f . As is well known, the logarithmic
coefficients play a crucial role in Milin conjecture ([23], see also [10, p. 155]), namely that
for f ∈ S,

n∑

m=1

n∑

k=1

(
k|γk |2 − 1

k

)
≤ 0.

De Branges [8] showingMilin conjecture confirmed the famous Bieberbach conjecture (e.g.,
[10, p. 37]). It is surprising that for the class S the sharp estimates of single logarithmic
coefficients S are known only for γ1 and γ2, namely,

|γ1| ≤ 1, |γ2| ≤ 1

2
+ 1

e
= 0.635 . . .

and are unknown for n ≥ 3.
As usual, instead of the whole class S one can take into account their subclasses for which

the problem of finding sharp estimates of logarithmic coefficients can be studied. When
f ∈ S∗, the class of starlike functions, the inequality |γn | ≤ 1/n holds for n ∈ N (see e.g.
[30, p. 42]). Moreover, for f ∈ SS∗(β), the class of strongly starlike function of order β

(0 < β ≤ 1), it holds that |γn | ≤ β/n (n ∈ N) (see [28]). Also, the bounds of γn for functions
in the class of gamma-starlike functions, close-to-convex functions and Bazilevič functions
were examined in [30, p. 116], [9,27,29], respectively. In two recent papers, namely, in [15]
the bounds of early logarithmic coefficients of the subclasses F1,F2,F3 of S and in [1] of
the subclass F4 of S of functions f satisfying respectively the condition

Re
{
(1 − z) f ′(z)

}
> 0, z ∈ D, (3)

Re
{
(1 − z2) f ′(z)

}
> 0, z ∈ D, (4)

Re
{
(1 − z + z2) f ′(z)

}
> 0, z ∈ D, (5)

Re
{
(1 − z)2 f ′(z)

}
> 0, z ∈ D, (6)

were computed. Let us note that each class defined above is the subclass of the well known
class of close-to-convex functions, so therefore families Fi , i = 1, . . . , 4, contain only
univalent functions (e.g., [12, Vol. II, p. 2]). Both cited paper contains sharp bounds of γ1
and γ2 and partial results for γ3 only. The first three results in theorem below were shown in
[15], and the last one in [1].

Theorem 1 Let f ∈ A be of the form (1). Then
1. if f ∈ F1 and 1 ≤ a2 ≤ 3/2, then

|γ3| ≤ 1

288
(11 + 15

√
30) = 0.323466 . . . ;
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2. if f ∈ F2 and 0 ≤ a2 ≤ 1, then

|γ3| ≤ 1

972
(95 + 23

√
46) = 0.258223 . . . ;

3. if f ∈ F3 and 1/2 ≤ a2 ≤ 3/2, then

|γ3| ≤ 1

7776
(743 + 131

√
262) = 0.368238 . . . ;

4. if f ∈ F4 and 1 ≤ a2 ≤ 2, then

|γ3| ≤ 1

243
(28 + 19

√
19) = 0.456045 . . .

In this paper we improve all results in Theorem 1 for γ3 for the general case when a2 is real.
Differentiating (2) and using (1) we get

γ3 = 1

2

(
a4 − a2a3 + 1

3
a32

)
. (7)

Since each class Fi , i = 1, . . . , 4, has a representation by using the Carathéodory class P ,
i.e., the class of functions p ∈ H of the form

p(z) = 1 +
∞∑

n=1

cnz
n, z ∈ D, (8)

having a positive real part in D, the coefficients of functions in Fi , so γ3 has a suitable rep-
resentation expressed by the coefficients of functions in P. Therefore to get the upper bound
of γ3 our computing is based on parametric formulas for the second and third coefficients in
P. The proof of results of Theorem 1 are based on the well known formula on c2 and on the
formula c3 due to Libera and Zlotkiewicz [21,22] with the restriction that c1 ≥ 0. Since all
classes Fi are not rotation invariant, to omit the assumption c1 ≥ 0. we will use a general
formula for c3, which was found in [4]. However to be self contained we present a proof for
c3 here. Moreover in our computation of the sharp bound of γ3 we use a lemma due to Ohno
and Sugawa [24].

