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Abstract An automorphism of a bordered compact Klein surface induces a permutation
of its boundary components and we study the corresponding representations of groups of
automorphisms of such surfaces in the corresponding finite symmetric groups. The principal
result gives a characterization of those abstract representations of a finite group G in sym-
metric groups which, up to the natural equivalence, proceed from compact Klein surfaces on
which G acts as a group of dianalytic automorphisms. We deal with such representations for
actions of G given by a so called smooth epimorphisms� → G, where� are so called non-
Euclidean crystallographic groups (NEC-groups). For such data we calculate the kernels of
our representations which allow, as an application, to get some results on the minimal degree
of such representations for finite abstract groups.
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1 Introduction

The importance of compact connected Riemann surfaces with nontrivial groups of analytic
automorphisms comes from the fact that they represent singular points in the moduli spaces of
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such surfaces of given genus, and the groups themselves describe the nature of such singulari-
ties in some way. On the other hand there is a well known functorial equivalence between such
surfaces and smooth, irreducible, complex, projective, algebraic curves and particular role
play so called symmetric Riemann surfaces which correspond to complex curves having real
forms. More precisely, under this equivalence, a Riemann surface X admits a symmetry σ , by
which we understand an antiholomorphic involution, if and only if the corresponding curve
CX has a real form CX (σ ). Furthermore, two such symmetries σ and τ define real forms CX (σ )

and CX (τ ), birationally isomorphic over the field R of real numbers, if and only if they are
conjugate in the group Aut±(X) of all, including antiholomorphic, automorphisms of X and

AutR(CX (σ )) ∼= CentAut±(X)(σ ),

where Cent stands for the centralizer.
Now for a Riemann surface X with a symmetry σ having nonempty set of fixed points,

the orbit space X/σ is a bordered topological surface with, inherited from X , the natural
dianalytic structure of so called Klein surface. Notice also, that each Klein surface arise from
a symmetric Riemann surface in this way and a corresponding symmetry is unique up to
conjugation in Aut±(X). A study of groups of dianalytic automorphisms of such surfaces is
equivalent to a study of groups of birational automorphisms of real algebraic curves due to
isomorphism

Aut(X/σ) ∼= AutR(CX (σ ))

and the advantage of the former is made by a counterpart of the Riemann uniformization
theorem, which together with some principal facts from covering theory allows their study
through a well developed combinatorial theory of non-Euclidean crystallographic groups.

Next an automorphism of a bordered Klein surface induces a permutation of its boundary
components and we study the associated representations of groups of automorphisms of such
surfaces in the corresponding finite symmetric groups. The principal result gives a character-
ization of those abstract representations of a finite group G in symmetric groups which, up to
the natural equivalence of symmetric representations, proceed from bordered Klein surfaces
on which G acts as a group of dianalytic automorphisms. We deal with such representations
for actions of finite groups G given by a so called smooth epimorphism � → G, where
� are so called non-Euclidean crystallographic groups. For them, we calculate the kernels
of the corresponding representations which allow, as an application, to get some illustrative
examples and general results on the minimal degree of such representations as well. Our
results describe in such a way, a nature of groups of automorphisms of real algebraic curves.

2 Preliminaries

We shall use a combinatorial approach based on non-Euclidean crystallographic groups
(NEC-groups in short); we send the reader to the monographs [1] and [3] for detailed expo-
sition of the whole theory.

2.1 Non-Euclidean crystallographic groups

An NEC-group is a discrete and cocompact subgroup of the group G of isometries of the
hyperbolic plane H including those which reverse orientation. If such a subgroup contains
only orientation preserving isometries, it is called a Fuchsian group.

Macbeath [9] and Wilkie [13] associated to every NEC-group � a signature s = s(�),
which determines its algebraic structure. It has the form
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(g;±; [m1, . . . ,mr ]; {C1, . . . ,Ck}) . (1)

Particular role, in our considerations, will play the brackets Ci = (ni1, . . . , nisi ), called the
period cycles with the numbers ni j ≥ 2, called the link periods.

