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Abstract
The aim of this article is to carry out a work of networking theories which com-
bines two perspectives on the mathematical activity involved in a modelling process, 
in order to answer the following question: To what extent does the application of 
the onto-semiotic tools complement the analysis from a cognitive perspective of a  
mathematical modelling process? To this end, we considered two theoretical frame-
works: on the one hand, the onto-semiotic approach, which provides tools for the  
analysis of any mathematical activity and which here we applied to the activity of  
modelling; on the other hand, the modelling cycle from a cognitive perspective, which 
is a reflection on the specific mathematical activity of modelling. Then, we took a 
modelling problem that we applied to prospective mathematics teachers (at undergrad-
uate and postgraduate level), and we analysed it from the perspective of both frame-
works, in order to identify concordances and complementarities between these two  
ways of analysing the mathematical activity involved in the modelling process. The 
main conclusion is that both frameworks complement each other for a more detailed 
analysis of the mathematical activity that underlies the modelling process. Specifi-
cally, the analysis with the tools provided by the onto-semiotic approach reveals the 
phases or transitions of the modelling cycle as a conglomerate of mathematical prac-
tices, processes, and the primary objects activated in these practices.

Keywords Analysis of mathematical activity · Mathematical modelling · 
Networking of theories · Onto-semiotic analysis

Introduction

The development of models for analysing mathematical activity has been one 
of the topics that have produced most interest in Mathematics Education. The 
researchers who have been devoted to this question can be divided into two large 
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groups: those who have proposed general models for the analysis of mathematical  
activity, and those who have chosen to propose models for a specific type of 
mathematical activity. In the first group, there are those who develop theoretical 
constructs to analyse mathematical activity within the framework of the theories 
of Mathematics Education (e.g., Brousseau, 2002; Chevallard, 1992; Kuzniak, 
2011, among others). In the second group, we find those who focus on specific 
activities, such as the use of semiotic representations (Duval, 2017), problem 
solving (Liljedahl & Santos-Trigo, 2019), visualisation (Presmeg, 2006), and 
also mathematical modelling. On the last of these, the specialised literature has 
included research on the different ways of structuring modelling cycles (see  
Borromeo, 2006) as well as the different perspectives on this process in the  
teaching and learning of mathematics (see Abassian et al., 2020).

Although some research into networking between a general theoretical frame-
work and a theoretical model focused on the analysis of a specific type of math-
ematical activity has been carried out (see Pino-Fan et al., 2017, for the process 
of representation; Campo-Meneses & García-García, 2021; and Rodríguez-Nieto, 
2021, for the process of connection), it is interesting to extend the study of how 
these different types of analysis of mathematical activity (i.e., general and specific 
frameworks) may complement each other. In the present study, a general theoreti-
cal framework of mathematical activity and a specific framework for the mathe-
matical modelling process are complemented. Therefore, this research is relevant 
to the field and addresses a networking of two theories which, as far as we know, 
has not previously been proposed with these specific theoretical frameworks.

Currently there is a broad consensus on the importance of including mathemat-
ical modelling in school curricula, and on the development of the competencies 
linked to this process (Kaiser, 2020). It is considered that this incorporation helps 
students to improve their understanding of mathematics, providing real contexts 
for its learning, and therefore contributing to the development of different math-
ematical competencies, among other benefits (Blum, 2011). However, what has 
not yet been agreed on is specifically how to incorporate mathematical modelling 
into the curriculum, since there is no consensus on the objectives of the process 
and the theoretical justification for the design and implementation of its teaching. 
This situation stems from the diversity of approaches to mathematical modelling 
that have been proposed (Borromeo, 2013).

Among the specific frameworks for the analysis of mathematical activity in 
modeling, one of the remarkable approaches within the educational community 
is the Mathematical Modelling Cycle from a Cognitive Perspective (MMCCP), 
proposed by Borromeo (2007a). As regards general frameworks for the analysis 
of mathematical activity, one key reference is the onto-semiotic approach (OSA) 
(Godino, 2002; Godino et al., 2007), a theoretical model of mathematical cogni-
tion and instruction that provides conceptual and methodological tools to pose 
and deal with research problems in Mathematics Education. While the MMCCP 
has an impact in the European research community and has also been worked by 
Hispanic researchers (see Borromeo, 2018), the OSA, in addition to its European 
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impact, has a substantial impact in the Hispanic academic world1, and has also 
been worked in the Australasian context (see, Claudia et  al., 2021; Rudi et  al., 
2020; among others).

Taking into account the impact of the theoretical frameworks mentioned above, 
and the authors’ expertise in their use (since the first and third authors have experi-
ence in using the MMCCP, and the second and third authors in the use of the OSA), 
in this paper we address the following research question: To what extent does the 
application of the onto-semiotic tools complement the analysis from a cognitive per-
spective of a mathematical modelling process? In order to address this issue, we 
used the tools provided by the OSA to analyse the complexity of the mathemati-
cal activity involved in the MMCCP, and we followed a methodology that is very 
similar to that used in the networking of theories (Bikner-Ahsbahs & Prediger, 2010, 
2014) to understand the potential complementarities between the analyses per-
formed with the two theoretical frameworks considered in this study.

We consider that answering this question is relevant for Mathematics Education 
research in two scopes: on the one hand, because it will allow both a better under-
standing and refinement of the MMCCP, and the theoretical development of the 
OSA through a connection between the modelling process and the tools provided 
by this framework; on the other hand, because it is related to the current interest of 
reflecting on the networking of theories — in this case, between a general and a spe-
cific framework — and it is in line with the work developed by Vergel et al. (2021).

