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Abstract
In Orlicz spaces generated by convex Orlicz functions a family of norms generated by some
lattice norms in R

2 are defined and studied. This family of norms includes the family of
the p-Amemiya norms (1 ≤ p ≤ ∞) studied in Cui et al. (Nonlinear Anal. 69:1796–1816,
2008; Nonlinear Anal. 71:6343–6364, 2009; J. Math. Anal. Appl. 432:1095–1105, 2015;
Nonlinear Anal. 75:3973–3993, 2012) and He et al. (Fixed Point Theory Appl. 2013:1–18,
2013). Criteria for strict monotonicity, lower and upper local uniform monotonicities and
uniform monotonicities of Orlicz spaces and their subspaces of order continuous elements,
equipped with these norms, are given in terms of the generating Orlicz functions, and the
lattice norms in R

2. The problems of strict convexity and of the existence of order almost
isometric as well as order isometric copies in these spaces are also discussed.
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1 Introduction

Let p(·) be a lattice norm in R
2 such that p((1, 0)) = 1 and extended to (0,∞) and (1,∞)

by p((0,∞)) = p((1,∞)) = ∞, if the point (1,∞) will be used. Let Φ : R → R+ :=
[0,+∞) be an Orlicz function, that is,Φ is a nonzero function vanishing at zero,Φ is convex
and even. Let us define a(Φ) := sup{u ≥ 0 : Φ(u) = 0}.

In the following (Ω,Σ,μ) is a σ -finite complete measure space and L0 = L0(Ω,Σ,μ)

is the space of all (equivalence classes of) Σ-measurable functions x : Ω → R, where
functions x and y equal μ-a.e. in Ω belong to the same class of equivalence (we simply say
that they are identified).

Given any Orlicz function Φ we define on the space L0(Ω,Σ,μ) the functional

IΦ(x) =
∫

Ω

Φ(x(t))dμ.

It is easy to see that the functional IΦ has the following properties:

(a) IΦ : L0(Ω,Σ,μ) → R
e+ := R+ ∪ {+∞},

(b) IΦ is convex,
(c) IΦ is even,
(d) IΦ(0) = 0 and if x ∈ L0(Ω,Σ,μ)\{0}, then IΦ(λx) �= 0 for some λ > 0,
and it is called a convexmodular (see [38]).We are interested in introducing a norm generated
by the functional IΦ in the biggest possible subspace of L0(Ω,Σ,μ). This subspace is called
theOrlicz space, denoted by LΦ = LΦ(Ω,Σ,μ) and defined by (see [5,30,31,34,36,38,40])

LΦ(Ω,Σ,μ) := {x ∈ L0(Ω,Σ,μ) : IΦ(λx) < ∞ f or some λ ∈ (0,+∞)}.
Let us denote by AΦ(1) the modular unit ball, that is,

AΦ(1) = {x ∈ L0(Ω,Σ,μ) : IΦ(x) ≤ 1}.
Since the Orlicz function Φ is absolutely convex, that is,

Φ(αu + βν) ≤ |α|Φ(u) + |β|Φ(ν)

for all u, ν ∈ R and all α, β ∈ R with |α| + |β| ≤ 1, we obtain absolute convexity of the
functional IΦ and, in consequence, also absolute convexity of the set AΦ(1). The Minkovski
functional generated by the set AΦ(1) has finite values for these elements from L0(Ω,Σ,μ)

which are absorbing by AΦ(1). It is easy to see that the biggest subspace of L0(Ω,Σ,μ),
the elements of which are absorbed by AΦ(1), that is

∃ λ > 0 : x

λ
∈ AΦ(1)

is just the Orlicz space LΦ(μ). The Minkovski functional of the set AΦ(1) is called in the
literature the Luxemburg norm, it is denoted by ‖ · ‖Φ and defined by the formula (see
[5,35,36,38])

‖x‖Φ = inf{λ > 0 : IΦ
( x

λ

)
≤ 1} (∀x ∈ LΦ(μ)).

The following family of norms, called the p-Amemiya norms,was already defined and studied
in Orlicz spaces for 0 ≤ p ≤ ∞:

‖x‖Φ,p = inf
k>0

1

k
(1 + (IΦ(kx))p)

1
p (∀x ∈ LΦ(μ)),
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where 1 ≤ p ≤ ∞ (see [10,11,14,15,20]). The norm ‖ · ‖Φ,1 is the Orlicz norm ‖ · ‖0Φ which
was defined by Orlicz in [39] by the formula

‖x‖0Φ = sup

⎧⎨
⎩|

∫

Ω

x(t)y(t)dμ| : y ∈ L0(Ω,Σ,μ) and IΦ∗(y) ≤ 1

⎫⎬
⎭,

where Φ∗ is the function complementary to Φ in the sense of Young, that is,

Φ∗(u) = sup
ν≥0

{|u|ν − Φ(ν)}.

For p = ∞, we have (see [27])

‖x‖Φ,∞ = lim
p→∞

1

k
(1 + (IΦ(kx))p)

1
p = inf

k>0

1

k
max(1, (IΦ(kx))) = ‖x‖Φ.

It is well known that all norms from the family {‖ · ‖Φ,p}p∈[1,∞] are equivalent and that the
Luxemburg norm ‖·‖Φ = ‖x‖Φ,∞ is the smallest norm and the Orlicz norm ‖·‖0Φ = ‖x‖Φ,1

is the biggest one. The Orlicz space LΦ(μ) equipped with every norm from this family of
norms is a Banach space, which is even the Banach function lattice, called also the Kőthe
space (see [2,3,30,31,34,40]), which means that for any p ∈ [1,+∞], the space (LΦ(μ),
‖ · ‖Φ,p) has the following properties:

1◦ For any x ∈ L◦(μ), y ∈ LΦ(μ), if |x(t)| ≤ |y(t)| for μ a.e. t ∈ Ω , then x ∈ LΦ and
‖x‖Φ,p ≤ ‖y‖Φ,p,

2◦ There exists a function x ∈ LΦ(μ) such that x(t) > 0 for μ-a.e. t ∈ Ω .

The same properties has the space (EΦ(μ), ‖ · ‖Φ,p) defined below. Let us recall that an
element x of a Kőthe space (E, ‖ · ‖E ) is said to be order continuous if for any sequence
{xn}∞n=1 in E such that 0 ≤ xn(t) ≤ |x(t)| for all n ∈ N and μ-a.e. t ∈ Ω , the condition
xn(t) → 0 as n → ∞ for μ-a.e. t ∈ Ω implies that ‖xn‖E → 0 as n → ∞. The set of
all order continuous elements in E is denoted by Ea , and the space (Ea, ‖ · ‖E ) is again a
Kőthe space. It is obvious that equivalent norms keep the order continuity property. It is well
known that (see [34,41])

(LΦ(μ))a = EΦ(μ),

where

EΦ(μ) := {x ∈ L0(Ω,Σ,μ) : IΦ(λx) < ∞ for any λ > 0}.
In this paper we will introduce a new family of norms in the Orlicz space LΦ(μ). Namely,
given any lattice norm p(·) in R

2 such that p((1, 0)) = 1, which is assumed in the whole
paper, we define the following functional in LΦ(μ):

‖x‖Φ,p(·) := inf
k>0

1

k
p((1, IΦ(kx))) (∀x ∈ LΦ(μ)).

