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Abstract In this paper, we introduce a new class of multivalued contractions with respect
to b-generalized pseudodistances and prove a best proximity point theorem for this class
of non-self mappings. In this way, we improve and extend several existing results in the
literature. Examples are given to support our main results. This work is a continuation of
studies on the use of a new type of distances in the fixed point theory. The pioneering effort
in direction of defining distance is inter alia paper of O. Kada, T. Suzuki and W. Takahashi.
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1 Introduction

In 2008, Suzuki [1] presented a weaker notion of contractions in order to characterize the
completeness of metric spaces and established the following interesting theorem.

Theorem 1.1 (Suzuki [1]) Let (X, d) be a complete metric space and let T be a self-mapping
on X. Define a nondecreasing function θ : [0, 1) → ( 12 , 1] by
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Then for a metric space (X, d), the following are equivalent:
(i) X is complete.
(ii) There exists r ∈ [0, 1) such that every mapping T on X satisfying the following:

θ(r)d(x, T x) ≤ d(x, y) implies d(T x, T y) ≤ rd(x, y), ∀x, y ∈ X,

has a fixed point.

After that the multivalued version of Theorem 1.1, which is an extension of Nadler’s fixed
point theorem, was presented as below.

Theorem 1.2 [2] Define a strictly decreasing function η from [0, 1) onto ( 12 , 1] by

η(r) = 1

1 + r
.

Let (X, d) be a complete metric space and let T : X → 2X be a multivalued mapping such
that T (x) is a nonempty, bounded and closed subset of X for each x ∈ X. Assume that there
exists r ∈ [0, 1) such that

η(r)D(x, T x) ≤ d(x, y) implies H(T x, T y) ≤ rd(x, y),

for all x, y ∈ X, where H denotes the Hausdorff metric. Then there exists z ∈ X such that
z ∈ T z.

Now, let (A, B) be a nonempty pair of subsets of ametric space (X, d) and let T : A → 2B

be a multivalued non-self mapping. Then for each x ∈ A we have D(x, T x) ≥ dist (A, B),
where dist (A, B) := inf{d(x, y) : (x, y) ∈ A × B} and D(x, T x) := dist ({x}, T x). So, it
is quite natural to seek an approximate solution x ∈ A that is optimal in the sense that the
distance D(x, T x) with respect to D is minimum. As the minimality of the value D(x, T x)
connotes the highest closeness between the elements x and T x , one attempts to determine
an element x for which D(x, T x) assumes the least possible value dist (A, B). Such an
optimal solution x for which D(x, T x) = dist (A, B), is called a best proximity point of the
multivalued non-self mapping T . Existence of best proximity points for multivalued non-
self mappings was first studied in [3] for multivalued nonexpansive non-self mappings in
hyperconvex metric spaces and in Hilbert spaces (see also [4–10] for different approaches to
the same problem).

The aim of this article is to elicit a best proximity point theorem for a new class of
multivalued non-self mappings with respect to b-generalized pseudodistances. Our results
improve and extend some recent results in the previous works.

2 Preliminaries

Let A and B be two nonempty subsets of a metric space (X, d). When we say that a pair
(A, B) satisfies a special property, wemean that both A and B satisfy thementioned property.
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We denote by CB(X) the family of all nonempty closed bounded subsets of X . We will use
the following notations:

D∗(a, B) = D(a, B) − dist (A, B), ∀a ∈ A,

H(A, B) = max

{

sup
x∈A

D(x, B), sup
y∈B

D(y, A)

}

∀A, B ∈ CB(X),

A0 = {x ∈ A : d(x, y) = dist (A, B) for some y ∈ B},
B0 = {y ∈ B : d(x, y) = dist (A, B) for some x ∈ A}.

It is easy to see that if (A, B) is a nonempty weakly compact pair in a Banach space X then
(A0, B0) is a nonempty pair.

Definition 2.1 [11] Let (A, B) be a pair of nonempty subsets of a metric space (X, d) with
A0 	= ∅. The pair (A, B) is said to have P-property if and only if

{
d(x1, y1) = dist (A, B)

d(x2, y2) = dist (A, B)
⇒ d(x1, x2) = d(y1, y2),

where x1, x2 ∈ A0 and y1, y2 ∈ B0.

The following notion is weaker than the notion of P-property which was first introduced
in [12].

