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Abstract
In this exploratory descriptive study, changes in one cohort’s responses to an 
authentic statistical investigation at the commencement of years 3 and 4 were ana-
lysed. Forty-four students made predictions by interpreting a data table of histori-
cal monthly temperatures, represented these data and explained their reasoning. An 
Awareness of Mathematical Pattern and Structure (AMPS) framework was extended 
to analyse students’ responses at five increasing levels of predictive reasoning. More 
developed predictive reasoning was observed in year 4 than for year 3, as well as 
large individual differences in both years. Most year 4 students (87%) made predic-
tions within the historical range, relative to half the same cohort in year 3 (54%). 
More year 4 students (79%) made predictions based on extraction, clustering and 
aggregation of these data than those in year 3 (51%). Year 4 students noticed pat-
terns such as seasonal trends and variability in these data and observed measures of 
central tendency. By year 4, 57% of students’ representations demonstrated trans-
numeration using extracted data from the table, including pictorial, column and 
line graphs. However, most students’ representations and explanations of these data 
lagged behind their predictions at both year levels.
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Introduction

While formal statistical practices are not generally accessible to students in the 
primary years, the principles underpinning statistical concepts and reasoning—
the ability to interpret and represent data, to make inferences and to develop 
an understanding of probability and variability—are critical to mathemati-
cal reasoning and statistical literacy (Lehrer & English, 2018; Makar & Rubin, 
2018; Pfannkuch, 2018; Watson, 2018; Watson et  al., 2020). The foundations 
of statistics essentially begin with data exploration whereby students engage in 
authentic problems using self-collected or real data, decide what is worth notic-
ing (i.e., identifying attributes of the phenomena) and organise, structure, visu-
alise and represent data (Lehrer & Schauble, 2000; Makar, 2014, 2016). Such 
learning can commence in the early years of schooling and should be promoted 
within and beyond mathematics curricula (Ben-Zvi et al., 2018). Understanding 
data is often described in mathematics curricula under Statistics and Probability 
(Australian Curriculum and Reporting Authority, [ACARA], 2022). In the first 
3 years of schooling, outcomes typically address simple probabilities of the likeli-
hood of events such as: “Identify outcomes of familiar events involving chance 
and describe them using everyday language such as will happen, won’t happen 
or might happen” (ACARA, 2022, [Year 1, ACMSP262]). Year 3 students are 
expected to create, interpret and compare displays and recognise simple varia-
tion in results. By year 4, they “construct suitable data displays from given data 
including tables and graphs” and “evaluate the effectiveness of different displays 
in illustrating data features including variability” (ACARA, 2022, [Year 4, ACM-
SPO97]). These expectations create new conceptual and pedagogical challenges 
for students and educators.

Predictions are an everyday occurrence, where chance events may be inter-
preted in the context of underlying causal (deterministic) or random variation 
(uncertainty). While different meanings can be attributed to the term ‘variation’, 
students’ interpretation of real data in context is fundamentally about ‘change’ 
or ‘scatter’ in data (Watson et  al., 2022, p. 3). In making predictions, the data 
context as well as content knowledge and expectation of the individual making 
the predictions will influence the accuracy of the predictions (Ben-Zvi & Aridor-
Berger, 2016; Frischemeier & Schnell, 2021). Students may often overemphasise 
determinism and ignore chance, or alternatively overemphasise chance overlook-
ing the possibility of making reliable predictions (Lehrer & Schauble, 2017). One 
of the challenges is determining how students use an understanding of variation 
to reason about their predictions. Acknowledging students’ pre-existing beliefs is 
central to this problem (Frischemeier & Schnell, 2021).

One of the aims of early mathematics and statistics education is to support 
students in making predictions that have a high probability of being accu-
rate (Watson, 2006), while acknowledging that ‘real-world’ experiences are 
uncertain, and multiple alternatives are often reasonable. Many studies have 
confirmed that even young children can understand the likelihood of chance 
(Burrill & Biehler, 2011; Supply et  al., 2020). Watson (2006) describes the 
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term ‘chance’ as a ‘precursor to probability’ which is less formal and more 
intuitive than probability (p. 127). The concept of probability underpins pre-
dictive reasoning: ‘Probability can quantify the likelihood of something hap-
pening based on existing data. Prediction on the other hand, is about deter-
mining an outcome based on existing data, without necessarily quantifying the 
likelihood or determining why’ (Kinnear & Clark, 2014, p. 335). Predictive 
reasoning moves beyond the concept of chance alone to determine why, often 
based on an emerging understanding of generalisation and variability. Students 
may form generalisations about a dataset by viewing data holistically, finding 
patterns and relationships between values and noticing variation between indi-
vidual data points.

Although there are emerging studies of young students’ statistical concepts, these 
do not yet provide a coherent picture of the early development of statistical reasoning, 
including an emerging understanding of variability. The description and progression of 
such early development is not well articulated in current curricula or pedagogical pro-
grams (ACARA, 2022). For example, do concepts such as distribution, aggregation, 
predictive and inferential reasoning, variability and generalisation emerge simultane-
ously or in sequence? There is increasing evidence that young students can develop 
informal inferential reasoning (IIR) (Makar, 2016). However, Watson et  al. (2022) 
raise the issue that more research ‘is needed to illustrate the way in which students 
engage with data-learning experiences and to provide evidence of the way in which 
student learning about variation is fostered within multi-curricula/discipline learning 
contexts’ (p. 2). In order to advance the field, we need to distinguish young students’ 
informal statistical thinking—influenced by their contextual knowledge, intuitions 
or idiosyncratic beliefs—from decision-making based on reasoning about real data. 
Thus, the main aim of our research is to investigate how primary students apply their 
awareness of structure to developing statistical concepts and meta-representational 
competence within real-data contexts. From there, we can develop targeted pedagogi-
cal strategies or frameworks to embed statistical concepts in early mathematics and 
Science, Technology, Engineering and Mathematics (STEM) learning. Moreover, our 
research contributes to a more coherent understanding of the role of pattern-seeking, 
abstraction and generalisation in mathematics learning.