Let us mention that the conditions (3), (4) and (6) were discovered by Ozaki [25] as
useful criteria of univalence. Recall also that the classes F2 and F4 have nice geometrical
interpretations, and therefore they play an important role in the geometric function theory.
Each function f ∈ F2 maps univalently D onto a domain f (D) convex in the direction of
the imaginary axis, i.e., for every w1, w2 ∈ f (D) such that Rew1 = Rew2 the line segment
[w1, w2] lies in f (D),with the additional property that there exist two pointsω1, ω2 ∈ ∂ f (D)

for which {ω1 + it : t > 0} ⊂ C\ f (D) and {ω2 − it : t > 0} ⊂ C\ f (D) (see e.g., [12,
p. 199]). Each function in the classF4 maps univalentlyD onto a domain f (D) called convex
in the positive direction of the real axis, i.e., {w + i t : t ≥ 0} ⊂ f (D) for every w ∈ f (D)

[2,6,7,11,18,19].
At the end, let us say that the conditions (3)–(6)were generalized by replacing polynomials

standing at f ′ by any quadratic polynomial [16,17], and by any polynomial of any degree
having their roots in C\D [13,14].

2 Lemmas

The formula (9) is due to Carathéodory [3] (see e.g., [10, p. 41]). The formula (10) can be
found in [26, p. 166]. In a recent paper [4] the formula (11) was shown and the extremal
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functions (13) and (14) were computed also. When c1 ≥ 0 the formula (11) was found by
Libera and Zlotkiewicz [21,22] (see also [20]).

Lemma 1 If p ∈ P is of the form (8), then

c1 = 2ζ1, (9)

c2 = 2ζ 2
1 + 2(1 − |ζ1|2)ζ2 (10)

and

c3 = 2ζ 3
1 + 4(1 − |ζ1|2)ζ1ζ2 − 2(1 − |ζ1|2)ζ1ζ 2

2 + 2(1 − |ζ1|2)(1 − |ζ2|2)ζ3 (11)

for some ζi ∈ D, i ∈ {1, 2, 3}.
For ζ1 ∈ T, there is a unique function p ∈ P with c1 as in (9), namely,

p(z) = 1 + ζ1z

1 − ζ1z
, z ∈ D. (12)

For ζ1 ∈ D and ζ2 ∈ T, there is a unique function p ∈ P with c1 and c2 as in (9)–(10),
namely,

p(z) = 1 + (
ζ1ζ2 + ζ1

)
z + ζ2z2

1 + (
ζ1ζ2 − ζ1

)
z − ζ2z2

, z ∈ D. (13)

For ζ1, ζ2 ∈ D and ζ3 ∈ T, there is a unique function p ∈ P with c1, c2 and c3 as in
(9)–(11), namely,

p(z) = 1 + (
ζ2ζ3 + ζ1ζ2 + ζ1

)
z + (

ζ1ζ3 + ζ1ζ2ζ3 + ζ2
)
z2 + ζ3z3

1 + (
ζ2ζ3 + ζ1ζ2 − ζ1

)
z + (

ζ1ζ3 − ζ1ζ2ζ3 − ζ2
)
z2 − ζ3z3

, z ∈ D. (14)

The next lemma is a special case of more general results due to Choi, Kim and Sugawa
[5] (see also [24]). Define

Y (a, b, c) := max
z∈D

(|a + bz + cz2| + 1 − |z|2) , a, b, c ∈ R.

Lemma 2 [5] If ac ≥ 0, then

Y (a, b, c) =
⎧
⎨

⎩

|a| + |b| + |c|, |b| ≥ 2(1 − |c|),
1 + |a| + b2

4(1 − |c|) , |b| < 2(1 − |c|).
If ac < 0, then

Y (a, b, c)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − |a| + b2

4(1 − |c|) , −4ac(c−2 − 1) ≤ b2 ∧ |b| < 2(1 − |c|),

1 + |a| + b2

4(1 + |c|) , b2 < min
{
4(1 + |c|)2,−4ac(c−2 − 1)

}
,

R(a, b, c), otherwise,

where

R(a, b, c) =

⎧
⎪⎪⎨

⎪⎪⎩

|a| + |b| − |c|, |c|(|b| + 4|a|) ≤ |ab|,
−|a| + |b| + |c|, |ab| ≤ |c|(|b| − 4|a|),
(|c| + |a|)

√
1 − b2

4ac
, otherwise.
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3 Logarithmic coefficients

Now we will prove the main results of this paper.

