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Abstract
A theoretical model describing Grade 7 students’ rational number sense was formu-
lated and validated empirically (n = 360), hypothesizing that rational number sense 
is a general construct consisting of three factors: basic rational number sense, arith-
metic sense, and flexibility with rational numbers. Data analysis suggested that 
rational-number tasks can be categorized based on the validated model. The flexibil-
ity component reflects thinking about rational numbers in terms of noticing, using, 
and expressing relations and properties of numbers in patterns, functions, covaria-
tion, and complicated computational tasks. It includes utilizing number structure and 
relational understanding of operations and numbers. Analysis identified three catego-
ries of students that represent different rational-number sense profiles. Category 1 
students exhibited a limited basic profile that solved mainly traditional school-based 
tasks. Category 2 students reflected the basic emergent arithmetic sense profile that 
responded adequately in operation tasks. Category 3 students represented the flexible 
emergent profile, as they manipulated underlying structures in a variety of situations, 
indicating an emergent fundamental shift from an arithmetic to an algebraic focus. A 
discriminant analysis showed that basic and flexible factors could discriminate stu-
dents best between the three identified profiles of rational number sense.

Keywords Rational numbers · Number sense · Structure · Numbers · Arithmetic · 
Relational thinking

Introduction

Researchers and reports on mathematics education emphasize the importance of 
number sense (Australian Educational Council, 1991; National Council for Teach-
ers of Mathematics, 2000; National Mathematics Advisory Panel, 2008; National 
Research Council, 2009; Tucker & Johnson, 2022; Yang & Sianturi, 2021; Yang 
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et al., 2009). Student’s development of number sense is considered an important out-
come and key ingredient of school curricula worldwide (Whitacre et al., 2020; Yang 
& Li, 2008). Research findings provided strong support to the assumption that num-
ber sense is a powerful predictor of mathematics outcomes (Hassinger-Das et  al., 
2014; Jordan et al., 2007). We focus on mature number sense (Whitacre et al., 2020) 
that refers to the flexibility with rational numbers and models the components of 
number sense in studies that involved primarily middle grade students (upper ele-
mentary and middle school). In contrast to early number sense that reflects skills 
that students typically learn in preschool and primary grades, mature number sense 
represents habits of mind, and ways of behaving that are considered desirable to 
move beyond standard algorithms. In this study, we use the term rational-number 
sense to make mature number sense more explicit.

The importance of rational-number sense is underlined by the fact that rea-
soning with fractions and decimals is important in everyday life (Jordan et  al., 
2013). Research findings suggest that rational numbers are among the most 
important and difficult topics in early mathematics education (Braithwaite et al., 
2022). International assessments, such as TIMSS 2019, showed that students 
even in Grade 8 struggle with rational concepts (Mullis et  al., 2020). Further, 
research findings provided evidence that understanding rational numbers, espe-
cially fractions, holds the key to future success in algebra (DeWolf et al., 2015; 
Siegler & Lortie-Forgues, 2014). In most countries, it is expected that students 
are acquainted with number concepts, operations, and problem solving that facili-
tate rational number sense in grades 6 and 7. Therefore, in this study, we investi-
gate 7th grade students’ rational number sense (thirteen-year-olds) to capture the 
whole spectrum of the examined construct.

Most of the existing rational-number sense frameworks refer to a person’s gen-
eral understanding of numbers and operations and underlie the aspect of readiness 
to use this understanding in flexible ways (McIntosh et al., 1992; Yang & Lin, 2015; 
Yang et al., 2008). The purpose of this study is to extend existing frameworks by 
emphasizing on the aspect of flexibility. We suggest that flexibility includes relat-
ing rational numbers by conceptualizing their structure. By the term structure sense 
for rational numbers, we refer to identifying properties, order structure, and addi-
tive and multiplicative relations (Freudenthal 1991). We enrich in this way the tradi-
tional descriptions of rational number sense with the flexibility component. It refers 
to students’ ability to notice, use, and express relations and properties of numbers 
and utilize number structure and relational understanding of operations and numbers 
(Author et al., Date; Molina & Mason, 2009).

Theoretical framework

The theoretical framework brings together notions from research in mathemat-
ics education regarding number sense in general, rational number sense, rational 
number knowledge, and arithmetic.



1 3

An empirically validated rational number sense framework  

Components of number sense

Number sense consists of different and interrelated components that change with 
age and experience (Malofeeva et  al., 2004). Whitacre et  al. (2020) distinguished 
the construct of rational number sense from approximate number sense and early 
number sense. Approximate number sense includes inborn neurological abilities 
that concern perception and discriminations of magnitudes (Dehaene, 2001). Early 
number sense encompasses fundamental skills such as explicit number knowledge, 
number comparison, and counting (Jordan et al., 2006), while rational number sense 
pertains to the awareness of rational numbers in middle school and upper primary 
school students. It encompasses understanding the concepts, representations, com-
putations, and applications of rational numbers (Whitacre et al., 2020).

Researchers from the mathematics cognition domain, such as Berch (2005), Case 
and Soweder (1990) and Jordan et al. (2006), described the nature of early number 
sense in terms of interrelated components. Jordan et  al. (2022) showed that early 
number sense is a three-dimensional construct. The first dimension of this model 
relates to basic number skills (counting, number recognition and knowledge, number 
patterns, and nonverbal calculation), while the second refers to conventional arith-
metic (story problems and number combinations). The third factor, number rela-
tions, entails knowledge of the relations between and among whole numbers. This 
model, which was empirically validated in multiple occasions (Jordan et al., 2006, 
2007, 2022), could be utilized as the outset to formulate a framework describing 
rational-number sense because it includes the two core aspects of number knowl-
edge and number operations and brings to the fore the perspective of number rela-
tions. However, this model should be extended to include aspects of number sense 
that are critical for rational numbers (Siegler & Lortie-Forgues, 2014). In the second 
part of the theoretical framework, we present research findings that could be utilized 
in the formulation of a rational number sense framework.

Rational number sense

The theoretical frameworks proposed by McIntosh et al. (1992), Markovits and Sowder 
(1994), and Yang et al. (2004) described rational number sense components that are 
commonly cited by other researchers in mathematics education. These frameworks list 
the following as the most important elements for rational-number sense: knowledge and 
flexibility with numbers and operations and applying knowledge of numbers and opera-
tions to computational settings.

Rational number knowledge

Recognizing and linking the multiple forms and interpretations of rational num-
bers, translating among the different notations and a quantitative understanding 
of rational numbers in terms of magnitude, comparison, and density are consid-
ered crucial for rational number understanding (Charalambous & Pitta-Pantazi, 
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2007; Van Hoof et al., 2018). In this sense, rational number knowledge includes 
(a) understanding of number meanings and use of multiple representations of 
numbers and operations and (b) recognition of relative number size, absolute 
magnitude of numbers, and the sense of orderliness of numbers (Markovits & 
Sowder, 1994; McIntosh et al., 1992).

Number meanings and representations refer to conceptualizing multiple differ-
ent notations (e.g., fraction, decimal, and percentage) and multiple representations 
(symbolic, iconic, verbal, area models, and number line)  that facilitate students’  
rational number understanding. Students should go beyond recognizing the sur-
face feature and attend to the quantitative information of rational number notation. 
They should understand that there is an infinite number of symbolic representa-
tions for each magnitude on the number line, and between any two magnitudes, 
there is an infinite number of magnitudes (Schneider & Siegler, 2010). For the 
case of fractions, student must coordinate two numbers working together (numera-
tor and denominator) to yield a single magnitude, highlighting the role of mul-
tiplicative reasoning to conceptualize equivalent forms of fractions and compare 
fraction magnitudes (DeWolf et al., 2015; Dyson et al., 2020; Vamvakoussi, 2015). 
Further, the notation of fractions and decimals is visually different (fractions have 
a bipartite structure while decimals have a unidimensional structure) that makes 
organization of rational numbers more complicated as they can be grouped either 
by quantity or by notation (Park, 2021).