A group � with signature (1) has the presentation with the following generators, called
canonical generators :
x1, . . . , xr , ei , ci j , 1 ≤ i ≤ k, 0 ≤ j ≤ si and a1, b1, . . . , ah, bh if the sign is + or d1, . . . , dh

otherwise,
and relators:
xmi

i , i = 1, . . . , r , c2
i j−1, c2

i j , (ci j−1ci j )
ni j , ci0e−1

i cisi ei , i = 1, . . . , k, j = 1, . . . , si and

x1 . . . xr e1 . . . eka1b1a−1
1 b−1

1 . . . ahbha−1
h b−1

h or x1 . . . xr e1 . . . ekd2
1 . . . d

2
h ,

according to whether the sign is + or −.
Generators ci, j are hyperbolic reflections and reflections ci, j−1, ci, j corresponding to a

link period ni, j are said to be consecutive or neighbouring.
Every NEC-group has associated a fundamental region, whose hyperbolic area μ(�) for

an NEC-group � with signature (1) is given by

2π

(
εg + k − 2 +

r∑
i=1

(
1 − 1

mi

)
+ 1

2

k∑
i=1

si∑
i=1

(
1 − 1

ni j

))
, (2)

where ε = 2 if the sign is + and ε = 1 otherwise. Finally, it is known that an abstract group
with the above presentation can be realized as an NEC-group with the signature (1) if and
only if (2) is positive and if �′ is a subgroup of finite index in an NEC-group � then it is an
NEC-group itself and there is a Hurwitz–Riemann formula, which says that

[� : �′] = μ(�′)/μ(�). (3)

2.2 Riemann and Klein surfaces and their group of automorphisms

A Klein surface is a compact topological surface with a dianalytic structure which, in contrast
to the classical analytic structure, involve the conjugation z → z̄ for transition maps between
charts and for the local forms of automorphisms between such surfaces. Similarly, as for
Riemann surfaces, a bordered Klein surface of algebraic genus g ≥ 2 can be represented as
the orbit space H/� with an NEC-group � having a signature (g′; ±; [−]; {(−), k. . ., (−)}),
called bordered surface NEC-group, where k is the number of boundary components of X
and where g = εg′ + k − 1, with ε = 2 if X is orientable (the sign is +) or ε = 1 if X is
nonorientable (the sign is −). Furthermore a finite group G is a group of automorphisms of
a surface so represented if and only if G ∼= �/� for some NEC group � and, generally,
an epimorphism � → G with the kernel being bordered surface NEC-group will be called
smooth. Finally two dianalytic actions given by smooth epimorphisms θ : � → G and
θ ′ : �′ → G ′ are topologically equivalent if and only if the diagram

�
ϕ �� �′

G
ψ ��

��
θ

G ′
��
θ ′

commutes for some isomorphisms ϕ : � → �′ and ψ : G → G ′.
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3 Representations of groups of automorphisms of Klein surfaces on their boundary

Let G be a group of automorphisms of a compact Klein surface X with the boundary consist-
ing of the connected components O1, . . . ,On , each of which turns out to be homeomorphic
to a circle. We define ρX : G → Sn by

ρX (g)(i) = j ⇔ g(Oi ) = O j

This representation will be called geometric . With this definition we have the following

Lemma 3.1 The mapping ρX is a homomorphism whose kernel is either cyclic or dihedral.

Proof If ρX (g)(i) = i , then g induces an isometry of the circle Oi . So the assertion follows
from the fact that a finite group of isometries of a circle is either cyclic or dihedral, from
[5,10] on the extension of automorphisms of bordered Klein surfaces and from the fact that
an orientation preserving automorphism of a compact Riemann surface having a non-discrete
set of fixed points is trivial. �	

As an immediate consequence we obtain the following result of Bujalance [2] about groups
of automorphisms of bordered Klein surfaces with a small number of boundary components.

Corollary 3.2 The group of automorphisms of a Klein surface having 1 ≤ k ≤ 4 boundary
components is solvable. �	

Here and throughout the remainder of the paper we shall use left hand side notation for
conjugations and commutators i.e. ax = xax−1 and [a, x] = axa−1x−1.

Theorem 3.3 Let θ : � → G be an epimorphism defining a group of automorphism G of a
Klein surface X = H/�, where � = ker θ . Given a set of canonical generators of �, let C
be the set of its canonical reflections. Let {ci : i ∈ I } be a maximal subset of C consisting of
the pairwise non-conjugate reflections, mapped by θ into the unit. Then

ker ρX =
⋂
g∈G

⋂
i∈I

g (θ ( C(�, ci ))) g−1

Proof It is well known how to calculate the number of boundary components of a compact
Klein surface X , in terms of θ and the signature of � [3]. But here we shall need not only
such quantitative results but also a qualitative description of boundary components. We shall
use an approach developed in [6] and already successfully applied in [4] and [7] for example.
The connected components of the boundary of X are in the bijective correspondence with
the reflections of � which are in � and which are not conjugated in �. On the other hand,
each reflection of � is conjugate to some canonical reflection from C. So we have to look for
representatives of the conjugacy classes with respect to the conjugations by the elements of
� in the set which, in principle comes from{

cλ : c ∈ C, θ(c) = 1, λ ∈ �}
. (4)

