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Abstract
This paper aims to give detailed insights of interactional aspects of students’ agency, 
reasoning, and collaboration, in their attempt to solve a linear function problem 
together. Four student pairs from a Norwegian upper secondary school suggested 
and explained ideas, tested it out, and evaluated their solution methods. The student–
student interactions were studied by characterizing students’ individual mathemati-
cal reasoning, collaborative processes, and exercised agency. In the analysis, two 
interaction patterns emerged from the roles in how a student engaged or refrained 
from engaging in the collaborative work. Students’ engagement reveals aspects of 
how collaborative processes and mathematical reasoning co-exist with their agen-
cies, through two ways of interacting: bi-directional interaction and one-directional 
interaction. Four student pairs illuminate how different roles in their collabora-
tion are connected to shared agency or individual agency for merging knowledge 
together in shared understanding. In one-directional interactions, students engaged 
with different agencies as a primary agent, leading the conversation, making sug-
gestions and explanations sometimes anchored in mathematical properties, or, as a 
secondary agent, listening and attempting to understand ideas are expressed by a 
peer. A secondary agent rarely reasoned mathematically. Both students attempted to 
collaborate, but rarely or never disagreed. The interactional pattern in bi-directional 
interactions highlights a mutual attempt to collaborate where both students were 
the driving forces of the problem-solving process. Students acted with similar roles 
where both were exercising a shared agency, building the final argument together by 
suggesting, accepting, listening, and negotiating mathematical properties. A critical 
variable for such a successful interaction was the collaborative process of repair-
ing their shared understanding and reasoning anchored in mathematical properties 
of linear functions.
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Introduction

Students’ mathematical communication, reasoning, and problem-solving are highlighted 
in the research literature as important aspects for fostering students’ learning of mathemat-
ics (Pijls & Dekker, 2011; Seidouvy & Schindler, 2019; Sidenvall, 2019). Therefore, pro-
moting students’ mathematical communication such as making reasoning meaningful to 
oneself and peers, listening to one another, and solving mathematics together (Mueller 
et al., 2012) are central issues for progress in their mathematical understanding. Students’ 
collaboration and reasoning are key interactional aspects in math-talk and small group 
work. It is a well-researched area but still highlighted as a topic where more knowledge 
is needed, because when students are given the opportunity they can construct their own 
solution procedures, important for their mathematical understanding (cf., Lithner, 2017; 
Mueller et al., 2012; Stockero et al., 2019).

Collaboration in classrooms has often been studied as an outcome or as a 
process (Dillenbourg et al., 1996). A research approach on the outcome is often 
seen as an individual’s activity with focus on learning (Child & Shaw, 2018; 
Dillenbourg et al., 1996), whereas a research approach on collaborative processes 
emphasize the whole group and in particular the participant interaction (Seidouvy 
and Schindler, 2019). With the latter view on collaboration, this study defines col-
laboration as “a coordinated, synchronous activity that is the result of a continued 
attempt to construct and maintain a shared conception of a problem” (Roschelle 
& Teasley, 1995, p. 70). With this focus, the study views productive collaboration 
enacted when students build and maintain a shared conception of a mathematical 
problem, which is their shared understanding of the problem at hand (Roschelle 
& Teasley, 1995). Moreover, for students to pool their knowledge together for 
a shared understanding, the study sees the processes of building by introducing 
and accepting knowledge, monitoring ongoing activity, and repairing conflicting 
interpretations, as central activities for such interaction.

