
RACSAM (2019) 113:3031–3053
https://doi.org/10.1007/s13398-019-00671-y

ORIG INAL PAPER

On the solutions of Caputo–Hadamard Pettis-type fractional
differential equations
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Abstract
Let E be a Banach space with the topological dual E∗. The aim of this paper is two-fold. On
the one hand, we prove some basic properties of Hadamard-type fractional integral operators.
These results are related to earlier results about integral operators acting on different function
spaces, but for the vector-valued case they are of independent interest. Note that we discuss
it in a rather general setting. We study Hadamard–Pettis integral operators in both single
and multivalued case. On the other hand, we apply these results to obtain the existence of
solutions of the fractional-type problem

dαx(t)

dtα
= λ f (t, x(t)), α ∈ (0, 1), t ∈ [1, e], x(1) + bx(e) = h

with certain constants λ, b, where h ∈ E and f : [1, e]×E → E is Pettis integrable function
such that, for every ϕ ∈ E∗, ϕ f lies in an appropriate Orlicz spaces. Here dα

dtα stands the
Caputo–Hadamard fractional differential operator.

Keywords Fractional calculus · Pettis integral · Orlicz space

Mathematics Subject Classification 26A33 · 34A08 · 34G20

1 Introduction and preliminaries

The issue of fractional calculus for real-valued functions in the context of Orlicz spaces has
been studied for the first time by O’Neil [28]. Following the appearance of [28], there has
been a significant interest in the study of this topic (cf. [17,26,39,40] and the references
therein for the part of the recent developments in this direction).
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On the other hand, fractional calculus for functions that take values in Banach space has
been studied by many authors (see e.g. [1–4] or [31–34,36,37] and the references therein
for background on these topics). Most of the above investigates are restricted to the case of
E-valued Pettis integrable functions x with the property that ϕx ∈ L p, ϕ ∈ E∗. Here we
contribute to consider the casewhenϕx lies in someOrlicz space. It allows us to cover the case
of all Lebesgue spaces L p for p > 1 considered in earlier papers (cf. [34–36], for instance),
butwe are not restricted only to this case. As claimed below, there are several interconnections
between Pettis integrals and Orlicz spaces being of special interests in fractional calculus.

We show that the Hadamard-type fractional integral operator maps the class x ∈ P[I , E]
such that ϕx belongs to some appropriate Orlicz space into the space of (weakly) continuous
functions. Afterwards, we establish an existence result for the fractional-type problem

dαx(t)

dtα
= f (t, x(t)), α ∈ (0, 1), t ∈ [1, e] (1)

combined with appropriate boundary condition

x(1) + bx(e) = h (2)

with certain constants λ, b, where h ∈ E f : [1, e] × E → E is Pettis integrable function.
The multivalued Hadamard–Pettis integral and its applications are also studied.

The question of proving of the existence of solutions to the boundary value problem (1, 2)
reduces to proving the existence of solutions of a Volterra equation [modelled off the problem
(1, 2)]. Since the space of all Pettis integrable functions is not complete, not all methods of the
proofs are allowed and we restrict our attention to the (weakly) continuous solutions of the
mentioned integral equation, so to the really general case of pseudo-solutions of the problem
(1, 2).

It is well known that a powerful tool for proving the existence of solutions to boundary
value problem is the fixed point theory. The key tool in our approach is the following Mönch
fixed-point theorem which was motivated by ideas in [5]:

Theorem 1 [23] Let E be a metrizable locally convex topological vector space and let D
be a closed convex subset of E. Assume, that T : D → D is ww-sequentially continuous
mapping such which satisfies

V = conv ({x} ∪ T (V )) ⇒ V is relatively weakly compact.

Then T has a fixed point in D.

Letψ : R+ → R
+ be aYoung function, i.e.,ψ is increasing, even, convex, and continuous

with ψ(0) = 0 and limu→∞ ψ(u) = ∞. The Orlicz space Lψ = Lψ([a, b],R) is a Banach
space consisting of all (classes of) measurable functions x : [a, b] → R for which there
exists a number k > 0 such that

∫ b

a
ψ

( |x(s)|
k

)
ds ≤ 1.

The (Luxemburg) norm ‖x‖ψ is defined as the infimum of all such numbers k. The Young
complement ψ̃ of ψ is defined for u ∈ R by ψ̃(u) := supv≥0{v · |u| − ψ(v)}.

The followingproperties ofYoung functions andOrlicz spaces generated by such functions
are well-known and will be used in the sequel (see e.g. [22,35]).

1. A function ψ is a Young function if and only if ψ̃ is a Young function.
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2. On a finite measure space and if ψ is not the null function, C[a, b] ⊂ L∞[a, b] ⊂
Lψ [a, b] ⊂ L1[a, b].

3. The inclusion Lψ1 ⊂ Lψ2 holds if and only if there exists positive constants u0 and K
such that ψ2(u) ≤ Kψ1(u) for u ≥ u0.

4. Applicability of functions from Lψ are wider than from L p . The function from usual
Lebesgue spaces has at most polynomial growth. By using the class Lψ we may relax
this requirement, in this case, our assumptions will be less restrictive than the standard
ones. Hovewer, L p spaces are special cases of Orlicz spaces (for ψ(t) = x p

p ).
5. For any Young function ψ we have ψ(u − v) ≤ ψ(u) − ψ(v) and u · v ≤ ψ(u) +

ψ̃(v) u, v ∈ R (the Young inequality).

Further, we have a simple property which will be used in estimation of an order α of the
fractional integral operator

Proposition 1 Fix λ1 ∈ (0, 1). Let ψ be a Young function such that
∫ t
0 ψ(s−λ1) ds is finite

for any t > 0. If λ2 < λ1, then the integral∫ t

0
ψ(s−λ2) ds, t > 0, (3)

is finite as well.

Proof The proof of this Proposition is two-fold. On the one hand, if t ∈ (0, 1] the finiteness
of the integral in (3) follows immediately since∫ t

0
ψ(s−λ2) ds ≤

∫ t

0
ψ(s−λ1) ds < ∞, for t ∈ (0, 1].

On the other hand, if t > 1, we have∫ t

0
ψ(s−λ2) ds ≤

∫ 1

0
ψ(s−λ1) ds +

∫ t

1
ψ(s−λ2) ds for t > 1. (4)

Reasoning the finiteness of the integral
∫ t
0 ψ(s−λ1) ds, t > 0, it follows thatψ(ξ) is finite for

every ξ > 0, hence finite for every large ξ . This yields the finiteness of
∫ t
1 ψ(s−λ2) ds, t > 1.

The result now follows by (4). This completes the proof. �
Throughout this paper, we consider the measure space (I ,Ω,μ), where I = [1, e], Ω

denotes the Lebesgue σ -algebra L(I ) and μ stands the Lebesgue measure. E denotes a real
Banach space with a norm ‖·‖ and E∗ its dual. By Eω we denotes the space E when endowed
with the weak topology (i.e., generated by the continuous linear functionals on E). We will
let C[I , Eω] denotes the Banach space of continuous functions from I to E , with its weak
topology (see also [13]).

Let P[I , E] denotes the space of E-valued Pettis integrable functions in the interval I (see
[15] or [29] for the definition). Recall that (see e.g. [8–15]) the weakly measurable function
x : I → E is said to be ψ-Dunford (where ψ is a Young function) integrable on I if and
only if ϕx ∈ Lψ(I ) for each ϕ ∈ E∗.

Recall that amap T : X −→ Y , X and Y are Banach spaces, is said to be is weakly sequen-
tially continuous (or: ww-sequentially continuous) if and only it takes weakly convergent
sequences (xn) to x ∈ E into sequences (T (xn)) weakly convergent to T (x) ([6]).

Recall, that the De Blasi measure of weak noncompactness is a function defined on
bounded subsets X ⊂ E by

β(X) = inf{ε > 0 : there exists a weakly compact subset W of E one get X ⊂ εB1 +W }.
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Its properties which will be useful in our paper are quite known and can be found in [14].
The following Ambrosetti-type lemma will be interesting for us:

Lemma 1 Let V ⊂ C[I , Eω] be a family of strongly equicontinuous functions. Then the
function t �→ β (V (t)) is strongly continuous and

βC (V ) = sup
t∈I

β (V (t)) = β (V (I ))

defines a measure of weak noncompactness in C[I , Eω].
We need to recall the definition of the pseudo-derivative [13]:

Definition 1 Afunction x : I → E is said to be pseudo-differentiable if there exists a function
y : I → E such that, for every ϕ ∈ E∗, the real-valued function ϕ(x(t)) is differentiable
a.e., to the value ϕ(y(t)). In this case, the function y is called the pseudo-derivative of the
function x .

