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Abstract
In our data-driven society, it is essential for students to become statistically liter-
ate. A core domain within Statistical Literacy is Statistical Inference, the ability to 
draw inferences from sample data. Acquiring and applying inferences is difficult for 
students and, therefore, usually not included in the pre-10th-grade curriculum. How-
ever, recent studies suggest that developing a good understanding of key statistical 
concepts at an early age facilitates the understanding of Statistical Inference later 
on. This study evaluates the effects of a Learning Trajectory for Statistical Infer-
ence on Dutch 9th-grade students’ Statistical Literacy. Theories on informal Sta-
tistical Inference and repeated sampling guided the Learning Trajectory’s design. 
For the evaluation, we used a pre-post research design with an intervention group 
(n = 267). The results indicated that students made significant progress on Statisti-
cal Literacy and on the ability to make inferences in particular, but also on the other 
domains of Statistical Literacy. To further interpret the learning gains of this group, 
we compared students’ results with national baseline achievements from a compari-
son group (n = 217) who followed the regular 9th-grade curriculum, and with inter-
national studies using similar test items. Both comparisons confirmed a significant 
positive effect on all domains of Statistical Literacy. These findings suggest that cur-
rent statistics curricula for grades 7–9, usually with a strong descriptive focus, can 
be enriched with an inferential focus.
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In our data-driven society, it is essential for citizens to be statistically literate. Both 
our daily activities and professional practices increasingly rely on statistical infor-
mation we obtain, either from taking measurements or through media reports. 
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Statistical Literacy (SL) concerns the ability to interpret, critically evaluate, and 
communicate about statistical information and messages (Gal, 2002). The growing 
use of and dependence on statistical data requires an educational approach in which 
students learn to create and critically evaluate data-based claims (Ben-Zvi et  al., 
2015) and, as such, to become statistically literate.

A core domain of SL is drawing inferences from sample data. However, learning and 
applying Statistical Inferences (SI) is difficult for students (Castro Sotos et  al., 2007; 
Konold & Pollatsek, 2002). Therefore, in many countries, including the Netherlands, it is 
not offered in the pre-10th-grade curriculum. Recent studies suggest that developing, at an 
early age, a good understanding of key statistical concepts of sample, variability and dis-
tributions, facilitates the understanding of SI later on (Ben-Zvi et al., 2015; Zieffler et al., 
2008). Innovative educational software for simulating samples and repeated sampling 
offers opportunities to make these key concepts accessible (Biehler et al., 2013).

To support students’ SI, a Learning Trajectory (LT) for 9th-grade students (14–15 years 
old) was designed to introduce the key concepts of SI (van Dijke-Droogers et al., 2020). 
Theories of informal Statistical Inference (Makar & Rubin, 2009), complemented by ideas 
of growing samples and repeated sampling (Bakker, 2004), constituted the design of the 
LT. This simulation-based LT comprises an investigative approach that includes all stages 
of the statistical investigation cycle—from collecting data to interpreting the results—with 
an emphasis on interpreting sample data and reasoning about probability. Although the 
focus of the LT is on SI, the approach concretizes broader underlying statistical concepts, 
such as measures of center and spread, distribution, and correlation, by means of visuali-
zations. As such, our conjecture is that the designed LT for introducing SI will also have 
a stimulating effect on the other, more descriptive-focused, domains of SL. More details 
about the design of the LT are elaborated by van Dijke-Droogers et al. (2021).

Currently, the typical Dutch pre-10th-grade curriculum is mainly focused on the 
descriptive SL domains. Adding new learning trajectories on top of regular curricula is 
difficult, e.g., in time and effort. In this regard, the purpose of the LT is to expand the 
9th-grade curriculum with SI, the more complex domain of SL, without neglecting the 
current educational goals on the other domains.

The aim of the study reported here is to evaluate the effects of the designed LT for 
introducing Statistical Inference on students’ Statistical Literacy. Therefore, we wanted to 
assess students’ performance on SI, and their achievements on the other descriptive-focused 
domains of SL as offered in the regular curriculum. Assessment instruments with a spe-
cific focus on SI hardly exist for our age group. As such, we developed a pre- and posttest, 
by adapting and expanding already validated tests. This assessment instrument enabled us 
to establish students’ performance on both tests, and hence to evaluate the effects of the 
designed LT for Statistical Inference on students’ SL, and on the SI domain in particular. 

Theoretical background

Domains of statistical literacy

Statistical Literacy (SL) concerns the use of statistical information as evidence in 
arguments (Schield, 1999). This includes the ability to read and interpret numbers 
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in statements, surveys, tables, and graphs and studies how statistical associations are 
used as evidence for causal connections. Although SL has several definitions, the 
most-used one comes from Gal (2002), where SL is portrayed as the ability to inter-
pret, critically evaluate, and communicate about statistical information and mes-
sages. According to Rumsey (2002), SL includes the understanding of basic statisti-
cal concepts and ideas in data awareness, production, understanding, interpretation, 
and communication. 

Three domains of SL can be distinguished (Watson & Callingham, 2003). The 
average and chance (AC) domain covers determining measures of center and spread, 
and calculating and interpreting chance issues, as reflected in the mathematics cur-
riculum in most Western countries (Watson & Callingham, 2004). The graphing 
and variation (GV) domain entails creating and interpreting visual representations 
of data with the variation involved. The sampling and inferences domain focuses 
on Statistical Inference and, as such, can be considered as the Statistical Inference 
domain within SL. This SI domain covers working with samples and drawing infer-
ences, where interpreting the relationship between these two is particularly impor-
tant in the process of statistical decision making. 

Many secondary school curricula make a distinction between statistics without 
probability (descriptive statistics, exploratory data analysis), as addressed in the GV 
and AC domains, and statistics with probability (inferential statistics) as addressed 
in the SI domain. The latter is usually taught at upper levels (Burrill & Biehler, 
2011). This also holds for the Dutch secondary school curriculum, in which statis-
tics education progresses from descriptive statistics in the early years to preparing 
for a more formal approach to inferential statistics from grade 10 and in higher edu-
cation (van Dijke-Droogers et al., 2017; van Streun & van de Giessen, 2007). In the 
Dutch curriculum for grades 7–9, the first two domains of SL are embedded in the 
descriptive statistics, whereas the SI domain is not addressed at all.