Opportunities for studying situations of collaborative processes are in this 
study viewed through a problem-solving session, emphasizing active engagement 
in a learning process (Lithner, 2017). An active learning process is not common 
in so-called easier learning processes where solution procedures are imitated but 
rather found in students’ problem solving when they attempt to construct their 
own solution procedures through reasoning (Lithner, 2017). Mathematical rea-
soning is a central interactional aspect of learning mathematics where arguments 
are important for the learning process and not only as an outcome of learning 
mathematics (Yackel, 2001). Therefore, this study views mathematical argumen-
tation and reasoning as an interactional accomplishment and what students “take 
as acceptable, individually and collectively, and not whether an argument might 
be considered mathematically valid” (Yackel, 2001, p. 6). In line with this view, 
including all students at any competence level in mathematics, is Lithner’s frame-
work of mathematical reasoning (Lithner, 2008, 2017). From this framework, a 
student’s reasoning is explained as “the line of thought adopted to produce asser-
tions and reach conclusions in task solving” (Lithner, 2017, p. 939).
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In situations of mathematical communication, a student may become a producer 
of mathematics through their own and joint processes of grappling and exploring 
mathematics, sometimes hitting the wrong trail, and sometimes making sense of 
solutions, rather than being a reproducer (Freudenthal, 1991; Schoenfeld, 2013). 
Schoenfeld (2013) says: “A major issue is, when if ever do students get to develop a 
mathematical voice? That is, when do they get to propose ideas and answers, defend 
them, and become recognized as producers of mathematics themselves?” (p. 613). If 
these situations of mathematical communication include mathematical talk between 
students, they are in a student–student interaction. How well students interact in 
pairs and small groups is important for students’ progress in becoming a mathemati-
cal producer, rather than an imitator who reproduces mathematics without under-
standing the conceptual parts (Lithner, 2017). Varhol et al. (2020) researched stu-
dent interactions and found that some specific types of interactions were important 
for making mathematical progress in algebraic generalization. That study, and other 
studies on students’ group work or pairwise collaboration, contends that quality stu-
dent interactions and the dynamics of the processes in students’ collaborations need 
to be further explored (Seidouvy & Schindler, 2019; van de Pol et al., 2018; Varhol 
et al., 2020).

Students engage with one another and take on different roles while interacting. 
Sometimes a student leads the conversation, other times he or she might listen or 
withdraw from the conversation. Thus, roles in collaborative work can “change from 
moment to moment” (Child & Shaw, 2018, p. 1). Hence, another central interactional 
aspect in group work, when considering students’ actions and engagement in reason-
ing and collaboration, is students’ exercised agency (Mueller et al., 2012). This study 
see agency as Gresalfi et al. (2009) define it; “the way in which he or she acts, or 
refrains from acting, and the way in which her or his action contributes to the joint 
action of the group in which he or she is participating” (p. 53).

The field needs a better understanding of peer interaction patterns in collabora-
tive mathematical activity. Little is known about the dynamics of students’ collabo-
rative interaction in mathematics classroom, and few studies have taken the process 
view of collaboration (Seidouvy & Schindler, 2019). This study focuses on three 
particular aspects of students’ interactions: collaborative processes, mathematical 
reasoning, and exercised agency. To investigate conditions for fruitful collabora-
tion, Kuhn (2015) states that “it is essential to understand the underlying mecha-
nisms” (p. 47). Studying interactional aspects separately and seen in interplay in 
students’ interaction patterns may therefore give a better understanding of underly-
ing processes of collaboration, which can furthermore enable collaborative aspects 
to become teachable. Research on collaboration (Child & Shaw, 2018; Kuhn, 2015) 
and reasoning (Lithner, 2017) argues that learning is enacted in both instances and 
that there is a need for insights of the underlying processes causing this learning 
opportunity. Therefore, unpacking students’ social interactions found in the inter-
play of specific interactional aspects can make collaboration and reasoning more 
manageable for teachers and students, and consequentially promote productive 
quality interactions for learning opportunities in mathematics classrooms.

The aim of this study is to give detailed insights of interactional aspects with 
upper secondary students’ roles in their collaboration and reasoning, when 
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attempting to solve a linear function task together. With this aim, the research 
question is What are the patterns of interaction for creating a shared understand-
ing through the interplay between students’ creative reasoning, collaboration, and 
exercised agency in a mathematical problem-solving session?