Moving across different types of rational number representations is essential to 
recognize that each type of representation presents a different perspective (Post 
et  al., 1993). For instance, number lines facilitate understanding rational num-
bers as measures, while area models emphasize part-whole meanings and their 
multiplicative structure. Representations also provide equivalent numerical forms 
that are based on composing and decomposing rational numbers based on their 
structure. It is important for students to utilize an efficient representation based 
on the context, to manipulate different notations of rational numbers by convert-
ing a fraction to a decimal and vice versa and to apply procedures such as finding 
equivalent fractions (Siegler et al., 2011).

Rational numbers, irrespectively of their form, have magnitudes or numerical 
values so they can be ordered on the number line (Siegler et  al., 2011). Under-
standing number magnitude for rational numbers means comparing and order-
ing numbers, finding which of two numbers is closer to a third one and finding 
numbers between two given numbers (Markovits & Sowder, 1994). Finding num-
bers between two given numbers is related to the notion of density (Vamvakoussi 
& Vosniadou, 2010). A lack of understanding of the dense structure of rational 
numbers leads to mistakes, such as thinking that there are no numbers between 
fractions with same denominators and successive nominators (e.g., 3/5 and 4/5) 
or decimals with successive numbers in the same decimal place (e.g., 2,5 and 
2,6), due to the natural number bias (Vamvakoussi et al., 2013). Natural number 
bias is also accounted for common mistakes in comparing decimal numbers based 
on the number of decimal points and not on the value place (Van Hoof et  al., 
2018). Comparing and ordering rational numbers entail also appropriate use of 
benchmarks (Bütüner, 2018).
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Rational number sense operations and applications to computational settings

Knowledge of operations entails understanding the effect of operations and math-
ematical properties and understanding the relationship between operations (Yang 
et al., 2004). Applying knowledge of numbers and operations includes a variety of 
abilities, such as understanding the relationship between problem context and the 
necessary computation; flexible estimation, mental computation, and judgment 
of the reasonableness of estimates of computed results (i.e., implying the use of 
estimation strategies without written calculations, decomposing and recomposing 
numbers to simplify calculations) (McIntosh et al., 1992; NCTM, 2000; Yang & 
Li, 2008; Yang & Siantouri, 2021); and appropriate use of benchmarks in com-
putations (Reys et al., 1999). This aspect of number sense, referred to as applied 
number sense, has also been incorporated into more recent number sense frame-
works (see Andrews & Sayers, 2015; Pittalis et al., 2018; Yang & Sianturi, 2021).

Students’ difficulties with rational number operations may be related to the 
extensive experience they encountered with natural numbers (McMullen et  al., 
2015). Thus, the challenge for students is to apply understandings of whole num-
ber operations to fractions and decimals, by eliminating natural number bias, and 
use procedures in a conceptual way. That is students apply procedures by under-
standing their logic and utilizing properties of operations (Fischbein et al., 1985; 
Greer, 1992). Understanding the relative effect of operations on numbers requires 
recognizing how the four basic operations affect the results and applying the 
properties of operations (Bütüner, 2018; González-Forte et al., 2022; Yang et al., 
2008). For instance, this will facilitate understanding that the product of 49 by 
0.9 is smaller than 49, because 49 × 0.9 is equal to 0.9 × 49 that can be interpreted 
as shrinking 49, since 0.9 is smaller than 1.

Research findings showed the importance of reaching absolute or approxi-
mate estimations, by using mental calculations and estimations skills and making 
judgements about the reasonableness of a result (Sowder, 1992). That implies that 
students make mental calculations without using written computation. In addi-
tion, judging the reasonableness of the result is a critical self-regulated mecha-
nism to avoid calculation errors (Yang & Sianturi, 2019). For example, students 
check the correctness of a written calculation, by using estimation strategies. 
Research showed that applying written strategies is not sufficient for rational 
number calculations, but students should develop meaningful understanding and 
integration of written and mental estimation and calculation strategies (Yang 
et  al., 2008; Lin et  al., 2016). Further, understanding the relationship between 
operations is a useful tool to simplify calculations.

Applying knowledge of and facility with numbers and operations to computa-
tional settings includes also understanding the relationship between problem con-
text and the necessary computation (McIntosh et  al., 1992). This was also sup-
ported by Jordan et al. (2006) and Pittalis et al. (2018) that showed empirically 
that solving story problems fits in the arithmetic dimension of students’ early 
number sense.



 M. Pittalis 

1 3

The Present Study

Purpose of the study and the proposed model

Most of the studies described above provided theoretical frameworks for rational num-
ber sense and investigated aspects of rational number sense or focused on specific 
areas of rational number knowledge in a qualitative way. There is a need to extend 
previous studies by proposing and empirically validating a comprehensive framework 
for rational-number sense. To do so, we synthesize existing conceptions of rational-
number sense (see Jordan et al., 2022; Markovits & Sowder, 1994; McIntosh et al., 
1992; Yang et al, 2004) and build on researchers who have called about a relational 
perspective for number sense (McMullen et al., 2020; Rezat, 2019).

We assert that rational number sense for seventh graders refers to a student’s 
general understanding of rational numbers and relevant operations. It reflects 
an inclination to manipulate rational numbers and interpret and process quanti-
tative information in a variety of situations flexibly by noticing and reflecting 
on underlying relations between and among rational numbers. This conception 
for rational-number sense is aligned with rational number concepts, processes, 
algorithms, and problem-solving situations that students are typically engaged in 
primary and middle grades (thirteen-year-old students). Further, it includes a dis-
position to (a) simplify or avoid complicated calculations, standard procedures, or 
procedural interpretations by utilizing relations in quantitative situations and (b) 
overcome challenges of novel and nontypical arithmetic situations. This concep-
tualization enriches the definition of rational number sense with a dynamic and 
powerful perspective that may contribute to further developing students’ arithme-
tic-algebraic structure sense (Pittalis, 2023; Hitt et al., 2017).

We use the three factors of Jordan et al.’s (2022) number sense model to formu-
late the proposed rational number sense framework. The components of rational 
number knowledge and arithmetic are established on the frameworks described 
above, by giving justice to key concepts of rational numbers, operations, and 
problem solving with rational numbers. The third component of number relations 
reflects a student’s flexibility to grasp in a variety of numerical situations the 
relations between and among rational numbers.

Based on this conceptualization, we suggested (see Fig.  1) that rational num-
ber sense is a general construct that consists of three distinct, but interrelated and 
complementary factors. We hypothesized that rational-number sense is a second-
order theoretical construct made up of three first-order latent factors, namely, (a) 
basic rational number sense, (b) rational number arithmetic, and (c) flexibility with 
rational-numbers. In other words, we hypothesized that these three factors can be 
made accountable by a higher-level factor, which stands for rational number sense.

The first factor, basic rational number sense, includes key elements for a typi-
cal grade 7 student and represents students’ conceptualization of rational number 
in respect to recognizing its symbolic form, different representations, and mag-
nitude (Markovits & Sowder, 1994; McIntosh et al., 1992; Yang et al. (2004). In 
particular, basic rational number sense, consists of identifying rational numbers, 
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conceptualizing rational number magnitude (Van Hoof et  al., 2018), comparing 
and ordering (Siegler et  al., 2011), estimating numbers in number-line, under-
standing rational number density, manipulating rational number representations 
(Schneider & Siegler, 2010), counting on and down based on rational number 
place value (Pittalis et  al., 2018) and converting fractions to decimals and vice 
versa and finding equivalent fractions (DeWolf et al., 2015).

