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1 Introduction

Let N, Z and R denote the sets of all natural numbers, integers and real numbers respectively.
For any a, b ∈ Z, define Z(a) = {a, a + 1, . . .}, Z (a, b) = {a, a + 1, . . . , b} when a ≤ b.
Let the symbol * denote the transpose of a vector.

The present paper considers the following fourth-order nonlinear difference equation

�2 (rn−2�
2un−2

) = f (n, un+1, un, un−1), n ∈ Z, (1.1)

where � is the forward difference operator �un = un+1 − un , �2un = �(�un), rn > 0 is
real valued for each n ∈ Z, f ∈ C(Z × R3, R), rn and f (n, v1, v2, v3) are T -periodic in n
for a given positive integer T .

We may think of (1.1) as a discrete analogue of the following fourth-order functional
differential equation

[
r(t)u′′(t)

]′′ = f (t, u(t + 1), u(t), u(t − 1)), t ∈ R. (1.2)

Equation (1.2) includes the following equation

u(4)(t) = f (t, u(t)), t ∈ R, (1.3)

which is used to model deformations of elastic beams [9,29]. Equations similar in structure
to (1.2) arise in the study of the existence of solitary waves of lattice differential equations,
see Smets and Willem [31].

Recently, the theory of nonlinear difference equations has been widely used to study dis-
crete models appearing in many fields such as computer science, economics, neural network,
ecology, cybernetics, etc. For the general background of difference equations, one can refer
to monographs [1,21,25]. Since the last decade, there has been much progress on the quali-
tative properties of difference equations, which included results on stability and attractivity
[13,23,39] and results on oscillation and other topics, see [1–3,5,10,16–19,22,34–38].

In 1995, Peterson and Ridenhour [27] considered the disconjugacy of the following
equation

�4un−2 + qnun = 0, n ∈ Z.

Yan, Liu [34] in 1997 and Thandapani, Arockiasamy [32] in 2001 studied the following
fourth-order difference equation of form,

�2 (rn�2un
)+ f (n, un) = 0, n ∈ Z. (1.4)

the authors obtain criteria for the oscillation and nonoscillation of solutions for Eq. (1.4).
When β > 2, in Theorem 1.1, Cai et al. [7] have obtained some criteria for the existence

of periodic solutions of the following fourth-order difference Eq.

�2 (rn−2�
2un−2

)+ f (n, un) = 0, n ∈ Z. (1.5)

Furthermore, [7] is the only paper we found which deals with the problem of periodic solutions
to fourth-order difference Eq. (1.5). When β < 2, can we still find the periodic solutions of
(1.5)?

By using various methods and techniques, such as Schauder fixed point theorem, the cone
theoretic fixed point theorem, the method of upper and lower solutions, coincidence degree
theory, a series of existence results of nontrivial solutions for differential equations have been
obtained in [4,6,8,20]. Critical point theory is also an important tool to deal with problems
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on differential equations [9,11,12,24,29,33]. Because of applications in many areas for dif-
ference equations [1,21,25], recently, a few authors have gradually paid attention to applying
critical point theory to deal with periodic solutions on discrete systems, see [16–18,30,36,38].
Particularly, Guo and Yu [16–18] and Shi et al. [30] studied the existence of periodic solutions
of second-order nonlinear difference equations by using the critical point theory. Compared
to one-order or second-order difference equations, the study of higher-order equations, and in
particular, fourth-order equations, has received considerably less attention(see, for example,
[1,7,10,14,21,27,28,32,34] and the references contained therein). However, to the best of
our knowledge, results obtained in the literature on the periodic solutions of (1.1) are very
scarce. Since f in (1.1) depends on un+1 and un−1, the traditional ways of establishing the
functional in [16–18,36,38] are inapplicable to our case. The main purpose of this paper
is to give some sufficient conditions for the existence of periodic solutions to fourth-order
nonlinear difference equations. The main approaches used in our paper are variational tech-
niques and the Saddle Point Theorem. In particular, our results complement the result in the
literature [7]. In fact, one can see the following Remark 1.4 for details.

For basic knowledge on variational methods, we refer the reader to [15,24,26,29].
Let

r = min
n∈Z(1,T )

{rn}, r̄ = max
n∈Z(1,T )

{rn}.

Now we state the main results of this paper.