Theoretical framework

In this section, we describe the two theoretical frameworks considered for this study.

Mathematical modelling

Despite differences with respect to the positions on mathematical modelling, there is 
a relative consensus that this process consists of a transition between the real world 
and the mathematical world, when solving real context problems. Although different 
models have been proposed for this transition, here we choose the MMCCP pro-
posed by Borromeo (2007a), as shown in Fig. 1. This cycle, based on that developed 
by Blum and Leiß (2007a), explains the phases that an individual goes through in 
order to solve a modelling problem.

In terms of what is described by Borromeo (2011, 2018), the real situation is 
understood as a problem taken from reality, and that may be represented in writ-
ten form (textual statement), visual form (pictures), or a mixture of the two (text 
and pictures). The mental representation of the situation is generated from under-
standing of the task, mental reconstruction of the problem, and the associations the 

1 The studies where the OSA is widely explained and applied are available at http:// enfoq ueont osemi otico. 
ugr. es/

http://enfoqueontosemiotico.ugr.es/
http://enfoqueontosemiotico.ugr.es/
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individual makes with the proposed situation. To obtain a real model, the mental 
image the individual has formed based on the problem must be simplified and struc-
tured, and it may include external representations (diagrams, figures, etc.). As in a 
modelling problem not all the data necessary for its resolution are always given, the 
individual’s extra-mathematical knowledge plays an important role when working 
with the available information, adding some considerations to the context of the sit-
uation according to personal experience. The mathematical model takes into account 
the mathematical objects which allow the real situation presented to be explained 
(Abassian et al., 2020), and it will be the product of the mathematisation (translation 
into mathematical language) of the real model and the contributions of the individ-
ual’s extra-mathematical knowledge. From the mathematical work with the math-
ematical model, mathematical results are obtained that, after being interpreted in the 
real situation context, will allow real results to be obtained. Finally, the validation 
of the real results — comparison of the triad real results ↔ mental representation 
of the situation ↔ real model — should lead to an adequate answer to the proposed 
problem.

Fig. 1  Mathematical modelling cycle from a cognitive perspective ( adapted from Borromeo, 2018, p. 
15)

Fig. 2  The Bales of straw problem ( adapted from Borromeo, 2007b, p. 2084)
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The competence in Mathematical modelling is present throughout this entire 
cycle. It consists of being able to work (construct, critically analyse, evaluate) 
with mathematical models and to take into account adequately elements from the 
extra-mathematical domain, as the phases of the modelling cycle progress (Niss & 
Højgaard, 2019). This competence is carried out through different mathematical 
modelling sub-competencies (numbered on the right side of Fig. 1), which enable 
transition between these phases (see Maaß, 2006).

Example of a modelling problem and the analysis of its resolution using 
the MMCCP

In the Bales of straw problem (proposed by Blum and Leiß, 2007b), students are 
required to calculate the height of a mountain of bales of straw from a picture 
(see Fig. 2). This problem has been used by Borromeo (2011, 2018) to exemplify 
the MMCCP. We chose this problem for analysis in this study precisely because it 
is a paradigmatic example used to illustrate this modelling cycle.

Table  1 analyses the resolution of the Bales of straw problem from the per-
spective of the MMCCP.

Onto‑semiotic approach

The OSA considers that mathematical activity aims to solve problems. As a result 
of a process of problematisation, the subject or the institution assumes the task of 

Table 1  Analysis of the Bales of straw problem using the MMCCP ( adapted from Borromeo, 2011, 
2018)

* An element from the extra-mathematical knowledge that must be taken into account is that this problem 
was originally applied in the German context, which explains why the height of the woman is estimated 
as 1.7 m

Phases of the cycle

Real situation:
Representation of the problem through the picture.
Mental representation of the situation:
Think about moments related to summer and one’s own experiences with bales of straw (extra-mathe-

matical knowledge); understand that the height of the mountain of bales of straw must be  
determined.

Real model:
Think of circles instead of bales of straw; draw the situation; simplify the woman as a segment; suppose 

that the height of the woman is 1.7  m*.
Mathematical model:
Model 1, multiple addition of the height of the woman; Model 2, use of the Pythagorean theorem.
Mathematical results:
The result of the mathematical model would be approximately 7.
Real results:
The height of the mountain of bales of straw is 7 m.
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solving a problem (proposed by someone else or created by oneself), through car-
rying out mathematical practices — any action or manifestation, linguistic or other-
wise, carried out by somebody to solve mathematical problems, to communicate the 
solution to other people, or to validate and generalise that solution to other contexts 
and problems (Godino & Batanero, 1998). In order to carry out them and to inter-
pret whether their results are satisfactory, it is necessary, in addition to considering 
the problem itself, to bring into operation other mathematical objects, which emerge 
from these mathematical practices. Indeed, in the resolution of the problem, it is 
necessary to use different languages (verbal, symbolic, etc.), which are the osten-
sive part of a series of definitions, propositions, and procedures that intervene in the  
elaboration of arguments that allow the problem to be solved. Consequently, when 
a subject performs and evaluates a sequence of mathematical practices, he/she acti-
vates a cluster made up of problem situations, languages, definitions, propositions, 
procedures, and arguments articulated in what the OSA terms a configuration of pri- 
mary objects (Font et  al., 2013). These networks of objects that intervene and 
emerge are called epistemic configurations when they are considered from an insti-
tutional perspective, and cognitive configurations when they are considered from a 
personal perspective.