3.1 The classF1

Recall that f ∈ F1 if f ∈ A and

Re{(1 − z) f ′(z)} > 0, z ∈ D.

Theorem 2 If f ∈ F1 is of the form (1) with a2 ∈ R, then

|γ3| ≤ 1

288
(11 + 15

√
30) = 0.323466 . . . (15)

The inequality is sharp with the extremal function

f (z) =
∫ z

0

p(t)

1 − t
dt, z ∈ D, (16)

where

p(z) = (1 + z)(6 + (7 − 2
√
30)z + 6z2)

(1 − z)(6 + (1 + √
30)z + 6z2)

, z ∈ D. (17)

Proof Let f ∈ F1 be of the form (1) with a2 ∈ R. Then there exists p ∈ P of the form (8)
such that

(1 − z) f ′(z) = p(z), z ∈ D. (18)

Substituting the series (1) and (8) into (18) and equating the coefficients we get

a2 = 1

2
(1 + c1), a3 = 1

3
(1 + c1 + c2), a4 = 1

4
(1 + c1 + c2 + c3). (19)

Note first that since a2 is real, so is c1, and (9) holds with some ζ1 ∈ [−1, 1]. Moreover,
from (19) it follows that a2 ∈ [−1/2, 3/2].

By (7) and (19) we get

48γ3 = 3 + c1 − c21 + c31 − 4c1c2 + 2c2 + 6c3.

Using now (9)–(11) we have

48γ3 = 3 + 2ζ1 + 4ζ 3
1 + 4(1 − ζ 2

1 )ζ2 + 8(1 − ζ 2
1 )ζ1ζ2

− 12(1 − ζ 2
1 )ζ1ζ

2
2 + 12(1 − ζ 2

1 )(1 − |ζ2|2)ζ3,
(20)

with ζ1 ∈ [−1, 1] and ζ2, ζ3 ∈ D.
Hence for ζ1 = 1 and ζ1 = −1 we respectively have

γ3 = 3

16
= 0.1875, γ3 = − 1

16
= −0.0625. (21)

Let now ζ1 ∈ (−1, 1). Then from (20) we obtain

48|γ3| ≤ 12(1 − ζ 2
1 )Ψ (A, B,C), (22)

where
Ψ (A, B,C) := |A + Bζ2 + Cζ 2

2 | + 1 − |ζ2|2, (23)
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with

A := 3 + 2ζ1 + 4ζ 3
1

12(1 − ζ 2
1 )

, B := 1

3
(1 + 2ζ1), C := −ζ1.

Note that

AC < 0, ζ1 ∈ [−1, ζ ′) ∪ (0, 1],
and

AC ≥ 0, ζ1 ∈ [ζ ′, 0],
where ζ ′ = −0.72808 . . . is the zero of the equation 3 + 2x + 4x3 = 0, x ∈ (−1, 0).

A. Let ζ1 ∈ [ζ ′, 0]. Then the inequality |B| < 2(1− |C |) holds, so by (22) and Lemma 2
we have

48|γ3| ≤ 12(1 − ζ 2
1 )

(
1 + |A| + B2

4(1 − |C |)
)

= ϕ(ζ1), (24)

where

ϕ(x) := 1

3
(46 + 9x − 36x2 + 8x3), x ∈ [−1, 1]. (25)

Since ϕ is increasing on [ζ ′, 0], so ϕ(x) ≤ ϕ(0) = 46/3 for all x ∈ [ζ ′, 0]. Therefore from
(24) we get

|γ3| ≤ 23

72
= 0.319444 . . .

B. Let ζ1 ∈ (0, 1). Then the following inequalities hold:

B2 + 4AC(C−2 − 1) = 1

9ζ1
(−9 − 5ζ1 + 4ζ 2

1 − 8ζ 3
1 ) < 0

and

B2 − 4(1 + |C |)2 = −1

9
(35 + 68ζ1 + 32ζ 2

1 ) < 0.

