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Abstract
The paper is an accomplishment of a new 3-variable 4-parameter generating function for
Humbert matrix polynomials with an approach of unifying several classes of matrix valued
polynomials using standard techniques of seriesmanipulation. The results are contained in the
form of explicit expression, hypergeometric matrix representation, generating functions and
three additional expansions in nexus with Legendre, Hermite and Gegenbauer polynomials
within discrete sections. A range of special cases is evenly traced that accounts due to the
genuine wholesome generalization of such matrix polynomials.

Keywords Humbert matrix polynomials · Generalized hypergeometric series · Generating
matrix functions · Generating relations

Mathematics Subject Classification 33C25 · 15A60 · 33C45 · 33E20

1 Introduction

Special functions of matrices is a prominent topic in the literature of matrix analysis. A large
piece of mathematics and its applications (both theoretical and practical) has been cut across
the subject of orthogonal polynomials. The property of orthogonality, Rodrigues formula,
a relation between different orthogonal matrix polynomials, matrix differential equation, a
three-term matrix recurrence relation (see [5,9,10,29]) holds the theoretical examples, while,
statistics, group representation theory, scattering theory, differential equations, Fourier series

B Hiba Haroon
hibaharoon786@gmail.com

H. M. Srivastava
harimsri@math.uvic.ca

Waseem A. Khan
waseem08_khan@rediffmail.com

1 Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada

2 Department of Medical Research, China Medical University Hospital, China Medical University,
Taichung 40402, Taiwan, Republic of China

3 Department of Mathematics, Faculty of Science, Integral University, Lucknow 226026, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13398-019-00720-6&domain=pdf


3620 H. M. Srivastava et al.

expansions, interpolation and quadrature and splines, (refer to [4,7,11,17,18,21]) embrace the
practical ones. With passing years, this study has taken more systematic configuration due to
the fact thatmany basic results of scalar orthogonality have been extended to thematrix frame.
In [33], Srivastava and Brenner gave bounds for Jacobi and related polynomials derived by
matrix methods. Latest innovations in matrix versions for the classical families of orthog-
onal polynomials such as Jacobi, extended Jacobi, Bessel, Hermite, Laguerre, Gegenbauer,
Chebyshev polynomials and some other special functions are introduced by many authors
for matrices in CN×N, (see for example [2,3,6–8,11–16,20,27–31]).

An organized study for the generalization of Humbert, Gegenbauer and several other
polynomial systems is casted by Gould [12] using the generating function

(c − mxt + ytm)−p =
∞∑

n=0

Pn(m, x, y, p, c)tn, (1)

where m is a positive integer, |t | < 1 and rest parameters being generally unrestricted.
The exact special cases of (1), including Gegenbauer, Legendre, Tchebycheff, Pincherle,
Kinney andHumbert polynomials, are tabulated byGould in [12]. Pn(m, x, y, p, c) is defined
explicitly by

Pn(m, x, y, p, c) =
[ n
m

]
∑

k=0

(
p
k

) (
p − k
n − mk

)
cp−n+(m−1)k yk(−mx)n−mk . (2)

In [28], the authors gave the matrix version for Gegenbauer polynomials through the
generating function

(1 − 2xt + t2)−A =
∞∑

n=0

CA
n (x)tn . (3)

The explicit formula being

CA
n (x) =

n
2∑

k=0

(−1)k(A)n−k(2x)n−2k

k!(n − 2k)! , (4)

where A is positive stable matrix in the complex plane CN×N. In 1989, Sinha [32] gave the
following generating relation

[1 − 2xt + t2(2x − 1)]−ν =
∞∑

n=0

Sν
n (x)tn, (5)

where

Sν
n (x) =

n
2∑

k=0

(−1)k(ν)n−k(2x)n−2k(2x − 1)k

k!(n − 2k)! . (6)

Sν
n (x) is an interesting generalization of Shrestha polynomial Sn(x) (see [31]).
Recently, Pathan et al. [23] studied a class of matrix polynomials associated with Humbert

polynomials as an extension to the matrix framework of the classical families for the above
mentioned polynomials by the relation

(c − axt + btm(2y − 1))−A =
∞∑

n=0

PA
n,m(x, y, a, b, c)tn . (7)
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He obtained the explicit representation for the polynomials as