Definition 2.2 [12] Let (A, B) be a pair of nonempty subsets of a metric space (X, d) with
A0 	= ∅. The pair (A, B) is said to have WP-property if and only if

{
d(x1, y1) = dist (A, B)

d(x2, y2) = dist (A, B)
⇒ d(x1, x2) ≤ d(y1, y2),

where x1, x2 ∈ A0 and y1, y2 ∈ B0.

Example 2.1 [11] Let (A, B) be a nonempty, closed and convex pair of subsets of a Hilbert
space H. Then (A, B) satisfies the P-property.

Example 2.2 Let (A, B) be a nonempty pair of subsets of a metric space (X, d) such that
A0 	= ∅ and dist (A, B) = 0. Then (A, B) has the P-property.

Example 2.3 [13] Let (A, B) be a nonempty bounded, closed and convex pair of subsets of
a uniformly convex Banach space X . Then (A, B) has the P-property.

Example 2.4 Consider X := R with the usual metric. Suppose that

A := [1, 2] and B := {−1, 0, 3}.
Then we have dist (A, B) = 1 and A0 = {1, 2}, B0 := {0, 3}. If (x1, x2) = (1, 2) and
(y1, y2) = (0, 3), then

d(x1, y1) = d(x2, y2) = dist (A, B) and d(x1, x2) < d(y1, y2),

which deduces that (A, B) has the WP-property. Note that (B, A) does not have the WP-
property and so, (A, B) does not have the P-property.

Here, we state the next best proximity point theorem which is a main result of [14].
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Theorem 2.3 [14] Define a strictly decreasing function η from [0, 1) onto ( 12 , 1] by

η(r) = 1

1 + r
. (2.1)

Let (A, B) be a pair of nonempty closed subsets of a complete metric space (X, d) such that
A0 	= ∅ and (A, B) satisfies the P-property. Let T : A → 2B be a multivalued non-self
mapping. Assume that there exists r ∈ [0, 1) such that

η(r)D∗(x, T x) ≤ d(x, y) implies H(T x, T y) ≤ rd(x, y),

for all x, y ∈ A. If T (x) ∈ CB(X) for all x ∈ A, and T (x0) ⊂ B0 for each x0 ∈ A0, then T
has a best proximity point in A.

The notion of b-metric space was introduced by Czerwik [15] as below.

Definition 2.4 [15] Let X be a nonempty set and s ≥ 1 be a given real number. A function
d : X × X → [0,∞) is b-metric if for any x, y, z ∈ X the following three conditions are
satisfied:

(d1) d(x, y) = 0 ⇔ x = y;
(d2) d(x, y) = d(y, x);
(d3) d(x, z) ≤ s[d(x, y) + d(y, z)].

If d is a b-metric on X (with constant s ≥ 1), then the pair (X, d) is called a b-metric
space. Note that every metric space is a b-metric space. Throughout this paper, we assume
that the b-metric d : X × X → [0,∞) is continuous on X2.

Here, we mention the following fixed point theorem which is the main result of [15].

Theorem 2.5 [15] Let (X, d) be a complete b-metric space and T : X → CB(X) be a
multivalued mapping. Suppose there exists r ∈ (0, 1

s ) so that

H(T x, T y) ≤ rd(x, y),

for all x, y ∈ X. Then T has a fixed point.

Definition 2.6 [16] Let X be a b-metric space (with constant s ≥ 1). The map J : X × X →
[0,∞), is said to be a b-generalized pseudodistance on X if the following two conditions
hold:

(J1) J (x, z) ≤ s[J (x, y) + J (y, z)] for any x, y, z ∈ X ; and
(J2) For any sequences (xm : m ∈ N) and (ym : m ∈ N) in X such that

lim
n→∞ sup

m>n
J (xn, xm) = 0, (2.2)

and

lim
m→∞ J (xm, ym) = 0, (2.3)

we have

lim
m→∞ d(xm, ym) = 0. (2.4)

Remark 2.7 If (X, d) is a b-metric space (with s ≥ 1), then the b-metric d : X×X → [0,∞)

is a b-generalized pseudodistance on X . However, there exists a b-generalized pseudodistance
on X which is not a b-metric (for details see Example 4.1 of [16]).
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Remark 2.8 From (J1) and (J2) it follows that for any x, y ∈ X we have J (x, y) > 0 or
J (y, x) > 0.

By using the notion of b-generalized pseudodistance on a b-metric space X , we can define
the HJ Hausdorff distance as below.

