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Abstract
Due to the learning paradox, students cannot have real difficulty in understanding a 
mathematical concept that they have not yet understood. There is a gap between real 
difficulties, directly experienced by students, and illusionary ones, only observed 
by researchers. This paper aims to offer a critical reflection on our understanding of  
the term difficulty in mathematics education research. We start this paper by argu-
ing that a constructivist perspective, which has often been adopted in researches 
on mathematical task design, can deal with difficulties in solving a mathematical 
problem, but it cannot theoretically deal with those in understanding a mathematical  
concept. Therefore, we need the alternative philosophy of Robert Brandom’s infer-
entialism to capture students’ real difficulties in conceptual learning. From an infer-
entialist perspective, we introduce the idea of illusionary and real difficulties. The 
former is defined as what students cannot do, but they are not conscious of what 
they should do, while the latter is defined as what students cannot do despite their 
consciousness of what they should do. Through an eighth grade classroom episode, 
we argue that it is important in mathematics education research to focus not only 
on illusionary difficulties but also on the transition from illusionary to real difficul-
ties. Researchers are encouraged to design a learning environment in which students 
become conscious of what they cannot do and to observe their mathematics learning 
in such an environment.
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Introduction

Mathematics education research aimed at improving mathematics teaching and 
learning has often had an interest in educational support for resolving students’ 
difficulty in conceptual understanding (e.g., Simon, 2016, 2017a, b). Researchers 
have reported difficulties in understanding various mathematical concepts. As a 
classic example, Nesher (1987) reported a misconception of decimal numbers: 
Some elementary students overgeneralize the properties of natural numbers (e.g., 
longer numbers are larger) for decimal numbers. Nesher (1987) remarked that it 
would be “very difficult for [students] to give up their misconceptions”(p. 36). 
Like this, we have essentially regarded the understanding of the correct concept 
as difficult. However, when we discuss such examples of misconceptions, we use 
the concept of difficulty only intuitively. For example, why do we choose to say 
that understanding the concept of decimal numbers is difficult for elementary stu-
dents? If the misconception Nesher reported stems from the overgeneralization 
of the properties of natural numbers, we may also say that real difficulty lies in 
understanding that the properties hold only within a limited domain. If we are 
allowed to choose a theoretical perspective suitable for our own interest (Cobb, 
2007), does an arbitrarily chosen theoretical perspective (and thus our own inter-
est itself) determine what is difficult? Or should we always try to grasp multifac-
eted images of difficulty in understanding mathematical concepts from multiple 
angles through a networking strategy? (Prediger et al., 2008).

The purpose of this paper is to make a critical argument of our understanding of 
the term difficulty in mathematics education research, from an emerging philosophy 
of Brandom’s (1994, 2000) inferentialism (e.g., Bakker & Derry, 2011; Derry, 2008; 
Uegatani & Otani, 2021). The remainder of this paper proceeds as follows. First, 
we point out the invisibility of difficulties in understanding mathematical concepts 
from a constructivist perspective. Second, consideration of consciousness is needed 
to capture the real difficulty from a student’s perspective. Third, we introduce the 
philosophy of inferentialism, which has received attention in mathematics education 
research. Fourth, we define real and illusionary difficulties. Fifth, we illustrate the 
transition from illusionary to real difficulties in our classroom episode through an 
inferentialist analysis. Sixth, using this episode, we compare constructivist and infer-
entialist perspectives. Finally, we conclude that the abovementioned misconception 
is just illusionary difficulty and that the transition from illusionary to real difficulty 
is essential for conceptual learning in mathematics.

Invisibility of difficulty in learning mathematical concepts 
from a constructivist perspective

To some extent, difficulties in understanding mathematical concepts seem to 
stem from the so-called learning paradox (Bereiter, 1985; Cobb et  al., 1992). 
One of the most easily understandable formulations of the learning paradox was 
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proposed by Sfard (1998): “How can we want to acquire a knowledge of some-
thing that is not yet known to us? Indeed, if this something does not yet belong 
to the repertoire of the things we know, then, being unaware of its existence, we 
cannot possibly inquire about it” (p. 7). From this point of view, especially if 
we introduce a distinction between a mathematical concept (a mathematical idea 
in a community) and a mathematical conception (a subjective counterpart of the 
concept), like Sfard (1991) and Simon (2017a), it is not rational to assume that  
a mathematical concept ontologically independent from students directly influ-
ences their mental construction of the corresponding mathematical conception. In 
fact, it is strange that the concept of decimal numbers, which has yet to exist in a 
complete form in one’s head, obstructs one’s appropriate mental construction of 
decimal numbers. For the same reason, it is also strange that the concept of natu-
ral numbers tends to encourage one to construct the properties of natural numbers 
in an easily over-generalizable way. In this sense, if we treat a mathematical con-
cept as an existential entity, it is theoretically impossible that a systematic mis-
conception of a concept emerges, depending on the concept.