If the space E has total dual E∗. (i.e., the space E∗ contains a countable subset (x∗
n )which

separates the points of E), then the pseudo-derivative, if exists, is uniquely determined up
to a set of measure zero. However, a function can be pseudo-differentiable and either not
strongly nor weakly differentiable (cf. [13]).

The following property will be used in the sequel:

Proposition 2 For any t ∈ R
+, λ ∈ (0, 1) and any Young function ψ , the set

Mψ
t :=

{
k > 0 :

∫ tk

0
ψ

(
1

sλ

)
ds ≤ k

}
=
{
k > 0 : k−1

∫ tk

0
ψ

(
1

sλ

)
ds ≤ 1

}
, (5)

is nonempty.

Proof Obviously Mψ
0 = {0}. We observe also that the derivative of the function

ρ → ρ −
∫ ρt

0
ψ

(
1

sλ

)
ds, t > 0, ρ > 0,

exists and is positive for some sufficiently large ρ > 0 (because ψ(u) → 0 as u → 0).
Consequently, for any t > 0, there is a constant ρ0 > 0 such that

∫ ρ0t

0
ψ

(
1

sλ

)
ds ≤ ρ0.

As Mψ
0 = {0}, it means that for any t ≥ 0, Mψ

t �= ∅. �
Given a fixed Young function ψ define a function Ψ : R+ → R

+ by

Ψ (t) := inf

⎧⎨
⎩k > 0 :

∫ tk
1
λ

0
ψ

(
1

sλ

)
ds ≤ k

1
λ

⎫⎬
⎭ . (6)

The following proposition provides a useful characterization of the function Ψ . Because our
definition of Ψ differs from typical N -functions studied in the theory of Orlicz spaces, we
should present an important property:

Proposition 3 [30] The function Ψ : R+ → R
+ defined by (6) is increasing and continuous

with Ψ (0) = 0.
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Definition 2 (cf. [35, Definition 2.4]) For a Young function ψ , we define the class Hψ(E)

to be the class of all Pettis integrable functions x : I → E such that ϕx is ψ-Dunford for
every ϕ ∈ E∗. That is

Hψ(E) := {x ∈ P[I , E] : ϕx ∈ Lψ(I ) , ϕ ∈ E∗}.
Let us recall that the Pettis-integrability of strongly measurable functions is strictly related
to our families of sets. Namely, we have the following theorem due to Uhl [41]:

Proposition 4 In order that a strongly measurable x : I → E be in P[I , E] it is necessary
and sufficient that there exists a Young function ψ such that limu→∞ ψ(u)

u = ∞, ϕx ∈ Lψ

for every ϕ ∈ E∗.
As for any x ∈ P[I , E] an appropriate Young function can be different, we will use

the above result in one direction. Namely, by fixing such a Young function ψ we will
investigate a much more natural subspace Hψ(E) ⊂ P[I , E]. Let us recall, that the con-
dition limu→∞ ψ(u)

u = ∞ is essential (to exclude the case of ψ(x) = ax), because for
ψ(u) = u (which do not satisfy this condition) we get Lψ(I , E) = L1(I , E). It is well-
known, that the space of Dunford integrable functions (i.e. scalarly Lebesgue integrable) is
different than P[I , E]. Note that, in contrast to L p spaces, for Orlicz spaces there is no linear
order with respect to inclusion, so there exists Young functions ψ1, ψ2 for which neither
Hψ1(E) �⊂ Hψ2(E) nor Hψ2(E) �⊂ Hψ1(E) (see [22, Theorem 13.1]).

Clearly, we get also the following immediate corollary

Corollary 1 For any α > 0 and any Young function ψ we get C[I , Eω] ⊂ Hψ(E).

The following result extended [29, Theorem 3.4]:

Proposition 5 [35, Proposition 2.2] If x ∈ Hψ(E), then x(·)y(·) ∈ P[I , E] for every
y(·) ∈ Lψ̃ .

We omit the proof since it is almost identical to that of [35, Proposition 2.2] (with the
exception of the use Young functions used instead of N -functions). Let us recall, that if a
Young function M is additionally finite-valued, vanishes only at 0, limx→0+ M(x)

x = 0 and

limx→∞ M(x)
x = ∞ then M is called an N -function.

We should also note, that the connection between the Pettis integrability and Orlicz spaces
is much deeper (see [7]).

Proposition 6 [7, Theorem 2.3] A strongly measurable function x : I → E is in P[I , E]
if and only if there is an N-function ψ with ψ(s · t) ≤ ψ(s) · ψ(t) for s, t > 0 such that
{ϕx : ϕ ∈ E∗, ‖ϕ‖ ≤ 1} is relatively weakly compact in Lψ(I ).

We should present a comment about “optimality” of the space of solutions with respect
to α. For the case of Riemann–Liouville and Caputo derivatives we discuss this problem in
[35]. Here, the problem is much more complicated and a sufficient condition binding α and
ψ will be presented in Theorem 2.

2 Hadamard-type fractional integrals and derivatives of vector-valued
functions

In this section, we present some definitions and some properties of the Hadamard-type frac-
tional Pettis integrals (and corresponding fractional derivatives) for the functions that take
values in Banach space.
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Motivated by the definition of the Hadamard fractional integral of real-valued function,
we introduce the following

Definition 3 Let x : I → E . The Hadamard-type fractional Pettis-integral (shortlyHFPI) of
x of order α > 0 is defined by

Jα
1 x(t) := 1

Γ (α)

∫ t

1

(
log

t

s

)α−1 x(s)

s
ds, t > 1. (7)

In the preceding definition the sign “
∫
” stands the Pettis integral. In contrast to the case

of the Riemann–Liouville integral, it is not a convolution type of fractional integrals, so it
should be investigated separately.

It is known (cf. [35]), that this operators makes sense if x ∈ P[I , E] such that ϕx ∈
L p, p > max{1, α}, ϕ ∈ E∗ (for a detailed study in this context, see [37]).

Definition 4 Let x : I → E . We define the Riemann–Louville Hadamard fractional-pesudo
(-weak) derivative “shortly HFPD (HFWD)” of x of order α ∈ (0, 1) by

Dα
1 x(t) := δJ1−α

1 x(t), δ := t D. (8)

Here D denote the pseudo-(weak-)differential operator. We use the notation Dα
p and Dα

w to
characterize the Riemann–Louville Hadamard fractional-pseudo derivatives and Hadamard
fractional-weak derivatives respectively.

Of course, Dα
1,px (Dα

1,wx) makes sense, if x : I → E is a function such that J1−α
1 x is

pseudo (weakly) differentiable on I . It is easy to see that, if Dα
1,wx exists a.e. on I , then

Dα
1,px exists on I and Dα

1,px = Dα
1,wx a.e. on I . For background and details pertaining to

this differential operators, we refer the reader to [37].
Besides the Riemann–Louville Hadamard fractional-pseudo (weak) derivatives, we define

the Caputo–Hadamard fractional-pseudo (weak) derivatives.

Definition 5 Let x : I → E . For α ∈ (0, 1), we define the Caputo–Hadamard fractional-
pesudo (-weak) derivative “shortly CFPD (CFWD)” of x of order α by

dα

dtα
x(t) := J1−α

1 δx(t)

= 1

Γ (1 − α)

∫ t

1

(
log

t

s

)−α

δx(s)
ds

s

= 1

Γ (1 − α)

∫ t

1

(
log

t

s

)−α

Dx(s) ds. (9)

We use the notation
dα
p

dtα and dα
ω

dtα to characterize the Caputo fractional-pseudo derivatives and
Caputo fractional-weak derivatives respectively.

The following theoremgeneralizes [37, Lemma2.2.] and plays amajor rule in our analysis.