An exploratory, descriptive 3-year longitudinal design study of students from year 
3 through to year 5 investigated their predictive reasoning from a ‘real-world’ data-
set. In phase 1 of the study, year 3 students were found frequently to ignore the data, 
instead favouring idiosyncratic predictions (Oslington et al., 2020). However, some 
students who used predictive reasoning demonstrated concepts of aggregation, vari-
ation and generalisation. In phase 2 reported here, we describe shifts in the students’ 
predictive reasoning from years 3 to 4. We also looked for any evidence of emerging 
notions of variability and generalisation. Two research questions were addressed:

1. How did students’ interpretation of structural features of the data support their 
predictive reasoning?

2. How did students’ predictions, representations and explanations of their predic-
tions shift from year 3 to year 4?
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Literature review

A range of studies conducted over recent years has provided substantial evidence 
of primary students’ engagement in informal statistical reasoning not usually con-
sidered accessible to young students (Ben-Zvi et  al., 2018; Leavy et  al., 2018; 
Suh et al., 2021). Chick et al. (2018) explored students’ emerging ideas of vari-
ation, while Frischemeier and Schnell (2021) investigated year 4 students’ rea-
soning when comparing groups using modal clumps, medians and hat plots. In 
another study of year 3 students (Makar, 2014), participants developed a concept 
of average, which included middle or representative values as well as outliers, 
the construction of a reference population and considered variability between 
samples. Year 5 students have also been found to use repeated sampling to infer 
aggregate properties of a population (Aridor & Ben-Zvi, 2017). Further studies 
explore young students’ emerging concepts such as inferential reasoning (diSessa, 
2004; Makar & Rubin, 2009; Watson, 2018; Watson et al., 2022) and predictive 
reasoning (English, 2012; Kinnear & Clark, 2014; Oslington et al., 2020, 2021).

Studies focused on young students’ data representations provide rich evidence 
of the importance of transnumeration in making sense of data. Estrella (2018) 
described 5- to 7-year-olds’ ability to extract, organise and represent data in a 
variety of ways. In another study on representation of data with high-ability year 
1 students, Mulligan (2015) observed transnumeration of temperature data repre-
senting early forms of bivariate graphing. Students’ initial representations con-
sisted of a series of vertical bars or lines, with more advanced examples joined 
at the apex of the bars creating simple line graphs. The representations included 
five common structural components—sequences, structured counting, shape and 
alignment, equal spacing and partitioning. Mulligan (2015) indicated that stu-
dents who had ‘learnt to construct number lines and rectangular grids accurately 
in Kindergarten seemed to intuitively construct appropriate graphical representa-
tions and focused on coordinating vertical and horizontal axes’ (p. 662).

A limited number of studies have focused explicitly on students’ interpretation, 
construction and representations of data tables (e.g. English, 2012; Guimarães et al., 
2021; Kinnear, 2018). Using a familiar context, English (2012) found that 6-year-
olds could recognise common values and total values across rows and notice high 
and low values. Similarly, Kinnear (2018, in press) found that 5-year-olds could 
explain and spontaneously read zero as a data value of interest based on the context 
of a storybook. In another study of high-ability year 2 students, Oslington (2018) 
described students not only making reasonable predictions from a complex data 
table, but also justifying their predictions using relevant data features such as maxi-
mum and minimum values and data range. Few studies have documented elementary 
students’ construction and interpretation of data tables, noticing patterns in data, 
making predictions and constructing graphical representations. In a recent study, 
Guimarães et al. (2021) analysed 325 first to fifth graders’ understanding of repre-
sentations embedded in tables. Students demonstrated progression with each grade 
level, with table construction lagging behind their capacity to interpret the tables 
of others. While grade 1 students could construct tables using a single variable, 
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tables with two variables proved to be very difficult to construct even for the old-
est students. In all grades, the students had difficulties in making decisions based 
on the data and interpreting representations within the table. This may be due to the 
absence of teaching practices that focused on using and reasoning with data tables.

Predictive reasoning, representation and transnumeration

Much of the research with primary students on probability and prediction focuses on 
deterministic experiments using devices such as random draws of balls (e.g. Supply 
et al., 2020) or lollies (Reading & Shaughnessy, 2004; Watson, 2009). These tasks 
are helpful for investigating and promoting student reasoning because they reduce 
the number of sources of variation under consideration (Biehler et al., 2018). How-
ever, predictive reasoning requires accounting for variability in contexts where both 
random and causal forces together determine probable outcomes (Burrill & Biehler, 
2011; Wild & Pfannkuch, 1999). Designing predictive tasks that include both causal 
and random variation may therefore have the potential to explore some of the big 
ideas about probability and variation, such as distribution, expectation and random-
ness, and inference and sampling (Callingham et al., 2019). The development of pre-
dictive reasoning can be considered an informal stage prior to more sophisticated 
predictive modelling in statistics. ‘Applied statistics is about making predictions, 
seeking explanations, finding causes, and learning in the context sphere’ (Pfannkuch 
& Wild, 2004, p. 18). Predictive modelling develops from learning about features of 
data to make predictions for likely future outcomes (Fergusson & Pfannkuch, 2022).

Data representation is essential for making sense of data as it allows students to 
visualise and display the structure of their data. Early data representation relies on 
connecting and organising objects in one-to-one correspondence and translating 
these to more structured representations such as tables, picture, bar and line graphs 
(English, 2012; Guimarães et  al., 2021; Leavy, 2008; Mulligan, 2015; Oslington 
et  al., 2020; Watson, 2018). Konold distinguishes the interpretation of ‘case-data’ 
tables that display a set of raw data using the column-row structure but are not 
structured to notice patterns or trends (Konold et  al., 2017). Transnumeration, in 
turn, is the process of forming and refining one’s data representation to understand 
these data better (Wild & Pfannkuch, 1999). It is an important sense-making pro-
cess for young students engaging in data prediction (Makar, 2014, 2016), data track-
ing (Leavy & Hourigan, 2018; Makar, 2018) and distinguishing variables (Estrella, 
2018). For example, graphing, a spatial form of transnumeration, is closely aligned 
to students’ meaning through drawing in the early years (Cartwright et  al., 2021; 
English, 2012; Mulligan, 2015). An understanding of graphing conventions emerges 
gradually throughout the primary years, with the development of structural com-
ponents such as collinearity, equal spacing, data sequencing and coordination of 
bivariate data (Mulligan, 2015; Oslington et al., 2020). With this development also 
comes the organisation of other transnumerative steps that may precede graphing, 
including collating data frequencies, calculating means or constructing data tables 
(Chick, 2003).
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In light of these studies, it would be expected that students become increas-
ingly able to compare and classify data, identify patterns and engage in data trans-
numeration (Jeannotte & Kieran, 2017). Pattern-seeking might include noticing 
the frequency of repeated values or clumped distributions (Frischemeier & Snell, 
2021) and the spatial arrangement (collinearity) of a table. Structural features might 
include noticing the range of data, clustering and aggregation of values, ideas of 
centre and coordination of data within the grid structure of the table. Through peda-
gogical approaches to support data exploration, Lehrer et  al. (2007) highlight the 
‘challenges of imposing structure on data, choosing displays to highlight aspects 
of structure, and making judgements about phenomena in light of variability and 
uncertainty’ (p. 196).