Theorem 1.1 Assume that the following hypotheses are satisfied: (F1) there exists a function
F(n, v1, v2) ∈ C1(Z × R2, R) such that

F(n + T, v1, v2) = F(n, v1, v2),

∂ F(n − 1, v2, v3)

∂v2
+ ∂ F(n, v1, v2)

∂v2
= f (n, v1, v2, v3);

(F2) there exists a constant M0 > 0 for all (n, v1, v2) ∈ Z × R2 such that
∣∣∣∣
∂ F(n, v1, v2)

∂v1

∣∣∣∣ ≤ M0,

∣∣∣∣
∂ F(n, v1, v2)

∂v2

∣∣∣∣ ≤ M0;

(F3) F(n, v1, v2) → +∞ uniformly for n ∈ Z as
√

v2
1 + v2

2 → +∞.
Then for any given positive integer m > 0, (1.1) has at least one mT -periodic solution.

Remark 1.1 Assumption (F2) implies that there exists a constant M1 > 0 such that (F ′
2)|F(n, v1, v2)| ≤ M1 + M0(|v1| + |v2|), ∀(n, v1, v2) ∈ Z × R2.

Theorem 1.2 Assume that (F1) holds; further (F4) there exist constants R1 > 0 and α,

1 < α < 2 such that for n ∈ Z and
√

v2
1 + v2

2 ≥ R1,

0 <
∂ F(n, v1, v2)

∂v1
v1 + ∂ F(n, v1, v2)

∂v2
v2 ≤ αF(n, v1, v2);

(F5) there exist constants a1 > 0, a2 > 0 and γ , 1 < γ ≤ α such that

F(n, v1, v2) ≥ a1

(√
v2

1 + v2
2

)γ

− a2, ∀(n, v1, v2) ∈ Z × R2.

Then for any given positive integer m > 0, (1.1) has at least one mT -periodic solution.
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Remark 1.2 Assumption (F4) implies that for each n ∈ Z there exist constants a3 > 0 and

a4 > 0 such that (F ′
4) F(n, v1, v2) ≤ a3

(√
v2

1 + v2
2

)α

+ a4, ∀(n, v1, v2) ∈ Z × R2.

Remark 1.3 The results of Theorems 1.1 and 1.2 ensure that (1.1) has at least one mT -
periodic solution. However, in some cases, we are interested in the existence of nontrivial
periodic solutions for (1.1).

In this case, we have

Theorem 1.3 Assume that (F1) holds; further (F6) F(n, 0) = 0, f (n, v1, v2, v3) = 0 if
and only if v2 = 0, for all n ∈ Z; (F7) there exists a constant α, 1 < α < 2 such that for
n ∈ Z,

0 <
∂ F(n, v1, v2)

∂v1
v1 + ∂ F(n, v1, v2)

∂v2
v2 ≤ αF(n, v1, v2), ∀(v1, v2) 	= 0;

(F8) there exist constants a5 > 0 and γ , 1 < γ ≤ α such that

F(n, v1, v2) ≥ a5

(√
v2

1 + v2
2

)γ

, ∀(n, v1, v2) ∈ Z × R2.

Then for any given positive integer m > 0, (1.1) has at least one nontrivial mT -periodic
solution.

Theorem 1.4 Assume that (F1) − (F3) and (F6) hold; further (F9) there exist constants
a6 > 0 and θ , 0 < θ < 2 such that

F(n, v1, v2) ≥ a6

(√
v2

1 + v2
2

)θ

, ∀(n, v1, v2) ∈ Z × R2.

Then for any given positive integer m > 0, (1.1) has at least one nontrivial mT -periodic
solution.

If f (n, un+1, un, un−1) = − f (n, un), (1.1) reduces to (1.5). Then, we have the following
results.

Theorem 1.5 Assume that the following hypotheses are satisfied: (F10) there exists a func-
tional F(n, v) ∈ C1(Z × R, R), F(n + T, v) = F(n, v) such that

∂ F(n, v)

∂v
= f (n, v);

(F11) F(n, 0) = 0, for all n ∈ Z;
(F12) there exists a constant α, 1 < α < 2 such that for n ∈ Z,

αF(n, v) ≤ v f (n, v) < 0, |v| 	= 0;
(F13) there exist constants a7 > 0 and γ , 1 < γ ≤ α such that

F(n, v) ≤ −a7|v|γ , ∀(n, v) ∈ Z × R.