As a theoretical means of resolving this paradox, a constructivist tradition of 
learning mathematics has emphasized the importance of reflection on the process 
of solving mathematical problems, thereby adopting a problem-solving approach to 
the acquisition of a new concept. In one of the most famous examples, Sfard (1991) 
argued that a new algebraic object could emerge from a process of already known 
calculation. Since any mathematical activity does not necessarily contribute to 
learning an intended concept, constructivist task design principles are informed by a 
French didactic assumption that any concept emerges as a rational solution from an 
appropriate problematic situation (Brousseau, 1997; Brousseau & Warfield, 2014). 
Such a problematic situation causes perturbation, which makes a particular piece of 
knowledge meaningful (Harel, 2013). Based on this assumption, Simon and Tzur 
(2004) illustrated that reflective abstraction on the process of finding equivalent 
fractions with diagrams leads to noticing a calculating protocol for finding equiv-
alent fractions. Harel (2013) identified five intellectual needs (i.e., needs for cer-
tainty, causality, computation, communication, and structure) as a key to the devel-
opment of mathematics as a discipline. In constructivist research, it is a shared view 
that a way of mathematical thinking is crystalized as a mathematical concept (Tall, 
2011). The existence of a problematic situation, thus, functions as the raison d’être 
for a mathematical concept. From this point of view, environmental factors inher-
ent in mathematical activities logically constrain the possible mental construction 
of mathematical concepts. Therefore, if a misconception emerges in an appropriate 
mathematical problem-solving activity despite our theoretical expectation, it must 
originate from the activity rather than from the concept. It is a problem-solving 
activity, not a solution to the problem, which is accessible from students’ perspec-
tives during the mental construction of their own conceptions. However, this view 
has at least two problems when used to explain students’ difficulty in learning math-
ematical concepts.

First, the effectiveness of the problem-solving approach cannot directly explain 
what is difficult in learning mathematical concepts. As Simon (2017b) cautions, 
the problem-solving approach for teaching mathematical concepts assumes that a 
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student is a strong problem-solver and that reflection on problem-solving experi-
ences leads to the mental construction of mathematical concepts. It is a fundamen-
tally necessary condition for constructing mathematical concepts that students can 
solve given mathematical problems. Hence, it is assumed that students’ difficulty in 
learning mathematical concepts only resides in solving given problems themselves. 
For example, as a concrete mathematical problem, consider the calculation of the 
sum of all the natural numbers from 1 to 100. Calculating 101 × 50 is more effi-
cient than direct addition. There is an intellectual need for calculation in Harel’s 
(2013) sense. Solving this problem can provide students with opportunities to reflect 
on their efficient use of associative and commutative laws and to deepen their con-
ceptual understanding of some aspects of natural numbers. However, we do not 
know how students can reach this efficient solution. Success in solving the problem 
depends heavily on trial and error. It is due to this dependent relationship that Simon 
(1995) wittily argues “The only thing that is predictable in teaching is that class-
room activities will not go as predicted” (p. 133). In addition, supporting students 
is not easy for teachers. When some students give up solving the problem, if the 
teacher provides them with some impolitic hints to an efficient method of calcula-
tion (for example, questioning “How many 101 s can you make?”), then the math-
ematical idea of rearranging augends and addends to be taught may be inaccessible 
from students’ points of view. This phenomenon is well known as the Topaze effect 
in French didactics (Brousseau, 1997). Thus, the problem-solving approach does not 
offer any explanation of what is difficult for students in learning mathematical con-
cepts except for a trivial one: They have difficulty in finding the key mathematical 
concepts to solve problems.

Second, as the above example of the sum of the natural numbers from 1 to 100 
indicates, the problem-solving view implies that a mathematical activity develops 
only a limited aspect of a mathematical concept. A mathematical conception devel-
ops through the accumulation of various mathematical activities. Although an effi-
cient technique related to the associative and commutative laws is underdeveloped 
before the current mathematical activity for calculating the sum of 1 to 100, some 
students become ready to find the technique through the encounters with the two 
laws in previous mathematical activities, while others do not. This indicates the pos-
sibility that the difficulty in solving a particular problem stems not from the problem 
itself but from the previous activities. However, the problem-solving approach does 
not provide a theoretical framework for conjecturing how students can develop key 
mathematical ideas for the current activity through previous activities. In addition, it 
cannot predict how they develop key ideas for the next activity through the current 
activity. We should understand the problem-solving approach as a merely theoreti-
cal approach that uses various practical cognitive constrains to help students learn a 
given specific concept. It is less concerned with conceptual development in uncon-
strained environments.

This problem may stem from the constructivist metaphor of construction. This 
metaphor indicates that understanding is seen as building new mental structures for 
newly arrived perceptions (e.g., the first encounter with the associative and commu-
tative laws) or restructuring products of previous construction (e.g., new encounters 
with the two laws in different applicable contexts) (Ernest, 2006). Constructivists 
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assume that knowledge built by students’ active construction is tested as viable 
through environmental constraints (von Glasersfeld & Cobb, 1984). The accept-
ance of this assumption in mathematics education research is based on findings in 
research on misconceptions (Confrey & Kazak, 2006): Because students often con-
ceptualize something in idiosyncratic manners, they need some constraints to notice 
the ways of more rational conceptualization. We acknowledge that this constructiv-
ist view has contributed to the research on mathematical conceptions. However, the 
view itself does not provide any explanation for students’ difficulties in learning 
mathematical concepts. It accepts as natural, rather than as problematic, the fact that 
students often conceptualize mathematical ideas differently from standard concep-
tualization in school mathematics. Thus, difficulty shifts from students’ learning to 
teachers’ task design for imposing appropriate constraints. The constructivist view 
fails to explain the difficulties that students have in learning mathematical concepts. 
In this sense, those difficulties are invisible from the constructivist perspective.