The mathematical objects that intervene in the mathematical practices and those 
that emerge from them may be considered from the perspective of the following  
ways of being/existing, which are grouped into facets or dual dimensions (see Font 
& Contreras, 2008; Font et  al., 2013): extensive–intensive, expression–content,  
personal–institutional, ostensive–non-ostensive, and unitary–systemic.

Problem solving is achieved through the articulation of sequences of practices. Such 
sequences take place in time and are often considered as processes. In particular, the use  
and/or the emergence of the primary objects of the configuration (problems, languages, 
definitions, propositions, procedures, and arguments) takes place through the respective  
mathematical processes of communication, problematisation, definition, enunciation, 
elaboration of procedures (algorithmisation, routinisation, etc.), and argumentation 
(applying the process-product duality). Meanwhile, the dualities described above give 
rise to the following processes: institutionalisation – personalisation, generalisation  
– particularisation, analysis/decomposition – synthesis/reification, materialisation/ 
concretion – idealisation/abstraction, expression/representation – meaning.

This list of processes derived from the typology of primary objects and dual 
facets used as tools to analyse mathematical activity in the OSA, while contem-
plating some of the processes considered as important in mathematical activity, is 
not intended to include all the processes involved in that activity. This is because, 
among other reasons, some of the most important processes, such as problem solv-
ing and mathematical modelling, are hyper or mega processes rather than just mere 
processes (Godino et al., 2007), since they involve more elementary processes, such 
as representation, argumentation, idealisation, and generalisation.

In the OSA (Godino et al., 2009), it is considered that both mathematical prac-
tices and the instructional process are regulated, among other things, by epistemic 
norms (which regulate mathematical practices and contents, in correspondence with 
the mathematical discourse that can be developed in an institution), mediational 
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norms (which regulate the resources — time or artefacts — used in practices), 
interactional norms (which regulate the modes of interaction between the individu-
als involved in mathematical practices or the instructional process), and ecological 
norms (external aspects — curricular guidelines, educational policies, etc. — which 
condition practices in lessons). In this study, we focused on epistemic norms, and in 
particular the meta-mathematical ones which regulate the practices carried out in a 
modelling process.

The theoretical tools just described allow for analysis of mathematical activity in 
which firstly, temporal analysis of the mathematical practices carried out to solve a 
certain problem is performed; then the configuration of primary objects that inter-
vene in those practices is analysed (which provides information on the elements 
or parts of this mathematical activity), and finally analysis in terms of processes 
is carried out again, to complete the analysis in terms of practices (which provides 
information on the temporal dynamics of mathematical activity). Meanwhile, the 
normative analysis allows us to describe the norms that regulate this mathematical 
activity. In the next section, we illustrate this way of analysing the mathematical 
activity using the resolution of the Bales of straw problem. Due to the lack of space, 
other types of analysis, applying other tools provided by the OSA, are excluded; for 
instance, plotting the semiotic functions that interlink the primary objects which 
intervene in mathematical practices (e.g., Breda et al., 2021), or the metacognitive 
configurations (e.g., Gusmão, 2006).

Example of a modelling problem and the analysis of its resolution using the OSA

The following analysis only considers the first mathematical model mentioned in 
Table  1 (due to a lack of space), that is, the multiple addition of heights. Firstly, 
we described our resolution of the problem as a mathematical narration. The solver 
began by reading the problem, which requires the calculation of the height of a 
mountain of bales of straw. For this, presumably, he/she estimated the height of a 
woman (approximately 1.7 m), then compared this height visually with the diam-
eter of a bale, concluding that it would be somewhat smaller (approximately 1.5 m). 
Looking at the picture, he/she noticed that there are five rows of bales in total, of 
which the even ones are smaller in size (three quarters of the calculated diameter) 
than the odd ones, due to the way the bales are stacked and fit together. In order to 
calculate the total height of the mountain, he/she could have represented the situa-
tion as a diagram where the five rows are shown (Fig. 3a), and assigned lengths to 
the diameters of each row (Fig. 3b). Thus, the total height of the mountain of bales 
would be equal to the sum of each of the rows of bales (6.75 m).

Secondly, based on the mathematical narration mentioned above, we identified 
the following mathematical practices (P) that can be performed to solve the task:

• P1: Read the task.
• P2: Estimate the height of the woman.
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• P3: Make a visual comparison between the height of the woman and the height 
of the bale, to estimate its diameter.

• P4: Make an iconic representation of the situation.
• P5: Calculate the portion of the height of the even rows that does not fit with the 

height of the odd rows, using a visual comparison.
• P6: Perform the calculations to arrive at the total height.
• P7: Assess whether the solution makes sense in the context of the problem.

Thirdly, since mathematical modelling is considered within the OSA as a mega 
process, we identified the processes involved in each of the practices listed above, 
and the objects that emerge from these practices. As a result, in Table  2 we pre-
sent the analysis of the problem using the tools provided by the OSA, including 
the mathematical practices (first column), processes (second column), and objects 
(third column) that intervene to solve the problem.

Fourthly, from the analysis in Table 2, we identified that some epistemic (meta-
mathematical) norms that govern the modelling activity also emerge. They are indi-
cated below, according to the mathematical practice they are related with:

• Norm 1: Minimise the amount of information, replacing it with signs and figures 
(principle of simplification) [Practice 4].

• Norm 2: Make a representation that maintains the structure of the problem state-
ment (iconic representation, diagram), and the information necessary to solve it 
[Practice 4].

• Norm 3: The representation can be drawn by hand or using a graphic software 
[Practice 4].

• Norm 4: The problem may have approximate, non-exact solutions [Practice 5].
• Norm 5: The solution must make sense in the real world, as it is a real context 

problem [Practice 7].