The second factor, rational number arithmetic, combines knowledge of opera-
tions and applying knowledge with numbers and operations to computational set-
tings (Mcintosh et al., 1992). It includes calculating number combinations, under-
standing the effect of operations on numbers and the relationship between operations 
(Yang et  al., 2008), using mental calculations and estimations skills (Elias et  al., 
2020), judge the reasonableness of computational results (Yang & Sianturi, 2019) 
and solving word problems (Jordan et  al., 2007). Number combinations relate to 
students’ ability to carry out calculations with no object referents. In the present 
study, solving problems with rational numbers refers to conceptualizing, judging, 
and interpreting the meaning of operations in situational settings, without being con-
fused by natural numbers bias (Vamvakoussi, 2015; Yang et al., 2008), especially in 
multiplicative situations.

The third factor, flexibility with rational numbers, manifests a student’s ability to 
recognize relevant arithmetic and numerical relations between a given set of num-
bers and integrate conceptual and procedural knowledge of numerical characteristics 
and relations into solutions for novel tasks. It is in line with rational number adap-
tive expertise. That is applying flexibly rational-number knowledge in novel con-
texts, as defined by McMullen et al. (2020). Further, in line with Strother (2011) and 
McMullen et al. (2017), flexibility reflects a structural and algebraic understand-
ing of numbers. It opens the door for a functional approach in a variety of nontypi-
cal quantitative situations. That is extending, completing, generalizing, and building 
patterns (Jordan et  al., 2022), exploring the functional relation between quantities 
(Pittalis, 2023), interpreting the growth rate of a variable/quantity, and making pre-
dictions in a variety of numerical settings, such as graphs and tables (Thompson 

Fig. 1  The proposed model
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& Carlson, 2017), and manipulating complex computational situations (McMullen 
et  al., 2022). Exploring and generalizing the functional relation between quanti-
ties that involve rational numbers reflects a student’s self-awareness of the identi-
fied relations. Identifying patterns and expressing rational number relations in sym-
bols are considered the two most influential factors that strengthen the relationship 
between number sense and algebraic thinking (Piriya et al., 2019).

Research aims

The aims of the study were to (a) examine the structure of 7th grade students’ 
rational-number sense through empirically validating an a priori theoretical model, 
(b) to identify classes of students that reflect different rational number sense pro-
files, and (c) to examine which of the proposed rational number sense factors dis-
criminate students to the number sense profiles.

Participants

Three hundred sixty 7th grade students (188 girls and 172 boys) from two urban and 
one rural secondary school in Cyprus (N = 184) and three urban secondary schools in 
Greece (N = 176) participated in the study. The demographics of the school population 
in both countries were representative in terms of percentage of students with immi-
grant heritage and percentage of students with low socioeconomic status. The schools 
and the teachers involved participated voluntarily; thus, our sample was a sample of 
convenience. All participants had parental permission to participate and gave their 
own assent. None of them were identified by their schools as having learning disabili-
ties or other cognitive or sensor incapacities and none of them were excluded.

The Cyprus and Greek mathematics curriculum for Grades 6–7 contain attain-
ment targets that emphasize solving word problems with rational numbers and per-
centages, using mental strategies to make calculations with natural numbers, frac-
tions, decimals, and percentages, using standard algorithms in calculations with 
natural numbers, fractions, and decimals, simplify fractions, find equivalent forms 
of rational numbers, identifying, ordering and comparing rational numbers, convert-
ing fractions to decimals and percentages and vice-versa, and interpreting fraction as 
part-whole, quotient, ratio and measure.

Measures

Test items were adopted or developed on the basis of previous research studies and 
multiple tasks were used for each presumed construct of the framework (see Mark-
ovits & Sowder, 1994; Vamvakoussi & Vosniadou, 2010). Several test items were 
based on those used in previous qualitative studies, teaching experiments, and inter-
vention studies; thus, we made modifications in the format and wording of the items 
to meet the needs of a written test, such as transforming the task to a multiple-choice 
format, or reformulating the task to include a variety of rational number forms. For 
example, Markovits and Sowder (1994) presented two fractions and asked students 
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to determine which one is closer to 0.5. We adapted this task into a multiple-choice 
format, including possible answers in both decimal and fractional forms. Appendix 
A presents the type of tasks used to measure each sub-component of the factors and 
appropriate examples.

The construct validity of the test was trialed before the main study based on the 
results of a pilot study (N = 45). The test was administered to two Grade 7 classes in 
Cyprus. The results of the pilot provided evidence regarding the appropriateness of 
the used items and the test, in terms of clarity, difficulty level, and time needed. Six 
items were removed so the test could be completed in the available time. To do so, 
we kept a maximum of three items for each type of task. Further, feedback was pro-
vided to make additional language and formatting corrections to other ones. Then, to 
strengthen the validity of our relational-structural measures, we computed the con-
tent validity index of the individual items (Taherdoost, 2016). To do so, four experts 
in mathematics education examined the content validity of the test items and evalu-
ated the extent to which the proposed measures aligned with the proposed compo-
nent based on a 4-point ordinal scale (Lynn, 1986). We kept only items with content 
validity index at least 0.75.

Basic rational number sense measures

Basic rational number sense factor was measured by six types of tasks that captured 
in a comprehensive way the basic aspects of rational number sense: rational num-
ber magnitude, rational number density, and rational number knowledge, counting 
based on place value and equivalence (McIntosh et al., 1992; Van Hoof et al., 2018). 
Reliability for all the items used to measure basic-rational number factor was good 
(Cronbach’s α = 0.87).

Rational number magnitude was measured by ordering and comparing tasks and 
number line estimations ones. The ordering tasks included two items ordering frac-
tions and decimals (e.g. “Put the numbers in order from smallest to largest”: ¼, 0.5, 
9/10, 0.398, and 0.8). This item was an adaptation of the task used by Stafylidou 
and Vosniadou (2004), as we included fractions and decimals in the same task. In 
each task, a fully correct answer was graded with one point and 0.2 was deduced for 
each mistake (reverse order of two numbers). The first comparing task asked stu-
dents to compare two decimals, two fractions or a fraction and a decimal (as used 
by González-Forte et al., 2020). The 9 pairs of numbers were chosen based on com-
mon students’ errors and misconceptions (e.g., 5.4 vs. 5.400, 2.3 vs. 2.03, and 1/40 
vs. 0.40). In the second comparing task (see Appendix A), students were asked to 
identify which of five numbers was closer to a given one (as proposed by Markovits 
& Sowder, 1994). The two items involved decimals and fractions and required multi-
ple comparisons and conceptual understanding of the fraction relations (Dyson et al., 
2020). Responses were scored as correct/incorrect for each comparison.

Number line estimation was assessed by two types of tasks. The first task was in a 
multiple-choice format and asked students to identify which number was marked in a 
number-line. In the second number-line task, students had to estimate the location of 
6 rational numbers on a line marked with numbers 0 and 1 (as used by Siegler et al., 
2011). Responses were scored as correct/incorrect for each task.
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Rational number density was assessed using short-answer and a table-filling task 
(as used by Vamvakoussi & Vosniadou, 2010). The short-answer asked students to 
give two numbers between 2.3 and 2.4 and two numbers between ½ and 1/3. Every 
correct number was awarded with 0.5 point. The second task asked students to com-
plete a table by providing a number that lies between two given ones and provide an 
explanation if they thought that there was not a number between them (e.g., 4.69 and 
4.70 and ¼ and 1/5). Responses were scored as correct/incorrect for each sub-task.