Difficulty and consciousness: impossibility of feeling difficulty 
in understanding a mathematical concept

The invisibility of the difficulty in constructivism is advantageous in a sense.  
Constructivists apply their views to their own activities. Constructivist teachers  
and researchers are also active builders of their own knowledge (Steffe, 1995; 
Thompson, 2000; Ulrich et  al., 2014). Thus, if students do not learn mathematics 
well, teachers and researchers must try to improve their learning. We can say that 
this view appropriately reflects the very nature of teachers as reflective practitioners 
(Jaworski, 2014; Schon, 1984).

The important implication of this constructivist view is that the concept of dif-
ficulty is related to consciousness. When one consciously attempts to do something 
but cannot do it, one can find it difficult. A problem-solving approach in a construc-
tivist tradition is a way of making students conscious that it is difficult for them to 
solve the problem by using their prior knowledge. This is why the problem func-
tions as a raison d’être for the target concept. von Glasersfeld (1995) distinguishes a 
higher order conscious type of reflective abstraction from the other types, and calls 
it reflected abstraction. However, the difficulty is not in understanding the target  
concept but in solving the problem. The layer of difficulty is different.

From this perspective, we should be careful about the way we use the term dif-
ficulty. In everyday discourses, when we observe that one cannot do something, we 
may say that one has difficulty in doing it. However, this situation needs to be dis-
tinguished more precisely. Suppose that even if one is conscious of what one should 
do, one cannot do it. Then, we can confidently say that one has difficulty in doing 
it. However, if we only observe that one cannot do it, then it might be inappropriate 
to say that one has difficulty in doing it. For example, even if we observe that some 
European people eat Japanese food with forks, we do not immediately conclude 
that they have difficulty using chopsticks. To conclude so, we must at least know 
that they consciously avoid using chopsticks. If they do not know about chopsticks 
as a way of eating Japanese food, there is no evidence of their difficulty in using 
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chopsticks. It is possible that one does not precisely and consciously understand 
what one is expected to do.

The same holds true for learning mathematics. Consider again a mathematical 
activity for calculating the sum of 1 to 100. At the beginning of the activity, one can 
become conscious that one should calculate the sum efficiently. However, one can-
not become conscious that one should calculate the sum by using the associative and 
commutative laws in advance. As this example indicates, one’s initial consciousness 
of the goal of a mathematical activity does not match what one should actually do 
in the activity. The perceived goal is relatively vague at the beginning of the activ-
ity. Through trial and error in the activity, one gradually becomes conscious of what 
one should really do. Therefore, if we observe that one tries to solve a given problem 
but cannot solve it immediately, then we can roughly say that one has difficulty in 
solving it; however, we cannot say that one has difficulty in using a particular math-
ematical idea when one tries to solve the problem. In this sense, students can never 
find it difficult to conceptualize mathematical ideas.

This argument may be counterintuitive since we all have some experience of 
feeling difficulty in understanding a mathematical concept in our schooldays, to a 
greater or lesser extent. However, the above argument is theoretically acceptable. 
When students find it difficult to understand a mathematical concept, their feeling 
does not indicate a real difficulty in understanding the concept; otherwise, the learn-
ing paradox occurs. Rather, we should more precisely say that it is difficult for them 
to construct a consistent conception. What they can actually try is only to construct 
a consistent conception. Even if they succeed in constructing a consistent one, they 
can never confirm that it matches the concept as a whole. Owing to the learning 
paradox, they cannot try to understand the concept precisely in principle.

This theoretical argument does not mean that we, educators and researchers, must 
stop inquiring about students’ difficulties in learning mathematical concepts. The 
argument does not eliminate the fact that many students intuitively intend to under-
stand a mathematical concept but often cannot succeed in understanding it. There-
fore, a different perspective is needed that allows us to speak about the cases where 
students understand the relevant aspects of the target concepts and yet fail to do what 
they are expected to do with that understanding. In the following two sections, we 
introduce a philosophical perspective of inferentialism and, from this perspective, 
conceptualize a difference between real and illusionary difficulty.

Inferentialism

As we argued in the previous section, one gradually comes to understand what one 
should do by trial and error in a mathematical activity. In the following way, we 
can interpret the fact that many students intuitively try to understand a mathematical 
concept; they can only seemingly try to do so because the meaning of understanding 
the concept is vague for them. In this section, we introduce inferentialism so we can 
explain the fact that many students try to understand a mathematical concept.

Inferentialism was originally proposed by Brandom (1994) to provide an alternative 
paradigm to representationalism. Representationalism is a philosophical position that 
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attempts to explain the meaning of words and the nature of cognition based on represen-
tational relations between words and their meanings. For example, when one claims, “I 
try to understand the concept of natural numbers,” representationalists (particularly those 
who are concerned with mathematics learning) may think that “the concept” in the claim 
represents one’s mental image of the concept. However, this view leads to a contradiction, 
that is, the learning paradox: One only knows the term natural number; before under-
standing what the concept of natural number represents, one cannot try to understand it.

Inferentialism is a contemporary philosophy that builds semantics on pragmatics 
(Brandom, 1994, 2000) and a critical position against representationalism (Bakker 
& Derry, 2011; Brandom, 2000). Inferentialism has gradually gained attention in 
educational research, for example, in history (McCrory, 2021), in science (Causton, 
2019), and mathematics (e.g., Bakker & Hußmann, 2017; Nilsson, 2020; Ryan & 
Chronaki, 2020; Seidouvy et al., 2019; Seidouvy & Schindler, 2020).