The set of all k > 0 such that 1
k p((1, IΦ(kx))) = ‖x‖Φ,p(·) is denoted by K (x). We will

prove that such functionals are norms in LΦ(μ). Of course, these norms are lattice norms and
they are equivalent each others. We will work on criteria for strict convexity and various their
monotonicity properties (strict monotonicity, lower and upper local uniform monotonicity
and uniform monotonicity) as well as on order almost isometric copies of l∞ and order
isometric copies of l∞.
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We need to define all others notions that will be used in this paper. A Banach lattice
X = (X ,≤, ‖ · ‖), for the definition of which we refer to [2,30,34,41], is said to be strictly
monotone if for any x, y ∈ X such that 0 ≤ x ≤ y and x �= y, we have ‖x‖ < ‖y‖. By the
homogenity of the norm ‖ · ‖, we can restrict ourselves in this definition to y ≥ 0 satisfying
‖y‖ = 1. Let us denote by X+ the positive cone in X , that is, the set of all x ∈ X such that
x ≥ 0. In our definitions below X always denotes a Banach lattice (X ,≤, ‖ · ‖). X is said
to be uniformly monotone (see [2,32]) if for any ε ∈ (0, 1) there exists δ(ε) ∈ (0, 1) such
that if x, y ∈ X , 0 ≤ x ≤ y; ‖x‖ ≥ ε and ‖y‖ = 1, then ‖y − x‖ ≤ 1 − δ(ε). The biggest
function δX : (0, 1) → (0, 1) with this property, that is, the function

δX (ε) = in f {1 − ‖y − x‖ : 0 ≤ x ≤ y; ‖x‖ ≥ ε, ‖y‖ = 1},
is called the modulus of monotonicity of X (see [2] and for the properties of δX (·) also
[23]). It is known (see [32]) that X is uniformly monotone if and only if for any ε > 0 there
exists σ(ε) > 0 such that for any x, y ∈ X+ such that ‖x‖ ≥ ε and ‖y‖ = 1 there holds
‖y + x‖ ≥ 1 + σ(ε). X is said to be lower (upper) locally uniformly monotone if for any
y ∈ X+ with ‖y‖ = 1 and any ε ∈ (0, 1) (resp. any ε > 0) there exists δ(y, ε) ∈ (0, 1)(resp.
σ(y, ε) > 0 ) such that for any x ∈ X satisfying 0 ≤ x ≤ y and ‖x‖ ≥ ε (resp. x ≥ 0 with
‖x‖ ≥ ε), we have ‖y − x‖ ≤ 1 − δ(y, ε) (resp. ‖y + x‖ ≥ 1 + σ(y, ε)). For the definition
of these two properties see [2,4,24].

It is obvious that Φ vanishes only at 0 iff a(Φ) = 0. For any Orlicz function Φ we say
that it satisfies condition Δ2(R+) (Φ ∈ Δ2(R+) for short) if there exists K > 0 such that
Φ(2u) ≤ KΦ(u) for any u ≥ 0.We say thatΦ satisfies conditionΔ2 at infinity (Φ ∈ Δ2(∞)

for short) if there are positive constants u0 and K such that Φ(2u) ≤ KΦ(u) for all u ≥ u0.
We say that Φ satisfies condition Δ2 at zero (Φ ∈ Δ2(0) for short) if there exist two positive
constants u0 and K such that Φ(u0) > 0 and Φ(2u) ≤ KΦ(u) for all u ∈ [0, u0]. It is easy
to see that Δ2(R+) if and only if Φ ∈ Δ2(∞) and Φ ∈ Δ2(0).

The Δ2-condition for Φ should be defined suitably to the measure space (Ω,Σ,μ) in
such a way that the corresponding Orlicz space (LΦ(μ), ‖ · ‖Φ) is order continuous. We
know that suitable Δ2-condition for the couple (Φ, (Ω,Σ,μ)) is the following:

(a) condition Δ2(R+) if (Ω,Σ,μ) is infinite and non-atomic.
(b) condition Δ2(∞) if (Ω,Σ,μ) is finite and non-atomic.
(c) condition Δ2(0) if Ω = N, Σ = 2N and μ is the counting measure on 2N.

It is obvious that any σ -finite measure space (Ω,Σ,μ) can be represented as the direct sum
of two measure spaces (Ωn−a,Σ ∩ Ωn−a, μ|Σ∩Ωn−a ) ⊕ (Ωa,Σ ∩ Ωa, μ|Σ∩Ωa ), where Ωa

is the set of all atoms for μ in Σ and Ωn−a = Ω\Ωa .
IfΩa is finite and μ(Ωn−a) > 0, then the suitable conditionΔ2 forΦ is theΔ2-condition

for the non-atomic measure space defined above. Ifμ(Ωn−a) = 0 andΩa = N,Σ = 2N and
μ is the counting measure on 2N, then the suitable condition Δ2 is the condition Δ2(0). If
μ(Ωn−a) > 0, Ωa = N, Σ = 2N and μ is the counting measure on 2N, then the suitable Δ2-
condition for Φ is the conjunction of the suitable Δ2-condition for the non-atomic measure
space and of the condition�2(0), that is, conditionΔ2(R+). In our paper, we always assume
that all atoms have the measure 1 and we identify the atoms with the singletons {n}, where
n ∈ N (the set of all natural numbers).

Monotonicity properties of Banach lattices have applications in the dominated best
approximation (see [6,8,14,17,24,32]) and in the fixed point theory (see [14,17,20]). They
are also strongly related to the complex rotundity properties (see [29]). For these reasons
monotonicity properties were investigated in various classes of function spaces. Namely, in
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[13,24,26,32,33] for Musielak-Orlicz spaces, in [21] for Lorentz spaces, in [19] for Orlicz-
Lorentz spaces, in [4,14,16,18,23,37] for Orlicz spaces, in [28,29] for Calderòn-Lozanovskiı̌
spaces, in [12] for Cesàro-Orlicz sequence spaces, for Orlicz-Sobolev spaces in [8]. Rela-
tionships between monotonicity properties and rofundity properties as well as between
monotonicity properties and orthogonal monotonicity properties in Kőthe spaces were given
in [22]. In abstract Banach lattices relationships between monotonicity properties and dom-
inated best approximation problems were studied in [6,14,17].