The structure of observed learning outcomes

Studies describing students’ acquisition of statistical concepts have developed hier-
archical scaffolds that describe levels or progressions of structural development 
(Jones et al., 2004; Leavy, 2008; Oslington et al., 2020; Watson et al., 1995). These 
models can be traced to the Structure of Observed Learning Outcomes (SOLO) 
model (Biggs & Collis, 1982; Callingham & Watson, 2017). The SOLO model 
centres on two interrelated aspects of structure: five modes of increasing abstract-
ness (sensorimotor, ikonic [IK], concrete-symbolic [CS], formal-1 and formal-2) 
and five increasing levels of structural development in each mode (pre-structural 
[P], unistructural [U], multi-structural [M], relational [R] and extended abstract 
[EA]). The transition from IK to CS mode is a complex and critical process in the 
early development of mathematical representation, abstraction and generalisation. 
From birth, sensorimotor development is essentially tacit knowledge; IK is more 
intuitive and uses imagistic thinking, a necessary progression to CS mode where 
language and symbols are developed. Inadequate development through IK and CS 
modes may cause inconsistencies in conceptual development and impede more for-
mal abstract thinking.

SOLO analysis has been applied to studies of students’ structural development of 
statistical concepts and meta-representational competence. Watson and colleagues 
have applied the SOLO model to studies about chance (e.g. Watson & Kelly, 2005; 
Watson & Moritz, 1999), sampling (Watson & Moritz, 2001), surveys (Watson 
et al., 2003) and distributions (Watson, 2009). More recently, the SOLO framework 
has been extended to year 3 students’ understanding of data (Watson & Fitzallen, 
2021), introducing statistical variation in STEM contexts (Watson et al., 2020) and 
to year 6 students’ understanding of variation (Watson et al., 2022). Further studies 
have adapted the SOLO framework to analyse 10- and 11-year-old students’ under-
standing of sampling and probability (Groth et al., 2021).

The interrelationships between various structural elements have been analysed to 
gain a more coherent picture of the complexities of mathematical concept devel-
opment. Early studies of the application of SOLO to young students’ concepts of 
multiplication and division (Mulligan & Watson, 1998) and early fraction learning 
(Watson et  al., 1993) focused on students’ awareness of structural characteristics 



1 3

Shifts in students’ predictive reasoning from data tables…

and representations such as composite units and partitioning. In further studies, the 
SOLO model was adapted to interpret young students’ responses to a range of math-
ematical concepts through interview-based tasks (Mulligan & Mitchelmore, 2009; 
Mulligan et  al., 2020a). Students’ concept development was inextricably linked 
with their modes of representation and emerging mathematical structures. In this 
relationship, the joint development of meta-representational and conceptual compe-
tence occurs (diSessa, 2004). While SOLO levels could be applied or adapted to 
describe students’ increasing abstraction of mathematical concepts and representa-
tions (modes), a more fine-grained analysis of students’ representations needed to be 
integrated with, and more explicitly articulated, in terms of SOLO structural levels. 
In further studies adapting SOLO structures and modes, an Awareness of Mathemat-
ical Pattern and Structure (AMPS) model was formulated, consisting of one progres-
sion of five integrated structural levels applied to a range of mathematical concepts 
and representations: pre-structural, emergent, partial, structural and advanced struc-
tural (Mulligan & Mitchelmore, 2009). One of the initial objectives was to develop 
an analytical and pedagogical tool that could be applied to the interpretation of stu-
dents’ structural development in a similar way to levels of counting, base ten or mul-
tiplicative knowledge.

AMPS

The conceptual basis of the AMPS model was informed by SOLO and evaluated in 
a series of studies where young students spontaneously searched for mathematical 
patterns and noticed structural features (Mulligan & Mitchelmore, 2009; Mulligan 
et al., 2020a). Through identifying similarities and differences between mathematical 
quantities, objects or relationships, students demonstrated an understanding of emerg-
ing generality. These students could think relationally and noticed common structural 
and spatial features. Given these findings, a theoretical perspective focused on pat-
tern and structure was adopted. It can be traced to the work of Mason and colleagues 
where ‘seeking pattern and structure directs attention to the general properties within 
the data set, which can be expressed through relationships between the elements or 
subsets of the data set’ (Mason et al., 2009, p. 1). Thus, as an approach promoting gen-
erality even in its emerging forms, AMPS describes two interdependent components: 
one cognitive—a knowledge of structure, and one meta-cognitive—a tendency to seek 
and analyse patterns (Mulligan & Mitchelmore, 2009). The initial studies centred on 
reliably measuring and describing the relationship between pattern and structure and 
mathematical development. Students who engaged in pattern-seeking behaviours such 
as seeking similarities and differences were found to understand the mathematical con-
cepts inherent within these patterns, while those who did not notice patterns focused 
on idiosyncratic or non-mathematical features. The authors proposed that AMPS is 
a salient underlying process common to concept development. The early acquisition 
of AMPS may then reveal young students’ emerging mathematical abstraction and 
generalisation.