Theorem 2 Let α ∈ (0, 1]. For any Young function ψ with its complementary function ψ̃

such that ∫ t

0
ψ̃(sα−1) ds < ∞, t ≥ 1, (10)

the operator Jα
1 sends Hψ(E) into C[I , Eω] (if we define Jα

1 x(1) := 0). In particular,
Jα
1 : C[I , Eω] → C[I , Eω] is well-defined. However, ϕ(Jα

1 x) = Jα
1ϕx holds for every

ϕ ∈ E∗.

123



On the solutions of Caputo–Hadamard Pettis-type… 3037

Proof At the begging we note that the case when α = 1 is straightforward and we left it to
the readers. The “strategy” of the proof when α ∈ (0, 1) will consist of three steps:

(a) The operator Jα
1 makes sense (i.e., Jα

1 x exists for every x ∈ Hψ(E)),
(b) The operator Jα

1 : Hψ(E) → C[I , Eω] is well-defined (i.e., Jα
1 x ∈ C[I , Eω] holds for

every x ∈ Hψ(E)),
(c) Jα

1 maps C[I , Eω] into itself.

Let x ∈ Hψ(E), α ∈ (0, 1) and define a function y : I → R
+ by

y(s) :=
{

[log(t/s)]α−1

s , s ∈ [1, t] , t > 1
0, otherwise.

(11)

We claim that y ∈ Lψ̃ (I ), once our claim is established, the assertion (a), follows immedi-
ately by Proposition 5. To see this, fix t ∈ [1, e] and choose an arbitrary k > 0. By using an
appropriate substitution and the properties of Young functions, one can get

∫ e

1
ψ̃

( |y(s)|
k

)
ds =

∫ t

1
ψ̃

( [log(t/s)]α−1

ks

)
ds ≤

∫ t

1
ψ̃

( [log(t/s)]α−1

k

)
ds

s

=
(
1

k

) 1
1−α

∫ k
1

1−α log t

0
ψ̃(sα−1) ds

≤
(
1

k

) 1
1−α

∫ k
1

1−α t

0
ψ̃(sα−1) ds. (12)

Thus, in view of (10) and by the aid of Proposition 2, we infer that y ∈ Lψ̃ (I ).
Consequently, the assertion [(a)] follows directly from Proposition 5. Moreover, as s �→
[log(t/s)]α−1 x(s)

s is Pettis integrable on [1, t] for every t ∈ I , it follows, by the definition of
Pettis integral, that for every t ∈ I there exists an element in E denoted by Jα

1 x(t) such that

ϕ(Jα
1 x(t)) =

∫ t

1
ϕ

( [log(t/s)]α−1

sΓ (α)

)
x(s) ds =

∫ t

1

[log(t/s)]α−1

sΓ (α)
ϕx(s) ds = Jα

1ϕx(t),

holds for every for every ϕ ∈ E∗.
Next, we prove the assertion (b): let 1 ≤ τ ≤ t ≤ e. Without loss of generality, assume

Jα
1 x(t) − Jα

1 x(τ ) �= 0. Then there exists (as a consequence of the Hahn-Banach theorem)
ϕ ∈ E∗ with ‖ϕ‖ = 1 and

∥∥Jα
1 x(t) − Jα

1 x(τ )
∥∥ = ϕ

(
Jα
1 x(t) − Jα

1 x(τ )
)
. One can write the

following chain of inequalities

∣∣ϕ (
Jα
1 x(t) − Jα

1 x(τ )
)∣∣Γ (α)

= ∣∣Jα
1ϕx(t) − Jα

1ϕx(τ )
∣∣Γ (α)

=
∣∣∣∣
∫ t

1

( [log(t/s)]α−1

s

)
ϕx(s) ds −

∫ τ

1

( [log(τ/s)]α−1

s

)
ϕx(s) ds

∣∣∣∣
≤
(∫ τ

1

∣∣∣∣ [log(t/s)]
α−1 − [log(τ/s)]α−1

s

∣∣∣∣ |ϕx(s)| ds

+
∫ t

τ

[log(t/s)]α−1

s
|ϕx(s)| ds

)
=
∫ e

1
[h1(s) + [hs(s)]|ϕx(s)| ds,
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where

h1(s) :=
{

[∣∣[log(t/s)]α−1−[log(τ/s)]α−1
∣∣

s , s ∈ [1, τ ],
0, otherwise.

and h2(s) :=
{

[log(t/s)]α−1

s , s ∈ [τ, t].
0, otherwise.

(13)
We claim that hi ∈ Lψ̃ (I ), (i = 1, 2). Once our claim is established, we infer (in view of
the Hölder inequality in Orlicz spaces) that

∣∣ϕ (
Jα
1 x(t) − Jα

1 x(τ )
)∣∣ ≤

2
[
‖h1‖ψ̃ + ‖h2‖ψ̃

]

Γ (α)
‖ϕx‖ψ . (14)

Fix 1 ≤ τ ≤ t ≤ e and k > 0. An appropriate substitution using the properties of Young
functions leads to the estimate

J1 :=
∫ τ

1
ψ̃

(∣∣[log(t/s)]α−1 − [log(τ/s)]α−1
∣∣

k

)
ds

s

=
∫ τ

1
ψ̃

( [log(τ/s)]α−1 − [log(t/s)]α−1

ks

)
ds

≤
∫ τ

1
ψ̃

( [log(τ/s)]α−1

k

)
ds

s
−
∫ τ

1
ψ̃

( [log(t/s)]α−1

k

)
ds

s

=
(
1

k

) 1
1−α

⎡
⎣
∫ k

1
1−α log t

0
ψ̃(sα−1) ds −

∫ k
1

1−α log τ

k
1

1−α log(t/τ)

ψ̃(sα−1) ds

⎤
⎦

=
(
1

k

) 1
1−α

⎡
⎣
∫ k

1
1−α log τ

0
ψ̃(sα−1) ds

−
⎛
⎝
∫ k

1
1−α log t

0
ψ̃(sα−1) ds −

∫ k
1

1−α log(t/τ)

0
ψ̃(sα−1) ds

⎞
⎠
⎤
⎦

≤
(
1

k

) 1
1−α

∫ k
1

1−α log(t/τ)

0
ψ̃(sα−1) ds. (15)

Since

B1 :=
⎧⎨
⎩k > 0 :

∫ k
1

1−α log(t/τ)

0
ψ̃(sα−1) ds ≤ k

1
1−α

⎫⎬
⎭ ⊆ {k > 0 : J1 ≤ 1},

it follows

‖h1‖ψ̃ = inf{k > 0 : J1 ≤ 1} ≤ inf B1 = Ψ̃ (| log t − log τ |)),
where

Ψ̃ (t) := inf

⎧⎨
⎩k > 0 :

∫ tk
1

1−α

0
ψ̃
(
sα−1) ds ≤ k

1
1−α .

⎫⎬
⎭
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Similarly, by applying the classical mean value theorem and the monotonicity of Ψ , one can
get

‖h2‖ψ̃ ≤ Ψ̃ (| log t − log τ |) ≤ Ψ (|t − τ |).
Thus, (14) is seen to be equivalent with the following estimate

∥∥Jα
1 x(t) − Jα

1 x(τ )
∥∥ ≤ 4Ψ̃ (| log t − log τ |)

Γ (α)
‖ϕx‖ψ ≤ 4Ψ̃ (|t − τ |)

Γ (α)
‖ϕx‖ψ . (16)

This estimate shows, in view of the continuity of Ψ̃ and the definition Jα
1 x(1) := 0, that Jα

1 x
is norm continuous. Thus, Jα

1 maps Hψ(E) into C[I , Ew].
Finally, we prove the assertion [(b)]. To do this, we recall that [19, p. 73] the weak

continuity implies the strongmeasurability. Thus, every x ∈ C[I , Eω] is stronglymeasurable
on I . Also, for any ϕ ∈ E∗, the continuous function ϕx lies Lψ(I ), for anyYoung functionψ .
Thus, in view of Proposition 4 we deduce thatC[I , Eω] ⊆ Hψ(E). That is Jα

1 : C[I , Eω] →
C[I , Eω] is well-defined. This is ensures the assertion [(c)]. �
Remark 1 Theorem 2 is an extension for the [37, Lemma 2.2]: if we choose ψ(u) = |u|p

p
with p > 1/α, it can be easily seen that [37, Lemma 2.2] is a simple particular case of
our Theorem 2. However, when ψ(u) = |u|p

p , p > 1/α, there is no difficulty to prove that

Ψ̃ (t) = t
α− 1

p
q√q[1−(1−α)q] , t ∈ R

+, 1
p + 1

q = 1.