Then for any given positive integer m > 0, (1.5) has at least one nontrivial mT -periodic
solution.
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Theorem 1.6 Assume that (F10) holds; further (F14) there exists a constant M0 > 0 for all
(n, v) ∈ Z × R such that | f (n, v)| ≤ M0; (F15) F(n, v) → −∞ uniformly for n ∈ Z as
v → +∞; (F16) F(n, 0) = 0, f (n, v) = 0 if and only if v = 0, for all n ∈ Z; (F17) there
exist constants a8 > 0 and θ , 0 < θ < 2 such that

F(n, v) ≤ −a8|v|θ , ∀(n, v) ∈ Z × R.

Then for any given positive integer m > 0, (1.5) has at least one nontrivial mT -periodic
solution.

Remark 1.4 When β > 2, in Theorem 1.1, Cai et al. [7] have obtained some criteria for the
existence of periodic solutions of (1.5). When β < 2, we can still find the periodic solutions
of (1.5). Hence, Theorems 1.5 and 1.6 complement the existing one.

The rest of the paper is organized as follows. First, in Sect. 2, we shall establish the
variational framework associated with (1.1) and transfer the problem of the existence of
periodic solutions of (1.1) into that of the existence of critical points of the corresponding
functional. Some related fundamental results will also be recalled. Then, in Sect. 3, we shall
complete the proof of the results by using the critical point method. Finally, in Sect. 4, we
shall give two examples to illustrate the main results.

2 Variational structure and some lemmas

In order to apply the critical point theory, we shall establish the corresponding variational
framework for (1.1) and give some lemmas which will be of fundamental importance in
proving our main results. We start by some basic notations.

Let S be the set of sequences u = (. . . , u−n, . . . , u−1, u0, u1, . . . , un, . . .) = {un}+∞
n=−∞,

that is

S = {{un}|un ∈ R, n ∈ Z}.
For any u, v ∈ S, a, b ∈ R, au + bv is defined by

au + bv = {aun + bvn}+∞
n=−∞.

Then S is a vector space.
For any given positive integers m and T , EmT is defined as a subspace of S by

EmT = {u ∈ S|un+mT = un, ∀n ∈ Z}.
Clearly, EmT is isomorphic to RmT . EmT can be equipped with the inner product

〈u, v〉 =
mT∑

j=1

u jv j , ∀u, v ∈ EmT, (2.1)

by which the norm ‖ · ‖ can be induced by

‖u‖ =
⎛

⎝
mT∑

j=1

u2
j

⎞

⎠

1
2

, ∀u ∈ EmT. (2.2)

It is obvious that EmT with the inner product (2.1) is a finite dimensional Hilbert space and
linearly homeomorphic to RmT.
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On the other hand, we define the norm ‖ · ‖s on EmT as follows:

‖u‖s =
⎛

⎝
mT∑

j=1

|u j |s
⎞

⎠

1
s

, (2.3)

for all u ∈ EmT and s > 1.
Since ‖u‖s and ‖u‖2 are equivalent, there exist constants c1, c2 such that c2 ≥ c1 > 0,

and

c1‖u‖2 ≤ ‖u‖s ≤ c2‖u‖2, ∀u ∈ EmT . (2.4)

Clearly, ‖u‖ = ‖u‖2. For all u ∈ EmT , define the functional J on EmT as follows:

J (u) = −1

2

mT∑

n=1

rn−1
(
�2un−1

)2 +
mT∑

n=1

F(n, un+1, un)

:= −H(u) +
mT∑

n=1

F(n, un+1, un), (2.5)

where

H(u) = 1

2

mT∑

n=1

rn−1
(
�2un−1

)2
,

∂ F(n − 1, v2, v3)

∂v2
+ ∂ F(n, v1, v2)

∂v2
= f (n, v1, v2, v3).

Clearly, J ∈ C1(EmT , R) and for any u = {un}n∈Z ∈ EmT , by using u0 = umT , u1 =
umT +1, we can compute the partial derivative as

∂ J

∂un
= −�2 (rn−2�

2un−2
)+ f (n, un+1, un, un−1).

Thus, u is a critical point of J on EmT if and only if

�2 (rn−2�
2un−2

) = f (n, un+1, un, un−1), ∀n ∈ Z(1, mT ).

Due to the periodicity of u = {un}n∈Z ∈ EmT and f (n, v1, v2, v3) in the first variable n, we
reduce the existence of periodic solutions of (1.1) to the existence of critical points of J on
EmT . That is, the functional J is just the variational framework of (1.1).