PA
n,m(x, y, a, b, c) =

n
m∑

k=0

(−1)kc−A−(n−(m−1)k)I

k!(n − mk)! (ax)n−mk[b(2y − 1)]k . (8)

In the very next year, Pathan and Khan [24] generalized Sinha’s generating relation (cf. 5))
to unify the generalized Humbert polynomials in two variables as

[a − (bx + cy)t + dtm(exy − 1)g]−h =
∞∑

n=0

Qa,b,c,d,e
n,m,g,h (x, y)tn, (9)

where m ∈ N, h > 0 and other parameters are unrestricted in general. Suitable selection
of the parameters in the above expression generalize a number of polynomials studied by
Agarwal and Parihar [1], Pathan and Khan [25], Gould [12], Milovanovic-Djordjevic [22]
and Sinha [32] (also check [24]).

Motivated by the above literature, in the present article we give a 3-variable 4-
parameter matrix generalization for Humbert matrix polynomials PA

n,m(x, y, z; a, b, c, d)

[3V4PgHMaP] which unifies a number of matrix polynomials in the complex plane CN×N.
The paper is organized as follows. In Sect. 2, some basel properties of the matrix func-
tional calculus are given that will serve us throughout the presentation. In Sect. 3, we obtain
two explicit formulae for the generalized Humbert matrix polynomials. Some special cases
of proved fame are given in Sect. 4 and a generalized hypergeometric matrix series for
3V4PgHMaP is established in Sect. 5. In last two sections, the 3-variable matrix polyno-
mial PA

n,m(x, y, z; a, b, c, d) is exploited for some more generating functions and additional
expansions.

2 Preliminaries

Throughout this paper, D0 denotes the complex plane cut along the negative real axis and
σ(A) ( particularly known as spectrum of A), denotes the set of all eigenvalues of A. Here,
A is a positive stable matrix in the complex plane CN×N if �(λ) > 0 for all λ ∈ σ(A).
Its two norm denoted by ‖ A ‖2 is defined by

‖ A ‖2 = sup
x �=0

‖ Ax ‖2
‖ x ‖2

, (10)

where for a vector y in C
N , ‖ y ‖2 = (yT y)1/2 is the Euclidean norm of y.

If A is a matrix in CN×N with σ(A) ⊂ Ω , then from [8, p. 558], it follows that

f (A)g(A) = g(A) f (A), (11)

where f (z) and g(z) are holomorphic functions of the complex variable z, which are defined
in an open set Ω of the complex plane.

If

A + nI is invertible f or every integer; n ≥ 0 (12)

where I is the identity matrix in CN×N , then it follows that

(A)n =
{
I , n = 0
A(A + I ) . . . (A + (n − 1)I ), n > 0

(see [13, p.253]) (13)
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and (A)n = Γ (A + nI )Γ −1(A) due to (12).
Thus from (13), one can desirable get (see [30, p. 30 (1.4) and p. 36 (4.2)]):

(−1)k

(n − k)! I = (−n)k

n! I = (−nI )k
n! ; 0 ≤ k ≤ n (14)

and

(−nI )2k = 22k
(

−1

2
nI

)

k

(
−1

2
(n − 1)I

)

k
. (15)

Definition 1 (Batahan [3]) For non-negative integers p andq , the generalizedhypergeometric
matrix function is defined as:

r Fs(A1, . . . , Ar ; B1, . . . , Bs; z) =
∞∑

n=0

(A1)n . . . , (Ar )n[(B1)n]−1 . . . , [(Bs)n]−1 z
n

n! ,

(16)

where Ai and Bj are matrices in CN×N such that the matrices Bj (1 ≤ j ≤ s) satisfy the
generic condition (12).

With r = 2 and s = 1 in (16), we get the hypergeometric matrix function 2F1(A, B;C; z)
(see [27]) of the type:

2F1(A, B;C; z) =
∞∑

n=0

(A)n(B)n

n! [(C)n]−1zn . (17)

Further with r = 1 and s = 0 in (16), one obtains the relation due to [19, p. 213]:

(1 − z)−A =
∞∑

n=0

(A)n
zn

n! , | z |< 1. (18)

The matrix power series in (17) is verified to be convergent by Ratio test for all complex
number z.