In the following example we prove the existence of a Young function such that the hypotheses
(10) of Theorem 2 are satisfied for all α ∈ (0, 1).

Example 1 Chooseψ(u) = e|u|−|u|−1 (whence ψ̃ = (1+|u|) log(1+|u|)−|u|)—see [22,
p.14]. We will show that, for this choice of ψ , the integral (10) is finite for any α ∈ (0, 1).
Evidently, for any t ∈ [1, e] and any ε near 0, the integration by parts yields

Jε :=
∫ t

ε

ψ̃(sα−1) ds =
∫ t

ε

(1 + sα−1) log(1 + sα−1) ds −
∫ t

ε

sα−1 ds

≤
[(

s + sα

α

)
log(1 + sα−1)

]t
ε

+ (1 − α)

∫ t

ε

(
1 + sα−1

α

)
ds − tα − εα

α
.

Obviously, Jε ≥ 0 is bounded as ε ↓ 0 and so we are done.
When E = R the operator Jα maps all elements from the Orlicz space Lψ into C[I , Ew]

for any α ∈ (0, 1). We should note, that this property fails in the case of Lebesgue spaces
L p . Recall, that the image of Jα of L p is in C[I , Ew] if p > 1/α, for instance Jα : L2 → C
for α ∈ (0.5, 1) (see [37, Lemma 2.2]).

We now prove the following commutative property of the HFPI.

Lemma 2 Let α, β ∈ (0, 1) and ψ be a Young function with its complement ψ̃ such that
∫ t

0
ψ̃(s−λ) ds < ∞, t ∈ [1, e]. (17)

where λ := max{1 − α, 1 − β}. Then
Jα
1J

β
1 x = J

β
1J

α
1 x = J

α+β
1 x, (�)

holds for every x ∈ Hψ(E). In particular, (�) holds for every x ∈ C[I , Ew].
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Proof Obviously, when α + β ≥ 1, the continuity of ψ̃ yields the finiteness of the integral∫ t
0 ψ̃(sα+β−1) ds in [1, e]. If α + β < 1, the finiteness of the integral in (17) yields, in
view of Proposition 1 the finiteness of each of the integrals

∫ t
0 ψ̃(sα+β−1)ds,

∫ t
0 ψ̃(sα−1) ds

and
∫ t
0 ψ̃(sβ−1) ds are finite for all t ∈ [1, e]. Thus, in view of Theorem 2, Jα

1 x , J
α
1 (J

β
1 x)

and J
α+β
1 x exist on I for every x ∈ Hψ(E) as a weakly continuous functions from I to E .

Consequently, for anyϕ ∈ E∗ wehave (by the aid of ([21] Property 2.26), sinceϕx ∈ L1[1, e]
for every ϕ ∈ E∗)

ϕ(Jα
1J

β
1 x(t)) = Jα

1ϕ(J
β
1 x(t)) = Jα

1J
β
1ϕ(x(t)) = J

α+β
1 ϕ(x(t)) = ϕ(J

α+β
1 x(t)),

that is

ϕ(Jα
1J

β
1 x(t) − J

α+β
1 x(t)) = 0, for every ϕ ∈ E∗.

Hence Jα
1J

β
1 x(t) = J

α+β
1 x(t), t ∈ I . Similarly, we are able to show that Jβ

1J
α
1 x(t) =

J
α+β
1 x(t).
If x ∈ C[I , Ew], then (�) follows as a direct consequence of Theorem 2. �

The following Lemma is folklore in case E = R, but to see that it is also holds in the
vector-valued case, we provide a proof. In our proof, we will use the following

Proposition 7 (see [27], Theorem 5.1) The function y : I → E is an indefinite Pettis
integral, if and only if, y is weakly absolutely continuous on I and have a pseudo-derivative
on I . In this case, y is an indefinite Pettis integral of any of its pseudo-derivatives.

Lemma 3 Let 0 < α < 1 and ψ be a Young function with Young complement ψ̃ such that
∫ t

0
ψ̃(s−α) ds < ∞ , t ∈ [1, e]. (18)

If the function x : I → E is weakly absolutely continuous on I and have a pseudo-derivative
in Hψ(E), then

dα
p x

dtα
(t) = Dα

p x(t) − (log t)−α

Γ (1 − α)
x(1).

In particular, if x have a weak derivative in C[I , Eω], then
dα
ωx

dtα
(t) = Dα

ωx(t) − (log t)−α

Γ (1 − α)
x(1).

The proof of Lemma 3 will be done after some preliminary lemma is established.

Lemma 4 Let 0 < α < 1. For any x ∈ Hψ(E), where ψ is a Young function with its
complement ψ̃ satisfying

∫ t

0
ψ̃(s−ν) ds < ∞, t ∈ [1, e], ν := max{1 − α, α}. (19)

Then
Dα

pJ
α
1 x = x on I . (20)

In particular, if x ∈ C[I , Eω], we haveDα
ωJ

α
1 x = x on I .
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Proof Our assumption x ∈ Hψ(E) yields, in view of Lemma 2, that

Dα
pJ

α
1 x = t DpJ

1−α
1 Jα

1 x = t DpJ
1
1x = t Dp

∫ t

1
x(s)

ds

s
. (21)

Similarly, if x ∈ C[I , Eω], we obtain

Dα
ωJ

α
1 x = t DωJ

1−α
1 Jα

1 x = t DωJ
1
1x = t Dω

∫ t

1
x(s)

ds

s
. (22)

The claim now follows immediately, since the indefinite integral of (Pettis integrable) weakly
continuous function is (pseudo-differentiable) weakly differentiable with respect to the right
endpoint of the integration interval and its (pseudo-) weak derivative equals the integrand at
the end point of the integration interval. �

We are now ready to write the proof of Lemma 3.

Proof of Lemma 3 We observe that under the assumption imposed on Dpx together with
Proposition 7, the weakly absolutely continuity of x is equivalent to

x(t) = x(1) +
∫ t

1
Dpx(s) ds, t ∈ I ,

where y := Dpx is one of the Pettis integrable pseudo-derivatives of x . Since y ∈ Hψ(E),
we get (·)y(·) ∈ Hψ(E) as well: evidently, ϕ(sy(s)) = sϕ(y(s)) ∈ Lψ(I ) holds true for all
ϕ ∈ E∗ and (·)y(·) ∈ P[I , E] (it follows from Proposition 5). Thus∫ t

1
y(s) ds =

∫ t

1

sy(s)

s
ds = J11t y(t),

where the right hand side exists by Theorem 2. Consequently,

x(t) = x(1) + J11t y(t). (23)

Hence, owing to Lemma 4, and by the aid (18), it follows that

dα
p x

dtα
= J1−α

1 t Dpx =
(
Dα

pJ
α
1

)
J1−α
1 t Dpx = Dα

p

(
Jα
1J

1−α
1

)
t Dpx =

(
t DpJ

1−α
1

)
J11t Dpx

= t DpJ
1−α
1 (x(t) − x(1)) = Dα

p x(t) − (log t)−α

Γ (1 − α)
x(1),

which is what we wished to show. The proof for the weak derivative is very similar to the
above for dor pseudo derivatives, so we omit the details. �
Remark 2 The definition 5 of the Caputo–Hadamard fractional-pseudo (weak) derivatives
has the disadvantage that it completely loses its meaning if x fails to be pseudo- (weak)
differentiable on I .