Fig. 3  Representations of the situation through a diagram of rows (a), and with the lengths of the diam-
eters of each row (b)
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Concerning this last norm, two considerations must be made: (a) the results must 
exist in reality (for example, a negative height should be discarded in this context), 
and (b) the results must be reasonable, as determined by triangulating with other con-
text information (for example, a height of 250 m or 30 cm would not be reasonable),  
or by searching for context information on the Internet or in other sources.

If there are different resolutions of the problem (with different mathematical 
practices, processes, or objects), a new norm appears (Norm 6), which consists of 
assessing which solution is best suited to answering the problem, taking into account 
several questions such as: What do I need the answer for? Is it consistent with the 
problem context? What are the mathematical aspects involved? (Among others).

Methodology

The study we developed is principally reflective on theory, and in it we aimed to 
compare analysis of mathematical activity from the perspective of the two theo-
retical frameworks mentioned above, in order to understand how the onto-semiotic  
tools complement the MMCCP. To this end, we followed a method that is very simi-
lar to that used in the networking of theories, particularly the one used in works 
of networking between a general theoretical framework and a theoretical model  
focused on the analysis of a specific type of mathematical activity (e.g., for the pro-
cess of representation, see Pino-Fan et al., 2017; and for the process of connection, see  
Campo-Meneses & García-García, 2021; Rodríguez-Nieto, 2021).

Networking of theories

In a first step, we explained the two theoretical frameworks to each other, in order to 
ensure that all three of us have a good understanding of both. The way in which the 
two frameworks understand both the specific mathematical activity of modelling and 
mathematical activity in general was explained above (see ‘Theoretical framework’).

Various authors have shown an interest in determining the aspects that character-
ise a theory, in order to clarify it and compare it to others (see Bikner-Ahsbahs & 
Prediger, 2010, 2014). According to Radford (2008), the essential elements of a the-
ory include paradigmatic principles, methods, and research questions. The principles 
of each theory imply that a position is adopted (either explicitly or implicitly) on the 
nature of mathematical objects. The second step allowed us to find concordances 
and differences between the theoretical frameworks, and also provided a first general 
idea of how they could be coordinated. This second step was essential in order to be 
able to continue to the following ones, since, on the one hand, an initial comparison 
between the constructs used in the two approaches to analyse mathematical activity 
made certain concordances evident, and, on the other hand, we concluded that the 
different positions concerning the nature of mathematical objects were not so deci-
sive as to make it pointless to continue seeking for connections between them (see 
‘Concordances and differences between the theoretical frameworks’).
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Once this first comparison between the two theoretical frameworks was made, 
one of the basic principles of the networking of theories was applied: Ensure 
that the work of establishing connections is as accurate as possible. In accord-
ance with this principle, since modelling should clearly be the topic, the third 
step was to select a specific task from this type of mathematical activity, thus 
we chose a paradigmatic task which is used to illustrate the MMCCP (the Bales 
of straw problem in Fig.  2). Since its expert solution and analysis were taken 
from Borromeo (2011, 2018), we made our own expert solution of the problem 
and then applied the tools provided by the OSA for its analysis (as described in 
‘Example of a modelling problem and the analysis of its resolution using the 
OSA’).

In a fourth step, the problem in question was given to two groups of pro-
spective mathematics teachers to solve it, in order to use their mathematical 
strategies and models which could emerge from its resolution to illustrate — 
in the following steps — how the analysis tools of both frameworks (MMCCP 
and OSA) are applied to a real protocol of a modelling task. Therefore, in the 
fifth step, the different resolutions obtained were grouped together and analysed 
using the two approaches as follows: The first and third authors carried out the 
analysis in accordance with the MMCCP, while the second and third authors 
complemented and deepened that analysis using the tools provided by the OSA 
(as mentioned in the third step). Finally, the sixth step, which was carried out 
jointly by all of us, focused on determining the contributions made by the anal-
ysis of modelling activity using the tools provided by the OSA to that of the 
MMCCP, and vice versa.

Stage of implementation

At this stage, the Bales of straw problem was given to two groups of prospective 
mathematics teachers from two universities in Barcelona (Spain). These were 
intentional samples (according to our access possibilities and their willingness 
to participate) in different training contexts. The first group, with 60 prospec-
tive primary school teachers (at undergraduate level), was in the context of a 
problem-solving module. The second group, with 20 prospective secondary 
school teachers (taking a teacher training master’s degree), was in the context of 
a mathematical modelling module.

The dynamics with the two groups was: First, they were introduced to general 
aspects of mathematical modelling; second, the problem was posed for them to solve 
it in teams, and they were asked to write down all their procedures; third, they pre-
sented their results to the whole group, and then discussed the strategies used by 
each team; and finally, the MMCCP was presented to them, exemplifying it with 
the resolution from Table 1. In line with what Blum (2011) proposes, the teacher in 
charge of the activity (the first author) tried to intervene as little as possible with the 
participants during the modelling task. Their written production was collected, and 
the explanations of their resolutions were recorded in audio.
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Results

In this section, we detail the results of the comparison between the two theoretical 
frameworks and of their application to the analysis of the modelling problem.

Concordances and differences between the theoretical frameworks

As mentioned in the second step of the methodology, we carried out a first analysis  
of the concordances and differences between the MMCCP and the OSA. This  
comparison was organised around the essential elements of a theory according to 
Radford (2008), as mentioned in ‘Networking of theories’.