Lemma 1 [3,26,34] If A(k; n) and B(k; n) are matrices in CN×N for n ≥ 0 and k ≥ 0, then
the following relations are satisfied:

∞∑

n=0

n∑

k=0

A(k, n) =
∞∑

n=0

[ n
m ]∑

k=0

A(k, n − (m − 1)k), (19)

∞∑

n=0

[ n
m ]∑

k=0

A(k, n) =
∞∑

n=0

∞∑

k=0

A(k, n + mk), (20)

and for m = 2, we write
∞∑

n=0

∞∑

k=0

B(k, n) =
∞∑

n=0

n∑

k=0

B(k, n − k), (21)

∞∑

n=0

[ n2 ]∑

k=0

B(k, n) =
∞∑

n=0

∞∑

k=0

B(k, n + 2k). (22)

The above lemma provides results about double matrix series. The proof are analogous to
that of the scalar case discussed in [26, p. 56] and [34, p. 101].
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To meet the results, we will also use the following Binomial relation (see [26]).

(μ − ν)n =
∞∑

n=0

n!(−1)kμn−kνk

k!(n − k)! . (23)

3 Some expansions for a class of generalized Humbert matrix
polynomials

Let A be a positive stable matrix in the complex plain CN×N , where, C is the set of all
complex numbers, for every Nth order square matrices. In view of (7) and (9), we define 3-
variable 4-parameter generalized Humbert matrix polynomials (3V4PgHMaP) with matrix
generating relation:

[
c − (ax + bz)t + dtm(2zy − 1)

]−A =
∞∑

n=0

PA
n,m(x, y, z; a, b, c, d)tn, (24)

where, m ∈ N (set of natural numbers) and other parameters being unrestricted in general.
We shall regard the complicated notation PA

n,m(x, y, z; a, b, c, d) by P(x, y, z) from now
onwards in the paper.

In this section, we obtain two very interesting explicit formulae (power series) for
3V4PgHMaP [P(x, y, z)].

Theorem 1 For all m ≥ 2, P(x, y, z) takes the following explicit forms:

P(x, y, z) =
[n/m]∑

k=0

(−1)kc−A−(n−(m−1)k)I (A)n−(m−1)k

k!(n − mk)!
×(ax + bz)n−mk[d(2zy − 1)]k, (25)

where (A)n is the general Pochhammer function in the matrix functional calculus (cf. (13))
for complex square matrix A.
And

P(x, y, z) =
[ n
m−1 ]∑

s=0

∞∑

k=[ ϑ
2 ]

c−A−ϑ I (−1)n(−(n − k))(m−1)s(A)ϑ−k

(n − k)!s!(2k − ϑ)!

×(2A + 2(ϑ − k)I )2k−ϑ

{
− (ax + bz)

2

}ϑ {
4dc(2zy − 1)

(ax + bz)2

}s

, (26)

=
[ n
m−1 ]∑

s=0

∞∑

k=[ ϑ
2 ]

c−A−ϑ I (−1)n(−(n − k))(m−1)s

(n − k)!s!(2k − ϑ)!
(2A)ϑ

22k

×
[(

A + 1

2
I

)

ϑ−k

]−1 {
− (ax + bz)

2

}ϑ {
4dc(2zy − 1)

(ax + bz)2

}s

, (27)

where ϑ = n − (m − 2)s.

Proof By using the relations (18) and (23), (24) can be expressed as
∞∑

n=0

P(x, y, z)tn = c−A
∞∑

n=0

(A)n

n!
[

(ax + bz)t

c
− dtm(2zy − 1)

c

]n
(28)
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or

= c−A
1F0

⎡

⎣
A;

−;
(ax + bz)t

c
− dtm(2zy − 1)

c

⎤

⎦ (cf. Definition 1) (29)

= c−A
∞∑

n=0

(A)n

n!
n∑

k=0

n!(−1)k

k!(n − k)!
[

(ax + bz)t

c

]n−k [
dtm(2zy − 1)

c

]k

×
∞∑

n=0

P(x, y, z)tn = c−A
∞∑

n=0

n∑

k=0

(−1)k(A)n

k!(n − k)!cn (ax + bz)n−k

×[d(2zy − 1)]k tn−k+mk . (30)

By Lemma 1 (cf. (19)),

∞∑

n=0

n∑

k=0

A(k, n) =
∞∑

n=0

[n/m]∑

k=0

A(k, n − (m − 1)k),

the expression in (30), transforms as

∞∑

n=0

P(x, y, z)tn =
∞∑

n=0

[n/m]∑

k=0

(−1)kc−A−(n−(m−1)k)I (A)n−(m−1)k

k!(n − mk)!
×(ax + bz)n−mk[d(2zy − 1)]k tn,

which on equating the coefficients of tn yields the explicit series (25) for P(x, y, z).
One can desirable get from (25) that

PA
0,m(x, y, z; a, b, c, d) = C−A,

PA
1,m(x, y, z; a, b, c, d) =

{
C−A+I A(ax + bz); m > 1
C−A+I A[ax + bz − d(2zy − 1)]; m = 1

and

PA
n,m(0, 0, z; a, b, c, d) = C−A+I

n! (A)nd
n .