Let

P =

⎛

⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 · · · 0 −1
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2 −1

−1 0 0 · · · −1 2

⎞

⎟⎟⎟⎟⎟⎟
⎠

be a mT × mT matrix. By matrix theory, we see that the eigenvalues of P are

λk = 2

(
1 − cos

2k

mT
π

)
, k = 0, 1, 2, . . . , mT − 1. (2.6)

Thus, λ0 = 0, λ1 > 0, λ2 > 0, · · · , λmT −1 > 0. Therefore,
⎧
⎪⎨

⎪⎩

λmin = min{λ1, λ2, . . . , λmT −1} = 2
(
1 − cos 2

mT π
)
,

λmax = max{λ1, λ2, . . . , λmT −1} =
{

4, when mT is even,

2
(
1 + cos 1

mT π
)
, when mT is odd.

(2.7)
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Let

W = ker P = {u ∈ EmT |Pu = 0 ∈ RmT }.
Then

W = {u ∈ EmT |u = {c}, c ∈ R}.
Let V be the direct orthogonal complement of EmT to W , i.e., EmT = V ⊕ W . For

convenience, we identify u ∈ EmT with u = (u1, u2, . . . , umT )∗.
Let E be a real Banach space, J ∈ C1(E, R), i.e., J is a continuously Fréchet-

differentiable functional defined on E . J is said to satisfy the Palais-Smale condition (P.S.
condition for short) if any sequence

{
u(k)
} ⊂ E for which

{
J
(
u(k)
)}

is bounded and
J ′ (u(k)

)→ 0(k → ∞) possesses a convergent subsequence in E .
Let Bρ denote the open ball in E about 0 of radius ρ and let ∂ Bρ denote its boundary.

Lemma 2.1 (Saddle Point Theorem [24,29]) Let E be a real Banach space, E = E1 ⊕ E2,
where E1 	= {0} and is finite dimensional. Suppose that J ∈ C1(E, R) satisfies the P.S.
condition and (J1) there exist constants σ, ρ > 0 such that J |∂ Bρ∩E1 ≤ σ ; (J2) there exists
e ∈ Bρ ∩ E1 and a constant ω ≥ σ such that Je+E2 ≥ ω.

Then J possesses a critical value c ≥ ω, where

c = inf
h∈

max
u∈Bρ∩E1

J (h(u)),  = {h ∈ C(B̄ρ ∩ E1, E) | h|∂ Bρ∩E1 = id}

and id denotes the identity operator.

Lemma 2.2 Assume that (F1) − (F3) are satisfied. Then J satisfies the P.S. condition.

Proof Let
{
u(k)
} ⊂ EmT be such that

{
J
(
u(k)
)}

is bounded and J ′ (u(k)
)→ 0 as k → ∞.

Then there exists a positive constant M2 such that
∣∣J
(
u(k)
)∣∣ ≤ M2.

Let u(k) = v(k) + w(k) ∈ V + W . For k large enough, since

−‖u‖2 ≤
〈
J ′ (u(k)

)
, u
〉
= −
〈
H ′ (u(k)

)
, u
〉
+

mT∑

n=1

f
(

n, u(k)
n+1, u(k)

n , u(k)
n−1

)
un,

combining with (F2) and (F3), we have

〈
H ′ (u(k)

)
, v(k)
〉
≤

mT∑

n=1

f
(

n, u(k)
n+1, u(k)

n , u(k)
n−1

)
v(k)

n +
∥∥∥v(k)
∥∥∥

2

≤ 2M0

mT∑

n=1

∣∣∣v(k)
n

∣∣∣+
∥∥∥v(k)
∥∥∥

2

≤
(

2M0
√

mT + 1
) ∥∥∥v(k)

∥∥∥
2
.

On the other hand, we know that

〈
H ′ (u(k)

)
, v(k)
〉
=

mT∑

n=1

rn−1

(
�2v

(k)
n−1,�

2v
(k)
n−1

)
=

mT∑

n=1

rn

(
�2v(k)

n ,�2v(k)
n

)
= 2H

(
v(k)
)
.

Since

r

2
λmin

∥∥∥x (k)
∥∥∥

2

2
≤ r

2

(
x (k)
)∗

P
(

x (k)
)
≤ H
(
v(k)
)

≤ r̄

2

(
x (k)
)∗

P
(

x (k)
)

≤ r̄

2
λmax

∥∥∥x (k)
∥∥∥

2

2
,
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and

λmin

∥
∥
∥v(k)
∥
∥
∥

2

2
≤
∥
∥
∥x (k)

∥
∥
∥

2

2
=

mT∑

n=1

(
v

(k)
n+1 − v(k)

n , v
(k)
n+1 − v(k)

n

)
=
(
v(k)
)∗

P
(
v(k)
)

≤ λmax

∥
∥
∥v(k)
∥
∥
∥

2

2
,

where x (k) =
(
�v

(k)
1 ,�v

(k)
2 , . . . , �v

(k)
mT

)∗
, we get

r

2
λ2

min

∥
∥∥v(k)
∥
∥∥

2

2
≤ H

(
v(k)
)

≤ r̄

2
λ2

max

∥
∥∥v(k)
∥
∥∥

2

2
. (2.8)

Thus, we have

rλ2
min

∥
∥
∥v(k)
∥
∥
∥

2

2
≤
(

2M0
√

mT + 1
) ∥∥
∥v(k)
∥
∥
∥

2
.