For this reason, we use the property of Lemma 3 to define the general Caputo–Hadamard
fractional-pseudo (weak) derivatives, i.e., we put

dα
p x

dtα
(t) := Dα

p x(t) − (log t)−α

Γ (1 − α)
x(1), (24)

dα
ωx

dtα
(t) := Dα

ωx(t) − (log t)−α

Γ (1 − α)
x(1). (25)

Lemma 3 implies that, for weakly absolutely continuous functions with an integrable
pseudo- (weak) derivative, this definition coincides with the usual definition (Definition 5)
of the Caputo–Hadamard fractional derivatives.
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3 Caputo–Hadamard-type boundary value problem

In this section, we apply the results of Section (2), result to investigate the existence of weak
solutions of the following Caputo–Hadamard boundary value problem⎧⎨

⎩
dp
dt

x(t) = λ f (t, x(t)), α ∈ (0, 1), t ∈ [1, e], λ ∈ R,

x(1) + bx(e) = h,
(26)

with certain constants λ, b, h ∈ E, b �= −1, where f : [1, e] × E → E is Pettis integrable
function.

To obtain formally the integral equation modelled off the problem (26), let ψ be a Young
function such that ∫ t

0
ψ̃(sα−1) ds < ∞, t ∈ [1, e].

Assume that

f : [1, e] × E → E, such that f (·, x(·)) ∈ Hψ(E) for every x ∈ C[I , Eω]. (27)

Thus, if x ∈ C[I , Eω] solves (26), then formally we have

Jα
1

dα
p

dtα
x(t) = λJα

1 f (t, x(t)) �⇒ Jα
1J

1−α
1 t Dpx(t) = λJα

1 f (t, x(t)).

That is ∫ t

1
sDpx(s)

ds

s
= λJα

1 f (t, x(t)) �⇒ x(t) − x(1) = λJα
1 f (t, x(t)).

This reads as

x(t) = x(1) + λJα
1 f (t, x(t)), α ∈ (0, 1), t ∈ [1, e], λ ∈ R, (28)

with some (presently unknown) quantity x(1). Solving (28) for x(1) with x(1)+ bx(e) = h,
we get

x(1) = h

1 + b
− λb

(1 + b)Γ (α)

∫ e

1

(
log

e

s

)α−1
f (s, x(s))

ds

s
. (29)

The next theorem gives a conditions that ensures the existence of solutions to the Volterra-
type fractional integral equation (28) in C[I , Eω]. The case α = 1 was studied in [13], for
instance.

Let usmention, that here by aKamke function (of the Hadamard-type) wemean a function
g : R+ → R+ which is continuous, nondecreasing, g(1) = 0 and u ≡ 0 is the only
continuous solution of

u(t) ≤ 1

Γ (α)
·
∫ t

1

(
log

t

s

)α−1

g(u(s))
ds

s
, u(1) = 0.

Note, that in contrast to the case of the Riemann–Liouville fractional integrals (see [24],
for instance) the problem of existence of necessary and sufficient conditions to be a Kamke
function with the Hadamard fractional integral remains open.

Recall, that for any Young function ψ C(I ) ⊂ L∞(I ) ⊂ Lψ(I ), and then there exists
a constant q > 0 such that ‖w‖ψ ≤ q · ‖w‖∞ for all w ∈ C(I ) (cf. (see [22, Theorem
13.3], a special case considered here is calculated in [20, Remark 1], namely we have q =
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(ψ−1((e − 1)−1))−1) and we can use this constant in our assumptions too (see also [22, p.
79]. For brevity and to allows a generalizations, let us keep in the sequel a symbol q .

Theorem 3 Let α ∈ (0, 1]. Assume, thatψ is a Young function satisfying limu→∞ ψ(u)
u = ∞

and its complementary Young function ψ̃ satisfies
∫ t

1
ψ̃(s−ν) ds < ∞, t ∈ [1, e], ν = max{1 − α, α}. (30)

Let the function f : [1, e] × E → E be such that

a) for every t ∈ I f (t, ·) is ww-sequentially continuous,
b) for each x ∈ C[I , Eω], f (·, x(·)) is strongly measurable,
c) for any r > 0 and for each ϕ ∈ E∗ there exists an Lψ(I ,R)-integrable function Mϕ

r :
I → R

+ such that |ϕ( f (t, x))| ≤ Mϕ
r (t) for all t ∈ I and ‖x‖ ≤ r . Moreover, for

any s > 0 there exists a constant κs > 0 such that for all ϕ ∈ E∗, ‖Mϕ
s ‖ψ < κs and∫∞

0
ds

‖Mϕ
s ‖ψ

= ∞.

d) there exists a Kamke function g such that for any bounded subset X of E we have

β( f (I × X)) ≤ g(β(X)).

e) the constant λ ∈ R is such that there exists a positive constant r satisfying

‖h‖
1 + b

+ 4|λ|Ψ̃ (1)

Γ (α)
· ∥∥Mϕ

r

∥∥
ψ

∣∣∣∣ 2b + 1

(1 + b)

∣∣∣∣ ≤ r .

Then (28) has at least one solution in C[I , Eω] satisfying x(1) + bx(e) = h.

Proof We will consider the operator

T (x)(t) = x(1) + λJα
1 f (t, x(t)) = x(1) + λ

Γ (α)

∫ t

1

(
log

t

s

)α−1

f (s, x(s))
ds

s

= h

1 + b
+ λ

Γ (α)

[∫ t

1

(
log

t

s

)α−1

f (s, x(s))
ds

s

− b

(1 + b)

∫ e

1

(
log

e

s

)α−1
f (s, x(s))

ds

s

]
,

where x ∈ C[I , Eω]. To shorten the proof, let us recall some estimations proved for the
integral operator Jα

1 f (t, x(t)) in a previous section. As for any x ∈ C[I , Eω] and ϕ ∈ E∗
the superposition f (·, x(·)) is strongly measurable, so in view of Proposition 4, from our
assumption c) it follows that f (·, x(·)) ∈ Hψ(E).

We divide our proof into steps, by proving some of important properties of T .
First, we need to claim, that this operator T is well-defined onHψ(E) (in view of Corol-

lary 1 also in C[I , Eω]) with its values in C[I , Eω] (see Theorem 2). Let us also recall (see
11), that a function y : I → R

+ defined by

y(s) :=
{

[log(t/s)]α−1

s , s ∈ [1, t] , t > 1
0, otherwise.

is in an appropriate Orlicz space, i.e., y ∈ Lψ̃ (I ) (cf. Theorem 2). Let us estimate ‖y‖ψ̃ . By
the definition of the Luxemburg norm, by (12), we obtain an estimation:
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‖y‖ψ̃ ≤
∫ e

1
ψ̃

( |y(s)|
k

)
ds ≤

(
1

k

) 1
1−α

∫ k
1

1−α e

1
ψ̃(sα−1) ds ≤ Ψ̃ (1) < ∞.

for any k > 0.
We need to show the existence of an invariant set for T , i.e., T : Q → Q. Denote by κ

the constant from c) related to the value r described in e). Let us define a convex and closed
subset Q ⊂ C[I , Eω]:

Q = {x ∈ C[I , Eω] : ‖x‖0 ≤ r , x(1) + bx(e) = h, ∀t1, t2 ∈ [1, e]
we have ‖x(t2) − x(t1)‖ ≤ 4|λ|Ψ̃ (|t2 − t1|)

Γ (α)
· ‖Mϕ

r ‖ψ

}
.

Due to Proposition 3 it is strongly equicontinuous set of functions.
Step 1. Linking our assumptions on α and ψ and using Hölder inequality in Orlicz spaces,
as in Theorem 2, for any ϕ ∈ E∗, for ‖x‖ ≤ r one can obtain an estimation

∥∥Jα
1 f (t, x(t))

∥∥ = |ϕ(Jα
1 f (t, x(t)))| = |Jα

1 ϕ( f (t, x(t)))| ≤ 4Ψ̃ (1)

Γ (α)

∥∥Mϕ
r

∥∥
ψ

. (31)

As a consequence of the Hahn–Banach theorem, for any x ∈ Q there exists ϕ ∈ E∗ with
‖ϕ‖ = 1 and ‖T (x)(t)‖ = ϕ (T (x)(t)) and then by the assumption e)

‖T (x)(t)‖ = |ϕ (T (x)(t))|
≤ ‖x(1)‖ + 4|λ|Ψ̃ (1)

Γ (α)

∥∥Mϕ
r

∥∥
ψ

≤ ‖h‖
1 + b

+ 4|λ|Ψ̃ (1)

Γ (α)
· ∥∥Mϕ

r

∥∥
ψ

∣∣∣∣ 2b + 1

(1 + b)

∣∣∣∣ ≤ r .