Definition 2.9 Let X be a b-metric space (with s ≥ 1) and let the map J : X × X → [0,∞)

be a b-generalized pseudodistance on X . Let J (u, V ) = infv∈V J (u, v), where u∈ X and
V ∈ CB(X). Define HJ : CB(X) × CB(X) → [0,∞) by

HJ (A, B) = max

{

sup
u∈A

J (u, B), sup
v∈B

J (v, A)

}

, ∀A, B ∈ CB(X).

Similarly, the following definitions and notations can be constructed in b -metric spaces
equipped with a b-generalized pseudodistance.

Let (X, d) be a b-metric space (with s ≥ 1) and let (A, B) be a nonempty pair of subsets
of X and let the map J : X × X → [0,∞) be a b-generalized pseudodistance on X . We set

A0 := {x ∈ A : J (x, y) = dist (A, B), for some y ∈ B};
B0 := {y ∈ B : J (x, y) = dist (A, B), for some x ∈ A};
J ∗(a, B) := 1

s
J (a, B) − dist (A, B), ∀a ∈ A.

Definition 2.10 Let X be a b-metric space (with s ≥ 1) and let themap J : X×X → [0,∞)

be a b-generalized pseudodistance on X . Let (A, B) be a pair of nonempty subsets of X with
A0 	= ∅.
(I) The pair (A, B) is said to have the WPJ -property if and only if

{
J (x1, y1) = dist (A, B),

J (x2, y2) = dist (A, B)
⇒ J (x1, x2) ≤ J (y1, y2),

where x1, x2 ∈ A0 and y1, y2 ∈ B0.
(II) We say that the b-generalized pseudodistance J is associated with the pair (A, B) if

for any sequences (xm : m ∈ N) and (ym : m ∈ N) in X such that limm→∞ xm = x ;
limm→∞ ym = y; and

J (xm, ym−1) = dist (A, B), ∀m ∈ N,

we have d(x, y) = dist (A, B).

We mention that for a b-metric space (X, d) if we put J = d , then the map d is associated
with each pair (A, B), where (A, B) is a nonempty pair in X because of the continuity of d .

Definition 2.11 Let (X, τ ) be a topological vector space and (A, B) be a nonempty pair of
subsets of X . The multivalued non-self mapping T : A → 2B is called closed whenever
(xm : m ∈ N) is a sequence in A converging to x ∈ A and (ym : m ∈ N) is a sequence in B
satisfying the condition

ym ∈ T (xm), ∀m ∈ N,

and converging to y ∈ B, then y ∈ T (x).

The following lemma will be used in the sequel.
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Lemma 2.12 [16] Let X be a complete b-metric space (with s ≥ 1) equipped with the
b-generalized pseudodistance J and let the sequence (xm : m ∈ {0} ∪ N) satisfy

lim
n→∞ sup

m>n
J (xn, xm) = 0. (2.5)

Then (xm : m ∈ {0} ∪ N) is a Cauchy sequence on X.

3 Main results

We begin our main result of this section with the following notion.

Definition 3.1 Define a function η by (2.1). Let X be a b-metric space (with s ≥ 1) and let
the map J : X × X → [0,∞) be a b-generalized pseudodistance on X . Let (A, B) be a pair
of nonempty pair of subsets of X . A multivalued non-self mapping T : A → 2B is said to
be a contraction of Suzuki type with respect to b-generalized pseudodistances provided that
there exists r ∈ [0, 1) such that

η(r)

s
J ∗(x, T x) ≤ J (x, y) implies sHJ (T x, T y) ≤ r J (x, y), (3.1)

for all x, y ∈ A.

It is clear that the class of multivalued non-self mappings which are contraction of Suzuki
type with respect to b-generalized pseudodistances contains the class of multivalued non-self
mappings considered in Theorem 2.3. This can be seen by taking s = 1 and J = d .

We now prove the main result of this article.

Theorem 3.2 Let X be a complete b-metric space (with s ≥ 1) and let the map J : X×X →
[0,∞) be a b-generalized pseudodistance on X. Let (A, B) be a pair of nonempty closed
subsets of X with A0 	= ∅ and such that (A, B) has the W P J -property and J is associated
with (A, B). Let T : A → 2B be a closed contraction multivalued non-self mapping of
Suzuki type. If T (x) ∈ CB(X) for all x ∈ A, and T (x) ⊂ B0 for each x ∈ A0, then T has a
best proximity point in A.