In inferentialism, the order of explanation for meaning is the reverse of the tradi-
tional order, which representationalists and some old expressivists adopt. Inferen-
tialists do not see one’s expression in a public domain as a sign of one’s understand-
ing in one’s private domain. Instead, they see one’s expression in a public domain as 
what one understands.

[W]e might think of the process of expression in the more complex and inter-
esting cases as a matter not of transforming what is inner into what is outer 
but of making explicit what is implicit. This can be understood in a pragmatist 
sense of turning something we can initially only do into something we can say: 
codifying some sort of knowing how in the form of a knowing that. 

(Brandom, 2000, p. 8, italics in the original)

In philosophy of language, Brandom introduces a distinction between what  
is implicit and explicit in social communication. An educational philosophy of  
inferentialism for mathematics education follows this stance and avoids considering the 
private mental constructions of learners, turning instead towards their norm-governed  
activity in applying concepts. Since a private mental state is vague, fragile, and  
uncertain, we assume that one deepens one’s understanding through expressing. This 
theoretical assumption is characterized as a kind of sociogenetic approaches (Radford, 
2009; Roth, 2016; Roth & Thom, 2009). Conceptual learning is seen as obtaining the 
practical ability to judge what can be inferred from what.

Figure 1 illustrates the differences between representationalist and inferentialist accounts 
for meanings and conceptualizations. Suppose that the two students, Joe and Kei, talk about 
the triangle ABC: (1) Kei argues, “The triangle ABC is an isosceles triangle”; (2) Joe asks, 
“Why do you think so?”; and (3) Kei will respond, (A) “Because it has two equal sides” or 
(B) “Because it looks like isosceles.” If her response is A, representationalists may think 
that she correctly responds to Joe based on her understanding of what the term isosceles 
triangle means, while if her response is B, they may think that her conceptualization of 
the isosceles triangle is weak. In a representationalist account, it is theoretically assumed 
that her expression “Because it has two equal sides” in a public domain is produced based 
on her understanding of an isosceles triangle in her private domain. The mental state is 
the meaning of the expression. An expression about an idea I is regarded as a fragment of 
the already determined understandings of I. On the other hand, in an inferentialist account 
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based on the use theory of meaning, an act of explicitly expressing about an idea I is theo-
retically interpreted as an act of determining an aspect of understandings of I (Uegatani & 
Otani, 2021). It is important that inferentialists do not look for the meaning of the expres-
sion inside one’s private domain. One’s private mental state is often vague, and thus, unre-
liable even from one’s own perspective. Inferentialists think that conceptualization pro-
gresses in a clear, robust, and conscious form through expressing. Hence, inferentialists 
think that Kei’s conceptualization of the isosceles triangle in a particular situation is deter-
mined by expressing a sentence about an isosceles triangle in a public domain. Her way of 
conceptualizing the isosceles triangle is determined by the response she chooses, A or B. 
Meanings are developed not in the private domain but in a public domain.

From an inferentialist perspective, such a meaning is essentially social rather than 
personal. Choosing an expression means building a foundation of social communi-
cation rather than creating a suitable representation for a personally intended mean-
ing. Since inferentialist semantics is based on pragmatics, the meaning is the role 
played by such a foundation in social communication.

It is at this point that Sellars introduces his central thought: that to have concep-
tual content is just for it to play a role in the inferential game of making claims 
and giving and asking for reasons. To grasp or understand such a concept is to 
have practical mastery over the inferences it is involved in—to know, in the practi-
cal sense of being able to distinguish (a kind of know-how), what follows from 
the applicability of a concept, and what it follows from.

(Brandom, 2000, p. 48, italics in the original)

Fig. 1  Comparison between representationalist and inferentialist accounts for meanings and conceptualization
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Inferentialists understand social communication by using concepts as a game of 
giving and asking for reasons. When one makes a claim C, other interlocuters may 
ask for a reason for C, and one may respond to their challenges by giving such a rea-
son, that is, by asserting another claim from which C follows.

expressing something is conceptualizing it: putting it into conceptual form. I 
said at the outset that the goal of the enterprise is a clear account of sapient 
awareness, of the sense in which being aware of something is bringing it under 
a concept. On the approach pursued here, doing that is making a claim or judg-
ment about what one is (thereby) aware of, forming a belief about it—in gen-
eral, addressing it in a form that can serve as and stand in need of reasons, 
making it inferentially significant.

(Brandom, 2000, p. 16, italics in the original)

Any claim could serve as a reason in the future. It can also stand in need of rea-
sons. Expressing such an inferential relationship between claims (i.e., what can be 
a reason for what) in social communication is conceptualizing particular aspects of 
concepts included in claims.

From this point of view, we assume that, theoretically, all mental states in private 
domains are vague, and thus, there is no clear connection between conceptualization 
and one’s mental state. What is worthy of being called conceptualization of an idea I 
is articulating a relevant ascpet of the idea I by asserting some sentences about I in a 
public domain so that interlocutors can look back on how the articulator understands 
the idea. Articulating works to codify and determine it. To investigate conceptual-
ization, we only need to observe what one infers from what.

As a leading educational inferentialist, Derry (2013) pointed out through the 
review of Spinoza’s and Vygotsky’s thoughts, “we can only be said to be free when 
we are guided by adequate knowledge rather than when we are moved by external 
causes” (p. 92). One can have one’s own free will to intend to do something only 
when adequate knowledge can support one to articulate the intention. “Hence, free 
action is not a matter of choice or volition but of the mind’s activity as opposed to 
its passivity” (Derry, 2013, p. 96). Based on this argument, talking about one’s own 
action explicitly is a necessary condition for becoming able to choose to take the 
action freely.