Rational number knowledge included identifying numbers and manipulating dif-
ferent representations. In particular, the first type of task provided rational numbers 
in symbolic or verbal form and asked students to provide the other form. For exam-
ple, it was asked to provide the verbal form of 0.15 and the symbolic form of “two 
and 7 tenths.” This task is a modified version of measures that are typically used for 
early number sense. In this task, each response was scored as correct/incorrect. The 
second task (see Apendix A) was based on the picture part of the Rankings Propor-
tion Test and asked students to correspond 6 fractions to pictures representing frac-
tions ≤ 1 (in circle model). A fully correct answer was graded with one point, and 
1/3 of a point was deducted for each mistake, as a mistake resulted in an incorrect 
correspondence of two fractions. The third task emphasized in conceptualizing the 
meaning of numbers and their structure and reflects researchers views about concep-
tualizing the structure of a number in multiple ways (Hoch & Dreyfus, 2005; Zazkis 
& Mamolo, 2016). Students had to provide verbal statements, number sentences, or 
representations that correspond to a fraction and a decimal (4/5 and 1.25). Each cor-
rect response was awarded with one point.

Counting based on place value and fraction-unit was assessed with three items 
that asked students to count on or down from a given starting point till a target num-
ber using a specific pattern. This task is a modified version of counting measures 
used for early number sense. For instance, the first item asked to count on from 6.5 
to 7.5 in one tenth increments. In each task, a fully correct answer was graded with 
one point. Deductions were made based on the number of mistakes. For instance, a 
deduction of 0.25 points was applied for every two mistakes.

Equivalence of fractions and fraction-decimal conversion was assessed by two 
tasks (as used by Dyson et al., 2020). The first one required filling an empty box 
(numerator or denominator) to create equivalent fractions (see Appendix A). The 
second one required transforming a fraction/mixed number to a decimal and vice 
versa (e.g., 1 2

100
 to decimal and 3.25 to mixed number). In this task each correct 

response was awarded one point. A total score for each task was calculated.

Rational number arithmetic sense measures

The second factor was measured with four types of tasks that reflected students’ 
arithmetic sense in calculations and estimations, understanding the effect of opera-
tions on numbers, and solving word problems. Reliability for arithmetic-sense meas-
ures was good (Cronbach’s α = 0.85).

Participants were asked to solve 16 arithmetic calculations that included adding 
and subtracting fractions with like and unlike denominators, multiplying and divid-
ing fractions, adding and subtracting decimals with different number of decimal 
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points, and multiplying and dividing decimals that required mainly conceptual 
understanding. Each calculation was scored as correct/incorrect.

Mental calculations and estimation were measured by two types of tasks. The 
first one was a modified version of the tasks suggested by Van Hoof et al. (2018) 
and McMullen et al. (2022) and asked students to explain whether (a) dividing 51 by 
0.95 gives a quotient bigger, smaller or equal to 51 and (b) multiplying 0.99 by 1001 
gives a product bigger, smaller or equal to 1001. A fully correct answer that included 
an explanation was graded with one point, a correct answer based on calculation was 
graded with 0.75 points and a correct answer without explanation was graded with 
0.5 points. The second type was three multi-choice questions that required judging 
the reasonableness of estimates, without making any calculations, as suggested by 
Yang et al. (2008). Each correct response was awarded one point and the total score 
of the task was calculated.

Understanding the effect of operations was measured by open number sentences 
that presented equations, equalities, and inequalities. The tasks were in a multiple-
choice format and requested selecting the appropriate number so the equality or ine-
quality holds. Students could find the answer by applying trial and error strategies 
or utilize the inverse relations between operations. To do so, students had to rec-
ognize how the four basic operations affect the computational results, as suggested 
by McIntosh et al. (1992) and Yang et al. (2008). For instance, students had to find  
the missing number in the open number sentence 4/8 × _ = 3/4 by conceiving that 
the missing number can be calculated by dividing ¾ by 4/8. In addition, students  
had to find the missing number in equalities, such as 3

4
−

1

3
= 1 −

1

3
− __ , by apply-

ing an opposite strategy, and complete missing numbers in inequalities. Each correct 
response was awarded one point.

Finally, problem solving was measured by two types of tasks. The first one pre-
sented three one-step (e.g., Helen has 3 kg of flour. She wants to prepare biscuits. She 
needs 0.15 kg of flour for each biscuit. How many biscuits can she prepare?) and one 
two-step (e.g., George had 4/5 L of milk. He drank 1/8 of this quantity. How much 
milk is left?) word problems in multiple-choice format and students had to select the 
number sentence that matched the problem (Pittalis et al., 2018). Each correct answer 
was awarded one point. The second type of tasks was story problems that involved 
fractions and decimals (Jordan et al., 2007). The first one required adding unlike frac-
tions and then making a subtraction and the second one converting a decimal to a 
fraction, then multiplying fractions and then a subtraction (see Appendix A). A fully 
correct answer was awarded one point, while response in which only the first step of 
the problem was correct was awarded with 0.5 points.

Flexibility measures

The third factor was measured by four types of tasks that captured students’ rational-
number sense in patterning situations, function machines, complex computational 
tasks and covariation interpreting situations based on the adopted theoretical con-
siderations. Reliability for flexibility measures was adequate (Cronbach’s α = 0.74).

Two types of tasks were used to capture flexibility in patterning situations, that 
required conceiving the relations among a set of rational numbers. The first type 
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was a traditional growing pattern that required understanding the underlying rule 
of the given terms to extend the pattern (Wijns et al., 2021). We used four patterns; 
two with an additive rule (add 0.5 and subtract 4/9), one with a multiplicate rule 
(multiply by 2/3), and one with a linear one (divide by two and then subtract one). In 
each pattern, students had to complete four terms, so each correct term was awarded 
with 0.25 points. The second task was developed for this study and targeted noticing 
the relation between a group of numbers in a novel situation, so that students could 
pose their own patterns by selecting numbers from the given set and describe their 
rule. In particular, we provided 22 rational numbers (whole numbers, fractions, and 
decimals). Subsets of the given numbers followed an additive (e.g., 3, 3.5, 4, 41

2
, ...) 

or multiplicative relation (e.g., 40, 4, 0.4, 0.04, … and2

3
,4
9
, 8
27
, ... ). Students were asked 

to pose at least three extending pattern tasks and explain the rule of each one. Each 
correct pattern that included proper explanation was awarded with one point, while 
0.5 points was given for a pattern without explanation.

We used three function machines to capture students’ flexibility in functional 
situations (Ng, 2018). For each function machine, we provided a table with input 
and output values so students could figure out the rule underpinning the particular 
set of inputs and outputs and asked them to find the output value of the function 
machine for two input values, and the input value for a given output value. These 
questions were defined as function-particular tasks (Pittalis et  al., 2020). A score 
of 0.25 points was assigned for each correct output value, while an additional 0.5 
points were granted for a correct input value, allowing for a maximum total score of 
one point. Further, it was asked to provide the output value when the variable x is 
entered in the machine. This last task (see Table 1) required expressing the general-
ity by seeing the generality through the particular (Mason, 1996) and was defined 
as function-general task (Pittalis et  al., 2020). A correct answer in this task was 
awarded one point.