The AMPS framework has been applied to a range of mathematical concepts 
across the primary years and including pre-schoolers (Papic et  al., 2011), Kinder-
garten (Mulligan et al., 2020a), year 1 (Mulligan, 2015) and year 3 and 4 students 
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(Mulligan et al., 2020b ). An AMPS’ pedagogical program evaluated with students 
in Kindergarten revealed students’ emerging abilities to abstract and generalise 
mathematical concepts (Mulligan et  al.,  2020a). When applied to a study of year 
1 students’ data modelling, their  AMPS levels were aligned with their interpreta-
tion, representation and explanation of data and connections with other mathemati-
cal ideas (Mulligan, 2015). In the present longitudinal study, the AMPS model was 
applied as an analytical tool to describe year 3 students’ predictions, representations 
and explanations of a table of real data (Oslington et al., 2020) and modified for the 
year 4 study (see “Data analysis” following).

Methodology

Research design

The present study comprises phase 2 of a 3-year longitudinal design study (Bakker, 
2018; Cobb et al., 2003), investigating predictive reasoning in students from year 3 
through to year 5. In this report, we analyse shifts in year 3 students’ responses to 
the same tasks in year 4. The investigation was replicated at the end of year 4 and 
year 5, but these analyses are beyond the scope of this paper. In phase 1 of the lon-
gitudinal study reported in this paper, 46 year 3 students made predictions from a 
table of temperature data and represented and explained their reasoning (Oslington 
et al., 2020). We found 54% of students noticed patterns and used this reasoning to 
make predictions broadly within the data range. However, when asked to explain 
their reasoning, only 20% of students noticed aggregate properties of the data and 
few demonstrated understanding of variability. Moreover, only 5% represented these 
data using a conventional graphical representation. While students with ‘aggregate 
views’ (Konold et  al., 2015) could use the data table for making predictions and 
integrated these data with personal knowledge, others used the table in an inconsist-
ent and distracting way.

Using an interpretative approach, we compare AMPS levels across the same cohort 
and examine more closely the influence of response type at each data-collection point. 
Our interpretation of data focuses on evidence that students can make accurate predic-
tions before they develop predictive reasoning, and that their reasoning and representa-
tional capabilities may co-evolve.

Participants

Phase 2 of the study retained a cohort of 44 year 4 students: 20 female and 24 male 
(aged from 8 years 8 months to 9 years 10 months). The first author engaged stu-
dents in the same predictive reasoning tasks, conducted interviews and recorded 
data, consistent with the procedures utilised for the students in year 3. Ethical con-
sent was obtained from teachers, students and caregivers for collection of student 
work samples and digital recordings of interviews. Students’ backgrounds indi-
cated a high index of community socio-economic advantage (ICSEA), with 75% 
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of families above the Australian average. The students were also mathematically 
competent. For example, in a standardised mathematics test (Stephanou & Lindsey, 
2013) taken by the cohort in year 4, 93% of students’ scores were over the 50th per-
centile relative to other Australian year 4 students.

Prior learning experiences

Some learning experiences during year 3 may have contributed to students’ pro-
gress in statistical reasoning by the beginning of year 4, but instruction on statisti-
cal concepts was limited. Year 3 lessons followed the state mathematics syllabus 
(NSW Education Standards Authority [NESA], 2019) for Statistics and Probability. 
A content analysis of year 3 teaching programs (by the first author) revealed that of 
the 190 mathematics lessons implemented over the entire school year, only 14 were 
allocated to this strand, and these were limited to chance and data. Typically, these 
lessons were dominated by textbook-based examples such as recognising catego-
ries of data and counting simple frequencies in a pictogram, filling in a single-entry 
table with tally marks, colouring a simple bar graph to represent frequencies and 
responding to simple interpretative questions such as ‘what is the most popular type 
of sport?’ More relevant learning experiences included lessons on the seasons, and 
those using technology such as creating a pie chart using Excel™. Year 3 students 
also benefitted from expert guidance with problem-based learning and interpreting 
graphs in science. However, the year 3 and 4 teachers did not provide any instruction 
in predictive reasoning or interpretation of data tables, or expose the students to the 
predictive tasks presented in this study. Moreover, we considered that either natural 
progression and/or students’ experiences with mathematics and science investiga-
tions would have enhanced year 4 students’ data interpretation and meta-representa-
tional competence.

Data collection process

Students were withdrawn from class in small convenience groups of 9 to 12, with 
each student participating in a single 60-min period. The data-collection period was 
conducted over five consecutive days. Students were seated individually and com-
pleted the tasks independently. The sequence replicated the data-collection process 
and procedures from year 3 (Oslington et al., 2020), orienting students to the task, 
predicting values from the data table, responding to a written prompt, creating a rep-
resentation and participating in an individual interview.

Predictive tasks

While the predictive tasks used in year 3 were replicated, the data table was updated 
for 2018 temperature values (Fig. 1).

1. Use the data table to complete the missing temperatures (for 2018).
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2. Respond to a written prompt “Write down anything you notice about the numbers” 
(any numbers in the table).

3. Construct a representation following a written prompt ‘Show how the numbers 
might look on a graph’.1

The teacher (first author) discussed the meaning of the terms ‘maximum’ and 
‘monthly’ temperatures in the context of the table and ensured students could read 
these data in rows and columns. Year 4 students did not have their original year 3 
responses visible, and their previous attempts were not discussed.

Student’s explanations of their predictive strategies and representations were 
captured at interview. Interview duration increased from 0:44–3:39  min (Year 3) 
to 2:15–7:54 min (year 4). The questions posed during the year 3 interview were 
replicated:

1. “What is your graph showing?”
2. “What did you notice about the data table?”
3. “How did you choose your numbers?”

Students were encouraged to expand and elaborate on their initial responses. 
Interviews were digitally recorded using a hand-held iPad and conducted by the first 
author in an adjacent observation room isolated from other students.

Data analysis

The AMPS approach was modified and extended to accommodate students’ more 
sophisticated thinking in year 4 than shown in year 3. A tentative coding scheme 
was formulated (Tables 1 and 2) at five levels as follows:

Fig. 1  Highest monthly temperature table for Sydney 2010–2017 used by year 4 students to predict max-
imum monthly temperatures for 2018 (Australian Government, 2019)

1 Depending on the type of representation, ‘drawing’ or ‘table’ were sometimes substituted for “graph”.
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Shifts in students’ predictive reasoning from data tables…

1. Pre-structural: Students focus upon idiosyncratic features largely irrelevant to the 
data table.

2. Emergent: Students recognise some relevant features of the data table; however, 
each data value is interpreted independently from its context. Students’ represen-
tations lack structure and graphical sophistication.