Observe however that if ci
�∼ ci ′ , say ci ′ = cλi and cλ

′
i , cλ

′′
i ′ ∈ �, then cλ

′′
i ′ = cλ

′′λ
i . It follows

that actually the canonical reflections in (4) can be runed over the set {ci : i ∈ I } from the
statement.
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Now, given i ∈ I we have

λciλ
−1 �∼ λ′ciλ

′−1 ⇔ C(�, ci ) � λ−1γ λ′ = λ−1λ′(λ′−1γ λ′)

for some γ ∈ �, which is equivalent to saying that λ−1λ′ ∈ C(�, ci )�, as � is a normal
subgroup of �. Therefore conjugates of ci give rise to

[� : C(�, ci )�] = [�/� : C(�, ci )�/�] = [G : θ( C(�, ci ))] (5)

boundary components in X .
Now given h = θ(λh) ∈ G and the boundary component O corresponding to a reflection

c, h(O) is the boundary component corresponding to cλh . Hence h ∈ ker ρX if and only if

for given i ∈ I and λ ∈ �, we have λhλciλ
−1λ−1

h
�∼ λciλ

−1. This means that C(�, ci ) �
λ−1γ λhλ = λ−1λhλ(λhλ)

−1γ (λhλ) or equivalently λ−1λhλ ∈ C(�, ci )�, which means
that ghg−1 ∈ θ( C(�, ci )) for arbitrary i ∈ I , g ∈ G and in turn h ∈ g−1θ( C(�, ci ))g.

Conversely, let

h ∈
⋂
g∈G

⋂
i∈I

g (θ ( C(�, ci ))) g−1

and let Oi be a boundary component corresponding to cλi for some λ ∈ �. Then h =
θ(λ)θ(λi )θ(λ)

−1 = θ(λλiλ
−1) for some λi ∈ � commuting with ci . So h(Oi ) corresponds

to (cλi )
λλiλ

−1 = cλi and therefore h(Oi ) = Oi . Thus h ∈ ker ρX , which completes the proof.
�	

Having calculated the kernel of the representation ρX for the group G of dianalytic auto-
morphisms of a bordered Klein surface X given by the smooth epimorphism θ : � → G,
we obtain at once the following, well known and obvious.

Corollary 3.4 Given a finite group G, there exists a bordered Klein surface X such that
G ⊆ Aut(X) and ρX is faithful.

Proof Let g1, . . . , gk be an arbitrary set of generators of G; clearly we can assume that
k ≥ 2. Let � be an NEC-group with signature (k;+; [−]; {(−)}) and consider an epi-
morphism θ : � → G for which θ(ai ) = θ(bi ) = gi and θ(e1) = θ(c1) = 1. Then
for X = H/�, where � = ker θ , the representation ρX is faithful by Theorem 3.3, since
C(�, c1) = 〈c1, e1〉. �	

Remark 3.5 There is a bijection between irreducible G-invariant subsets of the set of bound-
ary components of X and the conjugacy classes in� of canonical reflections of� which are
in�. Furthermore, the subset corresponding to the class of a reflection c has [G : θ( C(�, c))]
elements. Indeed, (4) is the set of all reflections of �. As we already observed, reflections
c in (4) actually run over the set C′ of representatives of the conjugacy classes in � of all
canonical reflections of �. Observe also that given c, c′ ∈ C′ which are in �, their conjuga-
tions give boundary components in two disjoint G-invariant subsets. Finally, it is trivial that
all conjugations of given c ∈ C′ are conjugate in � and so the subset corresponding to c is
irreducible, its cardinality is found in (5). �	

4 The characterization of geometric representations

We already have shown that given a finite group there is a bordered Klein surface X for which
G is a group of dianalytic automorphisms and ρX is faithful. It should be interesting to find



364 C. Bagiński, G. Gromadzki

for given G the minimum n = n(G) so that ρ(G) ⊂ Sn . Here we shall prove our principal
result which gives necessary and sufficient conditions for an abstract permutational repre-
sentation ρ : G → Sn to be equivalent to a representation ρX proceeding from a bordered
Klein surface X with G as a group of dianalytic automorphisms.