As Derry (2008) argued, the meaning of a concept depends on a system of judg-
ments, explicitly claiming a statement about the concept is a sign of conceptual 
learning of the concept in inferentialism (Uegatani & Otani, 2021). This view is 
consistent with a recently developed view in mathematics education research that 
knowing when to use a concept is a part of knowing the concept (Lavie et al., 2019; 
Sfard & Lavie, 2005). Although constructivists may see learning as active construc-
tion of knowledge (von Glasersfeld, 1995), we as inferentialists require that learning 
should include not only active construction but also active expression of knowledge 
in a propositional form.

The constructivist problem-solving approach, which assumes that a solution to a 
problematic situation is a source of a new concept, provides the raison d’être of the 
concept. From this perspective, we can treat the concept as if it has tangible presence 
by itself. However, from an inferentialist perspective, pedagogy can be understood 
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“as a process of adjusting the connection of ideas already known but connected dif-
ferently” (Derry, 2013, p. 96). Although a problematic situation is needed as a moti-
vation to rearrange a connection, it does not necessarily cause perturbation in a con-
structivist sense, as reviewed in the earlier section. In inferentialism, a problematic 
situation is always inherent in social communication, that is, a game of giving and 
asking for reasons. A problematic situation arises when one notices that the other’s 
way of using signs (including terms and symbols) in a propositional form is dif-
ferent from one’s own way (for example, when one notices an unusual inferential 
connection between claims and when one notices that the other’s claim includes an 
inappropriate term). A game of giving and asking for reasons is a process of deontic 
scorekeeping, or a process of keeping track of the deontic statuses of interlocuters 
(Brandom, 1994; Derry, 2017). This process holds because all the participants have 
their own system of using signs. Thus, “[i]t was within a system that, for example, 
sensitivity to contradiction was possible” (Derry, 2013, p. 79).

In addition, inferentialism introduces the ideas of material inference and its 
nonmonotonicity.

The kind of inference whose correctnesses determine the conceptual contents 
of its premises and conclusions may be called, following Sellars, material infer-
ences. As examples, consider the inference from “Pittsburgh is to the west of 
Princeton” to “Princeton is to the east of Pittsburgh,” and that from “Lightning 
is seen now” to “Thunder will be heard soon.” It is the contents of the concepts 
west and east that make the first a good inference, and the contents of the con-
cepts lightning and thunder, as well as the temporal concepts, that make the 
second appropriate. Endorsing these inferences is part of grasping or mastering 
those concepts, quite apart from any specifically logical competence.

(Brandom, 2000, p. 52, italics in the original)

Then, a material inference is called monotonic “if the fact that the inference from 
p to q is a good one meant that the inference from p & r to q must be a good one” 
(Brandom, 2000, p. 87). An example of a nonmonotonic inference is as follows: the 
fact that a match is struck (p) implies that it will fire (q); however, the fact p and that 
it is wet (r) does not imply that it will fire (q). People often reach different conclu-
sions (q and ¬ q) based on the same assumption (p) because they implicitly have dif-
ferent assumptions in their heads. Their incompatible conclusions may allow them 
to notice the existence of such implicit assumptions. From an educational perspec-
tive, implicit unarticulated ideas are seen as conceptualized through conversation, 
which fits well into the fundamental view that conceptual development in mathe-
matics proceeds in a zigzag manner, as described by Lakatos (1976). Human cogni-
tion is always restricted by what we can express in a propositional form.
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Real and illusionary difficulties

In this section, we formulate the meaning of difficulty from an inferentialist point of 
view. First, suppose that someone cannot do something from our point of view and 
does not actually intend to do it. We then call this illusionary difficulty. It includes 
cases in which one cannot intend to do it in principle due to the learning paradox.

However, suppose one could not do something at a moment from our perspec- 
tive and that one made explicit that which had to be done at the moment. We 
find a real difficulty in such a situation. When one could not do it and could  
not articulate that one should do it, the difficulty would be illusionary at that 
moment. When one becomes conscious of and articulates what one should do, the 
difficulty becomes real. Since one’s intention in a private domain is vague from 
an inferentialist perspective, it retrospectively becomes clear by expressing one’s 
consciousness in an activity. Therefore, we should theoretically think that real 
difficulty is formed only when one expresses what one should do.

For example, when we only observe that some people stick their chopsticks 
into food like forks, their difficulty in picking up food with chopsticks should  
be considered illusionary. We do not say they stick their chopsticks because they 
misunderstand how to use them. Instead, they understand a pair of chopsticks as a 
tool for such usage. When they explicitly claim that they cannot pick up food with 
chopsticks, their difficulty should be considered real.

These definitions of illusionary and real difficulties have a methodological 
advantage: They exclude the possibly ambiguous cases where students are con-
scious of what they should do but do not express it. Until they make their con-
sciousness explicit, they do not encounter real difficulty.

A stable conception, like a misconception, is only a sign of illusionary dif-
ficulty by its definition. In the introduction, we mentioned some students’ diffi-
culty in understanding the concept of decimal numbers. However, this is not a real 
difficulty in our view. A misconception is a kind of conception (Confrey, 1991). 
They are stable for students, and students do not become conscious of other pos-
sible conceptualizations. They cannot intend to understand both the concepts of 
decimal and natural numbers in the same manner as ours. Hence, a problematic 
situation in social communication is needed in order for one to become conscious 
of the possibilities of appropriate alternative conceptualization.