Table 2  Coding scheme for representations of Sydney maximum monthly temperatures
AMPS Level Types of representations Examples

Advanced structural 
Relevant data transnumeration

demonstrating association 

between variables of time and 

temperature. Representation 

contains accurate coordination 

of bivariate data and focuses 

on comparative, representative

or aggregate values

Dot plot

Line graph

Structural 
Relevant data transnumeration

through reorganisation of 

variables of time and 

temperature. Representation 

contains approximate equal 

spacing, and sequencing of 

months

Single and multiple year 

bar graphs

Tables extracting multiple 

highest values from 

month or year

Tables extracting highest 

values from one year or 

month

Partial 
Attempted transnumeration

such as changing the 

orientation of the table without 

relevant data extraction

Table with time series on 

the horizontal axis

Emergent 
Reproduction of data set 

without transnumeration

Copy of the given data 

table

Pre-structural
No interaction with the 

numbers in the data table

observed

Grids with invented 

numbers

Tables without numbers

Drawings of seasons

Idiosyncratic drawings
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3. Partial structural: Students recognise some key structural features of the data, 
although representations and explanations are partially formed.

4. Structural: Students use aggregation, describe patterns and represent data graphically; 
ideas of variation are linked to seasonal change.

5. Advanced structural: Students view the data holistically, describe patterns and 
relationships between values, represent data graphically and show understanding 
of emergent generalisation and variability.

Students’ predictions recorded in the table and their hand-drawn representations 
were coded separately by the first author using revised coding descriptors for the 
three response types (see Tables  1 and 2). Following this process, all 44 digital 
recordings of interviews (explanations) were manually transcribed and analysed by 
the first author for evidence of students’ pattern-seeking strategies and causal rea-
soning. Each student’s explanations were coded from the interview transcripts sup-
ported by digital video data of the interview. The coding process was moderated by 
the other authors before being re-coded independently by a trained research assis-
tant. The coders reached 98%, 95% and 91% level of agreement for each of the three 
response types: predictions, explanations and representations, respectively.

Table  1 provides coding descriptors for predictive reasoning strategies aligned 
with five increasing levels of abstraction and generalisation (AMPS). Temperature 
predictions were coded for each student as ‘reasonable’ if they fell between the 5th 
and 95th percentiles of the historically recorded temperatures for the month. Employ-
ing historical data temperatures rather than relying solely on the data table as a refer-
ence avoided arbitrarily dismissing a prediction if it fell slightly out of range yet was 
still feasibly within a reasonable range for the month. While predictions alone were 
important, the strategies and reasoning that underpinned these predictions remained 
implicit. Students’ explanations provided evidence of their pattern-seeking strategies 
and an emerging understanding of causal variation.

Table  2 illustrates students’ representations coded for AMPS structural levels: 
pre-structural focused on irrelevant aspects; emergent was reproductions of part of 
the data table; partial showed some transnumeration without relevant data extrac-
tion and structural showed relevant transnumeration by construction of a new table 
or graph. Advanced structural representations reflected accurate coordination of 
bivariate data by demonstrating a relationship between the variables of time and 
temperature. These representations reflected students’ emerging understanding of 
generalisation beyond a single to a representative data set and their interpretation of 
the aggregate and variable properties of these data.

Results

Descriptive data analysis of the shifts in students’ AMPS levels for predictions, 
explanations and representations are presented in Fig. 2. Excerpts of interview tran-
scripts supported our interpretation of students’ responses. Figures 3 and 4 illustrate 
students’ representations at different structural levels. An analysis of individuals 
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who are typical of students with similar levels of response including ‘high-gain’ and 
‘low-gain’ students is then described (Figs. 5, 6, 7, 8, 9 and 10).

Predictions

Figure 2 indicates a marked shift in the reasonableness of predictions from year 3 
to year 4. Eighty-seven per cent of student predictions (n = 38) contained at least 10 

Fig. 2  Percentage of student 
predictions, explanations and 
representations at years 3 and 4 
by level (n = 44)

Fig. 3  Four individual student representations by structural levels: a pre-structural: seasonal pictures — 
Violet, year 3; b partial: copy of the original data table with axes inverted — Ewan, year 3; c struc-
tural: column graph of highest temperature for each month — Hannah, year 4; d advanced structural: line 
graph of 3 years of temperatures — Claire, year 4
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Fig. 4  Two structural examples by year 4 students Lacey (left) and Ida (right). Lacey’s example contains 
the hottest values in each year, while Ida’s contains the hottest values in each month

Fig. 5  Year 3 and year 4 representations from Lewis. Both representations are partial, although his year 4 
representation contains more structure than the earlier example

Fig. 6  Predictions, explanations and representations from Kane, a ‘low-gain’ student
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values within the historical temperature range. In contrast, just 54% (n = 24) showed 
this level of accuracy in year 3. For almost half the year 4 cohort (48%), advanced 
structural thinking was demonstrated when all 12 monthly values were within the 
historical range. Limited interpretation of the data (i.e. at pre-structural, emergent or 
partial levels) was uncommon in year 4 representing only 14% (n = 6) of the cohort 
relative to 45% (n = 20) in year 3.

Fig. 7  Predictions, explanations and representations in from Hattie, a ‘high-gain’ student

Fig. 8  Predictions, explanations and representations from Andrea
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Explanations

Gains in students’ inferential reading of the data were demonstrated in their expla-
nations. By year 4, 79% (n = 35) of the cohort described some relevant aspects of 
the data table when explaining their predictive strategies, relative to 50% (n = 22) in 
year 3. However, some pre-structural explanations were present in both years. Pre-
structural or emergent strategies were reported by 48% (n = 21) of students in year 3 

Fig. 9  Predictions, explanations and representations from Lanni

Fig. 10  Predictions, explanations and representations from Rhys, a high-performing student
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but just 20% (n = 9) in year 4. Pre-structural strategies included ‘guessing’, selecting 
‘favourite numbers’ or another form of idiosyncratic number selection. Emergent 
strategies included a reference to at least part of the historical data set; however, 
students’ justifications revealed some misconceptions. While engaging in pattern-
seeking, these students’ beliefs about these data conflicted with the values in the 
table. Examples included believing that the start of the year was ‘hot’ and the end 
‘cold’, or that global warming was causing temperatures above 60 °C. At higher lev-
els of response, students not only identified patterns—and so were able to predict 
with accuracy—but also recognised causal variation implicit in these data. Lower 
level responses, which at times included relatively accurate predictions, were not 
accompanied by explanations of why temperatures changed across the year.