The above inequality implies that
{
v(k)
}

is bounded.
Next, we shall prove that

{
w(k)
}

is bounded. Since

M2 ≥ J
(

u(k)
)

= −H
(

u(k)
)

+
mT∑

n=1

F
(

n, u(k)
n+1, u(k)

n

)

= −H
(
v(k)
)
+

mT∑

n=1

[
F
(

n, u(k)
n+1, u(k)

n

)
−F
(

n, w
(k)
n+1, w

(k)
n

)]
+

mT∑

n=1

F
(

n, w
(k)
n+1, w

(k)
n

)
,

combining with (2.8), we get

mT∑

n=1

F
(

n, w
(k)
n+1, w

(k)
n

)

≤ M2 + H
(
v(k)
)

−
mT∑

n=1

[
F
(

n, u(k)
n+1, u(k)

n

)
− F
(

n, w
(k)
n+1, w

(k)
n

)]

≤ M2 + r̄

2
λ2

max

∥∥∥v(k)
∥∥∥

2

2

+
mT∑

n=1

∣∣∣∣∣
∂ F(n, θv

(k)
n+1 + w

(k)
n+1, u(k)

n )

∂v1
v

(k)
n+1 + ∂ F(n, w

(k)
n+1, θv

(k)
n + w

(k)
n )

∂v2
v(k)

n

∣∣∣∣∣

≤ M2 + r̄

2
λ2

max

∥∥∥v(k)
∥∥∥

2

2
+ 2M0

√
mT
∥∥∥v(k)
∥∥∥

2
.

where θ ∈ (0, 1). It is not difficult to see that
{∑mT

n=1 F
(

n, w
(k)
n+1, w

(k)
n

)}
is bounded.

By (F3),
{
w(k)
}

is bounded. Otherwise, assume that
∥∥w(k)

∥∥
2 → +∞ as k → ∞. Since

there exist z(k) ∈ R, k ∈ N, such that w(k) = (z(k), z(k), . . . , z(k)
)∗ ∈ EmT , then

∥∥∥w(k)
∥∥∥

2
=
(

mT∑

n=1

∣∣∣w(k)
n

∣∣∣
2
) 1

2

=
(

mT∑

n=1

∣∣∣z(k)
∣∣∣
2
) 1

2

= √
mT
∣∣∣z(k)
∣∣∣→ +∞
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as k → ∞. Since F
(

n, w
(k)
n+1, w

(k)
n

)
= F
(
n, z(k), z(k)

)
, then F

(
n, w

(k)
n+1, w

(k)
n

)
→ +∞

as k → ∞. This contradicts the fact that
{∑mT

n=1 F
(

n, w
(k)
n+1, w

(k)
n

)}
is bounded. Thus the

P.S. condition is verified. ��
Lemma 2.3 Assume that (F1), (F4) and (F5) are satisfied. Then J satisfies the P.S. condition.

Proof Let
{
u(k)
} ⊂ EmT be such that

{
J
(
u(k)
)}

is bounded and J ′ (u(k)
)→ 0 as k → ∞.

Then there exists a positive constant M3 such that
∣∣J
(
u(k)
)∣∣ ≤ M3.

For k large enough, we have
∣
∣
∣
〈
J ′ (u(k)

)
, u(k)
〉∣∣
∣ ≤
∥
∥
∥u(k)
∥
∥
∥

2
.