Problems on estimates or calculations of the characteristic ofmonotonicity inOrlicz spaces
and Orlicz-Lorentz spaces were studied in [16,18,19,23]. Applications of the monotonicity
properties in the ergodic theory in Banach lattices were studied in [1].

Theorem 1 For any lattice norm p(·) on R
2 such that p((1, 0)) = p((0, 1)) = 1 we have

the inequality

∀(u, ν) ∈ R
2 : max(|u|, |ν|) ≤ p((u, ν)) ≤ |u| + |ν|,

that is, the smallest (resp.the biggest) lattice norm p(·) among these ones with p((1, 0)) =
p((0, 1)) = 1 is the l∞−norm (resp. l1−norm). Moreover,

max(|1|, |ν|) ≤ p((1, ν)) ≤ |1| + |ν|
for any ν ∈ R and the norm ‖ · ‖Φ,p(·) is non-smaller than the Luxemburg norm and non-
greater than the Orlicz norm for any Orlicz function Φ and any lattice norm p(·) on R2.

Proof Let us take any (u, ν) ∈ R
2. Then

p((u, ν)) = p((|u|, |ν|)) ≥ p((|u|, 0)) = p(|u|(1, 0))
= |u|p((1, 0)) = |u|

and

p((u, ν)) = p((|u|, |ν|)) ≥ p((0, |ν|)) =: p(|ν|(0, 1))
= |ν|p((0, 1)) = |ν|,

whence

p((u, ν)) ≥ max(|u|, |ν|) = p∞((u, ν)).

On the other hand for any (u, ν) ∈ R
2, we have

p((u, ν)) = p((|u|, |ν|)) = p((|u|, 0) + (0, |ν|))
≤ p((|u|, 0)) + p((0, |ν|)) = |u|p((1, 0)) + |ν|p((0, 1))
= |u| + |ν| =: p1((u, ν)).

The second part of the theorem follows by the inequalities from the first sentence of this
theorem and from the facts that ‖ · ‖Φ,p∞(·) is equal to the Luxemburg norm and ‖ · ‖Φ,p1(·)
is equal to the Orlicz norm as well as to the Amemiya norm (see [27]).

Geometry of Orlicz spaces equippedwith the p−Amemiya norm, that is, the norm ‖·‖p(·),
where p((u, ν)) := (|u|p + |ν|p) 1

p for any (u, ν) ∈ R
2, was considered in the papers

[10,11,14,15], the fixed point property in these spaces was studied in [14,20]. The dominated
best approximation in these spaces was studied in [14].

Theorem 2 For anyOrlicz functionΦ and any lattice norm p(·) inR2 the functional ‖·‖Φ,p(·)
is a norm in LΦ(μ).
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Proof We have IΦ(k0) = 0 for any k > 0, so

‖0‖Φ,p(·) = inf
k>0

1

k
p((1, 0)) = inf

k>0

1

k
= 0.

Let us assume that x ∈ LΦ(μ)\{0}. SinceΦ is a nonzero function, that is, there exists u0 > 0
such that Φ(u0) > 0, so there exists k0 > 0 such that IΦ(k0x) > 1. Then

‖x‖Φ,p(·) = min

(
inf

0<k≤k0

1

k
p((1, IΦ(kx))), inf

k≥k0

1

k
p((1, IΦ(kx)))

)

≥ min

(
inf

0<k≤k0

1

k
p((1, 0)), inf

k≥k0

1

k
p((0, IΦ(kx)))

)

≥ min

(
1

k0
, inf
k≥k0

p

((
0,

1

k
IΦ(kx)

)))

= min

(
1

k0
, p

((
0,

1

k0
IΦ(k0x)

)))

> 0.

Now, we will show that the functional ‖ · ‖Φ,p(·) is absolutely homogeneous. Let us take any
x ∈ LΦ(μ) and any λ > 0. If x = 0, then λx = 0 for any λ ∈ R, whence

‖λ0‖Φ,p(·) = ‖0‖Φ,p(·) = 0 = λ · 0 = λ‖0‖Φ,p(·).

So let us assume that x �= 0. Then

‖λx‖Φ,p(·) = inf
k>0

1

k
p((1, IΦ(k|λ|x)))

= inf
k>0

|λ|
|λ|k p((1, IΦ(kλx)))

= |λ| inf
k>0

1

|λ|k p((1, IΦ(k|λ|x)))
= |λ|‖x‖Φ,p(·).

Finally, we will show that the functional ‖ · ‖Φ,p(·) satisfies the triangle inequality. Let us
take arbitrary x, y ∈ LΦ(μ). If at least one element among x and y is equal to zero function,
then the triangle inequality is obvious. So assume that x �= 0 and y �= 0. Let us take any
ε > 0. There exists constants λ > 0 and l > 0 such that

1

λ
p((1, IΦ(λx))) ≤ ‖x‖Φ,p(·) + ε,

1

l
p((1, IΦ(ly))) ≤ ‖y‖Φ,p(·) + ε.

Then

‖x + y‖Φ,p(·) ≤ λ + l

λl
p

((
1, IΦ

(
λl

λ + l
(x + y)

)))

= λ + l

λl
p

((
1, IΦ

(
l

λ + l
(λx) + λ

λ + l
(ly)

)))

= λ + l

λl
p

((
l

λ + l
+ λ

λ + l
, IΦ

(
l

λ + l
(λx) + λ

λ + l
(ly)

)))
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≤ λ + l

λl
p

((
l

λ + l
+ λ

λ + l
,

l

λ + l
IΦ(λx) + λ

λ + l
IΦ(ly)

))

= λ + l

λl
p

((
l

λ + l
,

l

λ + l
IΦ(λx)

)
+

(
λ

λ + l
,

λ

λ + l
IΦ(ly)

))

≤ λ + l

λl

{
l

λ + l
p((1, IΦ(λx))) + λ

λ + l
p((1, IΦ(ly)))

}

= 1

λ
p((1, IΦ(λx))) + 1

l
p((1, IΦ(ly)))

≤ ‖x‖Φ,p(·) + ‖y‖Φ,p(·) + 2ε.

By the arbitrariness of ε > 0, we obtain the inequality

‖x + y‖Φ,p(·) ≤ ‖x‖Φ,p(·) + ‖y‖Φ,p(·),

which finishes the proof of the theorem.

Lemma 1 Let p(·) be a lattice norm in R
2 extended to (0,∞) and (1,∞) by p((0,∞)) =

p((1,∞)) = ∞. Then: (i) if Φ is an Orlicz function satisfying the condition limu→+∞
(Φ(u)/u) = +∞, we have that for any x ∈ LΦ(μ)\{0} there exists l ∈ (0,+∞) such that

‖x‖Φ,p(·) = 1

l
p((1, IΦ(lx))).