Specific cognitive approach versus broad approach

On the one hand, the MMCCP is situated on cognitive bases and the aim is to study 
the mental processes that occur in the specific mathematical activity of modelling 
(Borromeo, 2018). On the other hand, the OSA assumes a broad conception of 
Didactics as a discipline, considering that the descriptive, explanatory, and predic-
tive questions that belong to scientific knowledge must be addressed, as too must 
the prescriptive and evaluative questions which belong to technological knowledge. 
According to the OSA, Didactics must provide results that allow the suitable action 
of a portion of reality, namely, teaching and learning mathematics in different con-
texts in which these take place. For this, it must take into account the following 
types of problem areas and their interactions: epistemological, ontological, semiotic-
cognitive, educational-instructional, ecological, and optimisation of the instructional 
process. Some of the tools developed to respond to these problem areas are those 
used in ‘Example of a modelling problem and the analysis of its resolution using the 
OSA’.

Principles

Regarding the nature of mathematical objects, although there is not a clear position 
in the MMCCP, a realistic-empiricist type of position can be inferred, which consid-
ers that mathematics describes (models) the true structure of reality (see Borromeo, 
2011; Kaiser-Messner, 1993). The principle assumed by the MMCCP is that the 
importance of mathematics must be presented to students within a teaching-learning  
process that encourages the authentic problem solving (Kaiser-Messner, 1993) 
which involve a modelling process, since mathematics is not a rigid formula and it is 
used daily in almost all professional areas (Borromeo, 2011).

In contrast, the OSA (Font et al., 2013) assumes a constructivist–conventionalist  
position, which is opposed to realist theses in the philosophy of mathematics:  
Mathematical statements do not describe any kind of reality (either ideal or  
natural) that exists prior to the constructive activity of a mathematician. The type 
of existence of definition–concepts, propositions, and procedures of epistemic 
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configurations is that which conventional rules have, because actually they are used 
as such despite being presented as descriptions of mathematical objects whose  
existence is independent of people.

In the OSA, the didactic suitability of a teaching–learning process is understood 
as the degree to which it (or a part of it) meets certain characteristics that allow it 
to be qualified as suitable (optimal or adequate) to achieve the adaptation between 
the personal meaning achieved by the students (learning) and the intended or imple-
mented institutional meanings (teaching), taking into account the circumstances and 
available resources (environment). It is thus a multidimensional construct divided 
into partial suitability types (epistemic, cognitive, interactional, affective, media-
tional, and ecological suitability) and each of these, into components and indicators 
(Breda, 2020; Breda & Lima, 2016). One of the components of epistemic suitability 
is the ‘richness of processes’, understood in the sense that the instructional process 
proposes a sequence of tasks that encourage students to carry out relevant processes 
of mathematical activity (problem solving, modelling, connections, argumentation, 
etc.). Furthermore, one of the components of ecological suitability is the ‘intra- and 
interdisciplinary connections’, that is, the sequence of tasks encourages the contents 
to be related to other mathematical contents (connection of advanced mathematics 
with the mathematics of the curriculum, and connection between different mathe-
matical contents included in the curriculum), and/or with contents from other disci-
plines (extra-mathematical context and/or with contents from other subjects of the 
educational stage). So, enhancing modelling is considered in the OSA as an aspect 
that improves the suitability of the instructional process (Sala et al., 2017); there-
fore, both theoretical approaches coincide in the importance of incorporating this 
process into the teaching and learning of mathematics.

Modelling

The MMCCP has a very specific and well-developed proposal concerning the mod-
elling process (as explained in ‘Mathematical modelling’). In contrast, although it 
considers modelling as a mega process, the OSA does not have a detailed proposal 
for the subprocesses that conform it.

Concordance of methods

The method used by the MMCCP analyses the mathematical activity carried out by 
the subject during the modelling process, and in this way identifies the phases of 
the cycle he/she goes through (or not). Now, this mathematical activity is analysed 
from the position of an observer who knows the mathematical rules that regulate the 
mathematical practice and, therefore, can give a meaning (or not) to the observed 
student behaviour. So, this way of analysing mathematical activity by the MMCCP 
partially coincides with the one used by the OSA for the same purpose. In other 
words, in the modelling cycle, what is actually applied is a semiotic-cognitive per-
spective, rather than just a cognitive perspective. This concordance in the way of 
analysing the mathematical activity is what allows the complementarity of the two 
approaches.
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Concordance of research questions

The research questions posed in the studies on the teaching and learning of math-
ematical modelling from the teacher’s point of view have mainly focused on two 
aspects:

• Effective or adequate teaching of mathematical modelling in the classroom or 
laboratory.

• The development, optimisation, and evaluation of mathematical modelling in 
initial and continuous teacher training (Borromeo, 2018).

More specifically, the following are some of the questions posed to research 
from the aforementioned modelling cycle:

• What influence do mathematical thinking styles have on the modelling pro-
cess in mathematics classes where sequences of extra-mathematical context 
tasks are posed? (Borromeo, 2007a).

• What phases or stages can be reconstructed in the individual modelling pro-
cesses? What modelling patterns or preferences can be identified on the part 
of the students? Are there preferences for certain phases, stages, or procedures 
on the part of the teachers? (Borromeo, 2011).

The following types of problems are intended to be answered by the OSA 
(Godino et al., 2019):

• Epistemological problem: How does mathematics emerge and develop?
• Ontological problem: What is a mathematical object? What types of objects 

are involved in mathematical activity?
• Semiotic-cognitive problem: What does it mean to know a mathematical 

object? What does the object O mean to a subject, at a certain moment and in 
certain circumstances?