Let t, τ ∈ [1, e] with t > τ and fix x ∈ Q. Without loss of generality, assume T x(t) −
T x(τ ) �= 0. Let ϕ ∈ E∗ with ‖ϕ‖ = 1. Thus, by (16)

|ϕ(T (x)(t) − T (x)(τ ))| = ∣∣ϕ (
Jα
1 f (t, x(t)) − Jα

1 f (t, x(τ ))
)∣∣

≤ |λ| ·
2
[
‖h1‖ψ̃ + ‖y‖ψ̃

]

Γ (α)
· ‖Mϕ

r ‖ψ

≤ 4|λ|Ψ̃ (|t − τ |)
Γ (α)

· ‖Mϕ
r ‖ψ.

where h1 is defined in (13).
Due to (16) and since all the constants on the right-hand side of the above inequality are

independent of ϕ, we are able the supremum over all ϕ ∈ E∗ with ‖ϕ‖ ≤ 1 and we obtain

‖T (x)(t) − T (x)(τ )‖ ≤ 4|λ|Ψ̃ (|t − τ |)
Γ (α)

· ‖Mϕ
r ‖ψ.

This estimate prove that T maps Q into itself.
Step 2. It remains to prove that T : Q → Q ww-sequentially continuous. To see this, let
(xn) be a sequence in Q weakly convergent to x . Thus xn(t) → x(t) in (E, ω) for each t ∈ I .

Since f satisfies the Assumption b), for any t ∈ I the sequence ( f (t, xn(t))) converge
weakly to f (t, x(t)), so the sequence y(t)ϕ( f (t, xn(t)))) has is pointwisely convergent.
Assumption c) allows to apply the Lebesgue dominated convergence theorem for the Pettis
integral, so (T xn(t)) converges weakly to T x(t) in Eω. By the Dobrakov characterization
of weak convergence in C[I , E] (cf. [13]) we can do it for each ϕ ∈ E∗ and t ∈ I , so
T : Q → Q ww-sequentially continuous.
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Step 3. Remark that for arbitrary w ∈ P[I , E] we have, t ∈ [1, e]
∫ t−τ

1
w(s) ds +

∫ t

t−τ

w(s) ds =
∫ t

1
w(s) ds.

Suppose now, that the set V ⊂ Q has the following property: V = conv ({x} ∪ T (V )) for
some x ∈ Q.

As for any ε > 0 there exists (sufficiently small) τ such that for any x ∈ V
∥∥∥∥
∫ t

t−τ

λ[log(t/s)]α−1

sΓ (α)
f (s, x(s)) ds

∥∥∥∥ < ε (32)

we can cover the set
{∫ t

t−τ
λ[log(t/s)]α−1

sΓ (α)
f (s, x(s)) ds : s ∈ [t − τ, t], x ∈ V

}
by a ball with

radius ε and then by the definition of the De Blasi measure of weak noncompactness (by the
assumption c) we get the uniform Pettis integrability of the set of functions satisfying (32):

β

({∫ t

t−τ

λ[log(t/s)]α−1

sΓ (α)
f (s, x(s)) ds : s ∈ [t − τ, t], x ∈ V

})
< ε.

We need to estimate now the set of the above integrals on [1, t − τ ]. Put v(s) = β(V (s)).

Note, that from our assumption it follows that s → λ[log(t/s)]α−1

sΓ (α)
g(v(s)) is continuous on

[1, t − τ ], so uniformly continuous (see Lemma 1).
Thus there exists δ > 0 such that∣∣∣∣λ[log(t/η)]α−1

ηΓ (α)
g(v(q)) − λ[log(t/s)]α−1

sΓ (α)
g(v(s))

∣∣∣∣ < ε (33)

provided that |q−s| < δ and |η−s| < δ with η, s, q ∈ [1, t−τ ]. Divide the interval [1, t−τ ]
into n parts 1 = t0 < t1 < · · · < tn = t − τ such that |ti − ti−1| < δ for i = 1, 2, . . . , n. Put
Ti = [ti−1, ti ]. As v is uniformly continuous, there exists si ∈ Ti such that v(si ) = β(V (Ti ))
(i = 1, 2, . . . , n).

As {∫ t−τ

1

λ[log(t/s)]α−1

sΓ (α)
f (s, x(s)) ds : s ∈ [1, t − τ ], x ∈ V

}

⊂
n∑

i=1

{∫
Ti

λ[log(t/s)]α−1

sΓ (α)
f (s, x(s)) ds : s ∈ [1, t − τ ], x ∈ V

}
,

and by the mean value theorem for the Pettis integral
∫
Ti

λ[log(t/s)]α−1

sΓ (α)
f (s, V (s)) ds ∈ meas(Ti )

·conv
{

λ[log(t/s)]α−1

sΓ (α)
f (s, V (s)) : s ∈ Ti

}
.

Hence

β

({∫ t−τ

1

λ[log(t/s)]α−1

sΓ (α)
f (s, x(s)) ds : s ∈ [1, t − τ ], x ∈ V

})

≤
n∑

i=1

β

({∫
Ti

λ[log(t/s)]α−1

sΓ (α)
f (s, x(s)) ds : s ∈ [1, t − τ ], x ∈ V

})
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≤
b∑

i=1

meas(Ti ) · β

(
conv

{
λ[log(t/s)]α−1

sΓ (α)
f (s, V (s)) : s ∈ Ti

})

≤
b∑

i=1

meas(Ti ) · max
s∈Ti

λ[log(t/s)]α−1

sΓ (α)
· β( f (I × V (Ti )))

≤
b∑

i=1

meas(Ti ) · λ[log(t/ti )]α−1

tiΓ (α)
· g(β(V (Ti )))

≤
b∑

i=1

meas(Ti ) · λ[log(t/ti )]α−1

tiΓ (α)
· g(v(si )).

Note, that from (33) it follows that

b∑
i=1

meas(Ti ) · λ[log(t/ti )]α−1

tiΓ (α)
· g(v(si ))

≤
∫ t−τ

1

λ[log(t/s)]α−1

sΓ (α)
g(v(s)) ds + (t − τ) · ε.

Finally, from the above estimations we get

β(T (V )(t)) ≤
∫ t

1

λ[log(t/s)]α−1

sΓ (α)
g(v(s)) ds + (t − τ) · ε + ε.

As the last inequality is satisfied for any ε > 0, we obtain

β(T (V )(t)) ≤
∫ t

1

λ[log(t/s)]α−1

sΓ (α)
g(v(s)) ds. (34)

Note that β(V (t)) = β(V (t)) = β(conv ({x} ∪ T (V ))(t)) = β(T (V )(t)). Then

β(V )(t)) ≤
∫ t

1

λ[log(t/s)]α−1

sΓ (α)
g(v(s)) ds

and then

v(t) ≤
∫ t

1

λ[log(t/s)]α−1

Γ (α)
g(v(s))

ds

s
.

From the definition of a Kamke function we get v(t) ≡ 0, i.e., β(V (t)) = 0, so V (t)
are relatively weakly compact in E . Being strongly equicontinuous subset of C[I , Eω] with
relatively weakly compact sections it is relatively compact subset of this space (cf. Lemma 1).

All in all, the hypotheses of Theorem 1 are satisfied. Therefore, we can conclude that the
operator T has at least one fixed point in Q, which completes the proof. �

Obviously, if x is weakly (but not weakly absolutely) continuous solution to (28), then
not only do we have x is no longer necessarily solves (26) (when the Caputo fractional
weak derivative is taken in the sense of Definition 5), but even worse, the problem (26) is
“meaningless” on I .

Now, we are in the position to state and prove the following existence theorem.