Now, using a different approach on the generating relation (24), we get,

∞∑

n=0

P(x, y, z)tn = c−A
[
1 − (ax + bz)t

2c

]−2A
⎡

⎣1 −
(ax+bz)2t2

4c2
− dtm (2zy−1)

c

(1 − (ax+bz)t
2c )2

⎤

⎦
−A

(31)
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which on using (18) and (23) in rhs of the above equation, gives

∞∑

n=0

P(x, y, z)tn = c−A
∞∑

k=0

(A)k

k!
{

(ax + bz)2t2

4c2
− dtm(2zy − 1)

c

}k

×
∞∑

n=0

(−2A − 2k)n
n!

{
(ax + bz)t

2c

}n

,

=
∞∑

n,k=0

k∑

s=0

c−A−(n−2k)I (−1)n

n!s!(k − s)! (2A + 2k)n

{
(ax + bz)

2

}n+2k

×
{
−4dc(2zy − 1)

(ax + bz)2

}s

tn+2k+(m−2)s . (32)

Now as k → k + s and applying Srivastava–Manocha identity [35, p. 100 (2)], we find

∞∑

n=0

P(x, y, z)tn =
∞∑

n,k,s=0

c−A−(n−2k−2s)I (−1)n

n!s!k! (2A + 2k)n

×
{

(ax + bz)

2

}n+2k+2s {
−4dc(2zy − 1)

(ax + bz)2

}s

tn+2k+ms .

A simple replacement n = n − 2k − ms and comparison of coefficients of tn gives another
explicit function (26) for P(x, y, z) as

P(x, y, z) =
[ n
m−1 ]∑

s=0

∞∑

k=[ ϑ
2 ]

c−A−(ϑ)I (−1)n(−(n − k))(m−1)s(A)ϑ−k

(n − k)!s!(2k − ϑ)!

×(2A + 2(ϑ − k)I )2k−ϑ

{
− (ax + bz)

2

}ϑ {
4dc(2zy − 1)

(ax + bz)2

}s

, (33)

where, ϑ = n − (m − 2)s.
In light of the relation,

(A)n−k−(m−2)s(2A + 2(n − k − (m − 2)s)I )2k−n+(m−2)s = (2A)n−(m−2)s

22k

×
[(

A + 1

2
I

)

n−k−(m−2)s

]−1

. (34)

Equation (33) can be rewritten as

PA
n,m(x, y, z; a, b, c, d)

=
[ n
m−1 ]∑

s=0

∞∑

k=[ n−(m−2)s
2 ]

C−A−(n−(m−2)s)I (−1)n(−(n − k))(m−1)s

(n − k)!s!(2k − n + (m − 2)s)!
(2A)n−(m−2)s

22k

×
[(

A + 1

2
I

)

n−k−(m−2)s

]−1 {
− (ax + bz)

2

}n−(m−2)s {
4dc(2zy − 1)

(ax + bz)2

}s

, (35)

which coincides with our assertion (27). ��
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4 Special cases of 3V4PgHMaP

Upon assigning particular values to the parameters and variables we interestingly get a range
of special cases for the generating Eq. (24) and for the relations (25)–(27), as discussed
below:

1. Setting b = 0, z = 1 and replacing d by b in (24), we get the result of Pathan et al. [23]
generated by

[c − axt + btm(2y − 1)]−A =
∞∑

n=0

PA
n,m(x, y; a, b, c)tn, (36)

where PA
n,m(x, y; a, b, c) refers to the matrix polynomials associated with Humbert polyno-

mials for two variables.
Same changes (b = 0, z = 1, d = b) in (25) and (26), gives the explicit functions

PA
n,m(x, y; a, b, c) =

[n/m]∑

k=0

(−1)kc−A−(n−(m−1)k)I (A)n+(1−m)k

k!(n − mk)!
×(ax)n−mk[b(2y − 1)]k, (37)

and

PA
n,m(x, y; a, b, c)

=
[ n
m−1 ]∑

s=0

∞∑

k=[ n−(m−2)s
2 ]

c−A−(n−(m−2)s)I (−1)n(−(n − k))(m−1)s(A)n−(m−2)s−k

(n − k)!s!(2k − n + (m − 2)s)!