So

M3 + 1

2

∥
∥
∥u(k)
∥
∥
∥

2

≥ J
(

u(k)
)

− 1

2

〈
J ′ (u(k)

)
, u(k)
〉

=
mT∑

n=1

⎡

⎣F
(

n, u(k)
n+1, u(k)

n

)
− 1

2

⎛

⎝
∂ F
(

n − 1, u(k)
n , u(k)

n−1

)

∂v2
· u(k)

n

+
∂ F
(

n, u(k)
n+1, u(k)

n

)

∂v2
· u(k)

n

⎞

⎠

⎤

⎦

=
mT∑

n=1

⎡

⎣F
(

n, u(k)
n+1, u(k)

n

)
− 1

2

⎛

⎝
∂ F
(

n, u(k)
n+1, u(k)

n

)

∂v1
· u(k)

n+1

+
∂ F
(

n, u(k)
n+1, u(k)

n

)

∂v2
· u(k)

n

⎞

⎠

⎤

⎦ .

Take

I1 =
{

n ∈ Z(1, mT )|
√(

u(k)
n+1

)2 +
(

u(k)
n

)2 ≥ R1

}

,

I2 =
{

n ∈ Z(1, mT )|
√(

u(k)
n+1

)2 +
(

u(k)
n

)2
< R1

}

.

By (F4), we have

M3 + 1

2

∥∥
∥u(k)
∥∥
∥

2

≥
mT∑

n=1

F
(

n, u(k)
n+1, u(k)

n

)
− 1

2

∑

n∈I1

⎡

⎣
∂ F
(

n, u(k)
n+1, u(k)

n

)

∂v1
· u(k)

n+1+
∂ F
(

n, u(k)
n+1, u(k)

n

)

∂v2
· u(k)

n

⎤

⎦

−1

2

∑

n∈I2

⎡

⎣
∂ F
(

n, u(k)
n+1, u(k)

n

)

∂v1
· u(k)

n+1 +
∂ F
(

n, u(k)
n+1, u(k)

n

)

∂v2
· u(k)

n

⎤

⎦
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≥
mT∑

n=1

F
(

n, u(k)
n+1, u(k)

n

)
− α

2

∑

n∈I1

F
(

n, u(k)
n+1, u(k)

n

)

−1

2

∑

n∈I2

⎡

⎣
∂ F
(

n, u(k)
n+1, u(k)

n

)

∂v1
· u(k)

n+1 +
∂ F
(

n, u(k)
n+1, u(k)

n

)

∂v2
· u(k)

n

⎤

⎦

=
(

1 − α

2

) mT∑

n=1

F
(

n, u(k)
n+1, u(k)

n

)

+1

2

∑

n∈I2

⎡

⎣αF
(

n, u(k)
n+1, u(k)

n

)
−

∂ F
(

n, u(k)
n+1, u(k)

n

)

∂v1
· u(k)

n+1−
∂ F
(

n, u(k)
n+1, u(k)

n

)

∂v2
· u(k)

n

⎤

⎦ .

The continuity of αF(n, v1, v2) − ∂ F(n,v1,v2)
∂v1

v1 − ∂ F(n,v1,v2)
∂v2

v2 with respect to the second
and third variables implies that there exists a constant M4 > 0 such that

αF(n, v1, v2) − ∂ F(n, v1, v2)

∂v1
v1 − ∂ F(n, v1, v2)

∂v2
v2 ≥ −M4,

for n ∈ Z(1, mT ) and
√

v2
1 + v2

2 ≤ R1. Therefore,

M3 + 1

2

∥∥∥u(k)
∥∥∥

2
≥
(

1 − α

2

) mT∑

n=1

F
(

n, u(k)
n+1, u(k)

n

)
− 1

2
mT M4.

By (F5), we get

M3+ 1

2

∥∥∥u(k)
∥∥∥

2
≥
(

1− α

2

)
a1

mT∑

n=1

[√(
u(k)

n+1

)2+
(

u(k)
n

)2
]γ

−
(

1− α

2

)
a2mT − 1

2
mT M4

>
(

1 − α

2

)
a1

∣∣∣u(k)
n

∣∣∣
γ − M5,

where M5 = (1 − α
2

)
a2 mT + 1

2 mT M4.

Combining with (2.4), we have

M3 + 1

2

∥∥∥u(k)
∥∥∥

2
≥
(

1 − α

2

)
a1cγ

1

∥∥∥u(k)
∥∥∥

γ

2
− M5.

Thus,
(

1 − α

2

)
a1cγ

1

∥∥∥u(k)
∥∥∥

γ

2
− 1

2

∥∥∥u(k)
∥∥∥

2
≤ M3 + M5.

This implies that
{∥∥u(k)

∥∥
2

}
is bounded on the finite dimensional space EmT . As a conse-

quence, it has a convergent subsequence. ��

3 Proof of the main results

In this Section, we shall prove our main results by using the critical point method.