Two types of tasks were used to measure flexibility in computational settings. 
Both tasks required besides making calculations to consider the relations between 
the involved numbers and their structure in terms of place value and identify addi-
tive and multiplicative relations (Mason et al., 2009). The first one, arithmetic sen-
tence production, was adopted by McMullen et al. (2020) and required to generate 
and write down as many mathematically correct arithmetic sentences as possible by 
using subsets of five numbers and the four operations to produce a target number 
(e.g., 3/2, ¾, 1.50, 0.75, and 2 to give the target number 3). Each correct arithme-
tic sentence was awarded with one point. The second one, developed for this study, 
required to group 8 given numbers into four sets, so that the sum of the numbers in 
each set does not exceed one (see Table 1). Each correct set was awarded with 0.25 
points as a fully correct answer included four sets.

Two tasks were developed to measure flexibility in covariation interpreting situa-
tions, based on the ideas of Thomson and Carlson (2017). The first one (see Table 1) 
provided a linear graph that presented the cost value of a product in respect to time-
years. Students had to coordinate the growth rate of the cost value in respect to time-
change to make predictions regarding the cost of the product, find the cost of the 
product at specific time-points and find when the cost of the product will exceed 
a certain value. The item included in total four questions and each one was graded 
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Table 1  Flexibility measures

Aspects Examples of tasks

Patterning Complete the patterns

Pattern posing
Study the following numbers. You can select as many numbers as you want to create 

your own pattern. Pose at least three pattern extending tasks. Explain the rule of each 
pattern

Computation Produce a target number
Use numbers from the following list (as many as you want) and the symbols of the four 

operations to produce as many as number sentences as possible that give result “3”. 
(McMullen et al., 2022)

Creating groups
Group the following numbers into four sets, so the sum of the numbers in each set does 

not exceed 1

Function 
machines

Complete the tables
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with 0.25 points. The second task (see Table 1) presented in a table the quantity of 
milk in bottle that was leaking in respect to time. Students had to coordinate the 
two quantities to pose questions that corresponded to given answers. Again, the item 
included four questions and each one was graded with 0.25 points.

Table 1  (continued)

Aspects Examples of tasks

Interpreting 
covariational 
settings

Interpreting graph
The graph presents the cost price of a product from 2012 to 2020. The company antici-

pates that the growth rate of the cost price will be the same from 2015 to 2030
- What will be the cost price in 2022 and 2026?
- How much bigger will the cost price be in 2030 compared to 2020?
- When the cost priced will exceed €1.50?

Interpreting table
Costas bought a 2L milk-bottle. He noticed that there was a leak. The following table 

presents the quantity of milk in the table in respect to the hours after buying the 
bottle

Pose questions that respond to the following answers:
- 0.06 L of milk
- Every 5 h
- Half L of milk
After how many hours will the bottle be empty?
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Procedure and analysis

The tasks of the study were split into two parts because of the large number of items. 
Both parts included items from the three factors and the different sub-components, 
the same difficulty, and time demand. Each part was administered in the form of 
a written test during a 40-min school period. The two parts were administered in 
one-week period. Participants were not allowed to use a calculator. For each type 
of tasks, we calculated the mean value of the items used and then the mean value of 
each sub-component that was used as the observed variable measure.

The use of confirmatory factor analysis (CFA) made sense for examining the 
validity of the hypothesized model, since the proposed factors of the set of vari-
ables used were based on previous research findings and theory (Brown, 2015). 
Our purpose was to investigate whether the established model of the three factors 
fits our data. CFA models are displayed by path diagrams in which rectangles 
represent observed variables and ovals represent the latent variables (see Fig. 2). 
The latent variables are manifested by the observed variables on rectangles or by 
lower-order latent variables. Single-headed arrows are used to imply a direction 
of assumed influence, and double-headed arrows represent covariance between 
two latent variables.

Fig. 2  Structure and standardized solution of the verified model
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CFA was conducted by using MPLUS 8.0 (Muthén & Muthén, 2017). To evaluate 
model fit, three widely accepted fit indices were computed: x2/df should be < 2; the 
Comparative Fit Index should be > 0.9; and the root mean-square error of approxi-
mation (RMSEA) should be < 0.08.

We used latent profile analysis to trace categories of students reflecting differ-
ent characteristics; this is a statistical method for finding sub-types of related cases 
(latent cases) from multivariate data. The best fitting model was chosen based on a 
combination of statistical indicators and substantive theory to determine the most 
suitable number of latent classes (Nylund et  al.,  2007). First, entropy values that 
approach 1 signify more certainty in the resulting classification and significant 
result of the parametric bootstrapped likelihood ratio test (BLRT) and Lo-Mendell-
Rubin (LMR) test suggests support for the k-class solution in comparison with the 
k − 1 class solution.

After establishing categories of students, we conducted discriminant analysis to 
figure out on which factors of the model are the categories most different (Brown 
& Wicker, 2000). Discriminant analysis is a data reduction technique for analyz-
ing data when the criterion or dependent variable is categorical and the predictor 
or independent variables are interval in nature. To do so, the assigned category pro-
vided by the latent profile analysis was treated as the dependent variable and the 
three factors of the proposed model served as predictors.

Results

The results of the study are presented in relation to its aims. Appendix B presents 
the covariance matrix of the sixteen manifest variables.

Grade 7 students’ rational number sense model

Confirmatory factor analysis (CFA) was used to evaluate the construct validity of 
the model, by validating that the a priori model matched the dataset of the pre-
sent study. The descriptive-fit measures indicated support for the hypothesized 
model (CFI = 0.96, χ2 = 198, df = 93, χ2/df = 2.13, and RMSEA = 0.05). An alter-
native model, hypothesizing that the three first-order factors, basic, arithmetic 
and flexibility do not compose a single second-order factor, resulted in a worse 
fitting model than the hypothesized one (Δχ2/Δdf > 2, p < 0.05). CFA showed that 
different rational number tasks could be categorized on the basis of the hypoth-
esized model.

Figure 2 illustrates the way in which the various components relate to each other 
and presents the factors of rational number sense and their indicators. CFA showed 
that the factor loading of the tasks employed in the present study were statistically 
significant and most of them were rather large (see Fig.  2). The factor loadings 
ranged from 0.43 to 0.81, giving support to the assumption that all latent factors 
have been adequately measured by the observed variables. Thus, in accordance with 
our theoretical assumption, all rational number measures are clustered into three 
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first-order factors in the expected factor loading pattern. These factors serve as 
the latent structure of the rational number sense model. The latent construct ‘basic 
rational number sense’ could accurately model students’ variances in comparison 
situations (including ordering and comparing tasks), understanding rational number 
magnitude, rational number density apprehension, knowledge of rational numbers 
in terms of identification and manipulating different representations, counting, and 
converting fractions to decimals and vice versa. In addition, the construct ‘rational 
number arithmetic’ could accurately explain students’ variances in number com-
binations, mental calculations and estimation skills, short word-problems, story 
problems, and conceiving the effect of operations on numbers. Finally, the theoreti-
cal construct ‘flexibility with rational numbers’ could adequately model students’ 
variances in patterns, covariation tasks, functional situations (particular and general 
tasks), and complex computational tasks.

The factor loadings of the three first-order factors that corresponded to basic, 
arithmetic and flexibility to the second-order factor were extremely high (ranging 
from 0.90 to 0.92), indicating that a higher-order general ability that refers to stu-
dents’ rational number sense could explain very accurately students’ variances in 
these three types of situations (basic, arithmetic, and flexibility). The three first-
order factors had almost the same prediction validity on the higher order factor 
rational number sense, indicating that the three factors are equally important. In 
particular, the r2 of basic rational-number sense was 0.84, the r2 of rational number 
arithmetic was 0.85 and finally the r2 of flexibility was 0.81.