(i i) For any Orlicz function Φ, if x ∈ LΦ(μ) and K (x) = ∅, then
‖x‖Φ,p(·) = Ap((0, 1))‖x‖L1(Ω),

where A = limu→∞(Φ(u)/u).

Proof (i) Let x ∈ LΦ(μ)\{0}. The condition (Φ(u)/u) → +∞ as u → +∞ implies that

1

k
IΦ(kx) → +∞ as k → +∞,

whence we get

(1) limk→+∞
1

k
p((1, IΦ(kx))) ≥ limk→+∞

1

k
p((0, IΦ(kx)))

= limk→+∞
1

k
IΦ(kx)p((0, 1)) = + ∞.

Moreover,

lim
k→0+

1

k
p((1, IΦ(kx))) ≥ lim

k→0+
1

k
p((1, 0)) = lim

k→0+
1

k
= +∞,

Hence and from condition (1), we get that there exist positive constants k0 and k1 such that
k0 < k1 < +∞, IΦ(k1x) < ∞, and

‖x‖Φ,p(·) = inf
k0≤k≤k1

1

k
p((1, IΦ(kx))).

The function f (k) := IΦ(kx)) is convex and it has finite values on the compact interval
[k0, k1], so it is continuous on this interval. In consequence, by continuity of the norm p(·),
the function g : [k0, k1] → R+ defined by

g(k) = p

((
1

k
,
1

k
IΦ(kx)

))
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is also continuous on the interval [k0, k1]. Therefore, the desired number l ∈ (0,+∞) exists.
(ii) Let x ∈ LΦ(μ) and K (x) = φ. We can assume without loss of generality that x �= 0.

It is obvious that the infimum in the definition of the norm ‖x‖Φ,p(·) can be restricted to such
k > 0 that IΦ(kx) < ∞. Since, ‖x‖Φ,p(·) < ∞ and limk→0+

1
k p((1, IΦ(αx))) = ∞, there

exists k0 > 0 such that

‖x‖Φ,p(·) = inf
k∈[k0,∞)

1

k
p((1, IΦ(αx)))

Since for any k1 ∈ [k0,∞) such that IΦ(k1x) < ∞, by continuity of the function f (k)
.=

IΦ(kx) on the interval [k0, k1], there exists l ∈ [k0, k1] such that

inf
k∈[k0,k1]

1

k
p((1, IΦ(αx))) = 1

l
p((1, IΦ(lx)))

and K (x) = φ, we conclude by continuity of the norm p(·) that

‖x‖Φ,p(·) = lim
k→∞

1

k
p((1, IΦ(αx)))

= lim
k→∞ p

((
1

k
,
1

k
IΦ(αx)

))

= p

((
lim
k→∞

1

k
, lim
k→∞

1

k
IΦ(αx)

))

= p

((
0, lim

k→∞
1

k
IΦ(αx)

))
.

Let us note that, by the Beppo Levi theorem,

lim
k→∞

1

k
IΦ(kx) = lim

k→∞
1

k

∫
Ω

Φ(kx(t))dμ

= lim
k→∞

∫
supp x

Φ(kx(t))

k|x(t)| |x(t)|dμ

=
∫
supp x

(
lim
k→∞

Φ(kx(t))

k|x(t)|
)

|x(t)|dμ

= A
∫

Ω

|x(t)|dμ

= A‖x‖L1(Ω).

whence, by the previous equalitices, we get

‖x‖Φ,p(·) = Ap((0, 1))‖x‖L1(Ω).

Lemma 2 LetΦ be anyOrlicz function and p be any lattice norm onR2 such that p((1, 0)) =
p((0, 1)) = 1 and extended to (1,∞) by p((1,∞)) = ∞. Then

‖x‖Φ,p(·) ≤ 1 + IΦ(x)

for any x ∈ LΦ(μ). Moreover, if IΦ(λx) = ∞ for any λ > 1, then

1 ≤ ‖x‖Φ,p(·).
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Proof By Theorem 1, we have

‖x‖Φ,p(·) = inf
k>0

1

k
p((1, IΦ(kx))) ≤ p((1, IΦ(x))) ≤ 1 + IΦ(x).

Simultaneously, if IΦ(λx) = ∞ for any λ > 1, then

‖x‖Φ,p(·) = inf
k>0

1

k
p((1, IΦ(kx)))

= min

(
inf

0<k≤1

1

k
p((1, IΦ(kx))), inf

k≥1

1

k
p((1, IΦ(kx)))

)

≥ min

(
inf

0<k≤1

1

k
p((1, 0)), p((1, IΦ(x)))

)

= min(1, p((1, IΦ(x))))

= 1.Theorem 3 Let p(·) be a norm on R
2 as in Lemma 2. If Φ is an Orlicz function Φ which

does not satisfy suitable Δ2-condition, then (LΦ(μ), ‖ · ‖Φ,p(·)) contains an order linearly
almost isometric copy of l∞, that is, for any ε > 0 there exists a linear nonnegative operator
Pε : l∞ → LΦ(μ) such that

‖z‖∞ ≤ ‖Pz‖Φ,p(·) ≤ (1 + ε)‖z‖∞ (∀z ∈ l∞).

Proof Under the assumptions on Φ, given any ε > 0, there exists a sequence {xn}∞n=1 in
LΦ(μ) with pairwise disjoint supports and such that IΦ(xn) ≤ ε/2n , xn ≥ 0 and IΦ(λxn) =
∞ for any n ∈ N and λ > 1 (see [5]). Let us define an operator Pε on l∞ by the formula

Pεz =
∞∑
n=1

znxn (∀z = {zn}n=1 ∈ l∞),

where the series is defined on Ω pointwisely. It is obvious that Pε is linear and nonnegative.
By pairwise disjointness of the supports of the element xn ∈ LΦ(μ), there is no problem
with the pointwise convergence of the series, because for any t ∈ Ω there exists at least one
n ∈ N such that t ∈ suppxn . It is easy to see that Pεz ∈ LΦ(μ) for any z ∈ l∞. Indeed,

IΦ

(
Pεz

‖z‖∞

)
=

∞∑
n=1

IΦ

(
zn

‖z‖∞
xn

)
≤

∞∑
n=1

zn
‖z‖∞

IΦ (xn) ≤
∞∑
n=1

ε

2n
= ε.

Let us note first that for any z ∈ l∞ and k > 0, we have

p

((
1, IΦ

(
k

Pεz

‖z‖∞

)))
= p

((
1, IΦ

(
k
Pε|z|
‖z‖∞

)))

= p

((
1, IΦ

(
k

∑∞
n=1 |zn |xn
‖z‖∞

)))
≤ p

((
1, IΦ

(
k

∞∑
n=1

xn

)))

= p

((
1,

∞∑
n=1

IΦ (kxn)

))
.