Proof Choose a real number r1 with 0 ≤ r < r1 < 1. Let x0 ∈ A0, y0 ∈ T x0 ⊆ B0. Then
there exists x1 ∈ A0 such that

J (x1, y0) = dist (A, B). (3.2)

Since

J (x0, T x0) ≤ J (x0, y0) ≤ s[J (x0, x1) + J (x1, y0)],
using (3.2), we deduce

J ∗(x0, T x0) = 1

s
J (x0, T x0) − dist (A, B) ≤ 1

s
s[J (x0, x1) + J (x1, y0)] − dist (A, B) =

= J (x0, x1) + J (x1, y0) − dist (A, B) = J (x0, x1),

which implies that 1
s J

∗(x0, T x0) ≤ J ∗(x0, T x0) ≤ J (x0, x1). Since η(r) ≤ 1, we obtain

η(r)

s
J ∗(x0, T x0) ≤ J (x0, x1).
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By the fact that T is multivalued non-self mapping contraction of Suzuki type, we have

sHJ (T x0, T x1) ≤ r J (x0, x1).

Thus

J (y0, T x1) ≤ HJ (T x0, T x1) ≤ r

s
J (x0, x1) <

r1
s
J (x0, x1).

Therefore, there exists y1 ∈ T x1 such that

J (y0, y1) ≤ r1
s
J (x0, x1). (3.3)

Again, since T x1 ⊆ B0, there exists an element x2 ∈ A0 such that

J (x2, y1) = dist (A, B). (3.4)

Also,

J (x1, T x1) ≤ J (x1, y1) ≤ s[J (x1, x2) + J (x2, y1)],
which implies that

η(r)

s
J ∗(x1, T x1) ≤ J (x1, x2).

So,

sHJ (T x1, T x2) ≤ r J (x1, x2).

Therefore,

J (y1, T x2) ≤ HJ (T x1, T x2) ≤ r

s
J (x1, x2) <

r1
s
J (x1, x2).

Hence,

J (y1, y2) ≤ r1
s
J (x1, x2). (3.5)

Continuing this process, by induction, we can find sequences (xm : m ∈ {0} ∪ N) and
(ym : m ∈ {0} ∪ N) such that

• xm ∈ A0 and ym ∈ B0 for all m ∈ {0} ∪ N,
• ym ∈ T xm for all m ∈ {0} ∪ N,
• J (xm, ym−1 = dist (A, B) for all m ∈ N,
• J (ym−1, ym) ≤ r1

s J (xm−1, xm) for all m ∈ N.

Now, for anym ∈ Nwehave J (xm, ym−1) = dist (A, B) and J (xm+1, ym) = dist (A, B).
Since (A, B) satisfies the WPJ -property, we conclude that

J (xm, xm+1) ≤ J (ym−1, ym), ∀m ∈ N.

Thereby,

J (xm, xm+1) ≤ J (ym−1, ym) ≤ r1
s
J (xm−1, xm) ≤ r1

s
J (ym−2, ym−1)

≤
(r1
s

)2
J (xm−2, xm−1) ≤

(r1
s

)2
J (ym−3, ym−2) ≤

(r1
s

)3
J (xm−3, xm−2)

≤ · · · ≤
(r1
s

)m
J (y0, y1) ≤

(r1
s

)m+1
J (x0, x1).
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Now, for each m > n we have

J (xn, xm) ≤ s[J (xn, xn+1) + J (xn+1, xm)]
≤ s J (xn, xn+1) + s2[J (xn+1, xn+2) + J (xn+2, xm)]
= s J (xn, xn+1) + s2 J (xn+1, xn+2) + s2 J (xn+2, xm)

≤ · · · ≤
m−(n+1)∑

k=0

sk+1 J (xn+k, xn+k+1) ≤
m−(n+1)∑

k=0

sk+1
(r1
s

)k+n+1
J (x0, x1)

≤
(r1
s

)n m−(n+1)∑

k=0

r1
k+1 J (x0, x1)

Thus, as n → ∞ in above relation, we deduce that

lim
n→∞ sup

m>n
J (xn, xm) = 0.

Similar calculation implies that

∀n>m

⎧
⎨

⎩
J (yn, ym) ≤

m−(n+1)∑

k=0

r1s
k J (xn+k, xn+k+1) ≤

(r1
s

)n+1
m−(n+1)∑

k=0

r1
k J (x0, x1)

⎫
⎬

⎭
.