Approximately one-third of the year 3 and year 4 cohorts (34% and 36% respec-
tively) elicited explanations at the partial level. These responses often reflected 
awareness of the similarities in values or other patterns in the column structure of 
the table alone but were not coordinated with seasonality implicit in the row struc-
ture. Other strategies included matching the tens’ digits by describing the numbers 
in the column as ‘in the 30 s or 20 s’ by looking at the highest or lowest value in 
each column.

Structural responses successfully integrated seasonal knowledge and changes 
in temperature with yearly trends by coordination of vertical and horizontal data 
values. Such responses were more common in year 4 (36%) than in year 3 (15%). 
Luca2 for example first described observing the range of values in columns and 
noticed that some values were more frequent than others, implying an expectation 
of a clumped distribution (structural reasoning strategy). He then explained that the 
previous two July temperatures were the hottest of the July values and predicted a 
similarly hot value for July 2018. In the excerpt below, Luca specifically links causal 
variation to temperature change by explaining cold temperatures are usually associ-
ated with winter (see Table 1, AMPS structural level).

Luca: I noticed that January, the numbers are quite high, because it is more 
around the start of the year, then when you come up to about May, the num-
bers get colder, but you come up to July that is part of the coldest because it is 
during the middle of the year, and it is also winter.
R: It sure is, isn’t it?
Luca: And then it gets hotter from August.

Sophisticated reasoning at the advanced structural level was uncommon, 
observed for only three year 4 students. These explanations indicated students’ 
emerging ideas of generalisation and variability—for example, warmer months hav-
ing wider temperature ranges than cooler months—as well as the cyclic and pre-
dictable influence of seasonal change. Explanations focused on the whole data 
table, with student observations of multiple interrelated features. Advanced struc-
tural explanations included an understanding of central tendency. Stuart (advanced 

2 Pseudonyms for all students.
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structural reasoning) highlighted the data range for each column, noting it varied 
between 16  °C for January and 3  °C for June. He then linked this observation to 
climate change:

Stuart: In the winter, say June, there was a more stable range, like from 20 to 
23, but in the summer months there was 30 to 46 which was 16 apart.
R: So, there is more variability in the summer?
Stuart: Yeah. I thought it was because in the summer, global warming affects 
it a bit more.

Stuart’s prediction strategies included starting with the winter months indicating 
less variability, followed by predicting adjacent months.

Stuart: Like I said before, the average was easy to guess in the winter, so I 
started in the winter.
R: You started in the middle, did you? Which one did you start with?
Stuart: In June. I then went to July and August, the winter months. Well June is 
colder than July because June’s in the middle of the year. So, it would be about 
5 [degrees] up.

Representations

Eighty-one per cent of year 3 students produced representations at either pre-
structural or emergent levels compared with only 29% in year 4 (Fig. 2). Invented 
number tables were drawn by 11 year 3 students (25%) but just four year 4 stu-
dents (9%). Fewer year 4 students (20%) copied the data table (emergent) than 
year 3 students (36%). In year 4 (14%), a relatively small number of students 
constructed representations at the partial structural level by rearranging the table 
without extracting values or graphing.

Figure  3a-d illustrate four varying AMPS levels of students’ representations. 
The transnumeration apparent in Fig. 3b was constructed as a time sequence on the 
x-axis prior to stacking the monthly temperature values on the y-axis. In the excerpt 
below, Ewan described the process. He attempted a bar graph but then resorted to 
including all temperature values as he was unable to extract a sub-section of the 
data.

R: Why did you decide to swap them [the axes] over?
Ewan: Because at first, I forgot to add the… I was going to do a bar graph and 
write at, like the little lines for the numbers. But I can’t because I have to add 
the months in, so I decided to change, and to do that. 

By year 4, more than half of the students created representations that were 
categorised at the structural (45%) or advanced structural levels (12%) (Fig. 2). 
These students were able to organise their data in a new way, distinct from the 
original data table either by sorting (e.g., listing years as hottest to coldest), 
aggregating the original data to make inferences (e.g., determining hottest tem-
perature for each month), or by focusing on central tendency such as the median 
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value. While some students produced abridged tables or lists, 39% of year 4 stu-
dents were able to coordinate two sets of variables and create bar graphs (23%), 
line graphs and scatterplots (16%). Only 7% of students in year 3 were able to 
do the same. Figure 3c and d highlight structural elements such as approximate 
equal spacing for intervals, limiting the scale on the y-axis of the temperature 
values, correct sequencing of months, and coordination of bivariate data.

Graphing required students to select and then represent sections of the data 
table, rather than focusing on all data values equally. Student choices included 
their own predictions, the highest value in each month or year or another 
sequence of interest such as the previous year, or their birth year. Students 
focusing upon the row structure of the table frequently selected the hottest val-
ues in each year. However, a focus on the column structure of the table which 
included monthly maximum values highlighted the seasonality implicit in the 
data set (Fig. 4).

Meta-representational competence increased markedly between year 3 and 
year 4 where collinearity was a feature of all but the most iconic of represen-
tations. Even those with pre-structural and idiosyncratic predictions in year 3 
often reproduced some form of a grid structure in year 4, indicating an aware-
ness of the table’s gridlines prior to engaging with data values. Year 3 students’ 
replications of the data table often focused on individual table cells, in contrast 
to the construction of grid lines.

With few exceptions, students made some progress in one or more of the three 
response types. Even when a student did not increase by an entire AMPS level,  
there was typically a shift within the level. For example, the two partial repre-
sentations drawn by Lewis attempted to reorder the temperature table from hot-
test to coldest (Fig.  5). In the second attempt, Lewis constructed the table using 
ruled lines, highlighted differences between years (describing the year 2012 as  
‘very cool’) and simplified the task, enabling task completion. However, Lewis 
neither extracted nor graphed any sequence of temperatures. For other students, 
predictions remained at the pre-structural level with values substantially out-
side the monthly range of the data table for both years, but their year 4 attempts  
included fewer extreme values, indicating more reasonable temperatures.