Statistical inference

Statistical Inference (SI) is at the heart of statistics as “it provides a means to make 
substantive evidence–based claims under uncertainty when only partial data are 
available” (Makar & Rubin, 2018, p. 262). As such, SI can be considered both an 
outcome—evidence-based claims—and a reasoned process for probabilistic gener-
alizations from data—interpreting the uncertainty involved (Makar & Rubin, 2009). 
SI concerns interpreting sample results, drawing data-based conclusions, and rea-
soning about probability. For most students, it is difficult to understand SI and the 
uncertainty involved. Several studies focused on the introduction and conceptualiza-
tion of SI. The offering of educational activities of SI at an early age on informal 
level, combined with the frequent recurrence of such activities later on, seems to 
make SI accessible for students, in particular at the school level (Makar & Rubin, 
2009; Paparistodemou & Meletiou-Mavrotheris, 2008; van Dijke-Droogers et  al., 
2020; Zieffler et al., 2008). In general, this informal approach focuses on ways in 
which students without knowledge of formal statistical techniques, such as hypoth-
esis testing, use their statistical knowledge to underpin their inferences about an 
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unknown population based on observed samples. A widely used framework for 
informal Statistical Inference identifies three main principles: generalization beyond 
data, data as evidence for these generalizations, and probabilistic reasoning about 
the generalization (Makar & Rubin, 2009).

SI requires an understanding of the key concepts of sample, variability and distribution 
—including frequency distribution and (simulated) sampling distribution. These con-
cepts can be introduced at the school level by using ideas of simulating repeated samples 
(Garfield et al., 2015; Manor & Ben-Zvi, 2017; Rossman, 2008; Saldanha & Thompson,  
2002; Watson & Chance, 2012) and growing samples (Bakker, 2004; Ben-Zvi et  al., 
2012; Wild et al., 2011). Digital tools such as TinkerPlots™ offer opportunities for simu-
lating repeated samples and to visualize concepts, such as random behavior, distribution, 
and probability (Garfield et al., 2012; Konold et al., 2007; Pfannkuch et al., 2018). Work-
ing with such simulations stimulates the understanding of statistical models and modeling 
processes that are essential for SI. In the LT we designed, students start with interpret-
ing the sampling distribution obtained from repeated sampling with a physical black box 
filled with marbles. As a follow-up, students build and run a model of a real-world situ-
ation in TinkerPlots™ and use this model, by simulating and interpreting the sampling 
distribution of repeated samples, to understand the real-world situation, and to draw infer-
ences. The details of the LT will be illustrated and discussed later in the methodology 
section.

Assessing statistical literacy and inference

Assessment instruments at the secondary school level for SL, with a focus on SI, are 
scarce. The situation is very different at the tertiary level; think of the web-based 
ARTIST project—Assessment Resource Tools for Improving Statistical Thinking—
by Garfield et al. (2002), the CAOS project—Comprehensive Assessment of Out-
comes in a First Statistics Course—by delMas et al. (2007), the GOALS project—
Goals and Outcomes Associated with Learning Statistics—by Garfield et al. (2012), 
and the BLIS project—Basic Literacy in Statistics—by Ziegler and Garfield (2018). 
The latter project, BLIS, involves a compilation of existing items from the other 
projects supplemented with simulation-based questions. The items in these projects 
require students to think and reason, not to compute, use formulas, or recall defini-
tions. A study by Novak (2014) shares content and design with ours as it involves 
the evaluation of a simulation-based intervention using a pre-post research design.

The only studies that seemed useful for our students were the ones by Watson and 
Callingham (2003, 2004) and the LOCUS project (Whitaker et al., 2015), as both 
focused on grades 6 to 12. Watson and Callingham’s studies appeared to be particu-
larly suited, as they specifically distinguished—in their organization of assessment 
items—between the three domains of SL. Their approach allowed us to identify 
students’ SL, and also their performance on the domain of SI in particular. Using 
archived data from 1993 to 2000, Watson and Callingham empirically developed a 
6-level hierarchy of SL that helped to identify the distribution of Australian middle 
school students’ SL across the levels. Their hierarchical levels for SL are presented 
in Table 1. A follow-up study by Callingham and Watson (2017) showed that the 
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level construct had remained appropriate and stable over time. This finding suggests 
that the identified levels provide a good basis for determining the level of SL in sec-
ondary education. In addition, their longitudinal analysis indicates that the Statisti-
cal Literacy hierarchy can be used to monitor students’ progress.

Research question

This study focuses on the question: What are the effects of a Learning Trajectory for 
Statistical Inference on 9th-grade students’ Statistical Literacy? To answer this ques-
tion, we examined the effects of the LT on students’ proficiency in the domains of 
SL. Although the designed LT concentrates on Statistical Inference—the SI domain 
of SL—we conjectured that a focus on more complex learning activities for SI would 
also have a positive effect on students’ understanding of the other domains of SL.

Methods

To evaluate the effects of the LT, we used a pre-post research design with an intervention 
group (n = 267) who engaged with the LT. Additionally, to further interpret the learn-
ing gains of the intervention group, we compared their results with national baseline 
achievements from a comparison group (n = 217) who followed the regular Dutch cur-
riculum, and with level scores of Australian students (Callingham & Watson, 2017).

Table 1   Levels of Statistical Literacy as presented by Watson and Callingham (2003, p. 14)

Level Characteristic of level

6. Critical mathematical Critical, questioning engagement with context, using proportional reasoning 
particularly in media or chance contexts, showing appreciation of the need 
for uncertainty in making predictions, and interpreting subtle aspects of 
language

5. Critical Critical, questioning engagement in familiar and unfamiliar contexts that do 
not involve proportional reasoning, but which do involve appropriate use 
of terminology, qualitative interpretation of chance, and appreciation of 
variation

4. Consistent non-critical Appropriate but non-critical engagement with context, multiple aspects of 
terminology usage, appreciation of variation in chance settings only, and 
statistical skills associated with the mean, simple probabilities, and graph 
characteristics

3. Inconsistent Selective engagement with context, often in supportive formats, appropriate 
recognition of conclusions but without justification, and qualitative rather 
than quantitative use of statistical ideas

2. Informal Only colloquial or informal engagement with context often reflecting intuitive 
non-statistical beliefs, single elements of complex terminology and settings, 
and basic one-step straightforward table, graph and chance calculations

1. Idiosyncratic Idiosyncratic engagement with context, tautological use of terminology, and 
basic mathematical skills associated with one-to-one counting and reading 
cell values in tables
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An outline of the Learning Trajectory

A Learning Trajectory (LT) is a design and a research instrument to structure and 
connect all elements involved in learning a particular topic. An LT consists of a set 
of learning goals for students, learning activities that will be used to achieve these 
goals, and conjectures about the students’ learning process. It includes the simul-
taneous consideration of mathematical goals, student thinking models, teacher and 
researcher models of students’ thinking, sequences of teaching tasks, and their inter-
action at a detailed level of analysis of processes (Clements & Sarama, 2004).