Hence, limn→∞ supm>n J (yn, ym) = 0. It now follows from Lemma 2.12 that (xm : m ∈
{0}∪N) and (ym : m ∈ {0}∪N) are Cauchy sequence in A and B respectively. Since (A, B)

is a closed pair of subsets of the complete metric b-space X , there exists p ∈ A and q ∈ B
such that xm → p and ym → q . Besides, since ym ∈ T xm for all m ∈ {0} ∪N by closedness
of T , we obtain q ∈ T p. On the other hand, since J (xm, ym−1) = dist (A, B) and J is
associated with (A, B), we conclude that d(p, q) = dist (A, B). We now have

dist (A, B) ≤ D(p, B) ≤ D(p, T p) ≤ d(p, q) = dist (A, B),

that is, D(p, T p) = dist (A, B) and so, p ∈ A is a best proximity point of the non-self
mapping T .

Next corollaries are obtained from Theorem 3.2.

Corollary 3.3 Let X be a complete b-metric space (with s ≥ 1). Let (A, B) be a pair of
nonempty closed subsets of X with A0 	= ∅ and such that (A, B) has the WP-property.
Let T : A → 2B be a closed contraction multivalued non-self mapping of Suzuki type. If
T (x) ∈ CB(X) for all x ∈ A, and T (x) ⊂ B0 for each x ∈ A0, then T has a best proximity
point in A.

Corollary 3.4 (Compare with Theorem 2.3) Let (A, B) be a pair of nonempty closed subsets
of a complete metric space (X, d) such that A0 	= ∅ and (A, B) satisfies the WP-property.
Let T : A → 2B be a closed contraction multivalued non-self mapping of Suzuki type. If
T (x) ∈ CB(X) for all x ∈ A, and T (x0) ⊂ B0 for each x0 ∈ A0, then T has a best proximity
point in A.

Corollary 3.5 Let X be a complete b-metric space (with s ≥ 1) and let themap J : X×X →
[0,∞) be a b-generalized pseudodistance on X. Let (A, B) be a pair of nonempty closed
subsets of X with A0 	= ∅ and such that (A, B) has the W P J -property and J is associated
with (A, B). Let T : A → B be a continuous and contraction single-valued non-self mapping
of Suzuki type. If T (A0) ⊆ B0, then T has a best proximity point in A.
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Corollary 3.6 Let X be a complete b-metric space (with s ≥ 1). Let (A, B) be a pair of
nonempty closed subsets of X with A0 	= ∅ and such that (A, B) has the WP-property. Let
T : A → B be a continuous and contraction single-valued non-self mapping of Suzuki type.
If T (A0) ⊆ B0, then T has a best proximity point in A.

4 Examples illustrating Theorem 3.2 and some comparisons

In this section, we will present some examples illustrating the concepts having been intro-
duced so far. We will show a fundamental difference between Theorems 3.2 and 2.3. The
examples will show that Theorem 3.2 is an essential generalization of Theorem 2.3. First,
we present an example of generalized pseudodistance in metric spaces and b-metric spaces,
respectively.

Example 4.1 Let X be a metric space (b-metric space respectively) where the metric d :
X × X → [0,∞) is of the form d(x, y) = |x − y| (d(x, y) = |x − y|2), x, y ∈ X . Let the
closed set E ⊂ X , containing at least two different points, be arbitrary and fixed. Let c > 0
such that c > δ(E), where δ(E) = sup{d(x, y) : x, y ∈ X} be arbitrary and fixed. Define
the map J : X × X → [0,∞) as follows:

J (x, y) =
{
d(x, y) if {x, y} ∩ E = {x, y}
c if {x, y} ∩ E 	= {x, y}.

Then J : X × X → [0,∞) is generalized pseudodistance on X [17] (b-generalized pseu-
dodistance on X [16].

Next, we present an example which illustrate Theorem 3.2. To compare our results with
some well-known best proximity point theorems in the literature, we start by giving an
example where X is a metric space.

Example 4.2 Let (X, d) be a metric space, where X = R, d(x, y) = |x − y|, x, y ∈ X .
Let (A, B) be a pair of subsets of X , where A = [0, 1] ∪ [3, 4] and B = [3/2, 5/2]. Let
E = [0, 1]∪ B = [0, 1]∪ [3/2, 5/2] and let J : X × X → [0,∞) be defined by the formula

J (x, y) =
{
d(x, y) if E ∩ {x, y} = {x, y}
4 if E ∩ {x, y} 	= {x, y} , x, y ∈ X. (4.1)

From Example 4.1, the map J is generalized pseudodistances. Assume that T : A → B is
of the form

T x =
⎧
⎨

⎩

3/2 if x ∈ [0, 1]
x − 1 if x ∈ [3, 7/2)
5/2 if x ∈ [7/2, 4].