×(2A + 2(n − (m − 2)s − k)I )2k−n+(m−2)s

{
− (ax)

2

}n−(m−2)s {
4bc(2y − 1)

a2x2

}s

.

(38)

For proofs of (37) and (38) (see [23] p. 210).
2. Keeping b = 0 = y, a = m, c = 1 = −d in (24) and (25), we get

[1 − mxt + tm]−A =
∞∑

n=0

hA
n,m(x)tn, (39)

and

hA
n,m(x) =

[n/m]∑

k=0

(−1)k(A)n+(1−m)k

k!(n − mk)! (mx)n−mk, (40)

where hA
n,m(x) is the matrix version of Humbert polynomials hν

n,m(x) for one variable [25].
3. Further m = 3 in (39) and (40), gives us

[1 − 3xt + t3]−A =
∞∑

n=0

hA
n (x)tn, (41)
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where hA
n (x) is the matrix generating relation of Pincherle polynomials hn(x) (see [22,25]),

with finite series representation as

hA
n (x) =

[n/3]∑

k=0

(−1)k(A)n−2k(3x)n−3k

k!(n − 3k)! . (42)

4. Since

PA
n,2(x, 0, z; 2,−1, 1,−1) = CA

n (x), (see [29, p. 109(40)]).
Therefore, the adjustmentm = a = 2, y = 0, and c = 1 = −d = −b in (24) and (27), gives
us another known result [29]

[1 − 2xt + t2]−A =
∞∑

n=0

CA
n (x)tn, (43)

CA
n (x) = (2A)n

[n/2]∑

k=0

1

22kk!(n − 2k)!
[(

A + 1

2
I

)]−1

(x2 − 1)k x
n−2k (44)

where CA
n (x) is the Gegenbauer matrix polynomial.

5. By setting A = 1, y = b = 0, a = √
2B, c = 1 and d = −1 in (24), we get

P [1]1×1
n,2 (x, 0, z;√

2B, 0, 1,−1) = Un(x, B), (45)

where, Un(x, B) is the Chebyshev matrix polynomials of second kind [2], defined by

Un(x, B) =
[n/2]∑

r=0

(−1)r (n − r)!(√2Bx)n−2r

r !(n − 2r)! . (46)

6. Further as A → 1
2 in (45), we get a class of Legendre matrix polynomials [27].

P
[ 12 ]1×1

n,2 (x, 0, z;√
2B, 0, 1,−1) = Pn(x, B) (47)

where,

Pn(x, B) =
[n/2]∑

r=0

(−1)r (2n − 2r)!(√2Bx)n−2r

22n−2r r !(n − r)!(2 − 2r)! . (48)

5 Generalized hypergeometric matrix representation for P(x, y, z)

Here, we establish the matrix representation for 3V4PgHMaP in terms of generalized hyper-
geometric series.

Theorem 2 The following hypergeometric representation for 3V4PgHMaP, P(x, y, z) holds
well:

P(x, y, z) = (A)nC−A−nI

n! mFm−1

⎡

⎣
Δ(m;−nI ) ;

Δ(m − 1;−A − (n − 1)I ) ;
W

⎤

⎦ (49)

where W =
(

c
m−1

)m−1 (
m

(ax+bz)

)m [d(2zy − 1)],
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and Δ(n; bI ) refer to the array of n parameters as bI
n ,

(b+1)I
n , . . . ,

(b+m−1)I
n .

Proof For non-negative integers n,m, from (13) and (15) one can write

(−nI )mk = (−1)mk n!
(n − mk)! I = mmk

m∏

i=1

(−n + i − 1

m

)

k
(50)

and

(A)n−(m−1)k = (−1)(m−1)k(A)n

⎡

⎣(m − 1)(m−1)k
m−1∏

j=1

(
(−A − nI ) + j I

m − 1

)

k

⎤

⎦
−1

.