The designed LT introduces the key concepts for Statistical Inference to 9th-grade 
students by using an investigative approach with a physical black box and simulation-
based methods (van Dijke-Droogers et al., 2020); see Table 2. Ideas of repeated sam-
pling and growing samples instantiate the design, both for working with the physi-
cal black box filled with marbles and for simulating samples using TinkerPlots™. All 
stages of the statistical investigation cycle are addressed in the LT, as students collect 
both physical and simulated data, analyze their data using the sampling distribution, 
and interpret the results to answer the question posed. The emphasis is on interpreting 
sample data and reasoning about probability. Recent views on statistical models and 
modeling (Büscher & Schnell, 2017; Manor & Ben-Zvi, 2017; Patel & Pfannkuch, 
2018), and educational guidelines on the use of context, digital tools, exchange and 
comparison of sample results, making predictions, and engagement in both physical 
and simulation-based activities, are embedded in the design.

The investigative approach and learning activities in the more complex SI domain 
also attend to the other domains of SL. For example, the AC domain, average and 
chance, is addressed as students summarize their obtained sample data in measures 
of center and spread. As another example, the graphing part of the GV domain is 
given attention in the visualizations of both sample results and population models, 
and the variation part is targeted as students explore results of repeated samples.

The LT comprises eight learning steps that are split into two similar parts of 
four. Part one considers only categorical data and includes the following steps: (1) 
experimenting with a physical black box, (2) visualizing distributions, (3) statistical 
modeling using TinkerPlots™, (4) applying models in new real-life contexts. Sub-
sequently, in part two, LT steps (5) to (8) include similar steps, now using more 
complex numerical data. The eight steps of the LT were organized in two sequences 
of six 45-min lessons, with a total of 12 lessons. More details about the design of the 
LT are elaborated by van Dijke-Droogers et al. (2021).

Design of the assessment instrument

To evaluate the effects of the designed LT, we needed an assessment instrument to 
measure 9th-grade students’ SL, and SI in particular. In line with Novak (2014), we 
chose a pre-post research design to measure the effects of the LT on students’ profi-
ciency, i.e., students’ progress when working with the LT. For the design of the tests, 
following Ziegler and Garfield (2018), we used existing items from validated tests 
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by Watson and Callingham (2003, 2004) and expanded these with newly designed 
items on Statistical Inference and simulation.

Table 2   (van Dijke-Droogers et al., 2021) Overview of steps 1–8 of the designed Learning Trajectory.
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The pre- and posttest each contained ten clusters of items. Each cluster included 
two to six items, with a total of 39 and 34 items on the pre- and posttest, respec-
tively. Both tests had a similar composition and a time-duration of 45 min. For each 
test, we selected five clusters of items from Watson and Callingham (2004) that cov-
ered the three domains of SL. We selected one cluster item applicable for second-
ary level from the CAOS test (delMas et al., 2007). As context was found to be an 
important factor affecting the difficulty of items for students, the selection of items 
was based on educational background, as well as on familiarity with the context. 
Table 3 provides an overview of the composition of the pre- and posttest, with refer-
ence to sources and accompanying domains of SL.

Figure 1 shows an example of an item from a validated test, in the AC domain. 
The level scores in this item refer to Watson and Callingham’s (2003) hierarchical 
levels 1 to 6 for SL, supplemented with the null level for incorrect or uncompleted 
items. As Fig. 1 shows, the answers could not be given on each level: It was not pos-
sible to formulate an answer on levels 1 and 2, the informal and inconsistent level, 
as all possible answers include the context information given—level 3 or higher—or 
the answer is incorrect—level 0.

Similarly, based on the item context, some items could only be coded to a 
maximum level score of 4 instead of 6. As such, for the selection of items, the 
chosen items had to be similar in maximum level score on the pre- and posttest, 
for each domain of SL, to compare students’ scores on both tests. The average 
maximum scores for SI items on the pre- and posttest were similar, both around 
5.6, and, for the GV items, the average maximum scores were also similar, with 
around 3.7 for both tests. For AC, however, the maximum scores on the selected 
items in the pre- and posttest were rather different, with 5.7 and 4.6, respectively. 
To compensate for this difference, a correction was applied to the posttest results, 
so that students’ level scores on the pre- and posttest could be properly compared. 
Using the corrected AC scores, the average maximum score on SL was about 5.5 
for both tests. As such, we considered the selected items on the pre- and posttest 
comparable for both tests, on all domains of SL.

As we were specifically interested in the effects of the LT on students’ understand-
ing of the concepts of SI as addressed in the LT, four additional cluster items were 
designed for this study, focusing on the SI domain. For the design, we chose recogniz-
able contexts and used the structure and phrasing of items from the two previously 
described tests. The level scores of these new items were, as with the existing items, 

Table 3   Overview of clusters 
and items, in the pre- and 
posttest

SL Statistical Literacy, AC average and chance, GV graphing and 
variation, SI Statistical Inference

Number of items 
(clusters)

Source Domain of SL

Pre Post
17 (5) 18 (5) Watson & Callingham AC – GV – SI
3 (1) 2 (1) CAOS AC
19 (4) 14 (4) Newly designed SI
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based on Watson and Callingham’s (2003) level descriptions, and on the exemplary 
items they formulated on the SI domain (2004). See Fig. 2 for an example.

To analyze the validity of the designed assessment instrument for our Dutch 
9th-grade students, we conducted two pilot tests in different classrooms, each 
consisting of 25 students, for the pretest. Concerning the concurrent validity 
of the newly designed SI items, we expected the students to score on the newly 
designed SI items at a similar level to the existing SI items from Watson and 
Callingham (2004). Students’ average level scores in the pilots on newly designed 
and existing SI items were not significantly different (Mnew = 2.49, SDnew = 0.71, 
Mex = 2.78, SDex = 1.38, n = 50, t(49) =  − 1.6; p = .11). For the other domains, GV 
and AC, all items were from already validated tests. To assess the content and 
construct validity of all test items for our students, the results of each pretest pilot 

Pretest Item
Nine students in a science class weighed a small object separately on the same scales. The weights 

(in grams) recorded by each student are: 6.3 6.0   6.0   15.3   6.1   6.3   6.2   6.15   6.3. The 

students had to decide on the best way to summarize these values. Ben said, “I’d use the most 

common value to get the mode. That’s 6.3.”