Remark 4.1 We already know that the boundary components of X correspond to the con-
jugacy classes in � of reflections in �. Furthermore recall that given g = θ(λ) ∈ G and a
boundary component O, say corresponding to the reflection c, we have

ρX (g)(O) = O′, (6)

where O′ is a boundary component corresponding to cλ. �	

A representation ρ : G → Sn = S(�) of a finite group G in the symmetric group on
� = {1, . . . , n} is said to be irreducible if there are no G-invariant proper subsets of �.
Now, given an arbitrary representation ρ, there is a partition � = �1 ∪ . . . ∪ �k , where
�i is G-invariant of cardinality ni and it does not contain G-invariant subsets. In this way
we obtain the decomposition ρ = ρ1 ⊕ . . .⊕ ρk into irreducible representations ρi of G in
Sni = S(�i ). Observe however that ρi may not be faithful even if ρ is faithful.

Now two representations ρ : G → S(�), ρ′ : G ′ → S(�′) are said to be equivalent if
there is an isomorphism α : G → G ′ and a bijection β : � → �′ such that the diagram

G
α �� G ′

S(�)
β̃ ��

��
ρ

S(�′)
��
ρ′

where β̃( f ) = β fβ−1 commutes.
Observe that topologically equivalent actions give rise to equivalent representations.

Finally, a representation of G, equivalent to the canonical representation of G on the set
of left cosets G/H for some subgroup H of G, is said to be regular with respect to H . With
these definitions we have the following

Theorem 4.2 An abstract representation ρ : G → Sn is equivalent to the representation
of a group of automorphisms of some Klein surface on its set of boundary components if
and only if ρ is the product of regular representations with respect to cyclic or dihedral
subgroups.

Proof Let ρX : G → S(�) be a representation induced by the action of G on the set � of
boundary components of a Klein surface X defined by a smooth epimorphism θ : � → G.
Then by the Remark 3.5 we know that irreducible invariant subsets correspond to conjugacy
classes of reflections of� which are in �. Let�i be such a subset, say of cardinality ni , and
let

c
λ1
i , . . . , c

λni
i (7)
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be the non-conjugate in� reflections corresponding to the elements O1, . . . ,Oni
of�i . Then,

given g = θ(λ) ∈ G, we have

g(O j ) = Ok ⇔ c
λλ j
i

�∼ c
λk
i

⇔ λk
−1γ λλ j ∈ C(�, ci ) for some γ ∈ �

⇔ λk
−1λλ j ∈ C(�, ci )�

⇔ θ(λk)
−1gθ(λ j ) ∈ θ( C(�, ci ))

⇔ g
(
θ(λ j )θ( C(�, ci ))

) = θ(λk)θ( C(�, ci ))

and therefore, since, by (5), θ(λ1), . . . , θ(λni ) are representatives of all cosets in G/θ( C
(�, ci )), we see that the action of ρX on�i is regular with respect to θ( C(�, ci )), which by
[11,12], is either cyclic or dihedral.

Conversely, assume that ρ = ρ1 ⊕ . . .⊕ ρk is a decomposition of a representation ρ into
irreducible representations ρi of G in the symmetric group Smi on the sets �i and suppose
thatρ1, . . . , ρs are regular with respect to dihedral subgroups Dni = 〈ai , bi | a2

i , b2
i , (ai bi )

ni 〉
and ρs+1, . . . , ρk are regular with respect to cyclic subgroups Zni = 〈ai 〉. Let m be the order
of a = as+1 . . . ak , let g1, . . . , gl be the set of generators of G, let � be an NEC group with
signature (

l;+; [m];
{
(2, 2, n1), . . . , (2, 2, ns), (−), k−s. . ., (−)

})
and let θ : � → G be an epimorphism defined by the assignment

θ(ai ) = θ(bi ) = gi for i = 1, . . . , l,

θ(ci0) = θ(ci3) = ai , θ(ci1) = 1, θ(ci2) = bi , θ(ei ) = 1 for i = 1, . . . s,

θ(ci0) = 1, θ(ei ) = ai for i = s + 1, . . . , k, and θ(x1) = a−1.

Then for X = H/�, where � = ker θ we have a representation ρX : G → Sn , where
n = n1 + · · · + nk , equivalent to ρ. �	

5 On the degree of geometrical representations of finite groups

Let G = �/�, where � is an NEC group, � is a surface NEC-group and let θ : � → G
be the corresponding smooth epimorphism. We know that given a finite group G there is a
bordered Klein surface X with k boundary components for which ρX : G → Sk is faithful
and a natural problem considered here is to find the minimal k in such situation.