(4.2)

I. We show that pair (A, B) has the W P J -property.
Indeed, we observe that dist (A, B) = 1/2 and

A0 = {x ∈ A : J (x, y) = dist (A, B) for some y ∈ B} = {1},
B0 = {y ∈ B : J (x, y) = dist (A, B) for some x ∈ A} = {3/2}.

Hence, the pair (A, B) has the WPJ -property.
II. We see that A is complete and by (4.2) we have T (A0) = T ({1}) = 3/2 ∈ B0.
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III. We see that T is contraction of Banach type (i.e. J (T x, T y) ≤ r J (x, y) for some
r ∈ [0, 1) and for all x, y ∈ A).
Indeed, let r = 1/2 and let x, y ∈ A be arbitrary and fixed. We see that by (4.2)

T x ∈ E, ∀x ∈ A. (4.3)

We consider the following cases:
Case 1 If x, y ∈ [0, 1], then by (4.2), T x = T y = 3/2. Now, by (4.1) we have:

J (T x, T y) = J (3/2, 3/2) = 0 ≤ rd(x, y) = r J (x, y). (4.4)

Case 2 If {x, y} ∩ [3, 4] 	= ∅, then by (4.3), {T x, T y} ∩ E = {T x, T y} which, by (4.1)
gives J (T x, T y) = d(T x, T y) . Moreover, since {x, y} ∩ E 	= {x, y}, by (4.1), we
obtain J (x, y) = 4. Hence

J (T x, T y) = d(T x, T y) ≤ 1 < 2 = r · 4 = r J (x, y). (4.5)

In consequence (4.4) and (4.5) implies that T is contraction of Banach type.
IV. We see that T is contraction of Suzuki type (when s = 1, and T is single valued), i.e.

1

1 + r
J ∗(x, T x) ≤ J (x, y) implies J (T x, T y) ≤ r J (x, y),

for some r ∈ [0, 1) and for all x, y ∈ A. It is consequence of Step III.
V. We see that there exists a best proximity point of T .

Indeed, for z = 1 we have d(z, T (z)) = d(1, 3/2) = 1/2 = dist (A, B).

Now, we will compare our results with two important results which existing in the litera-
ture. In 2013, Zhang et al. [18] proved the following theorem.

Theorem 4.1 [18] Let (A, B) be a pair of subsets of a metric space (X, d). Let T be a
contraction from A into B, i.e.

d(T x, T y) ≤ rd(x, y),

for some r ∈ [0, 1) and for all x, y ∈ A. Assume that the following hold:
(i) (A, B) has the WP-property.
(ii) A is complete.
(iii) T (A0) ⊂ B0.

Then there exists a unique z ∈ A such that d(z, T z) = d(A, B).

In this same year, Suzuki [19] established the following interesting result.

Theorem 4.2 [19] Let (A, B) be a pair of subsets of a metric space (X, d). Let T be a
mapping from A into B. Assume that (i)–(iii) in Theorem 4.1 and the following hold:
(iv) There exists α ∈ [0, 1/2) such that

d(T x, T y) ≤ α(d(x, T x) − dist (A, B)) + α(d(y, T y) − dist (A, B))),

for all x, y ∈ A. Then there exists a unique z ∈ A so that d(z, T z) = d(A, B).

Remark 4.3 Let X , A, B, T be as in Example 4.2.

I. We see that the map T is not contraction in the sense of Theorem 4.1.
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Proof Suppose that for T the following condition holds

d(T x, T y) ≤ rd(x, y), (4.6)

for some r ∈ [0, 1) and for all x, y ∈ A. In particular, for x0 = 55
16 and y0 = 7

2 we have
d(x0, y0) = 1

16 and d(T x0, T y0) = d( 3916 ,
5
2 ) = 1

16 . Hence, and by (4.6) we get

1

16
= d(T x0, T y0) ≤ rd(x0, y0) = r

1

16
<

1

16
,

which is impossible.