Proof of Theorem 1.1 By Lemma 2.2, we know that J satisfies the P.S. condition. In order
to prove Theorem 1.1 by using the Saddle Theorem, we shall prove the conditions (J1) and
(J2).



Existence of periodic solutions of fourth-order nonlinear difference equations 821

From (2.8) and (F ′
2), for any v ∈ V ,

J (v) = −H(v) +
mT∑

n=1

F(n, vn+1, vn)

≤ − r

2
λ2

min‖v‖2
2 + mT M1 + M0

mT∑

n=1

(|vn+1| + |vn |)

≤ − r

2
λ2

min‖v‖2
2 + mT M1 + 2M0

√
mT ‖v‖2 → −∞as‖v‖2 → +∞.

Therefore, it is easy to see that the condition (J1) is satisfied.
In the following, we shall verify the condition (J2). For any w ∈ W , w =

(w1, w2, . . . , wmT )∗, there exists z ∈ R such that wn = z, for all n ∈ Z(1, mT ). By
(F3), we know that there exists a constant R0 > 0 such that F(n, z, z) > 0 for n ∈ Z and
|z| > R0√

2
. Let M6 = min

n∈Z,|z|≤R0/
√

2
F(n, z, z), M7 = min{0, M6}. Then

F(n, z, z) ≥ M7, ∀(n, z, z) ∈ Z × R2.

So we have

J (w) =
mT∑

n=1

F(n, wn+1, wn) =
mT∑

n=1

F(n, z, z) ≥ mT M7, ∀w ∈ W.

The conditions of (J1) and (J2) are satisfied. ��
Proof of Theorem 1.2 By Lemma 2.3, J satisfies the P.S. condition. To apply the Saddle
Point Theorem, it suffices to prove that J satisfies the conditions (J1) and (J2).

For any w ∈ W , since H(w) = 0, we have

J (w) =
mT∑

n=1

F(n, wn+1, wn).

By (F5),

J (w) ≥ a1

mT∑

n=1

(√
w2

n+1 + w2
n

)γ

− a2mT ≥ −a2mT .

Combining with (F ′
4), (2,4) and (2.8), for any v ∈ V , we get, like before,

J (v) ≤ − r

2
λ2

min‖v‖2
2 + a3

mT∑

n=1

(√
v2

n+1 + v2
n

)α

+ a4mT

≤ − r

2
λ2

min‖v‖2
2 + a3cα

2

[
mT∑

n=1

(
v2

n+1 + v2
n

)
] α

2

+ a4mT

≤ 7 − r

2
λ2

min‖v‖2
2 + 2

α
2 a3cα

2 ‖v‖α
2 + a4mT .

Let μ = −a2mT , since 1 < α < 2, there exists a constant ρ > 0 large enough such that

J (v) ≤ μ − 1 < μ, ∀v ∈ V, ‖v‖2 = ρ.

Thus, by Lemma 2.1, (1.1) has at least one mT -periodic solution. ��
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Proof of Theorem 1.3 Similarly to the proof of Lemma 2.3, we can prove that J satisfies the
P.S. condition. We shall prove this theorem by the Saddle Point Theorem. Firstly, we verify
the condition (J1).

In fact, (F4) clearly implies (F ′
4). For any v ∈ V , by (F ′

4) and (2.4), we have again
J (v) → −∞ as ‖v‖2 → +∞.

Next, we show that J satisfies the condition (J2). For any given v0 ∈ V and w ∈ W . Let
u = v0 + w. So

J (u) = −H(u) +
mT∑

n=1

F(n, un+1, un)

= −H(v0) +
mT∑

n=1

F(n, (v0)n+1 + wn+1, (v0)n + wn)

≥ − r̄

2
λ2

max‖v0‖2
2 + a5

mT∑

n=1

[√
((v0)n+1 + wn+1)2 + ((v0)n + wn)2

]γ

≥ − r̄

2
λ2

max‖v0‖2
2 + a5

mT∑

n=1

|(v0)n + wn |γ

≥ − r̄

2
λ2

max‖v0‖2
2 + a5cγ

1

[
mT∑

n=1

|(v0)n + wn |2
] γ

2

= − r̄

2
λ2

max‖v0‖2
2 + a5cγ

1

[‖v0‖2
2 + ‖w‖2

2

] γ
2

≥ − r̄

2
λ2

max‖v0‖2
2 + a5cγ

1 ‖v0‖γ
2 + a5cγ

1 ‖w‖γ
2 .