In consequence, by Lemma 2, we have for any z = {zn}∞n=1 ∈ l∞,
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∥∥∥∥ Pεz

‖z‖∞

∥∥∥∥
Φ,p(·)

= inf
k>0

1

k
p

((
1, IΦ

(
k

Pεz

‖z‖∞

)))

≤ p

((
1, IΦ

(
Pεz

‖z‖∞

)))

≤ p

((
1, IΦ

( ∞∑
n=1

xn

)))

≤ 1 + ε,

whence ‖Pεz‖Φ,p(·) ≤ (1 + ε)‖z‖∞ for any z ∈ l∞.
On the other hand, since for any λ > 0 there exist nλ ∈ N such that λ|znλ |/‖z‖∞ > 1,

we have

IΦ

(
Pελz

‖z‖∞

)
≥ IΦ

(
λ|znλ |
‖z‖∞

xnλ

)
= ∞,

whence, by Lemma 2,
∥∥∥∥ Pελz

‖z‖∞

∥∥∥∥
Φ,p(·)

=
∥∥∥∥ λPεz

‖z‖∞

∥∥∥∥
Φ,p(·)

≥ 1,

that is,

‖Pεz‖Φ,p(·) ≥ ‖z‖∞
λ

.

By the arbitrariness of λ > 1, we have ‖Pεz‖Φ,p(·) ≥ ‖z‖∞ for any z ∈ l∞, which finishes
the proof.

Theorem 4 Let p(·) be a norm in R
2 such as in Lemma 2 and Φ be an Orlicz function with

a(Φ) := sup{u ≥ 0 : Φ(u)} > 0. Then in both cases, a non-atomic infinite measure space
as well as the case of the counting measure on 2N , the Orlicz space (LΦ(μ), ‖ · ‖Φ,p(·))
contains a linearly order isometric copy of l∞.

Proof Under the assumptions on the measure space, there exists a sequence {An}∞n=1 of
pairwise disjoint sets with μ(An) = +∞ for any n ∈ N . Let us define

xn = a(Φ)XAn (∀n ∈ N ), x :=
∞∑
n=1

xn = sup
n∈N

xn,

where the series is defined pointwisely (no problem with its pointwise convergence because
of pairwise disjointness of the sets An). It is obvious that IΦ(x) = 0 and IΦ(xn) = 0 as well
as that IΦ(λx) = IΦ(λxn) = +∞ for any n ∈ N and λ > 1. Moreover, for any n ∈ N,

‖ xn ‖Φ,p(·) = min

(
inf

0<k≤1

1

k
p((1, IΦ(kxn))), inf

k≥1

1

k
p((1, IΦ(kxn)))

)

= inf
0<k≤1

1

k
p((1, IΦ(kxn)))

= inf
0<k≤1

1

k
p((1, 0)) = p((1, 0)) = 1.
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In the same way, we can prove that ‖ x ‖Φ,p(·)= 1. Let us define the following operator on
l∞:

Pz =
∞∑
n=1

znxn (∀z = {zn} ∈ l∞).

Let us first note that P : l∞ −→ LΦ(μ). Namely, IΦ( Pz
‖z‖∞ ) ≤ IΦ(

∞∑
n=1

xn) = IΦ(x) = 0,

whence Pz ∈ LΦ(μ) for any z ∈ l∞. Moreover,
∥∥∥∥ Pz

‖ z ‖∞

∥∥∥∥
Φ,p(·)

= inf
k>0

1

k
p

((
1, IΦ

(
k

Pz

‖ z ‖∞

)))

≤ inf
k>0

1

k
p((1, IΦ(kx)))

=‖ x ‖Φ,p(·)
= 1,

whence ‖ Pz ‖Φ,p(·)≤‖ z ‖∞. On the other hand, given any λ > 1, one can find nλ ∈ N
such that λ | znλ |>‖ z ‖∞. Consequently,

∥∥∥∥ λPz

‖ z ‖∞

∥∥∥∥
Φ,p(·)

=
∥∥∥∥ P(λz)

‖ z ‖∞

∥∥∥∥
Φ,p(·)

≥‖ xnλ ‖Φ,p(·)= 1,

whence ‖ Pz ‖Φ,p(·)≥ ‖z‖∞
λ

. By the arbitrariness of λ > 1, we obtain that ‖ Pz ‖Φ,p(·)≥
‖ z ‖∞, which together with the opposite inequality (proved already) gives the equality
‖ Pz ‖Φ,p(·)=‖ z ‖∞ for any z ∈ l∞, which means that P is an isometry. It is obvious that
the operator P is linear. Since the functions xn are non-negative, so P is also non-negative,
that is, Pz ≥ 0 for any z ∈ l∞, z ≥ 0. In consequence, the operator P is a linear order
isometry, which finishes the proof.

Theorem 5 Let p(·) be a lattice norm in R2 which is strictly increasing on the vertical half-
line {(1, u) : u ∈ R+} in R

2 and let Φ be a strictly convex Orlicz function. Let the couple
(Φ, p(·)) satisfy the condition

(2) K (x) �= ∅ ∀x ∈ LΦ(μ)\{0}
Then the Orlicz space (LΦ(μ), ‖ · ‖Φ,p(·)) is strictly convex.

Proof Assume that x, y ∈ S((LΦ+(μ), ‖ · ‖Φ,p(·))) and x �= y. Then Φ ◦ kx �= Φ ◦ ky for
any k ∈ (0,+∞) because strict convexity of Φ implies that Φ is a 1 − 1 function on R+.
We also have that Φ ◦ k x+y

2 ≤ 1
2 {Φ ◦ kx + Φ ◦ ky} and Φ ◦ k x+y

2 �= 1
2 {Φ ◦ kx + Φ ◦ ky}

for any k ∈ (0,+∞). Let λ, l ∈ (0,+∞) be such that

‖ x ‖Φ,p(·) = 1

λ
p((1, IΦ(λx))),

‖ y ‖Φ,p(·) = 1

l
p((1, IΦ(ly))),

and define q = 2λl
λ+l . Let us note that λx �= ly. Indeed, assuming that λx = ly, we get by

‖x‖Φ,p(·) = ‖y‖Φ,p(·) that λ = l whence, by x = y, a contradiction. Then by strict convexity
of IΦ and the fact that p(·) is strictly increasing on the half-line {(1, u) : u ∈ R+} ⊂ R2, we
get
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‖ x + y

2
‖Φ,p(·) ≤ 1

q
p

((
1, IΦ

(
q
x + y

2

)))

= 1

q
p

((
1, IΦ

(
l

l + λ
λx + λ

l + λ
ly

)))