(51)

We begin with the explicit expression (25) for P(x, y, z):

P(x, y, z) =
[n/m]∑

k=0

(−1)kC−A−(n−(m−1)k)I (A)n−(m−1)k

k!(n − mk)!
×(ax + bz)n−mk[d(2zy − 1)]k . (52)

Using (50) and (51) in (52), we get

P(x, y, z) =
[n/m]∑

k=0

(−1)mkn!
(n − mk)!

(A)n−(m−1)k(−1)k

n!(−1)mkk!
c−A−nI (ax + bz)n[d(2zy − 1)]k

c(1−m)k(ax + bz)mk
,

=
∞∑

k=0

mmk
m∏

i=1

(−n + i − 1

m
I

)

k

(A)n

(m − 1)(m−1)kn!k!

⎡

⎣
m−1∏

j=1

(−A − nI + j I

m − 1

)

k

⎤

⎦
−1

× c−A−nI

c−(m−1)k

(ax + bz)n[d(2zy − 1)]k
(ax + bz)mk

,

= (A)nC−A−nI

n! (ax + bz)n
∞∑

k=0

m∏

i=1

(−n + i − 1

m
I

)

k

⎡

⎣
m−1∏

j=1

(−A − nI + j I

m − 1

)

k

⎤

⎦
−1

× c(m−1)kmmk

k!(m − 1)(m−1)k

[d(2zy − 1)]k
(ax + bz)mk

. (53)

Now, from (20), one easily gets the hypergeometricmatrix expansion for generalizedHumbert
matrix polynomial P(x, y, z) precisely as

P(x, y, z) = (A)nC−A−nI

n! mFm−1

⎡

⎣
Δ(m;−nI ) ;

Δ(m − 1;−A − (n − 1)I ) ;
W

⎤

⎦

where W =
(

c
m−1

)m−1 (
m

(ax+bz)

)m [d(2zy − 1)],
and Δ(n; bI ) refer to the array of n parameters as bI

n ,
(b+1)I

n , . . . ,
(b+m−1)I

n .

We mark that, A + nI and −A−(n−m+1)I
m−1 are invertible matrices. ��
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Remark 1 Substituting z = 1 and b = 0 in Theorem 2, we readily find a known result as

PA
n,m(x, y; a, c, d) = (A)nC−A−nI

n! (ax)nm Fm−1

[−nI

m
,
(−n + 1)I

m
, . . . ,

(−n + m − 1)I

m
;

−A − (n − 1)I

m − 1
, . . . ,

−A − (n − m + 1)I

m − 1
; c

m−1mm[d(2y − 1)]
(m − 1)(m−1)(ax)m

]
.

(54)

The relationship (54) is already proved by Pathan et al. (see [23]).

Remark 2 Choosing the parameters b = 0 = y, a = m and c = −d = 1 in Theorem 2, we
get the matrix representation (see [23]):

hA
n,m(x) = (A)n(mx)n

n! mFm−1

[−nI

m
,
(−n + 1)I

m
, . . . ,

(−n + m − 1)I

m
; −A − (n − 1)I

m − 1
,

. . .
−A − (n − m + 1)I

m − 1
; 1

(m − 1)(m−1)(x)m

]
,

(55)

which reduces (49) in one variable. Further restricting m = 3 in (55), we get hA
n,m(x) =

hA
n (x):

hA
n (x) = (A)n(3x)n

n! 3F2

[−n

3
I ,

1 − n

3
I ,

2 − n

3
I ; 1

2
(I − A − nI ),

1

2
(2I − A − nI ); 1

4x3

]
.

(56)

The relationship (56) is already proved by Khammasha and Shehata in [22].

Remark 3 The relationship PA
n,2(x, 0, z; 2,−1, 1,−1) = CA

n (x), descends (49) to the
hypergeometric function 2F1[−,−;−; x] of Sayyed et al. [29] for Gegenbaure matrix poly-
nomials.

CA
n (x) = (A)n(2x)n

n! 2F1

[−nI

m
,
(1 − n)I

m
; I − A − nI ; x−2

]
. (57)

6 Somemore generating functions

Relying on a similar procedure as used in the previous section, we come across some more
generating relations derived below. In the due course, we observe that these generating rela-
tions form the extended matrix versions for Sinha, Sheshtha, Pincherle, Kinney, Gegenbaure
and Horadam-Pethe polynomials (see [15,16,22,27,32]).