II. We see that the mapping T is not contraction in the sense of Theorem 4.2. In this order,
suppose the following condition holds

d(T x, T y) ≤ α[d(x, T x) − dist (A, B)] + α[d(y, T y) − dist (A, B)], (4.7)

for some α ∈ [0, 1
2 ) and for all x, y ∈ A. In particular, for x0 = 1

2 and y0 = 7
2 we have

d(x0, T x0) = d( 12 ,
3
2 ) = 1, d(y0, T y0) = d( 72 ,

5
2 ) = 1 and d(T x0, T y0) = d( 32 ,

5
2 ) =

1. Hence, and by (4.7) we get

1 = d(T x0, T y0) ≤ α[d(x0, T x0) − dist (A, B)] + α[d(y0, T y0) − dist (A, B)]
= α[1 − 1

2
] + α[1 − 1

2
] = α <

1

2
,

which is impossible. ��
Remark 4.4 It is worth noticing that the concept of generalized pseudodistances gives that the
P-property and P J -property are different. In Example 4.2, we proved that the pair (A, B) has
the P J -property. However, we observe that the pair (A, B) does not have the P-property or
even theWP-property. Indeed, for usual metric d we have A0 = {1, 3} and B0 = {3/2, 5/2}.
Hence

d(1, 3/2) = 1/2
d(3, 5/2) = 1/2

,

however 2 = d(1, 3) > d(3/2, 5/2) = 1. Thus the pair (A, B) does not have the P-property
and WP-property.

Remark 4.5 In 2013, Abkar and Gabeleh [20] proved that some recent results concerning the
existence of best proximity points can be obtained from the same results in fixed point theory.
The Authors used a bijective isometry g : A0 → B0 such that d(x, g(x)) = dist (A, B)

(see Theorem 10 of [20]). It is worth noticing, that in our results such kind consideration is
not true. Indeed, the fact J (x, y) = dist (A, B), J (x, y′) = dist (A, B) and P J -property
or WPJ -property does not imply that J (y, y′) = J (y′, y) = 0 and y = y′. That would
be possible if max{J (x, x), J (x, x)} = 0. However, in general it does not hold. Moreover,
in the literature there are no fixed point theorem for such kind contraction with respect
to J -generalized pseudodistances. We obtain such kind result as immediate corollary from
Theorem 3.2 (see Corollary 3.5).

Example 4.3 Let (X, d) be a b-metric space, where X = R, d(x, y) = |x−y|2, x, y ∈ X . Let
(A, B) be a pair of subset X , where A = [0, 1]∪{4, 5} and B = [6, 8]. Let E = {0, 1}∪[4, 8]
and let J : X × X → [0,∞) be defined by the formula

J (x, y) =
{
d(x, y) if E ∩ {x, y} = {x, y}
65 if E ∩ {x, y} 	= {x, y} , x, y ∈ X. (4.8)
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From Example 4.1, the map J is b-generalized pseudodistances. Assume that T : A → 2B

is of the form

T x =

⎧
⎪⎪⎨

⎪⎪⎩

[6, 13
2 ] ∪ {7} if x = 0

{7} if x ∈ (0, 1)
{7} ∪ [ 152 , 8] if x = 1
{6} if x ∈ {4, 5}.

(4.9)

I. We show that (A, B) has the WPJ -property.
Indeed, we observe that dist (A, B) = 1 and

A0 = {x ∈ A : J (x, y) = dist (A, B) for some y ∈ B} = {5},
B0 = {y ∈ B : J (x, y) = dist (A, B) for some x ∈ A} = {6}.

Hence, the pair (A, B) has the WPJ -property.
II. We see that A (4.9) we have T (A0) = {6} ⊆ B0.
III. We see that T is contraction of Suzuki type with s = 2, i.e. there exists r ∈ [0, 1) so

that

1

1 + r
J ∗(x, T x) ≤ J (x, y) implies HJ (T x, T y) ≤ r J (x, y), (4.10)

for all x, y ∈ A. Indeed, let r = 1
4 and let x, y ∈ A be arbitrary and fixed. Then by

(4.9), we may consider the following cases:

Case 1. If T x = [6, 13
2 ] ∪ {7}, T y = {7} ∪ [ 152 , 8], then x = 0, y = 1 and

HJ (T x, T y) = 1. Moreover, by (4.8), we calculate: J (x, T x) = J (0, [6, 13
2 ] ∪

{7}) = 36; J ∗(x, T x) = 1
2 J (x, T x) − dist (A, B) = 17. Hence, 1

1+r J
∗(x, T x) =

68
5 ≥ 1 = J (x, y), which gives that in this case the condition (4.10) holds.
Case 2. If T x = {7} ∪ [ 152 , 8], T y = [6, 13

2 ] ∪ {7}, then x = 1, y =
0 and HJ (T x, T y) = 1. Moreover, by (4.8), we calculate: J (x, T x) =
J (1, {7} ∪ [ 152 , 8]) = 36; J ∗(x, T x) = 1