Theorem 4 If f : I × E → E is a function such that all conditions from Theorem 3 hold,
then the problem (26) [where the Caputo fractional weak derivative is taken in the sense
(24)] has a pseudo-solution on [1, e].
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Proof Let x ∈ C[I , Eω] solves (28). Since x is weakly continuous [but it is not necessary
weakly absolutely continuous) on [1, e] we have to invoke the Definition (24)] of the CHFD
as follows (with the use of Lemma 4)

dα
p x(t)

dtα
= Dα

p x(t) − (log t)−α

Γ (1 − α)
x(1) = Dα

p

[
x(1) + λJα f (t, x(t))

] − (log t)−α

Γ (1 − α)
x(1)

= x(1)
(log t)−α

Γ (1 − α)
+ λDα

pJ
α f (t, x(t)) − (log t)−α

Γ (1 − α)
x(1) = λ f (t, x(t)). (35)

On the other hand, Eq. (28) implies

x(1) + bx(e) = x(1) + b
[
x(1) + λJα f (e, x(e))

] = x(1)(1 + b) + λbJα f (e, x(e)). (36)

Thus if we plug (29) into (36), we arrive at the boundary condition x(1)+bx(e) = h. This
is may be combined with (35) in order to assure the existence of a solution x ∈ C[I , Eω] to
the problem (26). This completes the proof. �

Remark 3 We should also briefly present an example of the use of our theorem to the problem
(28). We refer to [35, Section 6]. Both examples could be easily adaptable to the case of (28).

Put α = 1/2 and consider the Young function ψ(u) = e|u| − |u| − 1. Then ψ̃ = (1 +
|u|) log(1 + |u|) − |u|. A direct calculation leads to

∫ 32

0
ψ̃
(
s− 1

2

)
ds ≤ 32.

So, owing to the definition of Ψ̃ , we conclude that Ψ̃ (1) ≤ 3 and our result applies. Direct
formulas can be deduced as in [35]. Note that any earlier theorem cannot be applied in such
a general case.

As claimed in Sect. 2 the case studied here is more complicated than the case of the
Riemann–Liouville integral and approaches based on convolution-type operators. All the
properties of integral operators should be proved without use of Hölder inequality for the
convolution. It makes this case independent on the study of standard Abel integral equations
(cf. [35] or the book [18]). It is another type of weakly singular problems and requires the
study of different integral operators acting on function spaces.

4 Multivalued problems

Let us briefly explain how to extend the above results for multivalued problems. We extend
both the case of classical Pettis integrals (i.e., α = 1) [12]) and the case of Caputo (and
Riemann–Liuoville) integrals [9]. We should mention that as the Hadamard integral is not
of a convolution of a real-valued integrable function with the Pettis integrable vector-valued
one, we are unable to apply the property of such integrals proved in [9], But still we can apply
Proposition 5 instead. As we need to replace fractional Pettis integrals, by the multivalued
ones, we need to recall some necessary notions.

By cwk(E) we denote the family of all nonempty convex weakly compact, subsets of E .
For every C ∈ cb(E) the support function of C is denoted by s(·,C) and defined on X∗
by s(ϕ,C) = supx∈C ϕx , for each ϕ ∈ X∗. We say that F is scalarly integrable (Dunford
integrable) if for any ϕ ∈ E∗ s(ϕ, F(·)) is an integrable function.
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Definition 6 A multifunction G : E → 2E is called weakly sequentially upper hemi-
continuous (w-seq uhc) iff for each ϕ ∈ E∗ s(ϕ,G(·)) : E → R is sequentially upper
semicontinuous from (E, ω) into R.

An idea of Aumann–Pettis integral introduced by Valadier and we apply this idea for
Hadamard-type integrals:

Definition 7 Let F : I → cwk(E). The Hadamard-type fractional Aumann–Pettis integral
(shortly (HAP) integral) of F of order α > 0 is defined by

(H AP)

∫
I
F(s) ds :=

{
1

Γ (α)

∫ t

1

(
log

t

s

)α−1 f (s)

s
ds : f ∈ SH AP

F

}
, (37)

where SH AP
F denotes the set of all Hadamard–Pettis integrable selections of F of order α > 0

provided that this set is not empty.
As a consequence of Proposition 6 we get a nice characterization:

Proposition 8 Assume, that E is separable. Let F : I → cwk(E) be (HAP) integrable of
order α > 0. If ψ is a submultiplicative N-function, then {ϕ f : f ∈ SH AP

F , ϕ ∈ E∗, ‖ϕ‖ ≤
1} is relatively weakly compact in Lψ(I ).

A subset K ⊂ Hψ(E) is said to be (HAP) uniformly integrable of order α > 0 on I if,
for each ε > 0, there exists δε > 0 such that

meas (A) ≤ δε �⇒
∥∥∥∥∥
∫
A

(
log

t

s

)α−1 h(s)

s
dμ(s)

∥∥∥∥∥ ≤ ε, ∀h ∈ K .

Following the idea of the proof from [16, Theorem 5.4], we can state a condition for
(HAP)-integrability:

Lemma 5 Let α ∈ (0, 1]. Assume, that ψ is a Young function satisfying limu→∞ ψ(u)
u = ∞

and its complementary Young function ψ̃ satisfies∫ t

1
ψ̃(s−ν) ds < ∞, t ∈ [1, e], ν = max{1 − α, α}. (38)

Let F : I → cwk(E) be measurable and scalarly integrable multifunction. Then the follow-
ing statements are equivalent:

(a1) every measurable selection of F is Hadamard–Pettis integrable of order α > 0,
(a2) for every measurable subset A of I the (HAP) integral IA belongs to cwk(E) and, for

every ϕ ∈ E∗, one has

s(ϕ, IA) =
∫
A

(
log

t

s

)α−1 s(ϕ, F(s))

s
ds.

Proof Fix arbitrary t ∈ I and define a new multifunction G : I → cwk(E) by the following
formula:

G(s) =
{(

log
t

s

)α−1 f (s)

s
: f ∈ SH AP

F

}
.

In the proof of Theorem 2 we showed, that s �→ (
log t

s

)α−1 1
s ∈ Lψ̃ (I ). Then for anyϕ ∈ E∗

and f ∈ Lψ(I ) by Proposition 5 we conclude, that s �→ (
log t

s

)α−1 ϕ f (s)
s is integrable and

then s �→ (
log t

s

)α−1 f (s)
s is Pettis integrable.

We obtain our thesis by applying Theorem 4.5 in [16] directly for the multifunction G. �
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In view of the Definition 7 we are able to apply Theorem 2 for any f ∈ SH AP
F separately,

then apply the above Lemma and we get a new characterization of (HAP) integrals:

Proposition 9 Let α ∈ (0, 1]. Assume, that ψ is a Young function satisfying limu→∞ ψ(u)
u =

∞ and its complementary Young function ψ̃ satisfies
∫ t

1
ψ̃(s−ν) ds < ∞, t ∈ [1, e], ν = max{1 − α, α}. (39)

Then for any (HAP) multifunction F : I → cwk(E) with s(ϕ, F(·)) ∈ Hψ(E), for every
ϕ ∈ E∗ and any measurable subset A of I we get (H AP)

∫
A F(s) ds ⊂ cwk(C[I , Eω]).

Let us note that the setSH AP
F of allHadamard–Pettis integrable selections of F is nonempty

and sequentially compact for the topology of pointwise convergence on L∞ ⊗ E∗ and that,
as in a classical case, the multivalued integral (H AP)

∫
I F(s) ds is convex.

The most important question is how to investigate assumption b) from out Theorem 3. We
can apply the following:

Lemma 6 Let α ∈ (0, 1]. Assume, that ψ is a Young function satisfying limu→∞ ψ(u)
u = ∞

and its complementary Young function ψ̃ satisfies
∫ t

1
ψ̃(s−ν) ds < ∞, t ∈ [1, e], ν = max{1 − α, α}. (40)

Assume that E has separable dual E∗. Let v ∈ C[I , Eω], and let F : I × E → 2E is such
that:

(i) F(·, x)—has a weakly measurable selection for each x ∈ E ,
(ii) F(t, ·)—w-seq. uhc for each t ∈ I ,
(iii) F(t, x) are nonempty, closed and convex ,
(iv) F(t, x) ⊂ G(t) a.e., G has nonempty convex and weakly compact values and is (HAP)

uniformly integrable of order α > 0 on I .

Then there exists at least one Hadamard-type fractional Pettis integrable of order α > 0
selection z of F(·, v(·)).
Proof ByLemma3.2 in [11]we get the existence of aweaklymeasurable andPettis integrable
selection z0 of F(·, v(·)). Clearly, as E is separable, this function is strongly measurable too.

