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Abstract Let Y be a Banach space, let the space �∞ be real, let W denote the Banach
space �∞/c0, and let Q denote the quotient map �∞ → W. In 1981, Partington proved
there is a topological embedding J of �∞ into W such that the composition Q J is an
isometry; in particular, Q preserves �∞. In this paper we prove that if the kernel of an
operator T : �∞/c0 → Y does not contain an isometric copy of c0 (in particular, if T
is injective), then T preserves �∞, and hence T is non-weakly compact. This, in turn,
allows us to extend Partington’s theorem: we show that natural quotient mappings of some
real function spaces preserve �∞. We also remark that our results apply to some quotients of
both Orlicz and Marcinkiewicz spaces.
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1 Introduction

In what follows we use notations from the abstract. For notions and notations undefined here
we refer the reader to the monographs [2,3]. All operators are linear and continuous, spaces
are of infinite dimension, and � denotes an infinite set endowed with the discrete topology.

The present paper deals with operators preserving the real Banach space �∞ or, what
comes to the same thing, real C(βN), where βN is the Čech–Stone compactification of the
discrete space of positive integers N.

Let X, Y, V be Banach spaces, and let K be a compact Hausdorff space. An operator
T : X → Y preserves [isometrically] V if there is a subspace U of X, isomorphic [isometric,
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resp.] to V, such that the restricted operator T|U is an isomorphism [isometry, resp.]. The
first theorem on such operators is due to Pełczyński [5]. In 1962, he proved that

(*) Every non-weakly compact operator T : C(K ) → Y preserves c0.

In 1968 Rosenthal strengthened partially the above-cited Pełczyński’s theorem by showing
that

(**) Every non-weakly compact operator T : C(β�) = �∞(�) → Y preserves �∞; in
particular, the quotient map Q : �∞ → �∞/c0 preserves �∞

(see [7]; cf. [2, Proposition 2.f.4]). In 1970 he published the classical by now result [8,
Proposition 1.2 and Remark 1 on p. 30]:

(R) If an operator T : �∞(�) → Y is such that inf{‖T eγ ‖ : γ ∈ �} > 0, where {eγ : γ ∈ �}
is the unit vector basis of c0(�), then there exists �′ ⊂ � with card(�′) = card(�) such
that T|�∞(�′) is an isomorphism.

Here �∞(�′) denotes the closed subspace of �∞(�) consisting of the elements with support
included in �′.
Remark 1 It is easy to see that if, in the hypothesis of (R), the unit vector basis {eγ : γ ∈ �}
is replaced by any norm-bounded subset {uγ : γ ∈ �} of �∞(�) whose elements are pairwise
disjoint, then T is an isomorphism on a subspace U of �∞(�), isomorphic to �∞(�), spanned
on the set {uγ : γ ∈ �′} as in (P) below.

In 1981, Partington added a new information to the Rosenthal result (**): he proved
that every automorphism of the quotient space �∞/c0 preserves �∞ in a particular way [4,
Theorem 1]:

(P) For the real Banach space �∞ and every norm ‖|‖| on W = �∞/c0, equivalent to the usual
(quotient) norm, there exist pairwise disjoint and norm-bounded elements {un : n ∈ N}
in �∞ such that for every (an) ∈ �∞ we have
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where (p)
∑∞

n=1 anun denotes the formal pointwise sum of the anun in �∞.

The following result of the present author extends partially Partington’s theorem (P) to
the Banach lattice-case (see [11, Proof of Theorem 1.1 and Remark on p. 3006]; cf. [12,
Proof of Proposition 1]):

(W) Let E be a Dedekind complete Banach lattice, and let M be its closed ideal that does not
contain a copy of �∞. If E contains a lattice-topological [lattice-isometric, resp.] copy
of �∞(�), then the quotient map E → E/M preserves [lattice-isometrically, resp.]
�∞(�).

In particular, the quotient map Q : �∞(�) → �∞(�)/c0(�) preserves �∞(�) lattice-
isometrically.

(The examples of such pairs of E and M can be found both in the class of Orlicz and in
the class of Marcinkiewicz spaces [6, Lemma 1 and remarks before Corollary 7]).