By using the two terms illusionary and real difficulties, we argue for the  
importance of research on a shift from illusionary difficulty to real difficulty 
rather than research on only either of them. If researchers want to study students’ 
difficulties, they need to design an environment in which the students can shift 
from illusionary difficulty to real difficulty. If the students only show illusion-
ary difficulty, the researchers cannot determine whether the difficulty originates 
from didactically avoidable factors or from essentially unavoidable factors, that 
is, whether they are didactical or epistemological obstacles (Brousseau, 1997).

We acknowledge that educational research often starts from the observation of 
illusionary difficulties. In this sense, we do not intend to criticize the researchers 
who treat an illusionary difficulty as if it is a real difficulty, although our word 
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choice of illusionary may be aggressive. Focusing on illusionary difficulties at 
the initial stage of research is valuable as a kind of research heuristics. However, 
we have a concern that if we only consider illusionary difficulties in later stages, 
it may mean that we put our efforts into a pseudo problem. As constructivists 
suggest, even if students do not show any illusionary difficulty in learning math-
ematics, it is only a sign of their consistency in a particular classroom situation 
and not a sign of their correct understanding of a given concept beyond the class-
room situation. Even if we try to remove illusionary difficulties by making sure 
that students do not find it difficult to solve a given problem, they may still face 
another illusionary difficulty in a similar situation. On the other hand, if their  
difficulty is a real one, they will be able to deal with a similar difficulty since  
they are conscious of what they should do in such a situation. It is, therefore, 
important in mathematics education to make students become conscious of their 
difficulties from an inferentialist perspective.

An example of the transition from illusionary to real difficulties

In this section, from our classroom episode of eighth grade students’ mathematical 
activity, we exemplify the transition from illusionary to real difficulties.

Episode

This episode comes from a lesson conducted by the first author. Forty-one students 
participated in the lesson (21 males and 20 females). This was an experimental les-
son in a school attached to a national university in Japan. All the students and their 
parents agreed to the experimental curriculum in their regular lessons when they 
entered the school. The lesson was videotaped, and the students’ worksheets were 
gathered after the lesson.

In the lesson, the students engaged in solving the following three problems:

1. Solve a system of equations 
{

y = 2x + 3

y = −x + 9

2. Suppose that a system of equations 
{

y = 2x + 3

y = ax + 1
 has a solution where 1 < x < 4 . 

Then, determine the range of the constant a.

3. Suppose that a system of equations 
{

y = 2x + 3

y = ax + b
 has a solution where 1 < x < 4 . 

Then, determine the relationship between the constants a and b.

Problem [1] was a simple review of how to solve a system of equations. In prob-
lem [2], the students were required to find the values of a where x = 1 and where 
x = 4 . Because a represents the slope of the straight line y = ax + 1 , the range to 
be determined is between the two values of a . In problem [3], the students were 
required to think in a similar way to problem [2]. However, the important difference 
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between the two problems is the need to compare the two values of a . Given x = 1 , 
a = 5 − b ; given x = 4 , a =

11−b

4
 . However, which value of a is greater depends on 

the constant b . Thus, the students should conclude that (i) 11−b
4

< a < 5 − b (where 
b < 3 ); (ii) a = 2, b = 3 (where b = 3 ); and (iii) 5 − b < a <

11−b

4
 (where b > 3).

It seemed to us that, in the task design phase, the difficulty the students faced in 
trying to obtain a correct answer to problem [3] appeared to be an illusionary dif-
ficulty. In particular, the difficulty of considering all the three cases was illusionary 
for them as they were yet to realize that they should consider more than one case. 
Generally speaking, Japanese eighth grade students have only leant to solve mathe-
matical problems with a single arbtirary constant. They are yet to learn how to solve 
mathematical problems with two constants taking arbitrary real values respectively.

The structure of the lesson was as follows: (1) solving problem [1] individually; (2) 
checking the solution to it with the entire class; (3) trying to solve problem [2] individually; 
(4) discussing how to solve it with peers and in the entire class; (5) trying to solve problem 
[3] individually; and finally, (6) discussing how to solve it with peers and the entire class.

In Sect.  (5) of the lesson, the teacher noticed that many students only provided 
the following formula as a solution to problem [3]:

Based on their worksheets, our research team retrospectively found that at least 
10 students1 provided the same solution. This seemed to be derived from an analogy 
with the solution to problem [2] because the students did not pay attention to which 
is greater, 11−b

4
 or 5 − b . Figure 2 shows an example of the students’ writings.

In Sect. (6) of the lesson, the teacher called attention to this solution as follows2 
(T in the transcript represents the teacher).

T: (to the whole class) a = 5 − b and a =
11−b

4
 . Many students wrote these in 

the worksheets. Because we obtained 4 and 5
2
 in the previous problem (Prob-

lem [2]), the solution was “from 5
2
 to 4.” In a similar way, more and more stu-

11 − b

4
< a < 5 − b

Fig. 2  An example of the stu-
dents’ solutions to problem [3]

1 Because the other students erased their initial solutions to problem [3] on their worksheets, we did not 
identify what their initial solutions were.
2 The language in the lesson is Japanese. The transcript is translated into English by the authors.
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dents are providing “from 11−b
4

 to 5 − b ” (as a solution to Problem [3]). But is 
this the only solution?

After a while, the teacher started a class discussion (Chi and Hin in the transcript 
are pseudonyms of the students, and the formula 5 − b was written above the for-
mula 11−b

4
 on the blackboard).