Profiles of rational number sense students

Latent profile analysis was used to identify categories of students based on responses 
to a series of continuous variables, by applying a stepwise method. To do so, we 
used the 16 observed variables of our model as indicators. BLRT and VLMR tests 
showed that the three-class model was most appropriate, as a four-class model was 
not better than the three-class model. A three-class model means that there are three 
distinct groups of students within the total sample of the study that share similar 
response patterns on the observed variables. Entropy for this model was 0.93, and 
the posterior probabilities for the classes showed that the model had high agreement 
with regard to placing most individuals clearly into a particular class (all latent class 
probabilities > 0.97).

Table 2 presents the means and standard deviations of the three classes of stu-
dents in the three rational number sense factors and the observed indicators. Class 
1 (n = 124) students exhibited a limited basic rational number sense (M = 0.28, 
SD = 0.11) and poor arithmetic (M = 0.17, SD = 0.09) and flexibility (M = 0.07, 
SD = 0.06). Class 2 (n = 177) students had a quite satisfactory performance in 
basic rational number sense (M = 0.62, SD = 0.11), limited arithmetic sense 
(M = 0.36, SD = 0.14), and poor flexibility (M = 0.17, SD = 0.10). Class 3 (n = 59) 
students were strong in basic rational number sense (M = 0.82, SD = 0.09), quite 
satisfactory in arithmetic (M = 0.64, SD = 0.16), and limited to moderate in 
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flexibility (M = 0.46, SD = 0.16). Labels were assigned to the latent classes based 
on an interpretation of the quantitative results.

Class 1 students could respond to a limited extent to basic tasks and rep-
resented the Limited Basic Sense profile. Class 2 students had above average 
performance in basic sense and a limited arithmetic sense; therefore, they 
represent the Basic Emergent Arithmetic Sense profile. Finally, Class 3 was 
the only group of students that exceeded the average performance in basic 
and arithmetic sense and approached 50% in the flexibility factor, indicating 
a Flexible Emergent Rational-Number Sense profile. There appeared to be a 
hierarchy in the three profiles suggesting that: basic sense can exist without 
the other two types, but the reverse does not occur, and basic and arithmetic 
are necessary, but not sufficient for flexible-emergent sense. In the same way,  
basic is necessary, but not sufficient for arithmetic. To explore the features of 
students’ responses that might provide an insight into the characteristics of each  
latent profile, Table  2 presents the mean value of each profile of students in 
the observed indicators. In the following section, we describe extensively the 
characteristics of each latent profile.

Table 2  Mean values of the three profiles in the factors and the indicator variables

x̅: 0 < ◔ < .25, 0.25 < ◓ < 0.50 0.50 < ◕ < 0.75 0.75 < ● < 1

Factor Indicator Profile 1
mean

Profile 2
mean

Profile 3
mean

Basic rational-number sense ◒ 0.28 ◕ 0.62 ● 0.82
Density ◔ 0.14 ◕ 0.50 ● 0.75
Magnitude ◔ 0.19  ◕ 0.50 ● 0.82
Comparison ◒ 0.38  ◕ 0.71 ● 0.90
Knowledge ◒ 0.37  ◕ 0.58 ◕ 0.70
Counting ◒ 0.28  ◕ 0.57 ● 0.83
Converting ◒ 0.43 ● 0.88 ● 0.96

Rational number arithmetic ◔ 0.17 ◒ 0.36 ◕ 0.64 
Operations
-Additive ◒ 0.40  ◕ 0.71 ● 0.89
-Multiplicative ◒ 0.29  ◕ 0.52 ◕ 0.70
Short problems ◔ 0.22 ◒ 0.35 ◕ 0.57
Story problems ◔ 0.04 ◒ 0.18 ◕ 0.61
Mental calculations/estimation ◔ 0.16 ◒ 0.36 ◕ 0.64
Effect of operations ◔ 0.16 ◒ .28 ◕ 0.63

Flexibility ◔ 0.07  ◔ 0.17 ◓ .46
Patterns ◔ 0.13  ◒ 0.32 ◕ 0.67
Covariation ◔ 0.03  ◔ 0.13 ◓ 0.33
Functions-particular ◔ 0.02  ◔ 0.11 ◓ 0.42
Functions-general ◔ 0.02  ◔ 0.10 ◓ 0.40
Complicated computations ◔ 0.12  ◒ 0.25 ◕ 0.51
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Limited basic rational number sense profile

Students that fit is this profile had in overall limited basic rational-number sense. 
In particular, they had a limited performance in comparison, knowledge, counting 
and converting tasks (0.25 < x̅ < 0.50). Their highest score was in tasks that required 
converting decimal numbers to fractions and vice versa. They exceeded 50% only in 
the task that required converting a fraction to a decimal with a ‘10’ as denominator 
and performed better in converting decimals to fractions than fractions to decimals. 
In the comparison tasks, they exceeded 50% only in the tasks that requested compar-
ing two numbers and had an extremely poor performance in the task that requested 
to find the closest number to a given one from a set of numbers. In the knowledge 
tasks, students had a satisfactory performance only in the task that required recog-
nizing a visual representation of a fraction. In the counting tasks, students had a sat-
isfactory performance only in the task that involved counting-on following a decimal 
pattern. Students’ performance in the density and magnitude tasks was extremely 
poor (x̅ < 0.25). For instance, only 9% and 5% of this group provided a number 
between 1/8 and 2/8 and ¼ and 1/5, respectively. In the case of decimals, only 15% 
of this group provided a number between 4.69 and 4.7, indicating that they had dif-
ficulties understanding the density of rational numbers, independently of a number’s 
format. In respect to arithmetic sense, students of this class exhibited a limited per-
formance only in operations. In particular their mean performance in additive opera-
tions was 0.40, while in the multiplicative tasks was 0.29. For instance, 74% could 
subtract fractions with the same denominator, 38% with the different denominator, 
and only 24% could subtract a fraction from an integer. In the case of decimals, 47% 
subtracted decimals numbers with the same number of decimal points, and only 34% 
subtracted a number with two decimal points from a number with one decimal point. 
In the multiplicative tasks, 17% responded to the multiplication 0.5x3.8 and 19% 
to the division 2.5 ÷ 0.25 that required conceptual understanding or identifying the 
structure and the relations between the involved numbers. In the flexibility factor, 
students’ performance was poor in all types of tasks.

Basic emergent arithmetic sense profile

Students of this profile exhibited an overall satisfactory basic rational number sense, 
a limited arithmetic sense and poor flexibility sense. In particular, they over exceeded 
50% in all types of basic tasks. Their highest score was in the converting tasks 
(M = 0.88) and performed quite good in the comparison tasks (M = 0.71). Their mean 
performance in the ordering tasks and the simple comparison tasks was over 0.85, 
but their mean value in the tasks that the comparison included multiple numbers was 
only 0.30. In respect to counting, they counted on or down successfully in the tasks 
that involved decimals and made mistakes in the tasks that included mixed numbers. 
In the knowledge tasks, students easily identified visual representations of fractions 
(M = 0.92), transformed symbolic to verbal and vice versa forms of rational numbers 
(M = 0.64), but failed to provide different representations of numbers (M = 0.26). 
Students performance in the density and magnitude tasks was just 0.50. In particu-
lar, they exceeded 50% in the tasks that required placing numbers on a number line 
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(M = 0.65), but did not respond adequately in the tasks that required identifying num-
bers on a number line. In the density tasks, their mean score was over 50% in the 
tasks that included decimals and lower than 50% in the fraction ones.