<
1

q
p

((
1,

l

l + λ
IΦ(λx) + λ

l + λ
IΦ(ly)

))

= 1

q
p

((
l

l + λ
+ λ

l + λ
,

l

l + λ
IΦ(λx) + λ

l + λ
IΦ(ly)

))

= 1

q
p

(
l

l + λ

(
1, IΦ(λx) + λ

l + λ
(1, IΦ(ly))

))

≤ 1

q

{
l

l + λ
p((1, IΦ(λx))) + λ

l + λ
p((1, IΦ(ly)))

}

= 1

2

{
1

λ
p((1, IΦ(λx))) + 1

l
p((1, IΦ(ly)))

}

= 1

2
{‖ x ‖Φ,p(·) + ‖ y ‖Φ,p(·)}

= 1

2
{1 + 1}

= 1,

which finishes the proof that the positive cone (LΦ+(μ), ‖ · ‖Φ,p(·)) is strictly convex. But
then we obtain from a general result from [22] that the whole space (LΦ(μ), ‖ · ‖Φ,p(·)) is
also strictly convex.

Corollary 1 [5] Under the assumption that Φ is a strictly convex Orlicz function such that
sup
u>0

[Au − Φ(u)] = ∞, where A := lim
u→∞(

Φ(u)
u ), which gives that K (x) �= 0 for any

x ∈ LΦ(μ)\{0}, the Orlicz space LΦ(μ) equipped with the Orlicz norm is strictly convex.

Proof Under the assumptions on Φ, condition (2) from Theorem 5 is satisfied (see [7]).
Moreover, the Orlicz norm in LΦ(μ) is just the norm ‖ · ‖Φ,p(·) with p((u, ν)) =| u | + | ν |
for any (u, ν) ∈ R

2. Since this norm p(·) is strictly increasing on the vertical half-line
{(1, u) : u ∈ R+} in R2, the thesis of our corollary follows directly form Theorem 5.

Theorem 6 Assume that p(·) is a lattice norm inR2 which is strictly increasing on the vertical
half-line {(1, u) : u ∈ R+} ⊆ R

2 and Φ is an Orlicz function such that K (x) �= ∅ for any
x ∈ LΦ(μ)\{0}. Then the following statements are equivalent:

(i) a(Φ) = 0,
(i i) (LΦ(μ), ‖ · ‖Φ,p(·)) is strictly monotone,

(i i i) (EΦ(μ), ‖ · ‖Φ,p(·)) is strictly monotone.

Proof (i) �⇒ (i i). Let 0 ≤ x ≤ y ∈ S(LΦ(μ), ‖ · ‖Φ,p(·)) and x �= y. We know, by the
assumption, that

‖ y ‖Φ,p(·)= 1

l
p((1, IΦ(ly)))

for some l ∈ (0,+∞). Since 0 ≤ lx ≤ ly and lx �= ly, and by the assumption that a(Φ) = 0
the Orlicz function Φ is strictly increasing on R+, we obtain

IΦ(lx) < IΦ(ly).
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In consequence

‖ x ‖Φ,p(·) ≤ 1

l
p((1, IΦ(lx))) <

1

l
p((1, IΦ(ly)))

=‖ y ‖Φ,p(·),

which finishes the proof of the implication (i) �⇒ (i i). The implication (i i) �⇒ (i i i) is
obvious.
(i i i) �⇒ (i). Assuming that (i) does not hold,wewill prove that (i i i) does not hold. Take any
y ∈ EΦ(μ) such that y ≥ 0, ‖ y ‖Φ,p(·)= 1 and the set A := Ω\suppy has positivemeasure.
Define z = y + a(Φ)

k XA, where k ∈ K (y). Then z ∈ EΦ(μ) and ‖ z ‖Φ,p(·)≥ 1 because
| z(t) |≥| y(t) | for μ − a.e. t ∈ Ω. On the other hand ‖ z ‖Φ,p(·)≤ 1

k p((1, IΦ(kz))) =
1
k p((1, IΦ(ky))) =‖ y ‖Φ,p(·)= 1. Therefore, ‖ z ‖Φ,p(·)= 1, whence (i i i) does not hold.

Remark 1 Let us note that the assumption that the norm p(·) is strictly increasing on the
half-line {(1, u) : u ∈ R+} is not in general necessary neither for strict convexity nor for
strict monotonicity of the space (LΦ(μ), ‖ · ‖Φ,p(·)). Namely, if p((u, ν)) = max(| u |, |
u |)(∀(u, ν) ∈ R

2), then p(·) is not strictly increasing on the half-line {(1, u) : u ∈ R+},
but ifΦ satisfies suitableΔ2-condition, then the space (LΦ(μ), ‖ · ‖Φ,p(·)) is strictly convex
whenever Φ is strictly convex, and (LΦ(μ), ‖ · ‖Φ,p(·)) is strictly monotone, whenever
a(Φ) = 0, see [24,32] (because ‖ · ‖Φ,p(·) is then equal to the Luxemburg norm).

Corollary 2 It follows from Theorem 4 that if Φ is an Orlicz function with a(Φ) > 0 and
if the measure space is non-atomic and infinite or the counting measure on 2N , then under
the assumptions of Theorem 4 on the norm p(·), the space (LΦ(μ), ‖ · ‖Φ,p(·)) is not
strictly monotone, because (l∞, ‖ · ‖∞) is not strictly monotone (namely, the elements
x = (1, 0, 0, · · · ) and y = (1, 1, 0, 0, · · · ) satisfy the conditions 0 ≤ x ≤ y, x �= y,
‖ x ‖∞=‖ y ‖∞= 1). Therefore, (LΦ(μ), ‖ · ‖Φ,p(·)) has no monotonicity property non-
weaker than strict monotonicity. It is also not strictly convex (because any strictly convex
Banach lattice is strictly monotone), so it has no convexity property non-weaker than strict
convexity.

Theorem 7 Assume that p(·) is a lattice norm on R
2 which is strictly monotone and

p((1, 0)) = p((0, 1)) = 1. Let Φ be an Orlicz function; x, y ∈ LΦ(μ) and 0 ≤ x ≤
y ∈ S((LΦ(μ), ‖ · ‖Φ,p(·))).

Then
(3) ‖ y − x ‖Φ,p(·)≤ 1− δm,p(·)(IΦ(x)), wherever Iφ(x) < 1 or δm,p(·) is left continuous

at the point 1
where δm,p(·)(·) is the modulus of monotonicity of the space (R2, p(·)).

Proof First let us note that since R2 is finitely dimensional, by strict monotonicity under the
norm p(·), the space (R2, p(·)) is uniformly monotone. Therefore, δm,p(·)(ε) > 0 for any
ε ∈ (0, 1). For the definition of the modulus of monotonicity and its properties see [23].