For the results on operators on Banach lattices/spaces preserving c0, �1, or �∞ see [3, pp.
196–199, 324, 341–343]; the case of operators preserving some C(K )-spaces is addressed
in the survey article [9, pp. 1579–1593].

In the present paper, we extend and supplement the above-cited theorems on operators
preserving �∞. Our main results are included in Theorems 1 and 2, and their applications to
concrete cases are given in Example 1, and Corollaries 4 and 5.
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2 The results

Our basic theorem is given below. In what follows, for the set � fixed, the letter Q denotes the
natural quotient map from �∞(�) onto �∞(�)/c0(�), and ‖‖W denotes the natural (quotient
and lattice) norm on W := �∞(�)/c0(�).

Theorem 1 Let W denote [an isomorphic copy of] the real space �∞(�)/c0(�). If the kernel
of an operator T : W → Y does not contain an isometric [isomorphic, resp.] copy of c0 then
T preserves �∞. In particular, T is non-weakly compact.

Proof Since, by Partington’s result (P), the isomorphic case follows from the isometric case,
we shall assume without loss of generality that W is endowed with the norm ‖‖W . Let us
fix �.

Let us consider first the case � countable. Without loss of generality we set W = �∞/c0.

Our goal is to show that there is a pairwise disjoint and norm-bounded sequence (un) in W
such that infn≥1 ‖T (Qun)‖Y > 0; then we shall apply Rosenthal’s theorem (R).

We define a new norm ‖|‖| on W by the formula

‖|w‖| := ‖w‖W + ‖T w‖Y , (2)

where ‖‖Y is a norm on Y. Now we apply (P) and choose a sequence (un) in �∞ as in (1),
and we set xn := Qun, n = 1, 2, . . . . Hence

1 = ‖|xn‖| = ‖xn‖W + ‖T xn‖Y , n = 1, 2, . . . . (3)

By (P), the sequence (un) consists of pairwise disjoint elements and “spans” a copy U
of �∞ in �∞ in the same way as in (P); we thus have
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for every (an) ∈ �∞. So that Q(U ) is an isometric copy of �∞ in W. Now we claim that
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‖T Q(un)‖Y > 0. (5)

Let us suppose the contrary, i.e.,
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n→∞ ‖T Q(un)‖Y = 0. (6)

Let (Nk) be a sequence of infinite and pairwise disjoint subsets of N such that N =
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By (4), the elements yk are well defined (in W ) and ‖|yk |‖ = 1 for all k. Since Q is a lattice
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for all n ∈ Nk (the latter inequality ≥ follows from the inequality |a + b| ≥ |a| for the
elements a and b disjoint).

Hence, by (2) (and since ‖‖W is a lattice norm), we obtain

1 = ‖|yk |‖ ≥ ‖yk‖W ≥ ‖xn‖W , for all n ∈ Nk . (8)

By (2), (3), (6) and (8), we obtain that 1 ≥ ‖yk‖W ≥ limn→∞ ‖xn‖W = 1, i.e.,

‖yk‖W = 1, for all k = 1, 2, . . . , (9)

whence, by (2) again, T yk = 0 for all k. But, by (7) and (9), the elements (yk) are pairwise
disjoint in W = C(βN\N) and are of norm one, thus they span an isometric copy of c0.

Hence the kernel of T contains an isometric copy of c0, but this contradicts the hypothesis
of our theorem. Thus our claim (6) is false, so (5) must be true.

Now we apply the general case of Rosenthal’s result (R) (see Remark 1) to the space U1

isomorphic to �∞ and spanned—as in (P)—by an infinite subsequence (un j ) of (un) such
that inf j→∞ ‖T Q(un j )‖Y > 0; and without loss of generality we may assume that

the operator T Q acts on U1 as an isomorphism.

Set Q1 := Q|U1 , W1 := Q1(U1), T1 := T|W1 , and let S denote the composition T1 ◦ Q1. We
thus have that U1 and W1 are isomorphic copies of �∞, and that S is an isomorphism from
U1 onto Y1 := T1(W1). Moreover, by (4), Q1 is an isomorphism from U1 onto W1.