Is Ben’s approach a good way to summarize the information? Explain your answer.

Level Description Examples of students' reasoning

6

Statistical and contextual responses 

incorporating both positive and 

negative aspects of method

“Yes, because Ben is using the most 

common weight for the item. However, 

he does not look at the other weights and 

if the most common weight was an 

extreme value it would be inaccurate”

5

Statistical response – positive 

evaluation

“Yes, the majority of times it was 

weighed at 6.3”

Statistical response – negative 

evaluation

“No, doesn’t take into account the other 

weights”

4

Claims of inaccuracy but with no 

statistical response – negative 

evaluation

“No, the mode might weigh more than 

the others”

No, it’s not accurate”

“No, three people might have weighed 

wrong”

Claims of accuracy but with no 

statistical response – positive evaluation
“Yes, it’s the average weight"

3

Recommendation of other methods
“No, he should have added them up and 

divided by 9”

Tautological but positive evaluation 

based on majority or “most common”

“Yes, because he is using the most 

common”

Methodological reasons – positive 

and/or negative evaluations

“Yes, it’s easy”

“No, too much calculating”

0

No reason or apparent logic regardless 

of evaluation

No response

Fig. 1   Item with corresponding level description from Watson and Callingham (2004, p. 138)
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were used for in-depth discussion with experts in this area on content, construct, 
vocabulary, and clarity. In a similar way, the posttest was piloted in the same two 
classrooms with 25 students each. The posttest pilots took place after the large-
scale implementation of the pretest. Based on our pretest experiences, the ini-
tial designed posttest was modified slightly—for example, the number of items 
was reduced from 38 to 34. The posttest was piloted 4  weeks after the pretest 
pilots. The 25 students did not follow any statistics education in the intervening 
weeks. The results of the pre- and posttest pilot were non-significantly different 
(− 0.08, t(51) = 0.84, p = .40). Additionally, the posttest was thoroughly examined 
to ensure the pre- and posttest were comparable.

Pretest item 
To analyze the amount of candies with 

strawberry taste in a roll of ‘Minitos’, 700 

rolls were checked. Each roll contained 20 

candies. From each roll the amount of 

candies with strawberry flavor was counted. 

The results of these counts are shown in the 

graph. 

Pieter claims that he had a roll in which half 

the candies were strawberry-flavored last 

week. Explain what you think of his claim.

Level Description Examples of students' reasoning

6

Statement admitting possibility, but 

also acknowledging the unlikelihood 

of the event, based on graph

“Well, it is possible that Pieter is telling the 

truth, but it is very unlikely. According to the 

graph, there is less than 2% chance”

Statement of low likelihood based on 

being an outlier, with reference to the 

graph

“The story of Pieter is very unlikely. 

According to the graph, there is very little 

chance of having 10 strawberry candies in 

one roll, however, maybe he was extremely 

lucky”

4

Statement of impossibility or 

possibility based on being an outlier 

without mentioning the graph

“Maybe Pieter was lucky, it seems very 

unlikely to have that number of strawberry 

candies in one roll”

3

Definite statement of impossibility or 

possibility, without explicitly 

referring to the graph

“Pieter is exaggerating, it is impossible to 

have that amount of strawberry candies in a 

role”

2

Statement of possibility without 

acknowledging unlikelihood or 

reference to the graph

“That is a large amount of strawberry 

candies”

0

Statement based on personal 

experience
“I hope Pieter likes strawberry flavor”

No reason or apparent logic 

regardless of evaluation

Amount of strawberry candies in one roll

Results for 700 candy rolls

Fig. 2   Newly designed item with corresponding level description on the SI domain of Statistical Literacy 
(SI, Statistical Inference)
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Concerning the reliability of the tests, Cronbach’s alpha values were 0.84 and 
0.85 on the pre- and posttest, respectively, indicating a good reliability (Taber, 
2018). To assess the difficulty of the items, p values were calculated. To assess the 
discrimination of the items, we used Rit (item–test correlation) and Rir (item–rest 
correlation), using classical test theory. See Table  4 for an overview of the reli-
ability of item characteristics on the pre- and posttest, with accompanying ratings. 
For the pretest, we observed moderately difficult items with four easy items (p 
value > .80) and one difficult item (p value < .20). Rit and Rir values > 0.30 are indi-
cated as good items, scores between 0.20 and 0.30 as medium, and scores < 0.20 as 
poor items (Ebel & Frisbie, 1991). The pretest Rit values indicated 5 poor, 12 mod-
erate, and 22 good items, and the Rir scores indicated 8 poor, 16 moderate, and 15 
good items. For the posttest, we observed moderately difficult items with 4 easy 
items and no difficult items. The Rit values indicated 1 poor, 9 moderate, and 24 
good items, and the Rir scores indicated 2 poor, 13 moderate, and 19 good items. 
We considered these item scores on the pre- and posttest to be most acceptable. The 
pre- and posttest can be found in Appendix A and B.

Participants

For participants in the intervention group, through a national call, in for instance 
newsletters for math teachers and on social media, we invited Dutch teachers who 
were willing to implement the LT in their regular mathematics lessons. Eleven of 
them applied, with a total of 267 9th-grade students (aged 14–15 years) from 13 
classes in 5 different schools. Two teachers participated with 2 of their classes. 
The teachers were instructed for the LT during 2 similar 3-h sessions. The first 
session focused on LT steps 1–4 and included the 45-min lessons 1 to 6. The 
teachers worked through students’ lessons and materials themselves, guided by 
the researcher. The second session was similar to the first one and concentrated 
on LT steps 5–8, lessons 7 to 12. The project materials consisted of a teacher 
guidebook and students’ materials, such as worksheets, datasets, and physical 
black boxes with marbles. The teachers of the intervention group eliminated all 
the regular 9th-grade statistics lessons to save time for the LT. The participating 
students from the intervention group were in the pre-university stream and thus 
belonged to the 15% best-performing students in our educational system.