Therefore from (22) and Lemma 2 it follows that

48|γ3| ≤ 12(1 − ζ 2
1 )

(
1 + |A| + B2

4(1 + |C |)
)

= ϕ(ζ1), (26)

where ϕ is the function defined by (25). Since ϕ′(x) = 0 occurs only at x = (6−√
30)/4 =:

x0 in (0, 1) and ϕ′′(x0) = −4
√
30 < 0, it follows that

ϕ(x) ≤ ϕ(x0) = 1

6
(11 + 15

√
30), x ∈ (0, 1).

Thus by (26) we get

|γ3| ≤ 1

288
(11 + 15

√
30) = 0.323466 . . .

C. Let ζ1 ∈ (−1, ζ ′). Note that then B2 < 4(1 + |C |)2. Furthermore, B2 + 4AC(C−2 −
1) < 0 holds if and only if ζ1 ∈ [−1, ζ ′′], where ζ ′′ = −0.73448 . . . is the zero of the

123
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equation 9 + 5x − 4x2 + 8x3 = 0, x ∈ (−1, 1). Therefore, when ζ1 ∈ (−1, ζ ′′], by (22)
and Lemma 2 we have

|γ3| ≤ 1

4
(1 − ζ 2

1 )

(
1 + |A| + B2

4(1 + |C |)
)

= 1

144
(28 − ζ1 − 28ζ 2

1 − 8ζ 3
1 ) <

1

8
= 0.125.

(27)

For ζ1 ∈ (ζ ′′, ζ ′] it holds B2 + 4AC(C−2 − 1) > 0 and |B| < 2(1 − |C |). Hence by (22)
and Lemma 2 we get

|γ3| ≤ 1

4
(1 − ζ 2

1 )

(
1 − |A| + B2

4(1 − |C |)
)

= 1

144
(46 + 9ζ1 − 36ζ 2

1 + 8ζ 3
1 ) <

7

48
= 0.145833 . . . .

(28)

Summarizing, from (21) and parts A-C it follows that the inequality (15) is true.
By tracking back the above proof, we see that equality in (15) holds when it is satisfied

that

ζ1 = 1

4
(6 − √

30), ζ3 = 1 (29)

and

|A + Bζ2 + Cζ 2
2 | + 1 − |ζ2|2 = 1 + |A| + B2

4(1 + |C |) , (30)

where

A = −2490 + 731
√
30

5460
, B = 8 − √

30

6
, C = −1

4
(6 − √

30).

Indeed we can easily check that one of the solutions of Eq. (30) is

ζ2 = 1

105
(25 − √

30). (31)

By Lemma 1 a function p of the form (14) with ζi (i ∈ {1, 2, 3}) given by (29) and (31),
i.e., the function (17) belongs to P. Thus the function (16) belongs to F1. Substituting (29)
and (31) into (20) we get equality in (15). This ends the proof of the theorem. �


3.2 The classF2

Recall that f ∈ F2 if f ∈ A and

Re{(1 − z2) f ′(z)} > 0, z ∈ D.

Theorem 3 If f ∈ F2 is of the form (1) with a2 ∈ R, then

|γ3| ≤ 1

972
(95 + 23

√
46) = 0.258223 . . . (32)

The inequality is sharp with the extremal function

f (z) =
∫ z

0

p(t)

1 − t2
dt, z ∈ D, (33)

123
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where

p(z) = (1 + z)(9 + (7 − 2
√
46)z + 9z2)

(1 − z)(9 + (1 + √
46)z + 9z2)

, z ∈ D. (34)

Proof Let f ∈ F2 be of the form (1). Then there exists p ∈ P of the form (8) such that

(1 − z2) f ′(z) = p(z), z ∈ D. (35)

Substituting the series (1) and (8) into (35) by equating the coefficients we get

a2 = 1

2
c1, a3 = 1

3
(1 + c2), a4 = 1

4
(c1 + c3). (36)

Note first that since a2 is real, so is c1 and (9) holds with some ζ1 ∈ [−1, 1]. Moreover, from
(36) it follows that a2 ∈ [−1, 1].

By (7) and (36) we get

48γ3 = 2c1 + c31 − 4c1c2 + 6c3.

Using now (9)–(11) we have

12γ3 = ζ 3
1 + ζ1 + 2(1 − ζ 2

1 )ζ1ζ2

− 3(1 − ζ 2
1 )ζ1ζ

2
2 + 3(1 − ζ 2

1 )(1 − |ζ2|2)ζ3.
(37)

with ζ1 ∈ [−1, 1] and ζ2, ζ3 ∈ D.