Moreover, again as in Lemma 5 for anyϕ ∈ E∗ and f ∈ Lψ(I ) by Proposition 5 we

conclude, that s �→ (
log t

s

)α−1 ϕz0(s)
s is integrable and then s �→ (

log t
s

)α−1 z0(s)
s is Pettis

integrable, so z0 is Hadamard-type fractional Pettis integrable of order α > 0. �
For the weakly compact-valued case, by applying selection arguments and the above

results we are able to treat a multivalued problem as a single-valued one, considered in the
previous section. We get the following multivalued extension of our main theorem from
Sect. 3:

Theorem 5 Assume that E has separable dual E∗. Let α ∈ (0, 1]. Assume, that ψ is a Young
function satisfying limu→∞ ψ(u)

u = ∞ and its complementary Young function ψ̃ satisfies
∫ t

1
ψ̃(s−ν) ds < ∞, t ∈ [1, e], ν = max{1 − α, α}.

Let F : [1, e] × E → cwk(E) is such that:
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a) for each t ∈ [1, e] F(t, ·) - w-seq. uhc,
b) for each x ∈ C[[1, e], Eω], F(·, x) has a weakly measurable selection f ,
c) for a.e. t ∈ [1, e] and each x ∈ C[[1, e], Eω], F(t, x) ⊂ G(t), where G has nonempty

convex and weakly compact values and is (HAP) uniformly integrable of order α > 0 on
[1, e], for any ϕ ∈ E∗ ∫∞

0
dr

s(ϕ,G(r)) = ∞ .

Then (28) has at least one solution in C[I , Eω] satisfying x(1) + bx(e) = h.

Proof The proof follows the steps outlined in the demonstration of Theorem 3 for the mul-
tivalued operator T : C[I , Eω] → cwk(C[I , Eω])

T (x)(t) = x(1) + λ · (H AP)

∫ t

1
F(s, x(s)) ds.

We need to prove the existence of a fixed point of T . When we have done, we can apply the
Kakutani–Ky Fan fixed point theorem [5].

Indeed, by Lemma 6, for any x ∈ C[[1, e], Eω] we have the existence of a Hadamard-
type fractional Pettis integrable of order α > 0 selection zx of F(·, x(·)) and then SH AP

F
is nonempty. As E∗ is separable, so is E and hence any weakly measurable selection is
strongly measurable. Thus by the assumption c) we get zx ∈ Hψ(E). It follows that
(H AP)

∫ t
1 F(s, x(s)) ds �= ∅, F is (HAP) integrable, so T is well-defined on C[I , Eω]

with nonempty values. As for any Hadamard–Pettis selection the values are in C[I , Eω], we
have T : C[I , Eω] → 2C[I ,Eω]. By applying Proposition Lemma 9, we obtain that T has
weakly compact values, i.e., T (x) ∈ cwk(C[I , Eω])

Let U = {x f ∈ C([I , Eω] : x f (t) = Jα
1 f (t), t ∈ I , f ∈ SH AP

G }. By our assumptions,
SH AP
G is (HAP) uniformly integrable of order α > 0.
Moreover, by Assumption b), for any f ∈ SH AP

G and ϕ ∈ E∗ we have ϕ f ≤ s(ϕ,G) and
so, for arbitrary x f ∈ U and t, τ ∈ I we have:

‖x f (t) − x f (τ )‖ = sup
ϕ∈B(E∗)

ϕ(x f (t) − x f (τ )) = sup
ϕ∈B(E∗)

(
Jα
1 f (t) − Jα

1 f (τ )
)
.

By using the estimation (16) we obtain

‖x f (t) − x f (τ )‖ ≤ 4|λ|Ψ̃ (|t − τ |)
Γ (α)

sup
f ∈G

sup
ϕ∈B(E∗)

‖ϕ f ‖ψ

≤ 4|λ|(ψ−1((e − 1)−1))−1 · Ψ̃ (|t − τ |)
Γ (α)

sup
ϕ∈B(E∗)

s(ϕ,G).

As G, being uniformly (HAP) integrable, the value supϕ∈B(E∗) s(ϕ,G) is bounded, and
then we conclude that U is an equicontinuous subset of C[I , Eω].

We show now that U is closed. Take a sequence x fn (t) = Jα
1 fn(t) convergent uniformly

to a continuous function x and prove that x ∈ U . As SH AP
G is sequentially compact for the

topology induced by the tensor product L∞ ⊗ E∗ , there exists a subsequence fnk convergent
with respect to the Pettis norm to a selection f ∈ SH AP

G . It implies that Jα
1 fnk (t) weakly

converges to Jα
1 f (t), whence x(t) = Jα

1 f (t) for all t ∈ I and so, the set U is closed.
As G(t) are weakly compact for t ∈ I , by Ascoli’s theorem, U is weakly compact in

C[I , Eω].
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On the other hand, we have the following estimation:

‖T (x)(t)‖ = sup
ϕ∈B(E∗)

s(ϕ, T (x)(t))

≤ ‖x(1)‖ + 4|λ|(ψ−1((e − 1)−1))−1Ψ̃ (1)

Γ (α)
· sup
ϕ∈B(E∗)

∫ e

1
s(ϕ,G(s)) ds.

As S(H AP)
G is (HAP) uniformly integrable, there exists a constant N > 0 such that

‖(H AP)
∫ e
1 s(ϕ,G(s)) ds‖ ≤ N . Then for any t ∈ I

‖T (x)(t)‖ ≤ ‖h‖
1 + b

+ 4|λ|(ψ−1((e − 1)−1))−1Ψ̃ (1)

Γ (α)
· N =: M .

Therefore, for a solution of our problem we obtain an “a priori” estimation, namely
‖x‖ ≤ M . Denote by BM the ball {x ∈ C[I , E] : ‖x‖ ≤ M} and let V = U ∩ BN . It is
weakly compact and convex set. In the next part of the proof we will restrict T to the set V .
It is clear that T (V ) ⊂ V .

Now, we are in a position to show, that T has a weakly–weakly sequentially closed graph
(therefore, it has closed graph when C[I , Eω] is endowed with the weak topology, as this
topology is metrizable on weakly compact sets). Let (xn, yn) ∈ GrT , (xn, yn) → (x, y)
in C[I , Eω].

Recall, that yn is of the following form

yn(t) = xn(1) + Jα
1 fn(t) , fn ∈ SH AP

F(·,xn(·)) , t ∈ I .

Since fn(t) ∈ F(t, xn(t)) ⊂ G(t) a.e. and SH AP
G is nonempty, convex and is sequentially

compact for the “weak” topology of pointwise convergence on L∞ ⊗ E∗, we extract a
subsequence ( fnk ) of ( fn) such that ( fnk )k converges σ(P[I , E], L∞ ⊗ E∗) to a function
f ∈ SH AP

G .
Fix an arbitrary ϕ ∈ E∗. As for any measurable A ⊂ I , h(t) = χA(t) ∈ L∞(I ) and since

( fnk ) σ (P[I , E], L∞ ⊗ E∗)-converges to f ∈ SH AP
G , for any t ∈ I , then we have

∫
A

(
log

t

s

)α−1
ϕ fnk (s)

s
ds →

∫
A

(
log

t

s

)α−1
ϕ f (s)

s
ds

for each measurable A ⊂ I . Thus ynk (t) = xnk (1) + Jα
1 fnk (t) has the property that ϕynk is

convergent to ϕx(1) + Jα
1 f (t), whence y(t) = x(1) + Jα

1 f (t).
In order to have (x, y) ∈ Graph T it remains to prove that f ∈ SH AP

F(·,x(·)). By [38,
Lemma 12], there exists a convex combination hk of elements of the sequence { fnm : m ≥ k}
that converges weakly to a measurable selection h of G. As the last sequence is (HAP)
uniformly integrable, a consequence of a convergence theorem (cf. [25, Theorem 8.1]) is that
the sequence of their integrals (Jα

1hk(t))k weakly converges to J
α
1h(t). It follows that f = h

a.e.
By weak sequential hemi-continuity of F(t, ·) and weak convergence of hk(t) in E we

obtain that h(t) ∈ F(t, x(t)) a.e., therefore f ∈ SH AP
F(·,x(·)) and so, T has closed graph.

Thus, T satisfies the hypothesis of the Kakutani fixed point theorem and so, it has a fixed
point. Moreover, the set of fixed points is compact in C[I , Eω]. �
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