• Educational-instructional problem: What is teaching? What is learning? How 
are they related?

• Ecological problem: What factors and norms condition and support the devel-
opment of instructional processes?

• Learning optimisation problem (Didactic Suitability Criteria): What kind of 
actions and resources should be implemented in the instructional processes to 
optimise the mathematical learning?

We conclude that the research question posed from the MMCCP can be framed 
within some of the problematic areas addressed by the OSA or in the intersection 
of some of them. In other words, the tools developed by the OSA to resolve these 
problematic areas can also be very useful in answering the questions posed from 
the referenced mathematical modelling cycle.
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Analysis of the prospective teachers’ modelling processes using the MMCCP 
and the OSA

In this subsection, we present the analyses on the implementation of a modelling 
task with prospective mathematics teachers, from the perspective of the two theo-
retical frameworks considered in this study. After both implementations, the produc-
tions were collected and two of them were chosen (based on the authors’ criteria) to 
be analysed, on the basis of (a) the clarity in the resolution of the problem and (b) 
the use of different mathematical models in their resolution (estimation of meas-
urements and trigonometric ratios). These analyses were performed in accordance 
with the theoretical dispositions of each framework for the analysis of mathematical 
activity (as described in ‘Example of a modelling problem and the analysis of its 
resolution using the MMCCP’ and ‘Example of a modelling problem and the analy-
sis of its resolution using the OSA’).

Mathematical model: estimation of measurements (type A strategy)

The subjects were three prospective primary school teachers, who initially worked 
on their real model (see Table 3), assigning an undetermined height (x) to each bale, 
and determined the total height of the mountain as the product of the number of 
rows and the height of each bale (5x).

The group assumed that this answer may be very obvious, and then discussed 
its plausibility. They considered this first answer incorrect, as seen from their pro-
duction (see Table  3). On reflection, they considered the relevance of taking into 
account that the bales are stacked, and not just balanced on each other, in addition to 
the fact that the height of the mountain should be given by a numerical result. They 
thus reformulated their resolution (see Table  4) and estimated the height of each 
bale as 1.5 m (making it equal to the height they estimated for the woman), with 
a total of one-third of each bale fitting into the rows below and above (0.25 m per 
side). In this way, they determined the total height of the mountain as the sum of the 
four rows of stacked bales (4 × 1.25 m) plus the last complete ball of straw (1.5 m). 
Now, this group considered their resolution to be correct.

Table 5 presents the analysis of the modelling process applying both theoretical 
frameworks, for the resolution of the problem according to the mathematical model 
(type A strategy). By state, we mean the phase of the modelling process that repre-
sents an input/output of a portion of mathematical activity which is analysed.

Mathematical model: trigonometric ratios (type B strategy)

The subject was a prospective secondary school teacher, who simplified the moun-
tain of bales as an equilateral triangle whose vertices are at the centres of the cir-
cumferences at the edges of the figure, assigning each side the value of four diam-
eters (4d) (Fig.  4a). Then, she traced the height of the triangle and extracted a 
right-angle triangle from the figure, assigning values to its interior angles (Fig. 4b), 
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and determining that the value of the height would be calculated by applying the 
cosine (Fig. 4c).

Table 6 presents the analysis of the modelling process applying both theoretical 
frameworks, for the resolution of the problem according to the mathematical model 
— type B strategy.

Comments on the implementation

Regarding the intervention with the prospective primary school teachers, who 
organised themselves into teams of three to five members each, they basically solved 
the problem according to the mathematical models described in Table 1. Most of 
them used the estimation and addition of heights (or a variant of this), and although 
there were attempts by some groups to solve it using the Pythagorean theorem, this 
did not materialise in their written production. However, when the subjects asked 
for ideas on how to approach the problem, it was made clear to them that there may 
be more than one way to solve it. This fact represented the introduction of a new 
epistemic norm (in addition to the six detailed in ‘Example of a modelling problem 
and the analysis of its resolution using the OSA’): The problem does not have a 
single solution. A common mistake that was evident in these groups was related 
to the transition between the phases: mental representation of the situation ↔ real 
model ↔ mathematical model. In terms of the modelling cycle considered, this 
refers to the sub-competences of simplifying and subsequent mathematising, which 
was manifested by not considering the stacking of the bales to be a determining fac-
tor in order to obtain the height of the mountain. Concerning the answers of the 
groups, the real results for the height of the mountain varied (between 4.8 and 8.5 
m) depending on the height they estimated for the woman pictured (between 1.5 and 
1.7 m; extra-mathematical knowledge), so the estimation procedure was an essential 
element to solving the problem for them. During the discussion with these groups, 
the different results obtained were compared, although the participants did not ques-
tion the characteristics of the task presented, assuming it to be a real problem.

Regarding the intervention with the prospective secondary school teachers, who 
worked individually or in pairs, they took into account both the estimation model 
and the Pythagorean model, in addition to the one based on the use of trigonometric 
ratios. Unlike the previous case, the stacking of the bales was not an inconvenience 

Table 3  Initial production and transcription of the resolution using the estimation of measurements
Group’s production Transcription

BALES OF STRAW

Try to find out how high this mountain of bales of

straw is.