Hence for ζ1 = 1, ζ1 = −1 and ζ1 = 0 we respectively have

γ3 = 1

6
, γ3 = −1

6
, |γ3| ≤ 1

4
(1 − |ζ2|2) ≤ 1

4
. (38)

Now let ζ1 ∈ (−1, 1)\{0} =: I . Then from (37) we obtain

12|γ3| ≤ 3(1 − ζ 2
1 )Ψ (A, B,C), (39)

where Ψ is defined by (23) with

A := ζ1(1 + ζ 2
1 )

3(1 − ζ 2
1 )

, B := 2

3
ζ1, C := −ζ1.

Note now that AC < 0 for ζ1 ∈ I . Moreover,

B2 ≤ −4AC(C−2 − 1), ζ1 ∈ I ,

since

B2 + 4AC(C−2 − 1) = −4

9
(3 + 2ζ 2

1 ) < 0, ζ1 ∈ I ,

and

B2 < 4(1 + |C |)2, ζ1 ∈ I ,

since

B2 − 4(1 + |C |)2 = −4

9
(8ζ 2

1 + 18|ζ1| + 9) < 0, ζ1 ∈ I .

123
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Therefore by Lemma 2 we get

Ψ (A, B,C) ≤ 1 + |A| + B2

4(1 + |C |)
= 1 + |ζ1|(1 + ζ 2

1 )

3(1 − ζ 2
1 )

+ ζ 2
1

9(1 + |ζ1|) .

Hence and from (39) it follows that

12|γ3| ≤ ϕ(ζ1), (40)

where

ϕ(x) := 1

3
(9 + 3|x | − 8x2 + 2|x |3), x ∈ I .

We note that the function ϕ is even in I. As easy to verify

ϕ(x) ≤ ϕ(x0) = 1

81
(95 + 23

√
46), x ∈ I ,

where x0 := (8 − √
46)/6 = 0.202945 . . . Hence and by (40) we obtain

|γ3| ≤ 1

12
ϕ(x0) ≤ 1

972
(95 + 23

√
46).

This and (38) show that the inequality (32) is true.
By tracking back the above proof, we see that equality in (32) holds when it is satisfied

that

ζ1 = 1

6
(8 − √

46), ζ3 = 1 (41)

and

|A + Bζ2 + Cζ 2
2 | + 1 − |ζ2|2 = 1 + |A| + B2

4(1 + |C |) , (42)

where

A = −1688 + 283
√
46

3150
, B = 1

9
(8 − √

46), C = −1

6
(8 − √

46).

Indeed we can easily check that one of the solutions of the equation (42) is

ζ2 = 1

75
(11 − √

46). (43)

By Lemma 1 a function p of the form (14) with ζi (i ∈ {1, 2, 3}) given by (41) and (43),
i.e., the function (34) belongs to P. Thus the function (33) belongs to F2. Substituting (41)
and (43) into (37) we get equality in (32). This ends the proof of the theorem. �


3.3 The classF3

Recall that f ∈ F3 if f ∈ A and

Re{(1 − z + z2) f ′(z)} > 0, z ∈ D.

123
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Theorem 4 If f ∈ F3 is of the form (1) with a2 ∈ R, then

|γ3| ≤ 1

7776
(743 + 131

√
262) = 0.368238 . . . (44)

This result is sharp.

Proof Let f ∈ F3 be of the form (1) with a2 ∈ R. Then there exists p ∈ P of the form (8)
such that

(1 − z + z2) f ′(z) = p(z), z ∈ D. (45)

Substituting the series (1) and (8) into (45) by equating the coefficients we get

a2 = 1

2
(1 + c1), a3 = 1

3
(c1 + c2), a4 = 1

4
(−1 + c2 + c3). (46)

Note first that since a2 is real, so is c1 and (9) holds with some ζ1 ∈ [−1, 1]. Moreover, from
(46) it follows that a2 ∈ [−1/2, 3/2].

By (7) and (46) we get

48γ3 = −5 − c1 − c21 + c31 − 4c1c2 + 2c2 + 6c3.