Theorem 3 Let A ∈ CN×N be a positive stable matrix, then for 3V4PgHMaP the following
generating relation holds true.

P(x, y, z)[(A)n]−1 = c−A−nI

n! [(ax + bz)t]n1Fm
[
A + nI ; A + nI

m
,
A + (n − 1)I

m
, ...

A + (n − m + 1)I

m
; −dtm(2zy − 1)

cmm

]
(58)

where, A+nI
m ,

A+(n−1)I
m , . . . ,

A+(n−m+1)I
m are invertible matrices in CN×N.
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Proof We proceed by considering the explicit series (25)

∞∑

n=0

P(x, y, z)[(A)n]−1tn =
∞∑

n=0

[n/m]∑

k=0

(−1)k[(A)n]−1c−A−(n−(m−1)k)I (A)n−(m−1)k

k!(n − mk)!
×[(ax + bz)]n−mk[d(2yz − 1)]k tn,

which on using (50) and the relation (A)n+k = (A)n(A + nI )k gives

∞∑

n=0

P(x, y, z)[(A)n]−1tn =
∞∑

n=0

[n/m]∑

k=0

(−1)kc−A−(n−(m−1)k)I

k!(n − mk)! (−1)mk(A + (n − mk)I )k

×
⎡

⎣mmk
m∏

j=1

(
(−A − nI ) + j I

m

)

k

⎤

⎦
−1

(ax + bz)n−mk[d(2zy − 1)]k tn . (59)

Now, we apply (20) to get

∞∑

n=0

P(x, y, z)[(A)n]−1tn =
∞∑

n=0

∞∑

k=0

c−A−nI

k!n!ckmmk

⎡

⎣
m∏

j=0

(
(A + nI ) − j I

m

)

k

⎤

⎦
−1

×(A + nI )k(ax + bz)n[dtm(2zy − 1)]k tn,
or in view of (16), can be presented as

∞∑

n=0

P(x, y, z)[(A)n]−1tn

=
∞∑

n=0

c−A−nI

n! [(ax + bz)t]n

×1Fm

[
A + nI ; A + (n − 1)I

m
,
A + (n − 2)I

m
, . . . ,

A + (n − m + 1)I

m
; −dtm(2zy − 1)

cmm

]
.

(60)

This meets our assertion (58). ��
Theorem 4 Let A, B ∈ CN×N be positive stable matrix with AB = BA, then for
3V4PgHMaP, the following generating relation holds true.

∞∑

n=0

(B)n P
A
n,m(x, y, z; a, b, c, d)[(A)n]−1tn =

∞∑

n=0

c−A−nI [(ax + bz)t]n(B)n

n!

×m+1Fm

[
A + nI ; B + nI

m
,
B + (n − 1)I

m
, . . .

B + (n + m − 1)I

m
; A + nI

m
,

A + (n − 1)I

m
, . . .

A + (n + m − 1)I

m
; −dtm(2zy − 1)

c

]
. (61)

Proof We begin with the explicit series

∞∑

n=0

(B)nP(x, y, z)[(A)n]−1tn =
∞∑

n=0

[n/m]∑

k=0

(−1)k(B)n[(A)n]−1c−A−(n−(m−1)k)I

k!(n − mk)!
×(A)n−(m−1)k[(ax + bz)]n−mk[d(2yz − 1)]k tn, (62)
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and redo the steps as in Theorem 3, to get generating function (61). ��
Working on same lines as in previous theorems, this time starting with (27) and using

(20), we get two more relations. We state next two theorems without proof.

Theorem 5 Let A ∈ CN×N be a positive stable matrix, then for 3V4PgHMaP, the following
generating relation holds true.

∞∑

n=0

P(x, y, z)[(2A)n]−1tn =
∞∑

n=0

∞∑

s=0

∞∑

k=[ n+s
2 ]

(−1)n+kc−A(−2k)n+s(−n)k

22kn!(2k)!s!

×
[(

A + 1

2
I

)

n−k+s
(2A + (n − s)I )ms

]−1 [
(ax + bz)t

2C

]n [
2dtm−1(2zy − 1)

ax + bz

]s
.

(63)

Theorem 6 Let A, B ∈ CN×N beapositive stablematrix, then for 3V4PgHMaP, the following
generating relation holds true.