If the height of one bale is x, the height of the

mountain will be 5x. The height will be the same

as the base.
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when moving from the mental representation of the situation to the mathematical 
model since, as they worked with the mathematical models of the Pythagorean theo-
rem and the trigonometric ratios, they only considered the sections of the real model 
which do not fit between the rows. However, their production included algebraic 
expressions to represent the height of the mountain, using a function of the radius 
or diameter of each bale as a variable, and they did not provide a real numerical 
quantity. In this sense, the sub-competence of interpreting the mathematical results 
as real results was not in evidence. This was due, in part, to the fact that they did 
not consider the estimation procedure of the height of the woman or of the diameter 
of each bale, in order to express a specific numerical result. During the discussion 
with these groups, there were participants who questioned the problem and its real-
istic quality, in terms that the statement did not oblige in-depth contemplation of 
the plausibility of the result obtained, due to the multiplicity of answers that can be 
obtained from the problem. That is, if the result is very small or very large, the need 
to study its plausibility will appear; but if the result is 7, 8, or 9 m for the height, for 
example, the task does not require an analysis of its plausibility. In other words, the 
problem statement does not make it easy to follow the Norm 5; but in their opinion, 
a change in the problem such as ‘establish if the bales can be placed into a barn of X 
height’ actually would force compliance with this norm.

It seems reasonable to conclude that the level of mathematical knowledge of the 
subjects determines the resolution strategy to be used (choice of a mathematical 
model) and the results obtained (mathematical results → real results). Although all 
the participants — due to their previous school training — should have had sufficient 
mathematical knowledge to solve the problem using the three models (estimation 
of measurements, Pythagorean theorem, or trigonometric ratios), the prospective 

Table 4  Final production and transcription of the solution using the estimation of measurements
Group’s production Transcription

We realised that in our first solution we did not 

consider that the bales are stacked. Therefore, it is

not correct, because the bales would be floating

above each other. In this second solution, we have

imagined the woman to be 1.5 metres tall. We

have calculated that the middle section of a bale

of straw is 1 m high and its top and bottom are

0.25 m high each. Then we have added all the

bales considering the overlapping parts to avoid

summing them. The result we have is that the

mountain is 6.5 metres high, beginning from a

1.5-metre-tall woman. We believe this is an

estimated result because the bales of straw may

have different sizes and because the woman is an

imaginary measure.
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primary school teachers mainly opted for the estimation of measurements, while 
the prospective secondary school teachers considered the three models, in particular 
the one based on trigonometric ratios, which was not considered within the analysis 
from the modelling cycle (see Table 1).

The lower level of mathematical knowledge on the part of prospective primary 
school teachers was also evident, as stated above, in the difficulties they had in sim-
plifying the mental representation of the situation to construct a real model and its 
subsequent mathematisation into a mathematical model. Now, a question that arises 
is whether only the mathematical knowledge of the subjects was the determining 
factor in the choice of the strategy (mathematical model) for solving a problem. It 
could be argued that the prospective primary school teachers were mentally placed 
in a primary classroom (either as teachers or as students), that is, in a context where 
only the procedure of estimation would make sense.

Regarding the results of the problem, the prospective primary school teachers 
answered with real results (with greater or lesser success) to the situation, while 
the prospective secondary school teachers did not offer the interpretation of math-
ematical results — obtained from the work with the mathematical model — in real 
results, in order to give a specific answer to the problem. One possible explanation 
for this discrepancy in the answers is that the prospective primary school teachers 
live in a world of more elementary mathematics, where the processes of abstrac-
tion and generalisation are not as deep as those that are present in the prospective 
secondary school teachers, who live a more advanced mathematics, where the pro-
cesses of abstraction and generalisation may have several levels of depth.

This kind of findings is related to some of the ones reported by Verschaffel and 
collaborators in studies with primary and secondary mathematics teachers (see Chen 
et al., 2011; Van Dooren et al., 2002, 2003; Verschaffel et al., 1997; among others). 
However, as an opinion beyond this explanation, it is plausible to suppose that the 
problem statement does not oblige the solver to find real results, just as the prospec-
tive secondary school teachers stated in the discussion of the problem.

Theoretical discussion

We can now answer the question posed in this paper: To what extent does the appli-
cation of the onto-semiotic tools complement the analysis from a cognitive perspec-
tive of a mathematical modelling process? Our main conclusion here is that we have 
identified some concordances and complementarities between these two ways of 
analysing the mathematical activity involved in the modelling process, which we 
detail below.

In Tables 5 and 6, the columns summarise the analysis of the mathematical activ-
ity carried out by the prospective mathematics teachers with the tools provided by 
the OSA (as in Table  2), whereas the shaded rows correspond to the phases (see 
Table 1) and transitions (see Fig. 1) of the MMCCP. While the level of detail in the 
two methods differs, Tables 5 and 6 make it clear that they are complementary meth-
ods. This complementarity is due to the fact that the more detailed analysis carried 
out with the tools provided by the OSA allows us to zoom in on the mathematical 
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activity that underlies the phases and transitions of the MMCCP. This zoom in 
allows us to see these phases and transitions as an iceberg formed by a conglom-
erate of mathematical practices, processes, norms, and primary objects (activated 
in these practices). In turn, the phases and transitions of the MMCCP provide an 
initial structure (scheme) for the analysis carried out following the OSA model (as 
seen in Tables 5 and 6), and allow us to group together (in fact, to encapsulate) the 
mathematical practices (with the processes and primary objects activated in them) 
performed in each of the phases and transitions of the cycle.

The analysis carried out by following the OSA model highlights an important 
aspect, that is, the plot of norms that regulate the modelling processes. It is 
important since, in order to make students proficient in Modelling, a teacher must 
be aware of the existence of these norms and must ensure that they are established 
in the instructional process involving the modelling. This significant role of the 
epistemic (mathematical and metamathematical) norms in the modelling process is 
not, to our knowledge, explicitly included as part of the MMCCP.