From all this follows that T1 = T|W1 = S ◦ Q−1
1 is an isomorphism from W1 (=an

isomorphic copy of �∞) into Y. In other words, T preserves �∞.

If the set � is uncountable, then the space �∞(�)/c0(�) contains an isometric copy of
�∞/c0 (see [13, Corollary 2]). Now we apply the just proved result for � countable.

Now let us consider the case when the operator T : �∞(�)/c0(�) → Y is injective. If �

is countable, Theorem 1 implies that T preserves �∞. Moreover, if � is uncountable, from
the above-cited results (W ) and (R) we obtain immediately that T preserves �∞(�). More
exactly: from the proof of Theorem 1 it follows that, in each of the either cases, there is
a set {uγ : γ ∈ �} of pairwise disjoint and norm bounded elements of �∞(�) such that
infγ∈� ‖T Q(uγ )‖Y > 0.

Hence, by Theorem 1, we have the following result.

Corollary 1 Every injective operator T : �∞(�)/c0(�) → Y preserves �∞(�): we have

inf
γ∈�

‖T Q(uγ )‖Y > 0,

where (uγ )γ∈� are pairwise disjoint and norm bounded elements of �∞(�); hence Rosen-
thal’s result (R) applies to the operator T and the family (Quγ )γ∈�.

Moreover, if Y is a WCG-space, then the kernel of every operator T : �∞/c0 → Y
contains an isometric copy of c0; in particular, T is not injective.

(The second part of Corollary 1 follows from the well known fact that a weakly compactly
generated (WCG) Banach space cannot contain an isomorphic copy of �∞).

In the next corollary we supplement Rosenthal’s result (R) in a particular case of the
condition infγ∈� ‖T eγ ‖ = 0.

Corollary 2 Let T be an operator from �∞(�) → Y such that kerT = c0(�). Then T
preserves �∞(�).
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Proof The operator T : �∞(�)/c0(�) → Y of the form T (Qx) := T x, is injective. By
Corollary 1, from the form of T we obtain infγ∈� ‖T uγ ‖Y > 0, where {uγ : γ ∈ �} is
a norm-bounded subset of �∞(�) whose elements are pairwise disjoint. By Remark 1, the
operator T preserves �∞(�).

The following example illustrates Corollary 2 (for another application of this corollary
see the proof of Theorem 2).

Example 1 Let c denote the Banach space of all real convergent sequences, let y∗ be the
“lim” functional on c, and let x∗ be any fixed continuous extension of y∗ to �∞. Further,
let F denote the set (with card(F) = 2ℵ0 ) of all strictly increasing functions f : N → N,

and let ξ be any function F → (0, 1]. By x∗
f we denote the element of �∗∞ defined by the

formula x∗
f (x) := x∗(x ◦ f ); here x ∈ �∞, and (x ◦ f )(n) = x( f (n)), n ≥ 1. The operator

Tξ : �∞ → �∞(F) defined by the formula

Tξ (x) = (ξ( f ) · x∗
f (x)) f ∈F

is obviously continuous, and it is easy to check that kerTξ = c0. From Corollary 2 we obtain
that Tξ preserves �∞.

The next two corollaries also follow from Corollary 1.
Let Y be a closed subspace of a Banach space X, and set W := �∞(�)/c0(�). Let

S : �∞(�) be an operator such that S(c0(�)) = Y ∩ ImS, and let q and Q denote the natural
quotient maps �∞(�) → W and X → X/Y, respectively. By [6, Theorem 2], the induced
operator R : W → X/Y defined by the rule R ◦ q = Q ◦ S is injective. From Corollary 1
we thus obtain:

Corollary 3 With the notations as above, and with the hypothesis

S(c0(�)) = Y ∩ ImS,

the quotient space X/Y contains an isomorphic copy of �∞.

Now let us consider the quotient space X∗∗/ι(X),where ιdenotes the canonical embedding
of X into X∗∗. Assume there is an isomorphic embedding S0 of c0 into X. Then S := S∗∗

0
embeds �∞ into X∗∗ with

ι(X) ∩ ImS = ι(S0(c0)) = S(c0).