5.1 A general theorem

Theorem 5.1 The minimum degree k(G) of a geometrical representation of a finite group
G is a minimal value of

1

2

(
N

|d1d ′
1|

+ · · · + N

|dsd ′
s |

)
+ N

|as+1| + · · · + N

|ak | , (8)
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where |x | denotes the order of x, s ≤ k run over all nonnegative integers, ai are arbitrary
elements and d ′

i , di are arbitrary involutions for which

⎛
⎝⋂

g∈G

s⋂
j=1

g〈d j , d ′
j 〉g−1

⎞
⎠ ⋂⎛

⎝⋂
g∈G

k⋂
i=s+1

g〈ai 〉g−1

⎞
⎠ = 1

Proof Let G = �/�. Observe, that for a reflection c corresponding to an empty period cycle
we have C(�, c) = 〈e, c〉 while for a triple consecutive reflections c′, c, c′′ corresponding
to two consecutive link periods equal to 2, C(�, c) = 〈c〉 ⊕ 〈c′, c′′〉. On the other hand,
each boundary component of X = H/� correspond to a conjugate of a canonical reflection
c of� which is in �. Furthermore, if such a reflection corresponds to an empty period cycle
with connecting generator e, then it gives rise to |G|/|θ(e)| boundary components of X by
(5), while if it corresponds to a nonempty period cycle, then for the neighbouring reflections
c′, c′′, the products c′c and cc′′ have orders 2 and c giving rise to |G|/2|θ(c′)θ(c′′)| bound-
ary components in X by (5) again. There are no boundary components of X which arise
in any other way and so the minimal value of (8) give a lower bound for k(G) in virtue of
Theorem 3.3.

On the other hand having arbitrary elements ai and arbitrary involutions d ′
i , d ′′

i for which
(8) is minimal, let g1, . . . , gl be an arbitrary set of generators for G. Then an epimorphism
constructed in the second part of Theorem 4.2 gives a Klein surface X with a group of auto-
morphisms G for which ρX is a geometrical permutation representation of G of the minimal
degree. �	
5.2 Groups for which k(G) = |G|

It is obvious that k(G) ≤ |G| and here we shall look for the groups for which k(G) = |G|.
We start with rather obvious

Example 5.2 Let G = 〈g〉 = ZN , be a cyclic group of order N , where N = pα1
1 . . . pαr

r

for different primes p1, . . . , pr and r > 1. Let Ni = N/pαi
i , i = 1, . . . , r. The subgroup

Gi = 〈g p
αi
i 〉 has index pαi

i in G. Moreover

⋂
1≤i≤r

Gi = 1.

Hence, there exists a geometrical representation of degree pα1
1 + · · · + pαr

r which is the
minimum degree of a faithful permutation representation for a cyclic group of order N . If
r = 1 then obviously the minimum degree of a geometrical representation is equal to N .

�	

Example 5.3 Let DN be a dihedral group of order 2N , where N = pα1
1 . . . pαr

r , p1, . . . , pr

are different primes and r > 1. Let G be a cyclic subgroup of DN of order N . Every element
of G is a product of two involutions, so for a subgroup Gi , i = 1, . . . , r , from the previous
example, there exist involutions di , d ′

i such that |〈di , d ′
i 〉 : Gi | = 2. Similarly as in Example

5.2 we see that

G ∩
⋂

1≤i≤r

〈di , d ′
i 〉 = 1.
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The maximal subgroup of DN which has trivial intersection with G has order 2 and so it is
generated by an involution. No element outside G is central, so⋂

g∈G

⋂
1≤i≤r

g−1〈di , d ′
i 〉g = 1.

Now suppose that N is a power of a prime, N > 2. Then for a noncentral involution d ∈ DN

we have ⋂
g∈G

g−1〈d〉g = 1.

Hence the minimum degree of a faithful geometrical representation is equal to | DN |/2 = N
and is the same as the minimum degree of a faithful permutation representation. �	

Example 5.4 Let Q2n be a generalized quaternion group of order 2n+1:

Q2n = 〈x, y| x2n = 1, y2 = x2n−1
y−1xy = x−1〉.

It is well known that every nontrivial subgroup of Q2n contains a subgroup 〈x2n−1〉. Therefore
we obtain the minimal value of (8) for r = 1 and a1 = 1. Hence the minimum degree of a
faithful geometrical representation is equal to 2n+1. �	

Proposition 5.5 If G is a finite group then k(G) = |G| if and only if G is one of the following
groups:

(a) a cyclic group of order a power of a prime,
(b) a generalized quaternion group,
(c) an elementary abelian group of order 2n.