Since 1 < γ < 2, there exists a constant δ > 0 small enough such that

J (v0 + w) ≥ δγ

(
a5cγ

1 − r̄

2
λ2

maxδ
2−γ

)
> 0,

for v0 ∈ V, ‖v0‖2 = δ and for any w ∈ W .
Take ν = δγ

(
a5cγ

1 − r̄
2λ2

maxδ
2−γ
)
. Then for v0 ∈ V and for any w ∈ W , we get ‖v0‖2 = δ

and J (v0 + w) ≥ ν > 0.

By the Saddle Point Theorem, there exists a critical point ū ∈ EmT , which corresponds
to a mT -periodic solution of (1.1).

In the following, we shall prove that ū is nontrivial, i.e., ū 	∈ W . Otherwise, ū ∈ W . Since
J ′(ū) = 0, then

�2 (rn−2�
2ūn−2

) = f (n, ūn+1, ūn, ūn−1).

On the other hand, ū ∈ W implies that there is a point z ∈ R such that ūn = z, for all
n ∈ Z(1, mT ). That is, ū1 = ū2 = · · · = ūn = · · · = z. Thus, f (n, ūn+1, ūn, ūn−1) =
f (n, z, z, z) = 0, for all n ∈ Z(1, mT ). From (F6), we know that z = 0. Therefore, by (F6),
we have

J (ū) =
mT∑

n=1

F(n, ūn+1, ūn) =
mT∑

n=1

F(n, 0) = 0.

This contradicts J (ū) ≥ ν > 0. The proof of Theorem 1.3 is finished. ��
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Remark 3.1 The techniques of the proof of the Theorem 1.4 are just the same as those carried
out in the proof of Theorem 1.3. We do not repeat them here.

Remark 3.2 Due to Theorems 1.3 and 1.4, the conclusion of Theorems 1.5 and 1.6 is obvi-
ously true.

4 Examples

As an application of the main theorems, finally, we give two examples to illustrate our results.

Example 1 For all n ∈ Z, assume that

�2 (rn−2�
2un−2

) = 2αun

[
ϕ(n)
(
u2

n+1 + u2
n

)α−1 + ϕ(n − 1)
(
u2

n + u2
n−1

)α−1
]
,

(4.1)

where rn > 0 is real valued for each n ∈ Z, ϕ is continuously differentiable and ϕ(n) > 0,
T is a given positive integer, rn+T = rn , ϕ(n + T ) = ϕ(n), 1 < α < 2. We have

f (n, v1, v2, v3) = 2αv2

[
ϕ(n)
(
v2

1 + v2
2

)α−1 + ϕ(n − 1)
(
v2

2 + v2
3

)α−1
]

and

F(n, v1, v2) = ϕ(n)
(
v2

1 + v2
2

)α
.

Then

∂ F(n − 1, v2, v3)

∂v2
+ ∂ F(n, v1, v2)

∂v2
= 2αv2

[
ϕ(n)
(
v2

1 + v2
2

)α−1+ϕ(n − 1)
(
v2

2 + v2
3

)α−1
]
.

It is easy to verify all the assumptions of Theorem 1.3 are satisfied. Consequently, for any
given positive integer m > 0, (4.1) has at least one nontrivial mT -periodic solution.

Example 2 For all n ∈ Z, assume that

�2 (rn−2�
2un−2

) = 2θun

[ (
1 + cos2 nπ

T

) (
u2

n+1 + u2
n

)θ−1

+
(

1 + cos2 (n − 1)π

T

) (
u2

n + u2
n−1

)θ−1
]

, (4.2)

where rn > 0 is real valued for each n ∈ Z, T is a given positive integer, rn+T = rn ,
0 < θ < 2. We have

f (n, v1, v2, v3) = 2θv2

[ (
1 + cos2 nπ

T

) (
v2

1 + v2
2

)θ−1

+
(

1 + cos2 (n − 1)π

T

) (
v2

2 + v2
3

)θ−1
]

and

F(n, v1, v2) =
(

1 + cos2 nπ

T

) (
v2

1 + v2
2

)θ
.
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Then

∂ F(n − 1, v2, v3)

∂v2
+ ∂ F(n, v1, v2)

∂v2

= 2θv2

[(
1 + cos2 nπ

T

) (
v2

1 + v2
2

)θ−1 +
(

1 + cos2 (n − 1)π

T

)
(
v2

2 + v2
3

)θ−1
]

.

It is easy to verify all the assumptions of Theorem 1.4 are satisfied. Consequently, for any
given positive integer m > 0, (4.2) has at least one nontrivial mT -periodic solution.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.
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