In respect to the arithmetic factor, students’ overall performance was below 50%. 
However, students of this profile exceeded 50% in operations (MAdditive = 0.71 and 
MMultiplicative = 0.52). Their mean score in the short problems was 0.35, because they 
failed in the multiplicative structure problems. In addition, their score in the men-
tal calculation/estimation tasks was 0.36 because their performance in the division 
tasks was extremely low. That was also valid for the story problems and the tasks 
that required conceptualizing the effect of operations on numbers. Overall, students’ 
arithmetic profile could manage operations with rational numbers and short prob-
lems with arithmetic structure. That is the reason we considered that this group of 
students exhibited an emergent arithmetic sense. In respect to the flexibility tasks, 
their overall performance was extremely weak. Besides patterns and complicated 
calculations tasks that their mean score was 0.32 and 0.25, respectively, their perfor-
mance was around 10%. It is worth mentioning that in the task that required posing 
a pattern by selecting numbers from a given set, some students of this group pro-
vided patterns with underlying structure based on either additive or multiplicative 
rule using whole numbers (e.g., add 1 or multiply by 2), or an additive rule using 
decimals/fractions (e.g., add 0.5).

Flexible emergent rational number sense profile

Students of this profile had a strong basic rational number sense, quite strong arith-
metic sense, and almost sufficient flexibility sense. In particular, students of this 
profile had strong or moderate performance in all types of basic tasks. A distinctive 
characteristic compared to the other profiles is the fact that they succeeded in the 
comparing task that involved finding the closest number to a given one among a 
group of numbers (M = 0.65), in the number line identification task (M = 0.73), in 
the fraction-density task (M = 0.72), and in multiple representations and interpreta-
tions of rational numbers, by providing in an average 2.7 representations/interpreta-
tions for each rational number.

Students’ arithmetic sense was quite strong and especially in operations (MAdditive = 0.89 
and MMultiplicative = 0.70). In addition, compared to the students of the two other profiles, 
they responded adequately to short problems (M = 0.57) and the story ones (M = 0.61). 
They had a quite satisfactory performance also in mental calculation/estimation tasks. For 
instance, in the two tasks that asked whether a multiplication/division provides a result 
greater/smaller or equal to one of the terms of the calculation, not only they answered 
correctly but half of them provided a conceptual explanation. For instance, they explained 
that 51 ÷ 1 equals 51, so 51 ÷ 0.95 gives a quotient bigger than 51 as a number smaller 
than 1 is more than 51 times smaller than 51. That was also valid in the completing equa-
tions, equalities and inequalities tasks (M = 0.63). Thus, students’ arithmetic profile was 
comprehensive and multi-dimensional as students succeeded not only in simple opera-
tions or short problems (compared to students of the other profiles), but also in tasks that 
require conceptual understanding of arithmetic, such as estimation, reasoning on calcula-
tions and understanding the effect of the operations on numbers.



1 3

An empirically validated rational number sense framework  

Students’ flexibility sense was moderate as their mean performance approached 
50% (M = 0.46). As Fig. 3 suggests, students of this group exhibited a different pro-
file compared to the other groups in respect to all flexibility tasks. For instance,  
in the patterns and the complicated calculations tasks their performance exceeded 
50%. Sixty-three percent of the students of this group provided at least two pat-
tern extension tasks and the associated rule, and 46% of them provided three pat-
terns. Students’ performance just over exceeded 50% in the complex computational 
tasks. In the number sentence production task, 51% of the students produced at 
least three correct number sentences, while in the second computational task, 70% 
of the students managed to create 3 or 4 groups with sum less than one. Students’ 
mean performance in the two types of functional tasks was 0.42 and 0.40, but they 
approached 70% in the task with an additive functional rule and 20% in the task 
with a multiplicative rule. Finally, in the covariation tasks, about 35% of the stu-
dents posed at least three appropriate questions in the table-covariation tasks, and 
32% responded successfully to covariation questions based on interpreting a graph. 
Thus, students exhibited a flexible emergent rational number sense profile as they 
responded adequately to a variety of tasks. Their main obstacles were traced in 
manipulating multiplicative relations, either in identifying pattern rules or func-
tional relations. For example, in identifying the rule “multiply by 3

2
 ”, in the pattern 1

4
 , 

1

6
 , 1
9
 , 2
27

 and so on.

Rational number sense factors discriminating among students based on their 
rational number sense profile

To address the third research aim, after classifying students into three rational 
-number sense profiles, a discriminant function (DF) analysis was conducted which 
produced two discrimination functions. The first function (DF1) distinguished the 
limited-basic profile from the other two profiles, while the second function (DF2) 
distinguished between basic-emergent arithmetic and flexible-emergent profiles. 
The significance of Wilks’ lambda indicated that both functions were statistically 
significant (p < 0.001).

Fig. 3  Mean performance of the three profiles in the flexibility tasks



 M. Pittalis 

1 3

The eigenvalue that emerged indicated that the first function accounted for 94% 
of the variance, and the second discriminant function explained the rest of vari-
ance (6%). Canonical correlations were 0.92 and 0.50 for the two discriminant fac-
tors, indicating that 85% and 25% of variances were explained by the relationship 
between predictors and group membership by DF1 and DF2, respectively. Because 
the variance explained by DF2 was smaller than 50%, only the factors that distin-
guished among the limited basic profile from the other two profiles were investi-
gated. In addition, as can be inferred from Table 3, the percentage of students who 
were correctly classified was 88.6% (students on the diagonal). Forty-one students 
were misclassified: off-diagonal students (number of students that were not correctly 
classified based on the predictive model). As Table 4 suggests, DF 1 had the largest 
relationship with basic rational-number sense, followed by flexibility and arithmetic. 
Based on the canonical DF coefficients, the following DF (equation) was extracted:

Discussion

The results of the study advance rational number sense literature by validating 
that rational number sense is a general construct that can be described as a syn-
thesis of three distinct but interrelated components, namely, (a) basic rational-
number sense, (b) rational number arithmetic, and (c) flexibility with rational 

D = (6.70 × Basic NS) + (1.98 × Arithmet. NS) + (5.95 × Flex. NS) − 5.72

Table 3  Classification results of rational number sense profiles

Percentages were calculated by taking the ratio of the number of students who were classified in each 
category to the total number of students (N = 360)

Predicted group membership

Profiles of students Limited-basic Basic-E.A Flexible emergent Total

Limited-basic 94 (26.1%) 30 (8.3%) 0 (0.0%) 124 (34.4%)
Basic-E.A 2 (0.6%) 173 (48.1%) 2 (0.6%) 177 (49.2%)
Arithmetic-E.R.S 0 (0.0%) 7 (1.9%) 52 (14.4)% 59 (16.4%)
Total 96 (26.7%) 210 (58.3%) 54 (15%) 360 (100%)

Table 4  Structure matrix based 
on analysis of rational number 
sense profile

a Function 2 is not presented in the table as it was found to explain 
less than 50% of the variance

Rational number sense factor Function  1a

Basic rational number sense
Rational number arithmetic
Flexibility with rational numbers

0.754
0.503
0.523
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numbers. The analysis showed that the three components had equal predictive 
validity on the general construct of number sense. Although the three compo-
nents within the framework represent relatively separate dimensions, we argue 
that basic rational number sense, rational number arithmetic, and flexibility must 
be woven together since analysis showed that a model assuming the existence of 
a higher-order factor had a better fit than a model without a second-order factor. 
The innovative aspect of the proposed model is the fact that, besides the well-
described components of rational-number knowledge and arithmetic, it includes 
the flexibility component that models students’ variances in rational number 
situations with patterns, functions, covariation, and complicated computational 
tasks. This dynamic framework highlights a student’s awareness in terms of relat-
ing numbers and recognizing and manipulating additive and multiplicative struc-
tures and avoiding unnecessary computational procedures in steps (Jacobs et al., 
2007; Mason, 2021).