Inconsistencies between students’ levels of structure

Individual profiles were compiled for every student across the three response 
types at year 3 and year 4. An initial analysis attempted to find common patterns 
of response for individuals using the AMPS coding scheme. However, there 
were almost as many different individual patterns of response across the cohort 
as there were students. Thus, a descriptive analysis of AMPS structural levels for 
individuals was conducted. Given that most students elicited structured accurate 
predictions at the year 4 data-collection point, their predictions in year 3 were 
used as a reference point for comparing shifts in their thinking (see Fig. 2). Two 
groups of students were compared: 20 students whose first set of predictions 
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were pre-structural, emergent or partial, and the remaining 24 students whose 
predictions were structural or advanced. By examining how the less-advanced 
group of 20 students progressed, two clusters were identified when reassessed in 
year 4, as ‘low-gain’ and ‘high-gain’.

Students with predictions at pre‑structural, emergent or partial level in year 3 
(n = 20)

1. ‘Low-gain’ students (n = 5) progressed to the next AMPS level or remained at the  
same level for two or more of the types of response. While students in this group 
showed modest improvements, their data predictions (the easiest of the tasks) 
remained at best partial (and usually below)in their year 4 responses. In the example  
in Fig. 6, Kane’s predictions and explanations improved from pre-structural to  
emergent, while his representations remained at pre-structural level.

2. ‘High-gain’ students (n = 15) shifted from pre-structural, emergent or partial 
AMPS levels of response to structural or advanced structural for any of the three 
types of response (n = 15). These students showed transnumeration, viewed the 
data holistically and used statistical reasoning. However, not all high-gain stu-
dents responded consistently. Five students made significant improvement in 
predictions, but with explanations and representations remaining at partial level 
or below. A further five students produced structural representations while their 
explanations remained at partial or below. For the remaining five students, predic-
tions, explanations and representations were consistently structural. Hattie, for 
example, predicted and represented at emergent level in year 3 and progressed to 
structural level in both response types by year 4 (Fig. 7).

Students with predictions at structural or advanced structural levels in year 3 
(n = 24)

Twenty-four students (just over half) predicted at a structural or advanced struc-
tural level in year 3, but their explanations and representations were inconsist-
ent. In year 4, all but three reached at least structural level for their explanations 
(n = 7), their representations (n = 3) or for both (n = 6). The remaining five stu-
dents were already responding at structural level, and some advanced to explana-
tions focused on variability.

The 24 more advanced students fell into five clusters described below. (Rep-
resentative examples of clusters 2, 3 and 5 are presented in Figs.  8, 9 and 10 
respectively).

1. ‘Low-gain’ students (n = 3). Representations remained partial or below, and expla-
nations were unstable and below structural level. For these students, in both 
year 3 and 4, reasoning alternated between structural and emergent, for example, 
describing authentic seasonal relationships as well as invented patterns.
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2. Growth in explanations (n = 7). Representations remained partial or below. How-
ever, the explanations progressed to structural, as for Andrea (Fig. 8). Year 4 
explanations shifted from partial to structural, while representations remained 
emergent.

3. Growth in representations (n = 3). Representations shifted to structural, while 
explanations remained emergent (n = 3). For Lanni, for example, her year 4 rep-
resentations shifted from emergent to structural, while her explanations remained 
emergent (Fig. 9).

4. Growth in both explanations and representations (n = 6). Representations shifted 
to structural, similar to the example in Fig. 9, as did explanations similar to the 
example in Fig. 8.

5. Growth in students already at structural level (n = 5). Students with structural 
(or advanced structural) predictions, explanations and representations in year 3 
demonstrated further progress by year 4. In Fig. 10, Rhys represented his own 
predictions in year 3, but by year 4 observed the whole data table and extracted 
the highest monthly values. Similarly, in year 3, he made accurate predictions by 
drawing on seasonal knowledge, and then in year 4 extended his explanations to 
include an early understanding of mean.

Discussion

The study extends current research in early mathematics education by developing an 
integrated descriptive framework for analysing developmental aspects of predictive 
reasoning in primary students. The first research question considered how students’ 
interpretation of structural features of data supported their predictive reasoning. 
AMPS was fundamental to students’ interpretation and representation of the data 
set, enabling an appreciation of how the variables of time and temperature could 
be related and organised. Students coordinated bivariate data and represented these 
data using collinearity, a key feature of the AMPS framework. For example, stu-
dents were frequently able to identify the base-ten structure of values in columns, 
notice the repeated data values and identify variations and similarities in data range. 
Advanced students recognised patterns and structural features of data as they devel-
oped deeper statistical thinking. Students who demonstrated structural or advanced 
structural AMPS features viewed the data as aggregate, understood the idea of cen-
tral tendency and could generalise about simple relationships within these data. In 
all cases, the increase in accuracy of data prediction preceded or co-emerged with 
increased sophistication in students’ representations and/or explanations. However, 
predictions alone cannot be taken as confirmation of statistical reasoning. It may be 
that students were able to accurately predict or improve in their predictions based on 
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patterns in the temperature table, but could not explain why. This raises the question 
of whether our data analysis could examine more holistically the dynamic interplay 
between predictions, explanations and representations on a case-by-case basis.

While students looked for patterns in the data, not all pattern-seeking behav-
iour was effective. Ineffective strategies included the assumption that tempera-
tures always went from ‘cold to hot’ or that the goal was to ‘find missing num-
bers’. Students’ tendency to seek missing (or unused) numbers in distributions 
has been previously reported (Watson & Moritz, 2001) and may be linked to a 
perception of ‘fairness’ whereby variation is controlled by even allocation across 
groups (Reading & Shaughnessy, 2004). When describing the predictions of year 
2 students, for example, Ben-Zvi and Sharett-Amir (2005) noted that students 
appeared to conceive the data as a flat distribution with all values equally likely.