Using now (9)–(11) we have

48γ3 = − 5 − 2ζ1 + 4ζ 3
1 + 4(1 − ζ 2

1 )ζ2 + 8(1 − ζ 2
1 )ζ1ζ2

− 12(1 − ζ 2
1 )ζ1ζ

2
2 + 12(1 − ζ 2

1 )(1 − |ζ2|2)ζ3,
(47)

with ζ1 ∈ [−1, 1] and ζ2, ζ3 ∈ D.
Hence for ζ1 = 1 and ζ1 = −1 we respectively have

γ3 = − 1

16
, γ3 = − 7

48
. (48)

Now let ζ1 ∈ (−1, 1). Then from (47) we get

48|γ3| ≤ 12(1 − ζ 2
1 )Ψ (A, B,C), (49)

where Ψ is defined by (23) with

A := −5 − 2ζ1 + 4ζ 3
1

12(1 − ζ 2
1 )

, B := 1

3
(1 + 2ζ1), C := −ζ1.

Note that A < 0 for ζ1 ∈ (−1, 1).
Let ζ1 ∈ (−1, 0). Then AC < 0 and it can be easily checked that the following inequalities

are true:

B2 + 4AC(C−2 − 1) = 1

9ζ1
(15 + 7ζ1 + 4ζ 2

1 − 8ζ 3
1 ) < 0

and

B2 − 4(1 + |C |)2 = −1

9
(35 − 76ζ1 + 32ζ 2

1 ) < 0.

Hence from (49) and Lemma 2 and it follows that

|γ3| ≤ 1

4
(1 − ζ 2

1 )

(
1 + |A| + B2

4(1 + |C |)
)

= 1

144
(52 + 11ζ1 − 28ζ 2

1 − 8ζ 3
1 ) ≤ 13

36
= 0.361111 . . .

(50)
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Let now ζ1 ∈ [0, 1). Then AC ≥ 0 and we consider two subcases, i.e., ζ1 ∈ [5/8, 1) and
ζ1 ∈ [0, 5/8). For ζ1 ∈ [5/8, 1), it holds |B| ≥ 2(1 − |C |). Thus by (49) and Lemma 2 we
have

|γ3| ≤ 1

4
(1 − ζ 2

1 )(|A| + |B| + |C |)

= 1

48

(
9 + 22ζ1 − 4ζ 2

1 − 24ζ 3
1

) ≤ 327

1024
= 0.319335 . . .

(51)

For ζ1 ∈ [0, 5/8) it holds |B| < 2(1 − |C |). Thus (49) and Lemma 2 lead to

48|γ3| ≤ 12(1 − ζ 2
1 )

(
1 + |A| + B2

4(1 − |C |)
)

= ϕ(ζ1), (52)

where

ϕ(x) := 1

3
(52 + 11x − 28x2 − 8x3), x ∈ [0, 5/8).

As easy to verify, for x ∈ [0, 5/8],

ϕ(x) ≤ ϕ(x0) = 1

162
(743 + 131

√
262) = 17.675433 . . . ,

where x0 = (−14+√
262)/12 = 0.182201 . . . ∈ [0, 5/8). Hence and by (52) it follows that

|γ3| ≤ 1

7776
(743 + 131

√
262). (53)

Summarizing (48), (50), (51) and (53) show that the inequality (44) is true.
By tracking back the above proof, we see that equality in (44) holds when it is satisfied

that

ζ1 = 1

12
(−14 + √

262), ζ3 = 1 (54)

and

|A + Bζ2 + Cζ 2
2 | + 1 − |ζ2|2 = 1 + |A| + B2

4(1 − |C |) , (55)

where

A = 9526 − 1601
√
262

35604
, B = − 1

18
(8 − √

262), C = 1

12
(14 − √

262).

Indeed we can check that ζ2 defined by

ζ2 = 4924 − 269
√
262 ± 2i

√
57399872 − 3438382

√
262

11946 − 555
√
262

(56)

satisfies the equation (55).
By Lemma 1 a function p of the form (14) with ζi (i ∈ {1, 2, 3}) given by (54) and (56)

belongs to P. Note that |ζ2| = 0.912 . . . Thus the corresponding function function

f (z) =
∫ z

0

p(t)

1 − t + t2
dt, z ∈ D,

belongs to F3. Substituting such chosen ζ1, ζ2 and ζ3 into (47) we get equality in (44). This
ends the proof of the theorem. �
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3.4 The classF4

Recall that f ∈ F4 if f ∈ A and

Re{(1 − z)2 f ′(z)} > 0, z ∈ D.