Proof The implication ⇐ follows from the previous examples and we shall prove the
converse. If |G| is divisible by two different primes p and q then it contains two cyclic
subgroups of orders p and q respectively. Since they have trivial intersection, k(G) ≤
|G|/p + |G|/q < |G|. Thus G is a p-group. If every two nontrivial subgroups of |G|
have nontrivial intersection then either G is cyclic or p = 2 and G is a generalized quater-
nion group (see for instance [8], Satz 5.3.7). Suppose G has two subgroups 〈a1〉 and 〈a2〉 of
order pm and pk respectively. Then k(G) ≤ |G| (1/pm + 1/pk

)
. If the right hand side of

this inequality is equal to |G|, then p = 2 and m = k = 1, which means that G is elementary
abelian of order 2n , for some n. �	

It is known that if we put n = 2 in the last item of the above proposition we get the descrip-
tion of groups G for which the minimum degree of a faithful permutation representation is
equal to |G|.
5.3 On k(G) for finite simple groups at large

If G is a finite simple group then the sum from Theorem 5.1 has obviously only one component
coming from a cyclic or dihedral subgroup of maximal order.

Lemma 5.6 An arbitrary maximal subgroup of a finite simple group is not cyclic.
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Proof Suppose that a maximal subgroup M of a finite simple group G is cyclic. Then obvi-
ously NG(M) = M and for every g ∈ G \ M we have g−1 Mg ∩ M = 1. Otherwise
g−1 Mg ∩ M would be a nontrivial central subgroup in 〈g−1 Mg,M〉 = G which contradicts
the simplicity of G. Hence, by Frobenius theorem, M has a nontrivial normal complement
which again gives a contradiction. �	

On the other hand there exist infinitely many finite simple groups containing maximal
subgroups which are dihedral. But also in this case k(G) does not need to be equal to the
minimal degree of a permutation representation of G.

Lemma 5.7 Let p be a prime, p > 3, and let G = PSL(2, p). Every maximal subgroup M
of G is isomorphic to one of the following groups:

(a) a dihedral group of order p − 1 or p + 1,
(b) a semidirect product of a Sylow p-subgroup of G and a cyclic group of order (p −1)/2,
(c) A4, A5 or S4 – the alternating group of degree 4 or 5 or the symmetric group of degree

4. �	
Example 5.8 If p is a prime, p > 3, then k( PSL(2, p)) is bigger than the minimum degree
of a permutation representation of PSL(2, p) because maximal subgroups of the biggest
order are those described in the items (b) and (c). It is immediately seen that the minimal
degree of a faithful permutation representation of PSL(2, p) (p > 11) is equal to p + 1,
when k( PSL(2, p)) = p(p − 1)/2. �	

The minimum degree of faithful permutation representations of finite simple groups were
determined in a series of papers by several authors. For many reasons it would be interesting
to describe k(G) for these groups, which however is not an easy matter and perhaps is a good
task for further and more detailed study and a sequel is planned by the authors. We finish this
paper with an example of alternating groups which indicates some difficulties in determining
the precise value of k(G).

Example 5.9 We start with the symmetric group Sn of degree n, where the minimum
degree of a faithful permutation representation is obviously equal to n. Let s be the maximal
order of elements of Sn , which is the maximum of the least common multiple of numbers
n1, n2, . . . , nk such that n1 +· · ·+nk ≤ n. Since each cyclic subgroup of Sn is contained in
a subgroup which is dihedral we have k(G) = n!/2s which, for instance, give k( S5) = 10
and k( S8) = 8!/30 = 1344. The case of alternating groups An is a little bit more involved.
Here also the minimum degree of a permutation representation is equal to n but now a cyclic
subgroup of the maximal order may not be contained in a dihedral subgroup which makes the
problem nontrivial. For instance the maximal order of elements of A7 is 7, but the normalizer
of a subgroup of order 7 in A7, has order 21 (there is not a subgroup of order 14) and it is
easily seen that k( A7) = (7!/2)/(2 · 6) = 210 as A7 contains a dihedral subgroup of order
12. The maximal order of elements of A8 is 15, that is the same as for S8, but there is not a
dihedral subgroup of order ≥ 15. Hence k(A8) = k(S8). In the general case An , n > 5 one
can write that k(G) ≥ n!/4s, where s is the maximal order of an element of An . �	
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