2 J (x, T x) − dist (A, B) = 17. Hence,
1

1+r J
∗(x, T x) = 68

5 ≥ 1 = J (x, y), which gives that in this case the condition
(4.10) holds.
Case 3. If T x = [6, 13

2 ] ∪ {7} and T y = {7}, then x = 0, y ∈ (0, 1) ∪ {4} and
HJ (T x, T y) = 1.Moreover, by (4.8), we calculate: J (x, y) = 65 if y ∈ (0, 1) (since
(0, 1)∩E = ∅) or J (x, y) = d(x, y) = 16 if y = 4; sHJ (T x, T y) = 2 ≤ 1

4 J (x, y),
which gives that in this case the condition (4.10) holds.
Case 4. If T x = [6, 13

2 ] ∪ {7} and T y = {6}, then x = 0, y ∈ {4, 5} and
HJ (T x, T y) = 1. Moreover, by (4.8), we calculate: J (x, y) = 16 (if y = 4) or
J (x, y) = 25 (if y = 5); in both cases we get sHJ (T x, T y) = 2 ≤ 1

4 J (x, y), which
gives that in this case the condition (4.10) holds.
Case 5. If T x = {7} ∪ [ 152 , 8] and T y = {6}, then x = 1, y ∈ {4, 5} and
HJ (T x, T y) = 1. Moreover, by (4.8), we calculate: J (x, y) = 16 (if y = 4) or
J (x, y) = 25 (if y = 5); in both cases we get sHJ (T x, T y) = 2 ≤ 1

4 J (x, y), which
gives that in this case the condition (4.10) holds.
Case 6. If T x = {7} ∪ [ 152 , 8] and T y = {7}, then x = 1, y ∈ (0, 1)
and HJ (T x, T y) = 1. Moreover, by (4.8), we calculate: J (x, y) = 65 (since
(0, 1) ∩ E = ∅); sHJ (T x, T y) = 2 ≤ 1

4 J (x, y), which gives that in this case
the condition (4.10) holds.
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Case 7. If T x = {7}, T y = {6}, then x ∈ (0, 1), y ∈ {4, 5} and HJ (T x, T y) = 1.
Moreover, by (4.8), we calculate: J (x, y) = 65 (since (0, 1) ∩ E = ∅) and then
sHJ (T x, T y) = 2 ≤ 1

4 J (x, y), which gives that in this case the condition (4.10)
holds.
Case 8. If T x = {6}, T y = {7}, then x ı{4, 5}, y ∈ (0, 1) and HJ (T x, T y) = 1.
Moreover, by (4.8), we calculate: J (x, y) = 65 if y ∈ (0, 1) (since (0, 1) ∩ E = ∅)
and then sHJ (T x, T y) = 2 ≤ 1

4 J (x, y), which gives that in this case the condition
(4.10) holds.

In consequence, using the symmetry of J , we conclude that the map T is contraction
of Suzuki type.

IV. We see that there exists a best proximity point of T .
Indeed, for z = 5 we have d(z, T z) = d(5, {6}) = 1 = dist (A, B).
Now, we will compare our result with another result for J -generalized pseudodistance
[16].

Theorem 4.6 [16] Let X be a complete b-metric space (with s ≥ 1) and let the map J :
X × X → [0,∞) be a b-generalized pseudodistance on X. Let (A, B) be a pair of nonempty
closed subsets of X with A0 	= ∅and such that (A, B)has the P J -property and J is associated
with (A, B). Let T : A → 2B be a closed and contraction multivalued non-self mapping of
Nadler type i.e.

sHJ (T x, T y) ≤ λJ (x, y),

for some λ ∈ [0, 1) and for all x, y ∈ A. If T (x) is bounded and closed in B for all x ∈ A,

and T (x) ⊂ B0 for each x ∈ A0, then T has a best proximity point in A.

Remark 4.7 Let X , A, B, T , E and J be as in Example 4.3. We see that the map T is not
contraction of Nadler type (in sense of Theorem 4.6.)

Proof To this end, suppose there exists λ ∈ [0, 1) so that the following condition holds

sHJ (T x, T y) ≤ λJ (x, y), ∀x, y ∈ A. (4.11)

In particular, for x0 = 0 and y0 = 1, by (4.8) we have J (x0, y0) = 1 andHJ (T x0, T y0) = 1.
Hence, by (4.10), we get

2 = sHJ (T x0, T y0) ≤ λJ (x0, y0) = λ · 1 < 1,

which is impossible. ��
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