Table 4   Reliability and item characteristics the pre- and posttest

Pretest Posttest

Average 
measure

Rating Average 
measure

Rating

p value 0.54 Moderately difficult 0.62 Moderately difficult
Rit value 0.35 Good 0.42 Good
Rir value 0.30 Medium/good 0.36 Good
Cronbach’s� 0.84 Good 0.85 Good
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Due to practical constraints—that is, the number of participants in the inter-
vention group—it was not possible to set a randomized trial with a control group. 
To be able to indicate the effect of the LT in comparison with the regular cur-
riculum, we established a “Dutch baseline” from a comparison group. For the 
participants in the comparison group, through a national call, we invited teach-
ers who were interested in administering a test to identify the SL of their stu-
dents. Six teachers applied with a total of 217 students in 10 classrooms. When 
the comparison group was registered, all participants had recently completed the 
9th-grade regular statistics education, consisting of 10–16 lessons. The regular 
curriculum focused on the AC and GV domains of SL, as described earlier in the 
section on the domains of SL. To identify these students’ SL, and also to compare 
well with the intervention group, the average results on two tests were admin-
istered, with a 4-week interval between them. The two tests consisted of items 
from the pre- and posttest of the intervention group. In retrospect, the results of 
the comparison group on the two tests were found to be similar, for both SL as a 
whole (− 0.02, t(216) = 0.4, p = .65), and for the domains SI (− 0.04, t(216) = 0.9, 
p = .40), GV (+ 0.09, t(216) = 1.4, p = .18), and AC (− 0.11, t(216) = 1.1, p = .26). 
This could be expected, since no statistics education was given during the inter-
vening 4 weeks. The average results on both tests were used as Dutch baseline 
achievements for the SL of 9th graders.

We are aware that teachers from the intervention group who were willing to “go 
the extra mile” were possibly more motivated for teaching statistics. However, the 
teachers of the comparison group also volunteered, mainly because they were inter-
ested in the performance of their students in the field of statistics. In this regard, the 
teachers from both groups had an above-average interest in teaching statistics. Stu-
dents in both groups belonged to the 15% best achieving students in the Dutch edu-
cational system. They all successfully completed the regular statistics curriculum 
for the pre-university stream in grades 7 and 8. Students’ grade level from both the 
intervention and the comparison group was described as average according to their 
performance on mathematics and statistics tests. As such, we assumed both groups 
to be comparable.

Data collection

The data of the intervention group consisted of pre- and posttests. The pretest was 
taken in months 7–8 of the school year 2019–2020. The participating teachers 
administered the test, according to a clear instruction for testing, from their own 
students during their regular 45-min mathematics lessons. The posttest was admin-
istered in months 9–10 of the school year, after completing the LT, in a similar way, 
by the teachers during their regular lessons in their own school.

The data of the comparison group consisted of two tests, taken in months 8 and 
9 of the school year. The average of both tests was used to identify the Dutch base-
line. The tests were administered by the participating teachers, according to a clear 
instruction, during their regular mathematics lessons.
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Data analysis

For the analysis, we first graded the pre- and posttest level scores for the intervention 
group on the domains of SL with two assessors. Second, we compared the scores 
of the intervention group with Dutch baseline achievements from the comparison 
group, and with the scores of Australian students (Callingham & Watson, 2017).

First, for assessing students’ proficiency on the domains of SL, the pre- and post-
test data for the intervention group were coded with the level scores 0–6 for SL 
(Watson & Callingham, 2003), as described in the section on the assessment instru-
ment. To indicate students’ progress, we compared changes in students’ pre- and 
posttest scores. Graphical representations were used for data exploration. Several 
statistical measures were calculated, such as center and spread, and proportions for 
level scores. For significance, we used paired t tests for comparing pre- and posttest 
results. For students’ proficiency level at SL, we calculated the mean of students’ 
average scores on the AC, GV, and SI domain, allowing us to compensate for the 
inequality in the number of items per domain.

Second, to further interpret the effects of the LT on students’ SL, we compared our 
finding with a Dutch baseline. For this baseline, the average scores of the comparison 
group on two tests were used. The test data were coded with the level scores 0–6, in a 
similar way as for the intervention group. For significance, we used independent samples 
t tests for comparing the intervention group scores with the Dutch baseline. Additionally, 
we compared our findings with the studies by Watson and Callingham and with their 
distribution of Australian students from grades 6 to 9 found across the levels for SL. 
As our assessment instrument was mainly based on their validated tests and hierarchi-
cal level construct for SL, we considered the results for our students to be comparable 
to theirs. In this regard, we expected the distribution in levels for our 9th-graders to be 
broadly similar to their distribution found for grade 9 and also expected that most stu-
dents would score on levels 3–4 for SL. Concerning the comparison of our students’ 
average level scores with those of Australian students (Callingham & Watson, 2017), 
estimates for the Australian students’ average level score per grade were calculated using 
the distribution of students across the levels. For significance, we used independent sam-
ples t tests and chi-squared tests for the distribution over levels.

For reliability of the analysis, a second coder was asked to independently grade a 
random set of 5% (250 items) of the pre- and posttest data with students’ reasoning. 
The second coder agreed on 83% of the codes. Deviating codes, which were limited 
to one or two levels difference at most, were discussed until agreement was reached.

Results

In this section, we first present the level scores for the intervention group on the 
domains of SL at the pre- and posttest. Second, we compare these results with Dutch 
baseline achievements from the comparison group, and with findings from Callingham  
and Watson (2017).
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Students’ level scores for SL

Table 5 displays students’ proficiency on the domains of SL in level scores at the pre- 
and posttest for the intervention group, including their progress from pre to post.

Regarding students’ progress on SL, a paired t test between the pre- and post-
test for the intervention group indicated the average posttest score was significantly 
higher than the score on the pretest (+ 0.68, t(266) = 13.0, p < .0005). Students’ 
results on SL confirmed our conjecture that following the LT had a clear positive 
effect on students’ SL.

With regard to the SI domain of SL, a paired t test between the pre- and posttest 
indicated that students’ average level score on the posttest was considerably higher 
than on the pretest (+ 0.89, t(266) = 15.8, p < .0005). These results were in line with 
our expectations, as we hypothesized that the investigative approach and more com-
plex learning activities for SI as embedded in the LT would support all domains of 
SL, and SI in particular.