T: Did many of you think as follows? If y = ax + b passes through (1, 5), then 
a = 5 − b. If y = ax + b passes through (4, 11), then a =

11−b

4
. In the previ-

ous problem (Problem [2]), if (the line y = ax + 1 ) passes through (1, 5), then 
a = 4 , and if (the line y = ax + 1 ) passes through (4, 11), then a =

5

2
 . So, the 

range of a was from 5
2
 to 4. Yes. Now, because we obtained 5 − b and 11−b

4
 , 

are these the start and the end of the range of a ? Thinking in this way, many 
students provided the inequality ( 11−b

4
< a < 5 − b ). But, please reconsider. 

Although 4 was evidently greater than 5
2
 in the previous problem, which is 

greater in the current problem? Chi, which is greater ( 5 − b or 11−b
4

 written on 
the blackboard)?
Chi: The above one? (Pointing to the formula 5 − b).
T: Oh, the above one is greater? Is the above one always greater?
Chi: Always? Are you saying such things?
T: Yes. I am saying so.
Chi: It depends on the numbers.
T: Aha, it depends on the numbers. That’s right. That’s right. Depending on 
what value we assign to b , the order relation (between 5 − b and 11−b

4
 ) may 

change. So, what should we do?

Immediately after listening to the teacher’s final question, Hin, who sat in the 
first row, looked regretful and sighed.

Hin: Oh, case by case….
T: Yes. Case by case. Depending on the value of b , we must change which the 
end of the range is ( 5 − b or 11−b

4
).

After this explanation, the students and the teacher agreed that the order relation 
between 5 − b and 11−b

4
 changed at b = 3 . At the end of the lesson, the solutions by 

case were shared with all participants as a final conclusion.

An inferentialist interpretation of the episode

In the episode, Chi and Hin solved problem [3] in their own ways before Sect. (6) of 
the lesson. However, a new problematic situation occurred when the teacher asked 
Chi if 5 − b was always greater than 11−b

4
 . Chi realized that the result of the compari-

son between 5 − b and 11−b
4

 depended on the values of b . Hin’s regret indicated that 
the same held for her. Thus, we can interpret the episode above as a transition of an  
illusionary difficulty into a real one: The students initially could not consider all  
possible values of the two variables and they did not find it necessary to do so, but 
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with the help of the teacher, they realized what they should do and then find a way  
to do so—an argument by cases.

Their perception of this problematic situation was caused by the teacher’s ques-
tion, rather than being inherent in problem [3] itself. As Derry (2013) pointed out, 
the inconsistency between their use of signs (the symbol “ < ” and the expressions 
“ 5 − b ” and “ 11−b

4
 ”) was recognized within a whole system of mathematical con-

cepts including numbers, functions, and formulas. They had already been able to use 
the concept of order relation and that of mathematical expression with two variables 
separately, but they could not appropriately use the concepts simultaneously before 
the teacher’s question. For the students, the teacher’s question caused a problematic 
situation. The change from illusionary to real difficulty in using the two concepts 
simultaneously was an opportunity for the students to relocate the two ill-connected 
concepts into a clearer whole system. Chi’s utterance “It depends on the numbers” 
and Hin’s murmur “case by case” were evidence that learning occurs in a game of 
giving and asking for reasons.

For inferentialists, this moment, where a real difficulty arises, is the very starting 
point of reconceptualization of the two concepts of order relation and expression with 
two variables. As we argued, knowing when and how to use these concepts is part of 
knowing them. The students could not appropriately solve problem [3] in Sect. (5). An 
aspect of the appropriate way of using the two concepts simultaneously was implicit and 
unconscious from their perspective when they tackled problem [2]. It became explicit 
when they reviewed their approach to problem [3] with the teacher’s support.

It is not evident whether the students will be able to behave appropriately when 
they encounter a similar mathematical problem with the two concepts in the future. 
This lesson is not sufficient for them to master how to use these concepts simul-
taneously. However, it is important from an inferentialist perspective that they 
consciously experienced the difficulty in using the two concepts simultaneously. 
Although using these concepts simultaneously is still difficult for them, the con-
scious experience of this difficulty makes this difficulty manageable in the future as 
long as they do not completely forget the experience.

We do not intend to indicate that the two concepts of order relation and expres-
sion with two variables should always be used only in a particular way, although we 
used the term “appropriate” in the above paragraph for the purpose of brevity. For 
example, if the students consider the order relation in a polynomial ring at the ter-
tiary level in the future, they will be required to use the two concepts in a different 
way than the way demonstrated in the episode. Ways of using concepts are sensitive 
to context, and there is no absolute way to use them. Unlike representationalists, we 
do not think that the same term can represent different concepts, depending on the 
context. For example, if the term order relation can represent two different concepts 
of order relation in the episode and in the context of a polynomial ring, we aban-
don the value of recognizing two different structures with the same ordinal structure 
through mathematical abstraction. Rather, we take an inferentialist stance that the 
same concept can be used differently, depending on the context: Knowing a variety 
of ways to use a concept is a part of conceptual development.
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Discussion: comparison between the constructivist  
and inferentialist views

In the above episode, conceptual learning also can occur twice in a constructiv-
ist sense. First, reflective abstraction in the process of solving problem [2] can 
lead to the initial solution to problem [3] in Simon and Tzur’s (2004) sense. Sec-
ond, the teacher’s question can cause an intellectual need for communication 
in Harel’s (2013) sense because it prompted the students to formalize the order 
relation between expressions with two variables, and to formulate the three solu-
tions by cases based on the formalized meaning of the order relation between 
expressions with two variables (i.e., in the sense that the order relation depends 
on values to be assigned). However, this perspective clips this episode only as the 
development of a new static understanding of the two concepts. It does not pro-
vide any explanation of how the students’ conceptualization of the two concepts 
can continue to proceed dynamically after the lesson.