∞∑

n=0

(B)nP(x, y, z)[(2A)n]−1tn =
∞∑

n=0

∞∑

s=0

∞∑

k=[ n+s
2 ]

(−1)n+kC−A(−2k)n+s(−n)k

22kn!(2k)!s!

×
[(

A + 1

2
I

)

n−k+s
(2A + (n − s)I )ms

]−1

(B)n+(m−1)s

[
(ax + bz)t

2C

]n

×
[
2dtm−1(2zy − 1)

ax + bz

]s
. (64)

7 Some additional expansions

We recall the known algebraic polynomial expansions due to Ranville (see [26, p. 181 (4),
p. 283 (4), p. 207 (2)]),

(ax)n

n! =
[ n2 ]∑

s=0

2n − 4s + 1

s!( 32 )n−s
Pn−2s

(ax
2

)
, (65)

where Pn(x) is Legendre polynomials.

(2x)n

n! =
[ n2 ]∑

k=0

(ν + n − 2k)

k!(ν)n+1−k
Cν
n−2k(x), (66)

where Cn(x) is Gegenbaure polynomials.
and

xn

n! =
[ n2 ]∑

k=0

Hn−2k(x)

2nk!(n − 2k)! , (67)

where Hn(x) is Hermite polynomials.
In this section, we derive some additional expansions for the matrix polynomial

PA
n,m(x, y, z; a, b, c, d) using the explicit expression (27) in series of Legendre, Hermite

and Gegenbaure polynomials.
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Expansion 7.1.

P(x, y, z) =
∞∑

s=0

∞∑

k=[ n+s
2 ]

[ n+s
2 ]∑

j=0

c−A−nI (−1)n+k(−n)k(−2k)n+s(n + 1)s
s! j !(2k)!22k(ν)n+s− j+1

×[2(n + s) − 4 j + 1] (2A)n+s

[(
A + 1

2
I

)

n+s−k

]−1

×
(
4dc(2zy − 1)

(ax + bz)2

)s

Pn+s−2 j

(
ax + bz

4

)
. (68)

Expansion 7.2.

P(x, y, z) =
∞∑

s=0

∞∑

k=[ n+s
2 ]

[ n+s
2 ]∑

j=0

c−A−nI (−1)n+k(−n)k(−2k)n+s(n + 1)s
s! j !(2k)!22k ( 3

2

)
n+s− j

×[ν + n + s − 2 j] (2A)n+s

[(
A + 1

2
I

)

n+s−k

]−1

×
(
4dc(2zy − 1)

(ax + bz)2

)s

Cν
n+s−2 j

(
ax + bz

4

)
.

(69)

Expansion 7.3.

P(x, y, z) =
∞∑

s=0

∞∑

k=[ n+s
2 ]

[ n+s
2 ]∑

j=0

c−A−nI (−1)n+k+ j (−n)k(−2k)n+s(n + 1)s
s! j !(2k)!2n+2k(n + s − 2 j)!

×(2A)n+s

[(
A + 1

2
I

)

n+s−k

]−1 (
4dc(2zy − 1)

(ax + bz)2

)s

Hn+s−2 j

(
ax + bz

2

)
.

(70)

Derivation of Expansions (7.1)–(7.3)
From (65), we can write

(
ax + bz

2

)n−(m−2)s

=
[ n−(m−2)s

2 ]∑

j=0

[2(n − (m − 2)s) − 4 j + 1](n − (m − 2)s)!
j !( 32 )n−(m−2)s− j

×Pn−(m−2)s−2 j

(
ax + bz

4

)
. (71)

Now using (71) in (27), we get

P(x, y, z) =
[ n
m−1 ]∑

s=0

∞∑

k=[ n−(m−2)s
2 ]

[ n−(m−2)s
2 ]∑

j=0

c−A−(n−(m−2)s)I (−(n − k))(m−1)s

(−1)ms(2k − n + (m − 2)s)!

× (2A)n−(m−2)s [2(n − (m − 2)s) − 4 j + 1](n − (m − 2)s)!
s! j !(n − k)!22k( 32 )n−(m−2)s− j

×
[((

A + 1

2

)
I

)

n−k−(m−2)s

]−1 (
4dc(2zy − 1)

(ax + bz)2

)s

Pn−(m−2)s−2 j

(
ax + bz

4

)
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which on applying (20), yields Expansion 7.1.
Likewise, modifying (66) and (67) for x = ax + bz and then inserting in (27), we can

easily get expansions 7.2 and 7.3.
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