With respect to students’ progress on GV, a paired t test between the pre- and 
posttest for the intervention group indicated that their posttest score was signifi-
cantly higher than their pretest score (+ 0.52, t(266) = 8.7, p < .0005). Regarding stu-
dents’ level for the GV domain, it is important to note that the average maximum 
scores for the test items used in this domain were, as elaborated earlier in the “Meth-
ods” section, considerably lower than for items in the other domains. Therefore, the 
GV level score cannot be used for comparison with other domains.

Concerning students’ progress on the AC domain, a paired t test between the pre- 
and posttest for the intervention group indicated that their posttest score was signifi-
cantly higher than their pretest score (+ 0.63, t(266) = 6.7, p < .05). The findings on the 
domains for SL confirmed our conjecture that following the LT had a clear positive 
effect on students’ SL and SI, and more moderate effects on the GV and AC domains.

Table 5   Students’ mean level 
scores on the domains of SL 
at the pre- and posttest for the 
intervention group, including 
their progress from pre to post

SL Statistical Literacy, SI, GV, and C are domains of SL SI sampling 
and inference, GV graphing and variation, AC, average and chance
*p < 0.05; **p < 0.0005

Intervention group (n = 267)

Pretest Posttest Pre to post

M (SD) M (SD) M(SD)
SL 2.60 (0.61) 3.28 (0.69)  + 0.68 (0.86)**
SI 2.45 (0.65) 3.34 (0.84)  + 0.89 (0.92)**
GV 2.07 (0.63) 2.59 (0.81)  + 0.52 (0.98)**
AC 3.29 (1.38) 3.92 (0.88)  + 0.63 (1.53)*
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Students’ level scores in comparison with the Dutch baseline

Table 6 displays the Dutch baseline achievements from the comparison group on the 
domains of SL in level scores, including a comparison with the pre- and posttest for 
the intervention group.

When comparing the results for SL on the posttest, an independent samples t test 
between the intervention group and the baseline indicated significantly more pro-
ficiency on SL for students who followed the LT in comparison with Dutch base-
line achievements from the comparison group, who followed the regular curriculum 
(+ 0.32, t(482) = 4.9, p < .0005). Students’ results on SL confirmed our conjecture 
that following the LT had a clear positive effect on students’ SL.

With regard to the SI domain of SL, on the posttest, an independent samples t test 
indicated that the level score for the intervention group who followed the LT was 
considerably higher in comparison with the Dutch baseline achievements from the 
comparison group (+ 0.65, t(482) = 8.7, p < .0005). Concerning the GV domain of 
SL, an independent samples t test indicated that the posttest score for the interven-
tion group was slightly, but significantly, higher than the Dutch baseline (+ 0.26, 
t(482) = 3.7, p < .05). Although we expected the intervention group that followed the 
LT with a focus on SI to progress in the other domains, we did not expect them 
to reach higher scores than the baseline achievements from students who followed 
the regular curriculum with a focus on GV and AC. For the AC domain, an inde-
pendent samples t test indicated that the posttest score for the intervention group 
that followed the LT was comparable with the Dutch baseline achievements (+ 0.06, 
t(482) = 0.6, p = 52). These findings confirmed our conjecture that the LT with a 
focus on SI also stimulated the other domains of SL.

When comparing the results for SL on the pretest, an independent samples t test 
indicated that the average level score for the intervention group on SL was significantly 
lower than the Dutch baseline (− 0.36, t(482) = 5.9, p < .0005). With regard to the SI 
domain, on the pretest, the score for the intervention group was slightly, but signifi-
cantly, lower than the Dutch baseline (− 0.24, t(482) = 3.7, p < .05). We did not expect 
this lower score. Although the students of the comparison group, the Dutch baseline, 

Table 6   Dutch baseline level 
scores on the domains of SL, 
including a comparison with 
the pre- and posttest for the 
intervention group

SL Statistical Literacy, SI, GV, and AC are domains of SL SI sam-
pling and inference, GV graphing and variation, AC average and 
chance
*p < 0.05; **p < 0.0005

Dutch 
baseline 
(n = 217)

Pretest intervention 
minus Dutch baseline

Posttest intervention 
minus Dutch baseline

M (SD) M(I) − M(D) M(I) − M(D)
SL 2.96 (0.73)  − 0.36** + 0.32**
SI 2.69 (0.78)  − 0.24* + 0.65**
GV 2.33 (0.73)  − 0.26* + 0.26*
AC 3.86 (1.18)  − 0.57** + 0.06



	 M. van Dijke‑Droogers et al.

1 3

followed the regular statistics curriculum before the test, the SI domain was not offered 
in the regular lessons, so we expected a similar score for both groups. Regarding the 
GV domain, the score for the intervention group was, as expected, significantly lower 
than the Dutch baseline level score (− 0.26, t(482) = 4.2, p < .05). Regarding students’ 
level for the GV domain, it is important to note that the average maximum scores for 
the test items used in this domain were, as elaborated earlier in the methods section, 
considerably lower than for items in the other domains.Therefore, the GV level score 
cannot be used for comparison with other domains. For the AC domain, the score for 
the intervention group was, as expected, significantly lower than the baseline (− 0.57, 
t(482) = 4.8, p < .0005). The findings on the domains for SL confirmed our conjecture 
that following the LT had a clear positive effect on students’ SL and SI, and more mod-
erate effects on the GV and AC domains.

The lower scores on the pretest for the intervention group, in comparison with 
the Dutch baseline, were to be expected, as the intervention group did not have 
9th-grade statistics lessons prior to the pretest. Furthermore, the lower level score 
of − 0.36 on SL for the intervention group on the pretest relative to the Dutch base-
line turned out to be almost equal in size to their higher level score of + 0.32 on the 
posttest. Since the intervention group had an educational disadvantage of about one 
school year relative to the baseline at the pretest, their score on the posttest could be 
interpreted as almost one school year advantage. Students’ results on SL confirmed 
our conjecture that following the LT had a clear positive effect on students’ SL.

Students’ level score on SL in comparison with those of Australian students

To further interpret the proficiency of students, we compared our results with those 
of Australian students (Callingham & Watson, 2017). In doing this, we compared the 
distribution of students over the levels for SL, and we compared students’ average level 
scores on SL. The distribution of Dutch students over the levels of SL on the pre- and 
posttest is presented in Table 7 as well as the distribution of Australian students.