By [6, Corollary 2], for every separable subspace V of �∞ containing a copy of c0, the
quotient space X = �∞/V contains a copy of c0(�), where card(�) = 2ℵ0 . Hence, by
Corollary 3, we obtain:

Corollary 4 If X contains a copy of c0, then the quotient space X∗∗/ι(X) contains an
isomorphic copy of �∞.

In particular, for the Banach space X = �∞/C[0, 1], the quotient space X∗∗/X contains
an isomorphic copy of �∞.

The next theorem has an application to some quotient mappings.

Theorem 2 Let U be a closed subspace of a Banach space X. If U is isomorphic to �∞ and
T : X → Y is an operator such that the subspace U0 := U ∩ kerT is isomorphic to c0, then
T preserves �∞.
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Proof Let R and S be two isomorphisms from �∞ onto U and from c0 onto U0, respectively.
Then the subspace X0 := R−1(U0) of �∞ is isomorphic to c0, and the operator τ0 := R−1S
maps c0 onto X0. By [2, Theorem 2.f.12(i)], there is an automorphism τ of �∞ extending τ0.

It follows that

the operator S̃ := Rτ is an extension of S, and S̃ maps �∞ onto U. (10)

Now let us consider the restricted operator T|U . By (10), the composition T|U S̃ maps �∞ into
Y, and ker(T|U S̃) = c0 because ker(T|U ) = U0. By Corollary 2, the space �∞ contains an
isomorphic copy V of �∞ such that T|U S̃ acts on V as an isomorphism. But since S̃ is an
isomorphism and the subspace U1 := S̃(V ) of U is also a copy of �∞, the operator T acts
on U1 as an isomorphism; that is, T preserves �∞, as claimed.

In the corollary below, we show how Theorem 2 works in concrete cases.
Let X denote one of the real Banach spaces, endowed with the “sup”-norm and built on

the interval [0, 1]: X = Lb∞[0, 1]—of all bounded and Lebesgue-measurable functions, or
X = Bb

1[0, 1]—of all bounded functions of Baire class one. In [6, Corollary 5] it has been
proved that the quotient space X/C[0, 1] contains a complemented copy of �∞/c0. From
Theorem 2 we obtain additional information about the quotient map q : X → X/C[0, 1].
Corollary 5 With the notations as above, q preserves �∞.

Proof Let (xn) be a sequence of positive, pairwise disjoint and norm-one elements of C[0, 1].
Then the closed linear span U0 := [xn] of (xn) is an isometric copy of c0, and its pointwise
“span” U, defined in X as in (P), is isometric to �∞. Moreover, by Dini’s theorem, the
pointwise sum (p)

∑∞
n=1 tn xn, where tn ≥ 0, n = 1, 2, . . . , lies in C[0, 1] if and only if

tn →0 as n →∞. It follows that U ∩ kerq =U0, and hence, by Theorem 2, q preserves �∞.

3 Further applications of Theorem 1

Let E denote a real Banach lattice and let Ea be the order continuous part of E (for unexplained
in this section notions and fundamental facts concerning the theory of Banach lattices and
Orlicz and Marcinkiewicz spaces we refer the reader to [1–3,10]; cf. [6, Section 4]). In
[13, Theorem 1 and Corollary 3], it has been proved that if E is Dedekind complete with
E 
= Ea then the quotient Banach lattice E/Ea contains an isomorphic (or isometric) copy
of W = �∞/c0 (cf. [6, Corollary 6]).

For example, if �φ denotes a sequence Orlicz space such that the Orlicz function φ does
not fulfil the 
2-condition at 0, then the quotient space �φ/hφ contains an isometric copy of
W (see [6, Corollary 7]).

Similarly, if � denotes a Marcinkiewicz function, then the quotient Marcinkiewicz space
M(�)/M0(�) contains a copy of W whenever M(�) 
= M0(�) (see [6, Corollary 9]).

Hence, by Theorem 1 and Corollary 1, we obtain:

Corollary 6 Let E be a Dedekind complete Banach lattice such that E 
= Ea (i.e., the norm
on E is not order continuous). If the kernel of an operator T : E/Ea → Y does not contain
an isomorphic copy of c0 (e.g., if T is injective), then T preserves �∞.

In particular, every injective operator T : E/Ea → Y is non-weakly compact.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.
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