The second research question investigated shifts in students’ predictions, repre-
sentations and explanations from year 3 to year 4. We suggest that a tentative pro-
gression of statistical thinking can be described based on our evidence. Students 
showed a shift from thinking focused upon the general idea of weather to noticing 
the structure and features of the table including grid lines. This was followed by 
undifferentiated attention to some or all of these data without any systematic inter-
pretation. The spatial structure of the grid required the students to conceptualise 
the table structure as containing column and row composites. Following this, stu-
dents appeared to pay attention to the column structure of the table, often followed 
by the row structure with attempts to coordinate (collinearity), and then identified 
similarities and clusters in these data. This occurred prior to viewing the table as 
one whole data set with aggregate and variable properties. However, we found large 
individual differences in students’ predictions, explanations and representations of 
data within each year level. In earlier research, English (2013) questioned whether 
constructing representations prior to a student developing conceptual understand-
ing supports or hinders understanding, or if the concept and representation develop 
in tandem. Watson and Moritz (2001) found that student explanations lagged 
behind representations (pictograms) although the representational activity used in 
that study was more scaffolded than in the present case. In the present study, mak-
ing reasonable predictions was clearly easier for the students than either explain-
ing their predictions or representing these data. Many students responded at dif-
ferent structural levels simultaneously. Perhaps not surprisingly therefore, lags in  
explanatory and representational skills appeared to narrow between year 3 and 
year 4.

By year 4, many students’ explanations of their predictions reflected an under-
standing of variability (Shaughnessy, 2007). Students noticed variability in data val-
ues including extremes and outliers, as range (annual or monthly), associated vari-
ability with seasonality and as a distribution through recognising the modal value. 
Our findings, however, need to be considered as tentative as we do not claim or 
speculate that our data provide conclusive evidence that young students can grapple 
with all forms of variability. To demonstrate a sound understanding of variability, 
students must be able to describe and represent relationships between different vari-
ables within a data set (Biehler et al., 2018).
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Our findings complemented studies with primary students on variation in causal 
distributions (e.g., Ben-Zvi & Sharett-Amir, 2005) and reasoning about representa-
tions (English, 2012; Watson & Moritz, 2001). The real data set selected for this 
study reflected underlying causal variation due to seasonal change, which was 
inferred from students’ responses at the structural and advanced structural levels. 
In each case, students were able to explain causal variation in patterns of data and 
use it to make their own predictions and representations. The variables of time and 
temperature could also be interpreted and organised in several ways each giving a 
different grasp of the distribution (Gattuso & Ottaviani, 2011). If a student selected 
the temperature as the dependent variable, the independent variable could be either 
month or year (Fig. 4). Selection of month as the independent variable emphasised 
the relationship between months and temperatures, provided they were organised in 
calendar order (e.g., the bar graph in Fig. 7 is inconsistent here). This made it easier 
for students to read beyond the data (Makar & Rubin, 2018) and generalise about all 
other years. For some students, drawing their own graphs to illustrate their (struc-
tural) predictions clarified this relationship in a way that simply viewing the  tem-
perature table could not. This became apparent at interview when students were 
asked to justify and explain their responses. Students who selected the year as the 
independent variable demonstrated coordination of bivariate data, but their resulting 
graph lacked the relational component apparent when months were selected. This 
was because, at least on the timescale used, these data showed no clear trend across 
years and temperatures. Using the year as the independent variable provided less 
opportunity for inference, as interpretation was limited to noticing, for example, the 
hottest or coldest year from the limited range.

Implications and limitations

The study was limited to a single task on predictive reasoning with one cohort from 
a relatively high socio-economic background, albeit advantageous to report lon-
gitudinal progress. Such findings do not permit immediate generalisation to other 
populations and contexts. Thus, it is important that future research be extended to 
examine predictive reasoning across the early childhood and primary school years in 
a range of contexts and in more diverse populations.

Our findings have implications for the design and inclusion of statistical learn-
ing experiences in early primary. Even year 3 students demonstrated a capacity to 
predict and to make relevant observations, prior to formal statistical instruction, sug-
gesting a readiness to approach more difficult statistical tasks, understand measures 
of central tendency and explore variability. Another implication of this study is that 
learning to represent with meaningful data can be applied to other contexts such as 
science and geography, as can the process of interpreting and generalising from data 
tables used in many domains.

Further research could include a range of statistical tasks and pedagogical strate-
gies that can be replicated and refined in classroom settings, and that employ more inclu-
sive approaches. The advantage of longitudinal studies which observe learning over 



 G. Oslington et al.

1 3

time and cross-sectional studies permitting comparison of developmental levels can  
advance this emerging field in new ways. The practical implementation of the AMPS  
framework or an alternative focusing on structural levels to articulate fine-grained 
steps in students’ statistical reasoning is perhaps the next step in the application of this 
research. This would necessitate more frequent data-collection points and a broader 
range of tasks in authentic contexts. Such observations would assist the observation 
of developmental changes in students’ statistical reasoning more explicitly. Further 
research adapting AMPS to assess statistical reasoning in the early childhood and pri-
mary years—such as is available in middle grades (Callingham & Watson, 2017)—is  
essential for tracking developmental progression.

Concluding remarks

Engagement in predictive reasoning and advanced representational challenges is not 
traditionally expected of primary students. However, our students made predictions 
and representations based on real data, made inferences about those predictions and 
developed notions of variability. Clearly, there was progression in students’ struc-
tural development and representation of statistical concepts from year 3 to year 
4, but with wide variation in individual patterns of responses. Explanations often 
lagged behind students’ predictions, i.e., students could not always reason about 
their predictions. This exploratory study prompts the need to make explicit the com-
plex development of statistical concepts including aggregation, pattern-seeking, 
transnumeration, and variability. Such research may provoke further reform in math-
ematics curriculum and promote pedagogy beyond ‘chance’ activities and proce-
dural approaches when working with data. Taken together, the findings of this study 
highlight the feasibility of challenging young students to engage with real data as 
well as self-constructed data sets, prior to formal instruction in statistical concepts. 
The study contributes to a growing body of research in mathematics and statistics 
education fuelled by the need to engage young students in data-driven learning and 
statistical literacy. Evidence of this research direction is exemplified in volumes 
such as Suh et al. (2021) and the forthcoming special issues of the Statistics Edu-
cation Research Journal (SERJ) and the Mathematics Education Research Journal 
(MERJ).
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