Let us take x and y mentioned in the theorem and any ε > 0. By the definition of the
norm ‖ · ‖Φ,p(·), there exists l ∈ (0,+∞) such that

1

l
p((1, IΦ(ly))) ≤‖ y ‖Φ,p(·) +ε = 1 + ε.

Since p((1, IΦ(ly))) ≥ p((1, 0)) = 1, the previous inequality implies that 1
l ≤ 1 + ε,

whence l ≥ 1
1+ε

. Hence, by the assumption that p((0, 1)) = 1, we have
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(4) p((0, 1
l IΦ(lx))) = 1

l IΦ(lx)p((0, 1)) ≥ (1 + ε)IΦ( x
1+ε

).

By convexity of the modular IΦ(·), we obtain

0 ≤ (1 + ε)IΦ(
x

1 + ε
) ≤ IΦ(x) ≤ ‖ x ‖Φ,p(·) ≤ ‖ y ‖Φ,p(·) = 1.

By superadditivity of Φ on R+, we have superadditivity of the modular IΦ on (LΦ(μ))+.
Hence, and by the equality

p((0,
1

l
IΦ(lx))) = 1

l
IΦ(lx)p((0, 1)) = 1

l
IΦ(lx),

we obtain

‖ y − x ‖Φ,p(·) ≤ 1

l
p((1, IΦ(l(y − x))))

≤ 1

l
p((1, IΦ(ly) − IΦ(lx)))

= p

((
1

l
,
1

l
IΦ(ly)

)
−

(
0,

1

l
IΦ(lx)

))

≤ 1

l
p((1, IΦ(ly))) − δm,p(·)

(
p

((
0,

1

l
IΦ(lx)

)))

≤ 1 + ε − δm,p(·)
(

(1 + ε)IΦ

(
x

1 + ε

))
.

,

Taking in place of ε a sequence {εn}∞n=1 such that εn ↘ 0 as n ↗ ∞ and applying the
Beppo Levi theorem, we obtain that (1+ εn)IΦ( x

1+εn
) ↗ IΦ(x) as n ↗ ∞. This means that

limε→0+(1+ ε)IΦ( x
1+ε

) → IΦ(x). Since the modulus of monotonicity is continuous on the
interval [0, 1) and, by the assumption also at the point 1 if Iφ (x) = 1, we obtain the desired
inequality.

Remark 2 If p(·) is a lattice norm in R
2 as in Theorem 1 and Φ is an Orlicz function, then

the Orlicz space (LΦ(μ), ‖ · ‖Φ,p(·)) is order continuous if and only if Φ satisfies suitable
Δ2-condition .

Proof Since all norms in R2 are equivalent, our norms ‖ · ‖Φ,p(·) are equivalent to the norm
‖ · ‖Φ,p∞(·), where p∞((u, v)) = max(|u|, |v|). It is known (see [8,10]) that the norm
‖ · ‖Φ,p∞(·) is equal to the Luxemburg norm ‖ · ‖Φ. It is also well known (see [5,9]) that
the Orlicz space (LΦ(μ), ‖ · ‖Φ) is order continuous if and only if Φ satisfies suitable Δ2-
condition. Since order continuity is preserved by equivalent norms, we obtain that the space
(LΦ(μ), ‖ · ‖Φ,p(·)) is order continuous if and only if Φ satisfies suitable Δ2-condition.

Remark 3 It is known (see [5]) that for any sequence {xn}∞n=1 in LΦ(μ), with IΦ(xn) → 0
as n → ∞, we have ‖xn‖Φ → 0 as n → ∞ if and only if a(Φ) = 0 and Φ satisfies the
suitable Δ2-condition. Since for any lattice norm p(·) in R2 with p((1, 0)) = 1 = p((0, 1)),
the norm ‖ · ‖Φ,p(·) is equivalent to the Luxemburg norm ‖ · ‖Φ in LΦ(μ), we have the same
dependence between IΦ(xn) → 0 and ‖xn‖Φ,p(·) → 0 as n → ∞. Namely, it holds if and
only if a(Φ) = 0 and Φ satisfies suitable Δ2-condition. This dependence is equivalent to the
fact that

(∀ε > 0)(∃δ(ε) > 0)(∀x ∈ LΦ(μ))(‖x‖Φ,p(·) ≥ ε ⇒ IΦ(x) ≥ δ(ε)). (1)

Theorem 8 Let p(·) be a strictly monotone lattice norm in R
2 such that p((1, 0)) =

p((0, 1)) = 1 with the modulus of monotonicity left continuous at the point 1 and Φ be
an Orlicz function. Then the assumption a(Φ) = 0 implies that:
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(i) (LΦ(μ), ‖ · ‖Φ,p(·)) is strictly monotone,
(ii) (EΦ(μ), ‖ · ‖Φ,p(·)) is lower locally uniformly monotone.

Assuming additionally that the couple (Φ, p(·)) is such that K (x) �= ∅ for any x ∈
EΦ(μ)\{0} the conditions a(Φ) = 0, (i), (i i) and

(iii) (EΦ(μ), ‖ · ‖Φ,p(·)) is strictly monotone,
are equivalent.

Proof Under the assumption on p(·), we have by Theorem 7 that for any x, y ∈ LΦ(μ) such
that 0 ≤ x ≤ y, ‖y‖Φ,p(·) = 1 and ‖ x ‖Φ,p(·)≥ ε, where ε ∈ (0, 1), we have

‖ y − x ‖Φ,p(·)≤ 1 − δm,p(·)(IΦ(x)), (5)

where δm,p(·) is the modulus of monotonicity of the space (R2, p(·)), which is uni-
formly monotone as a strictly monotone finite dimensional Banach space. Therefore,
δm,p(·)(IΦ(x)) > 0 by the fact that a(Φ) = 0 implies that IΦ(x) > 0. In consequence
‖ y − x ‖Φ,p(·)< 1, which means that property (i) holds.

Assume now that x and y are as above, but they belong to the space EΦ(μ). Let us note
that the space (EΦ(μ), ‖‖Φ,p(·)) has the following property.

∀y ∈ S+((EΦ(μ), ‖ · ‖Φ,p(·))), ∀ε ∈ (0, 1), ∃δ(y, ε) > 0, (6)

such that f or any 0 ≤ x ≤ y :‖ x ‖Φ,p(·)≥ ε ⇒ IΦ(x) ≥ δ(y, ε).