Another relevant element is that this more detailed analysis allows the explana-
tion of why a specific transition of the MMCCP cannot be performed by a solver of 
this task (as occurred with some groups in this implementation).

Although the application of the OSA allows to discover the mathematical activ-
ity plot that underlies the modelling cycle, we consider that there are two aspects to 
take into account when applying a general theoretical framework for the analysis of 
mathematical activity.

The first aspect is that, since there is no agreement or paradigm in the area on 
how to make an analysis of mathematical activity, it is plausible to think that perhaps 
another theoretical framework could complement the MMCCP even more. As stated 
at the introduction, the particular choice of the MMCCP and the OSA is justified by 
our expertise in their use. Thereby, one aspect to be discussed is whether the answer 
we give to the question ‘To what extent does the application of the onto-semiotic 
tools complement the analysis from a cognitive perspective of a mathematical mod-
elling process?’ is a more relevant contribution than the one obtained by analysing 
this same modelling cycle from other general theoretical frameworks of mathemati-
cal activity (e.g., Cosmes & Montoya, 2021, from the Mathematical Working Spaces 
theory). Another discussion within this first aspect, is the comparison between the 
results of this research with the analyses of the modelling process carried out from 
the perspective of other frameworks that have used modelling cycles other than the 
MMCCP, and that have enriched them with analysis tools of mathematical activity 
that go beyond modelling activity. For instance, the analysis carried out by Niss and 
Blum (2020), or the research developed by Galbraith and Stillman (2006), which 
presents a framework for identifying students’ blockages during transitions in the 
modelling process, based on a more detailed analysis of mathematical and metacog-
nitive activity involved in these transitions. This first aspect is part of a theoretical 
discussion that we are working on, but that would require a specific article.

The second aspect is that, once a general theoretical framework has been selected, 
its theoretical constructs should be useful to capture the complexity of mathemati-
cal activity, and also be reasonably easy to apply. For instance, if the theoretical 
framework distinguishes between the constructs ‘proposition’ and ‘procedure’, it 
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should be easy to identify when we are referring to a ‘proposition’ or a ‘procedure’. 
In other words, a researcher who masters the tools provided by the OSA could be 
able to make analyses quite similar to those presented in Tables 5 and 6. However, 
our experience in applying these tools on the analysis of mathematical activity has 
made us evident that it is not always an easy task. On this fact, several reflections 
have been within the OSA, and the conclusion is that the problem is not as much 
the constructs developed for the analysis of mathematical activity (e.g., procedure, 
proposition, norm), but rather it is a problem of the philosophy of mathematics, in 
the sense that mathematics is presented as a descriptive discourse of a certain real-
ity (whether Platonic or empiricist) when, in terms of the OSA, its deep nature is to 
be conventional. This would explain why, for instance, a ‘proposition’ becomes a 
‘procedure’ (e.g., the derivatives product rule) or vice versa, as appropriate (there is 
a deeper discussion in Font et al., 2013).

Conclusions

The analysis of the modelling process, expanded with the tools provided by the OSA,  
is important because it can help us to design didactic proposals to implement model-
ling in the classroom. According to the analyses presented (see Tables 2, 5, and 6), 
no processes, for example, such as the generalisation of patterns, are evident, which 
could be achieved if the specification that there are five rows was omitted, and only 
the picture (Fig.  2) was presented with the three rows visible, so that the student 
can conclude the formation pattern of the rows in the mountain. Another process to 
which this analysis can contribute is that of validation (in Practice 7 from Table 2), 
where the detail shows — regardless of the result for the height of the mountain 
(either 7, 8, or 9 m) — the process in question would be the same, since it is only 
determined by the verification of the method of resolution (mathematical model → 
mathematical results). When identifying the primary objects involved in the valida-
tion process, especially the procedure and the argument, we observe that the discus-
sion on the reasonableness of the result (mathematical results → real results) is only 
mediated by the choice of an estimated height in the real context, and does not play 
a determining role in answering this particular problem. Due to the problematisation 
process being closely linked to the validation of the results, the richness of this last 

Fig. 4  Production of the resolution using trigonometric ratios in three steps (a), (b), and (c)
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process could be improved by modifying the situation context, for example, if the 
height of the mountain is required in order to store the bales in a barn of specific 
dimensions.

Following this line of helping to improve the didactic design, the analysis carried 
out with the tools provided by the OSA allows us to see the configuration of primary 
objects that intervene in the solving process. The analysis of these configurations 
provides information concerning the anatomy of the solution to the problem posed 
(see Badillo et al., 2015; Malaspina & Font, 2010; Malaspina et al., 2019), in addi-
tion to making it possible to create new problems, among other aspects, through 
variation of those initially proposed or directly, in such a way that a certain (or sev-
eral) primary object(s) must be used in their solution.

The detailed analysis provided by the OSA can also be very useful for the devel-
opment and evaluation of modelling sub-competencies, as mentioned when we 
commented on the production of the prospective mathematics teachers. Indeed, this 
analysis can be used to specify which practice, object, or process is (or is not) evi-
dence of the sub-competence that it is intended to develop or evaluate, and it can be 
particularly useful to offer detailed feedback to the student.

Finally, we stress that this article is also a contribution to the networking of theo-
ries, because it illustrates how a networking can be made between two theories of 
different levels — in this case, a general theory for the analysis of mathematical 
activity (OSA) and a theoretical framework for the analysis of the specific mathe-
matical activity of modelling (MMCCP). This approach results in an integrated pro-
posal of the two theories for the analysis of the mathematical activity of interest to 
the specific theory, in this case, the modelling process.
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