The comparison of students’ distribution over the levels is displayed in Fig. 3. The 
first two graphs compare the pre- and a posttest scores for the intervention group 
with those of Australian students. The third graph compares the results of the Dutch 

Table 7   Distribution over Levels of SL, for Dutch and Australian students

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Dutch students
Pretest SL intervention (n = 267) 11.2% 25.5% 56.6% 6.7% - -
Posttest SL intervention (n = 267) 1.1% 13.5% 44.6% 39.3% 1.5% -
Dutch baseline (n = 217) 5.3% 18.9% 50.0% 25.4% - -
Australian students
Grade 6 (n = 992) 17.4% 24.1% 43.6% 14.7% 0.2% -
Grade 7 (n = 1788) 8.2% 14.2% 38.7% 36.4% 2.5% -
Grade 8 (n = 2154) 7.2% 11.0% 32.3% 41.6% 7.6% 0.4%
Grade 9 (n = 1054) 4.3% 7.5% 24.9% 47.9% 14.6% 0.8%
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baseline with those of Australian students. For the Dutch baseline, the results on the 
pre- and a posttest for the comparison group were aggregated, since these results were 
highly similar. First, from Fig.  3, the graphs illustrate that for the lower levels; the 
percentage of post-intervention students was lower than the percentage of the Dutch 
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Fig. 3   Comparison of students’ level scores on Statistical Literacy (SL) with Australian grade results 
from findings by Callingham and Watson (2017)
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baseline or Australian students in grades 6, 7, and 8. Second, the graphs show that for 
the higher levels, the percentage of post-intervention students was actually higher. The 
pretest scores for the intervention group corresponded most closely to the performance 
of Australian students in grade 6 (Callingham & Watson, 2017) and, as such, were 
lower than we expected. A chi-squared test on the distribution over levels in percent-
ages, between the pretest score for the intervention group and each Australian grade 6 
to 9, confirmed the highest p value, and with that the best fit, for grade 6 (χ2(4) = 6.26, 
p = .18). The pretest mean level score for the intervention group 2.60 (0.70) also cor-
responded to the estimate of the mean level score for Australian grade 6. The estimates 
per grade were calculated using the distribution of their students across the levels. 
Table  8 summarizes the comparison of the intervention group and the Dutch base-
line with Australian grade results, based on the distribution of students over the levels 
and average level scores. Regarding the posttest score for the intervention group, the 
results corresponded most closely to Australian grades 7–8. The chi-squared test con-
firmed the similarity between the posttest scores for the intervention group and grades 
7–8, as the highest p values found were χ2(4) = 6.2, p = .184 and χ2(5) = 11.3, p = .05, 
for grades 7 and 8, respectively. The posttest average level score for the intervention 
group 3.28 (0.69) also corresponded most closely to the estimate of the level score for 
Australian grade 8 (3.3). According to the findings by Callingham and Watson, the 
Dutch baseline corresponded most closely to Australian grades 6–7. The chi-squared 
test confirmed the similarity, as the highest p values found were for Australian grades 
6 and 7 (χ2(4) = 9.3, p = .05 and χ2(4) = 5.8, p = .22, respectively). The mean level 
score for the Dutch baseline 2.96 also corresponded to the estimate of the level score 
for Australian grades 6–7, respectively 2.6 and 3.1.

Concerning the effects of the LT, the posttest score on SL for the intervention 
group that followed the LT appeared to be more advanced than the Dutch baseline 
score from the comparison group. Moreover, from the comparison with findings by 
Callingham and Watson (2017), the advantage for the intervention group on SL cor-
responded again, as in our earlier findings, with about one school year higher. Fur-
thermore, the calculated estimates of students’ average level score per grade from 
the study of Callingham and Watson indicated that students’ progress per year from 
grades 6 to 9 is roughly 0.25. When we compare the posttest SL level score for the 
intervention group 3.28 (0.78) with the Dutch baseline 2.96 (0.69), the difference of 
0.32 again corresponds to a level difference of more than one school year.

Table 8   Students’ proficiency compared to grade results of Australian students (Callingham & Watson, 
2017), based on the distribution of students over the levels and the average level scores

Dataset Statistics education Distribution and average level 
similar to that found in grade X 
by C and W

Pretest intervention group (n = 267) No 9th-grade statistics lessons Grade 6
Posttest intervention group 

(n = 267)
Learning Trajectory Grade 7–8

Dutch baseline (n = 217) Regular 9th-grade curriculum Grade 6–7
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Conclusion and discussion

As the field of statistics and its education are changing rapidly, knowledge about 
efficient learning trajectories is needed for the successful and sustainable implemen-
tation of curriculum changes, both among researchers and teachers (Ben-Zvi et al., 
2018; Biehler et al., 2018). The aim of the study presented here was to evaluate the 
effects of a Learning Trajectory for Statistical Inference on 9th-grade students’ Sta-
tistical Literacy, and on making inferences in particular. Theories of informal Statis-
tical Inference complemented by ideas of growing samples and repeated sampling 
guided the design of the Learning Trajectory.

Although Statistical Inference is considered a more complex domain of Statisti-
cal Literacy, this study demonstrated that the designed Learning Trajectory for Sta-
tistical Inference had a significant positive effect on all domains of Statistical Lit-
eracy. As such, engaging in (informal) inferential activities also promoted students’ 
capacity on other Statistical Literacy domains. This insight into a joint development 
of (informal) Statistical Inference and literacy allows in educational practice for an 
early introduction of Statistical Inference. An early introduction can support a sus-
tainable change in students’ understanding of statistical concepts required for both 
making inferences and Statistical Literacy.

Currently, the Dutch curriculum, as in many other countries, evolves from 
descriptive statistics in the earlier years to an inferential focus later on. In early 
years—pre-10th grade—the focus is on the Statistical Literacy domains of graphing 
and variation, and average and chance. Later on, the domain of Statistical Inference 
is given attention. The results of this research advocate an earlier introduction of 
Statistical Inference. The positive effects of the Learning Trajectory on the other 
domains of Statistical Inference are presumably due to the inquiry-based approach 
of the Learning Trajectory, in which all phases of the statistical investigation cycle 
are addressed several times, that is, posing a question, collecting data, and analyz-
ing data, to answer the question posed. This is consistent with previous studies and 
theories that advocate a holistic approach (Ainley et al., 2006; Franklin et al., 2007; 
Lehrer & English, 2017; Van Dijke-Droogers et al., 2017).