Indeed, if this property does not hold, then there exist y ∈ S+((LΦ(μ), ‖·‖Φ,p(·))), ε ∈ (0, 1)
and a sequence {xn}∞n=1 in EΦ(μ) such that ‖xn‖Φ,p(·) ≥ ε, 0 ≤ xn ≤ y for any n ∈ N ,
and IΦ(xn) → 0 as n → ∞. However, the last condition implies that xn → 0 in measure
as n → ∞. Hence, by the assumption that the measure space (Ω,Σ,μ) is σ -finite, there
exists a subsequence {xnk }∞k=1 of {xn}∞n=1 such that xnk → 0 as k → ∞ μ − a.e. in Ω .
Hence Φ ◦ λxnk → 0 μ − a.e. in Ω as k → ∞ for any λ > 0. Since, by the assumption that
y ∈ EΦ(μ), we have Φ ◦ λy ∈ L1(μ) for any λ > 0 and, by 0 ≤ xn ≤ y for any n ∈ N , we
have Φ ◦ λxnk ≤ Φ ◦ λy for any k ∈ N and λ > 0, the Lebesgue dominated convergence
theorem implies that IΦ(λxnk ) =‖ Φ ◦ λxnk ‖L1(μ)→ 0 as k → ∞ for any λ > 0, which
means that ‖ xnk ‖Φ,p(·)→ 0 as k → ∞, a contradiction, which proves property (6) of
EΦ(μ). Conditions (5) and (6) yield

‖ y − x ‖Φ,p(·)≤ 1 − δm,p(·)(δ(y, ε)),

where δ(y, ε) does not depend on x , which means that property (ii) of EΦ(μ) holds.
It is obvious that (ii)⇒ (iii). In order to finish the proof, we need only to show that

under the assumption that K (x) �= ∅ for any x ∈ EΦ(μ)\{0}, condition (iii) implies that
a(Φ) = 0. Assume that a(Φ) > 0 and K (x) �= ∅ for any x ∈ EΦ(μ)\{0}. Let us take any
x ∈ EΦ(μ) such that x ≥ 0, ‖ x ‖Φ,p(·)= 1 and μ(A) > 0, where A = Ω\suppx . Defining
y = x + a(Φ)

k
XA, where k ∈ K (x), we have 0 ≤ x ≤ y ∈ EΦ(μ) and x �= y. Hence

‖ y ‖Φ,p(·)≥ 1. On the other hand, by IΦ(ky) = IΦ(kx), we have

‖ y ‖Φ,p(·)≤ 1

k
p((1, IΦ(ky))) = 1

k
p((1, IΦ(kx))) =‖ x ‖Φ,p(·)= 1.

Therefore, property (iii) of (EΦ(μ), ‖ · ‖Φ,p(·)) does not hold if a(Φ) > 0, and the proof of
our theorem is complete.

Theorem 9 Let p(·) be a strictly monotone lattice norm on R2 as in Theorem 8 and Φ be an
Orlicz function. Consider the following conditions:
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(i) a(Φ) = 0 and Φ satisfies suitable Δ2-condition,
(ii) (LΦ(μ), ‖ · ‖Φ,p(·)) is uniformly monotone,
(iii) (LΦ(μ), ‖ · ‖Φ,p(·)) is upper locally uniformly monotone,
(iv) (EΦ(μ), ‖ · ‖Φ,p(·)) is upper locally uniformly monotone.

Then (i)⇒ (ii)⇒ (iii)⇒ (iv). Assuming additionally that K (x) �= ∅ for any x ∈ EΦ(μ)\{0},
we have also that (iv)⇒ (i), whence we have then that all these four conditions are equivalent.

Proof (i) ⇒ (ii). Assume that condition (i) is satisfied and that 0 ≤ x ≤ y ∈ S((LΦ(μ),

‖ · ‖Φ,p(·))) and ‖ x ‖Φ,p(·)≥ε. By the assumption that Φ satisfies suitable Δ2 − condition,
we know that for any sequence {xn}∞n=1 in LΦ(μ), the conditions IΦ(xn) → 0 as n → ∞
and ‖ xn ‖Φ,p(·)→ 0 as n → ∞ are equivalent. Therefore, there exists δ(ε) ∈ (0, 1) such
that IΦ(x) ≥ δ(ε). By inequality (3) from Theorem 7, we have

‖ y − x ‖Φ,p(·)≤ 1 − δm,p(·)(IΦ(x)) ≤ 1 − δm,p(·)(δ(ε)).

Since δm,p(·)(δ(ε)) ∈ (0, 1), property (ii) holds.
The implications (ii) ⇒ (iii) ⇒ (iv) are obvious, so in order to finish our proof, we need

only to prove that (iv) ⇒ (i), whenever K (x) �= ∅ for any x ∈ E(μ)\{0}. Assume that
condition (i) is not satisfied and K (x) �= ∅ for any x ∈ EΦ(μ)\{0}. Then we have the
alternative of the conditions: a(Φ) > 0 and K (x) �= 0 for any x ∈ EΦ(μ)\{0} or Φ /∈ Δ2

and K (x) �= ∅ for any x ∈ EΦ(μ)\{0}.
In the first situation, by virtue of Theorem 6, condition (iv) does not hold, because

(EΦ(μ), ‖ · ‖Φ,p(·)) is not then strictly monotone.
In the second situation take a set A ∈ Σ such that 0 < μ(A) < μ(Ω). By Proposition

2.1 in [9] there exists a sequence {yn}∞n=1 in EΦ(μ) such that suppyn ⊂ T \A, 1

1 + 2−n
≤

‖ yn ‖Φ and IΦ(yn) ≤ 2−n for any n ∈ N . Then ‖ yn ‖Φ,p(·)≥‖ yn ‖Φ≥ 1

1 + 2−n
for any

n ∈ N . Take any x ∈ EΦ(μ) such that suppx ⊂ A and ‖ x ‖Φ,p(·)= 1. Let k ∈ K (x). Then
k ≥ 1, because for any k ∈ (0, 1) we have

1

k
p((1, IΦ(kx))) ≥ 1

k
p((1, 0)) = 1

k
> 1 =‖ x ‖Φ,p(·),

which means that k /∈ K (x). Defining xn = 1

k
yn , we have ‖xn‖Φ,p(·) = ‖yn‖Φ,p(·)k ≥

1

k(1 + 2−n)
≥ 2

3k
. Moreover, IΦ(kxn) = IΦ(yn) ≤ 2−n , whence

‖ x + xn ‖Φ,p(·) ≤ 1

k
p((1, IΦ(k(x + xn)))) = 1

k
p((1, IΦ(kx)) + IΦ(kxn)))

= 1

k
p((1, IΦ(kx)) + (0, IΦ(kxn)))

≤ 1

k
p((1, IΦ(k(x))) + 1

k
p((0, IΦ(k(xn)))

≤‖ x ‖Φ,p(·) +1

k
p((0, 2−n))

≤ 1 + 2−n,

which together with ‖xn‖Φ,p(·)≥ 2

3k
for any n ∈ N means that the space (EΦ(μ), ‖ · ‖Φ,p(·))

is not locally upper uniformly monotone. This finishes the proof.
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