It is now widely accepted that constructivism as a post-epistemology does not 
imply any practical prescription, although a constructivist philosophy often used 
to be connected with a prescription that direct teaching prevents individual active 
construction of knowledge (Cobb, 2002; Noddings, 1990). Hence, a constructivist 
view does not explain what might happen if, for example, the students engage in 
drill and practice using the two concepts after the lesson. By contrast, if we take 
an inferentialist point of view, such drill and practice can continuously contrib-
ute to the adjustment of the inferential connection between the two concepts as 
a kind of conceptual development. From this perspective, meaningless learning 
never arises even in drills and practice, as long as some inferential connections 
are strengthened or updated.

In addition, from a constructivist perspective, it is difficult to answer why Chin 
and Hin did not solve problem [3] in an appropriate way without the teacher’s 
question, though they seem to have the two concepts of order relation and expres-
sions with two variables at least separately. However, inferentialists can sim-
ply say that the two concepts were unconnected before engaging in problem [3] 
because finding the solution to Problem [2] did not connect them.

Learning from Sects. (3) to (6) in the lesson can be explained in terms of non-
monotonic inference. In problem [2], the students inferred the following: when 
x = 1 (p1), the end of the range of a can be obtained (q1); when x = 4 (p2), the start 
of the range of a can be obtained (q2). In problem [3], the students repeated this 
inference. However, the teacher’s question challenged it; there is an overlooked 
condition that the value of b determines which the end is (r). The consciousness 
of this condition (r) changed the students’ conclusions. This is evidence that an 
implicit idea on the inferential relation between the two concepts of order relation 
and expression with two variables is conceptualized by making it explicit in the 
zigzag process of a mathematical activity.

As our example shows, the students did not notice, by themselves, that depend-
ing on the value of b , they must change what the end of the range is, 5 − b or 11−b

4
 . 

As inferentialists suggest but constructivists do not explicitly state, the students 
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behaved in an invalid way influenced by their previous experience until they 
obtained an opportunity to express this fact (e.g., Chi’s utterance “It depends on 
the numbers” and Hin’s utterance “[C]ase by case”). Note that after the students 
obtained the opportunity, they correctly recognized what they should and could 
infer from their commited assumption. This is why we argue for the importance 
of active expressions by themselves.

Conclusion

This paper discusses the issue of our intuitive understanding of the term difficulty: If 
we simply observe that students do not do something, we cannot immediately conclude 
that they have difficulty in doing so. Since the learning paradox makes it impossible to 
explain the difficulty in learning a concept simply as a difficulty in trying to know the 
concept itself without knowing what it is, we invoked an inferentialist perspective to for-
mulate the distinction between illusionary and real difficulties and illustrated the transi-
tion from illusionary to real difficulties in our classroom episode. Conceptual learning 
does not occur when an implicit idea appears in one’s head; rather, it occurs when it is 
made explicit in a propositional form. The transition from illusionary difficulty to real 
difficulty in a classroom is expected to create students’ future manageable difficulties 
in new situations. Therefore, we as inferentialists put a stronger emphasis on learners’ 
active expressions than on their active construction of knowledge. While a constructiv-
ist view seems to understand conceptualization as a static achievement, our inferentialist 
view can capture conceptualization as a dynamic continuous process not only through 
problem-solving but also through drill and practice.

Returning to the initial questions posed in the introduction, we argue that a miscon-
ception of decimal number indicates only an illusionary difficulty. Real difficulties never 
arise without consciousness. When one articulates that some properties of natural num-
bers are not extendable to decimal numbers and that one cannot appropriately judge what 
properties are extendable, the difficulty in extending the properties becomes real.

This inferentialist view differs from the constructivist one because it focuses on artic-
ulation, not unobservable subjective consciousness. The inferentialist view enables us to 
avoid the learning paradox without appealing to some unobservable factors. Before one 
wants to learn a concept, one does not need to know it. The key to learning the concept is 
the observable transition from illusionary difficulty to real difficulty in using a particular 
set of material inferences involving the term for the concept.

This paper sheds light on the advantage of the inferentialist perspective for captur-
ing the real difficulty in conceptual learning in mathematics. However, as a limitation 
of this paper, we can point out that our episode focuses on the development of rela-
tively small mathematical ideas. Mathematics education research has often focused on 
big ideas, such as numbers, functions, and geometrical figures. Since an inferentialist 
perspective views conceptual development as dynamic, it cannot describe a mathemati-
cal concept as large at a particular moment. Thus, we acknowledge that the different 
perspectives work better for different purposes. In fact, the constructivist perspective is 
still useful, for example, in designing a mathematical task.
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While the constructivist perspective emphasizes the active role of learners’ knowl-
edge construction, the inferentialist perspective can focus on the active role of teach-
ers’ intervention in mathematics education and the essential role of social environments 
in which learners express their ideas. Adopting a networking strategy (Prediger et al., 
2008), the two perspectives will play different roles in a future research project. A math-
ematical task is designed from the constructivist perspective, and its implementation in a 
classroom is analyzed from the inferentialist perspective.
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