Theorem 5 If f ∈ F4 is of the form (1) with a2 ∈ R, then

|γ3| ≤ 1

243
(28 + 19

√
19) = 0.456045 . . . (57)

The inequality is sharp with the extremal function

f (z) =
∫ z

0

p(t)

(1 − t)2
dt, z ∈ D, (58)

where

p(z) =
(1 + z)

(
9 + (14 − 4

√
19)z + 9z2

)

(1 − z)
(
9 + 2(1 + √

19)z + 9z2
) , z ∈ D. (59)

Proof Let f ∈ F4 be of the form (1) with a2 ∈ R. Then there exists p ∈ P of the form (8)
such that

(1 − z)2 f ′(z) = p(z), z ∈ D. (60)

Putting the series (1) and (8) into (60) by equating the coefficients we get

a2 = 1

2
(2 + c1), a3 = 1

3
(3 + 2c1 + c2),

a4 = 1

4
(4 + 3c1 + 2c2 + c3).

(61)

As in earlier consideration, ζ1 ∈ [−1, 1] and from (61) it follows that a2 ∈ [0, 1].
By (7) and (61) we get

12γ3 = 1

4
(8 + 2c1 − 2c21 + c31 − 4c1c2 + 4c2 + 6c3).

Using now (9)–(11) we have

12γ3 = ζ 3
1 + ζ1 + 2 + 2(1 − ζ 2

1 )ζ2 + 2(1 − ζ 2
1 )ζ1ζ2

− 3(1 − ζ 2
1 )ζ1ζ

2
2 + 3(1 − ζ 2

1 )(1 − |ζ2|2)ζ3,
(62)

with ζ1 ∈ [−1, 1] and ζ2, ζ3 ∈ D.
Hence for ζ1 = 1 and ζ1 = −1 we respectively have

γ3 = 1/3, γ3 = 0. (63)

Let now ζ1 ∈ (−1, 1). Then

12|γ3| ≤ 3(1 − ζ 2
1 )Ψ (A, B,C), (64)

where Ψ is defined by (23) with

A := 2 − ζ1 + ζ 2
1

3(1 − ζ1)
, B := 2

3
(1 + ζ1), C := −ζ1.
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For ζ1 ∈ (−1, 0] it holds AC ≥ 0 and |B| < 2(1 − |C |). Thus by (64) and Lemma 2 we
have

|γ3| ≤ 1

4
(1 − ζ 2

1 )

(
1 + |A| + B2

4(1 − |C |)
)

= 1

18
(8 + 2ζ1 − 5ζ 2

1 + ζ 3
1 ) ≤ 4

9
.

(65)

For ζ1 ∈ (0, 1) it can be easily checked that

AC < 0, B2 < −4AC(C−2 − 1), B2 < 4(1 + |C |)2.
Therefore by (64) and Lemma 2 we get

12|γ3| ≤ 3(1 − ζ 2
1 )

(
1 + |A| + B2

4(1 + |C |)
)

= ϕ(ζ1), (66)

where

ϕ(x) := 2

3
(8 + 2x − 5x2 + x3), x ∈ (0, 1).

As easy to verify

ϕ(x) ≤ ϕ(x0) = 4

81
(28 + 19

√
19), x ∈ (0, 1),

where x0 := (5 − √
19)/3. Hence and by (66) it follows that

|γ3| ≤ 1

243
(28 + 19

√
19). (67)

Summarizing, (63), (65) and (67) show that the inequality (57) is true.
A simlar method used for the proof of Theorem 2, the equality in (57) when it is satisfied

that

ζ1 = 1

3
(5 − √

19), ζ2 = 1

3
, ζ3 = 1. (68)

By Lemma 1 a function p of the form (14) with ζi (i ∈ {1, 2, 3}) given by (68), i.e., the
function (59) belongs to P. Thus the function (58) belongs to F4. Substituting (68) into (62)
we get equality in (57). This ends the proof of the theorem. �
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