The proposed model provides a comprehensive description of rational-number 
components. First, ‘basic rational-number sense’ enriched foundational compo-
nents of number sense identified by existing frameworks (see Jordan et al., 2007; 
Mcintosh et  al., 1992) with important aspects of rational-number knowledge, 
such as density structure and number-line ordering and estimation. The model 
provides an explicit basic number sense conceptualization that reflects accurately 
7th grade students’ capacity to handle a variety of number tasks that are usu-
ally used in upper primary and secondary school activities. Second, ‘rational-
number arithmetic’ describes the arithmetic dimension of number sense under 
a new theoretical lens as we extended Jordan et al.’s conception of the arithme-
tic factor (2022) and incorporated students’ capacity to understand the relative 
effect of operations on numbers and make estimations flexibly (Bütüner, 2018; 
González-Forte et  al., 2022; Yang et  al., 2008). The flexibility factor reflects 
a well-connected system of numerical characteristics and arithmetic relations 
among rational numbers and is in line with the epistemological nature of rational 
numbers (Elias et al., 2020). Further, the validated structure of rational-number 
sense provides strong support to Mason’s (2018) assertion that to gain facility 
with numbers, is to think algebraically, even if not explicitly, since flexibility 
reflects the algebraic nature of number sense. Further, it responds to previous 
studies claiming that number sense and algebraic thinking work hand in hand as 
foundation for algebra courses (Piriya et al., 2019). This is a critical stepstone for 
7th grade students’ smooth transition to algebra.

The second aim of the study was to identify categories of students with dif-
ferent rational number sense profiles. Analysis showed the existence of three 
profiles of students that describes different ways of rational number sense and 
clarifies distinctions between students with different profiles. The three profiles 
of students are hierachical in terms of students’ performance in the various com-
ponents of number sense and they also represent qualitive characteristics. Par-
ticularly, students in the first profile exbibit limited basic rational number sense. 
They manage only procedural and traditional school-based tasks. This profile 
of students is in line with a vast number of research studies (Siegler & Lortie-
Forgues, 2017; McIntosh et al., 1992; Van Hoof et al., 2018; Yang et al., 2004) 
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and NAEP (National Assessment of Educational Progress) findings suggesting 
that fractions and decimal numbers pose large difficulties for many students, 
even for eight graders. Further, it corresponds to Van Hoof et  al.’s (2018) ini-
tial natural number-based concept of a rational number for upper elementary 
school learners that includes mainly a good understanding of decimal numbers. 
Students of the second profile exhibit a satisfactory basic-rational number and 
limited arithmetic sense. They represent an arithmetic-emergent sense profile, 
as students’ satisfactory density, magnitude, and comparison sense (compared 
to the students of the first profile) seems to facilitate flexibility in operations 
(additive and multiplicative). This profile reflects ‘emerging operations’ state 
and is line with the research claim that once learners have a good understanding 
of the size of rational numbers, they can also develop a good understanding of 
operations with rational numbers (Van Hoof et al., 2018).

Finally, students of the third profile had strong basic and quite strong arithmetic 
rational number sense and marginally sufficient flexibility sense. Students of this 
profile could respond partially to tasks that required noticing and manipulating addi-
tive and multiplicative structures. This profile could be considered more advanced 
compared to the ‘emerging operations’ state, identified by Van Hoof et al. (2018). 
That is because, besides strong dense structure and arithmetic understanding, it 
entails flexibility with underlying structures and computational efficacy. Rational-
number sense of this profile could be characterized as strong, effective, relational, 
and adaptive, as it responds effectively to a broad range of typical and nontypical 
situations (Bütüner, 2018; McMullen et  al., 2020). Again, students of this profile 
manipulate more effectively functional relations or patterns with additive than mul-
tiplicative structure, as suggested by Siegler and Lortie-Forgues (2017). In conclu-
sion, this profile of students represents an emergent fundamental shift from an arith-
metic focus to an algebraic focus (Jacobs et al., 2007).

The importance of the proposed construct ‘flexibility’ was corroborated by the 
results of a discriminant analysis that identified influential factors that discriminate 
students best between the three identified profiles of rational number sense. Particu-
larly, analysis showed that students’ performance in the three components of the pro-
posed model could predict distinguishing them based on the rational-number sense 
profile. Further, basic and flexibility factors could better discriminate among limited 
basic and the other two profiles of students. Having in mind the arithmetic-emergent 
and the strong-arithmetic nature of the two profiles, we could argue that the level 
of students’ basic and flexibility sense contributes to further developing arithmetic 
skills. Thus, besides basic number sense, the development of the core ingredients of 
the flexibility factor might become the catalyst for the further development of num-
ber sense in general. This finding advances the argument that good understanding 
of the size of rational numbers leverages developing a good understanding of opera-
tions with rational numbers and arithmetical operations contain an algebraic dimen-
sion (Mason, 2018; Van Hoof, 2018).
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Undoubtedly, the above research findings should be interpreted in the light 
of four study limitations. First, the proposed model is highly dependent on the 
adopted theoretical models regarding the definitions and conceptualizations of 
number sense and rational number knowledge and the tasks used. Second, the 
validity of the model was examined in the context of two countries with similar 
educational background. Third, an important limitation of the study is the exclu-
sive use of quantitative research techniques. The use of qualitative data may have 
offered further insight into the identified rational number sense profiles of stu-
dents by analyzing students’ processes and reasoning. A future longitudinal study 
could explore the invariance of the model over time, in different populations or 
more elaborated models that control the effect of cognitive factors. Further, a 
qualitative study or a mixed-design study might shed light to students’ number 
sense thinking processes, strategies, conceptual and procedural knowledge, cog-
nitive or other obstacles in developing flexible rational-number sense. Finally, it 
would be important to investigate the teaching parameters involved in the further 
development of number-sense, and the description of a research-based teaching 
trajectory in terms of the three components, based on well-established epistemo-
logical and methodological criteria.

Conclusion

Despite the fore-mentioned limitations, the study findings have theoretical and 
practical implications. At a theoretical level, the study findings can be used to 
reconceptualize the construct of number sense for the case of rational numbers, 
by describing its components in an explicit way. The refined rational number 
sense framework is a unifying construct between numbers, arithmetic, and alge-
bra. At a practical level, the proposed model offers educators a means to exam-
ine the complexity and multi-dimensionality of number sense. It exemplifies 
the importance of developing students’ rational number sense through teaching 
activities that involve a large variety of number sense situations. There is a need 
of activities that explore relations between and among numbers and prioritize 
key aspects of basic number sense for rational numbers, such as magnitude and 
dense structure. Given that rational numbers are an extensive topic, a structural-
oriented teaching would provide students the opportunity to revisit time and time 
again many of the same rational number understandings in previous years. That is 
to focus on the structure of numbers by investigating key aspects such as proper-
ties of numbers, composing and decomposing, number patterns, and developing 
a habit of mind to see and search for structure even in simple calculations. For 
instance, 0.8 ÷ 0.02 can be interpreted as how many times bigger is 8 tenths than 
2 hundredths, or as how many times bigger is 8 than 2 tenths or 80 than 2, mak-
ing explicit in this way the multiplicative relation between the two given numbers 
and different meanings of division.
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