In discussing these conclusions, there are a few points to consider. The first 
involves the low level of proficiency of Dutch students on Statistical Literacy rela-
tive to Australian students (Callingham & Watson, 2017). We expected Dutch stu-
dents to score at the posttest on grade 9 level, and not on grades 6–7 and grades 7–8, 
for the Dutch baseline and the intervention group, respectively. These lower scores 
may be due to the fact that our Dutch pre-10th-grade statistics curriculum is more 
limited than the Australian curriculum for students in Callingham and Watsons’ 
research (https://​www.​austr​alian​curri​culum.​edu.​au/). Another issue in this respect 
is that the average maximum attainable score on the graphing and variation items 
on both tests was lower (about 3.7) than for the other domains (about 5.5), which 
negatively affected students’ overall Statistical Literacy scores. When we compen-
sate for the lower graphing and variation item scores, the Statistical Literacy average 
level scores of participating students increase by about 0.3. When we then compare 
the adjusted literacy scores with the Australian grade results, the grade results for 

https://www.australiancurriculum.edu.au/
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Dutch students increase with almost one school year and, as such, were closer to our 
expectations. “Regarding graphing and variation, a related issue is whether working 
by hand or with digital tools affects students” learning. In our study, the intervention 
students mainly worked with digital tools, while the Dutch baseline students mainly 
worked by hand. The posttest scores for the intervention students on the GV domain 
were significantly higher than the scores for baseline students. As such, working 
with digital tools for graphing and variation seems to promote students’ understand-
ing of the GVdomain.

The second point considers effect sizes. The use of effect sizes is complex and 
disputed and only makes sense for comparing similar studies (Bakker et al., 2019; 
Cohen, 1988; Schäfer & Schwarz, 2019; Simpson, 2017). The only study we could 
find that is similar enough to judge the differences found is Novak (2014), since 
it shares content and design with ours. Novak’s study involved the evaluation of a 
simulation-based intervention for an introductory statistics course at the university 
level. A pre-post research design was used with two random intervention groups and 
a total of 64 students, where both groups followed a slightly different simulation-
based intervention. By comparing the pre- and posttest, Novak found a significant 
learning effect on students’ statistical knowledge with Cohen’s d = 0.45, and the 
effect on students’ conceptual knowledge was approaching significant with Cohen’s 
d = 0.18. In comparing our results with theirs, the effects of the Learning Trajectory 
on students’ Statistical Literacy and on the Statistical Inference domain appeared 
considerably positive with Cohen’s d = 0.90 and Cohen’s d =, 1.12 respectively, and 
we also found clear positive effects on the other two domains.

Limitations of our study are the following. First, we worked with students from 
the pre-university stream, the 15% best performing students of our educational sys-
tem, for both the intervention and the comparison group. As such, the results in this 
research are not generalizable to regular classrooms without further research. Sec-
ond, due to practical constraints—that is, the number of participants in the inter-
vention group—it was not possible to set a randomized control group. To be able 
to indicate the effect of the Learning Trajectory in comparison with the regular 
curriculum, we established a Dutch baseline from a comparison group. This com-
parison group had already completed the regular 9th-grade statistics curriculum. To 
determine the level of Statistical Literacy of this group, and to be able to directly 
compare their results with the intervention group, we administered two tests that 
consisted of items from the pre- and posttest of the intervention group. Although a 
classical randomized test with a control group has added value—for example, as it 
enables to determine the initial and final level for the regular 9th-grade curriculum 
—using the Dutch baseline helped us to indicate the effect of the Learning  
Trajectory. Third, the items of the pre- and posttest were not identical. Despite careful  
alignment—through posttest pilots and expert consultation—differences in context, 
question wording, and visualizations may affect the result. However, the results of 
the comparison group (n = 217) on both tests, administered at an interval of only 
4 weeks, were found to be non-significantly different, both on Statistical Literacy 
and on all three domains. This finding supports our assumption that both tests were 
comparable. Fourth, we did not examine differences due to instructors’ or students’ 
background. We recommend taking both issues into account in future research.
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We present two points for recommendations. First, in this study, the identified 
levels of SL by Watson and Callingham (2003, 3004) proved well applicable for 
evaluating the effects of the Learning Trajectory. The development of a pre- and 
posttest, consisting of items from validated tests—mainly from Watson and  
Callingham—supplemented by equivalent newly designed items on Statistical  
Inference, enabled us to assess students’ Statistical Literacy, and their Statistical 
Inference in particular. Both newly designed and existing test items were found 
appropriate, with a Cronbach’s alpha greater than 0.84 on the pre- and posttest. In 
analyzing the results, the levels of Statistical Literacy appeared useful to examine  
students’ proficiency. Furthermore, the findings by Callingham and Watson (2017) 
proved useful for interpreting students’ results, and, with that, the effect of the 
Learning Trajectory. Therefore, we recommend researchers and educators who 
intend to investigate the Statistical Literacy of secondary school students to use the 
levels by Watson and Callingham for assessing and evaluating students’ results.

Second, for the participating teachers of the intervention group, implementing the 
Learning Trajectory required considerable effort. In our study, 11 teachers from five 
different schools were willing to invest in the trajectory. The load for teachers from 
the comparison group was limited to administering two tests, making it easier for 
teachers to participate. Using a Dutch baseline from a comparison group appeared 
of added value to interpret the intervention group results. Therefore, we recommend 
researchers and educators interested in the effects of an LT, who are for practical 
reasons confined to an intervention group with considerable effort for participating 
teachers, to consider the use of national baseline achievements from a comparison 
group. Furthermore, as highlighted by several researchers, much work remains to 
be done to obtain a good understanding of how to assess the practical and substan-
tive effects of educational interventions, this study contributes by presenting a pre-
post research design in which students’ results were compared with Dutch baseline 
achievements from a comparison group and with findings from international studies.

To end with, the Learning Trajectory highly affected students’ performance on 
Statistical Literacy and Statistical Inference, and we also indicated significant posi-
tive effects for the other domains. Although the Learning Trajectory was not focused 
on the latter two, the investigative approach and more complex learning activities 
for Statistical Inference as embedded in the trajectory appeared to have a positive 
effect here as well. These findings indicate that the Learning Trajectory can be used 
to expand the 9th-grade curriculum with the Statistical Inference domain, without 
neglecting the current educational goals on the other domains of Statistical Literacy.
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