Theory

Mathematical reasoning

Mathematical reasoning can be defined as “the explicit act of justifying choices 
and conclusions by mathematical arguments” (Boesen et al., 2014, p. 75). In line 
with this statement is the framework Creative mathematically founded reasoning1 
(CMR, Lithner, 2008), which identifies two major types of reasoning: creative rea- 
soning and imitative reasoning. The latter reasoning type is seen in students’ use of 
remembered facts and memorized algorithms without considering their meaning. 
Such path of reasoning has its strength in quickly solving tasks in school math-
ematics. However, without the conceptual part it may lead to rote learning (Lithner, 
2017). Creative reasoning, on the other hand, has the strength of promoting deeper  
understanding of mathematical procedures and concepts (Lithner, 2008). If engaged  
with creative reasoning, students are considering mathematical properties with the  
task they are solving or discussing, which makes it likely to develop an understand-
ing (Lithner, 2017). Creative reasoning is characterized by three aspects: creativity, 
plausibility, and anchoring. These three aspects are interconnected in reasoning as 
follows: A student may create a new idea or recreate a forgotten one (creativity) 
using arguments which are meaningful and logical to the student who is employ-
ing them (plausibility) and that are based on mathematical properties (anchoring). 
Creativity is therefore a student’s attempt to create or recreate a reasoning sequence  
that, to some extent, is new to them. A student’s reasoning, expressed as arguments, 
is creative when supported by plausible arguments. Plausible arguments are expla-
nations of strategy choices, implementations of the strategies, and explanation of 
why a strategy or solution will work or not (Olsson, 2018). The arguments are crea- 
tive when explanations and suggestions are mathematically anchored justifications 
(Granberg and Olsson, 2015). Lithner (2008) explains the difference in mathemati-
cal property as superficial or intrinsic: “In deciding if 9/15 or 2/3 is larger, the size  
of the numbers (9, 15, 2 and 3) is a surface property that is insufficient to consider 
while the quotient captures the intrinsic property” (p. 261). Central CMR-
components are presented in Table 1. 

1  In line with Lithner (2008, 2017) and his colleagues studying creative mathematically founded reason-
ing, this study uses the wording creative reasoning or acronym CMR for linguistically simplicity.
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Collaboration

When students work together and attempt to do thinking together, their “emergent 
interplay of ideas” (Martin & Towers, 2015) promotes a shared understanding of 
the problem. A shared understanding is students’ collaborative outcome from engag-
ing in collaborative processes where two or more students work together to solve a 
problem and attempt to produce a joint outcome (Roschelle and Teasley, 1995). In 
line with a view on students’ merging of ideas into a shared conception for solv-
ing a mathematical problem, Roschelle and Teasley (1995) define collaboration as 
a “coordinated, synchronous activity that is the result of a continued attempt to con-
struct and maintain a shared conception of a problem” (p. 70).

The way students engage in collaborative processes relates to how well collabora-
tion is maintained and fostered (Child & Shaw, 2016), and collaborative processes 
are important to study in students’ interactions for the dynamics of joint mathemati-
cal problem solving. Students’ attempts to create and uphold a shared understand-
ing, through coordination of language and actions (e.g., Baker, 2015; Roschelle & 
Teasley, 1995; Sarmiento & Stahl, 2008), entail what Roschelle & Teasley (1995) 
call collaborative processes of building, monitoring, and repairing. The collabora-
tive process building means to suggest ideas to initiate collaboration or it could be 
a continuation or ending of collaborative work (Alrø & Skovsmose, 2004; Child & 
Shaw, 2018; Roschelle & Teasley, 1995). For instance, if a peer accepts the sug-
gested idea, such as a problem-solving strategy or implementation of an algorithm, 
a student contributes to build a shared understanding. A student could also read out 
loud and point at the problem to be solved. Sometimes, a peer listens to a suggestion 
or asks questions about an idea, which is important for monitoring a groups’ shared 
understanding (Roschelle & Teasley, 1995). A question about an idea might result 
 in a monitoring action, such as an explanation. If an explanation does not make 
sense or a suggested idea seems wrong to a peer, then students might experience a 
discrepancy between viewpoints (Dillenbourg, 1999). But if students try to restore 
their shared understanding about the problem, they are in the collaborative process 
of repairing (Roschelle & Teasley, 1995). Therefore, important actions for repair-
ing a shared understanding are negotiations and corrections of conflicting interpre-
tations, such as paraphrasing or repeating an utterance in one’s own words (Alrø & 
Skovsmose, 2004).

Through these processes, coordination is seen as mutual exchange of utterances 
and taken actions, e.g., hand gestures, inputs to a dynamic software program, and 

Table 1   Overview of central elements of creative reasoning

Creative mathematically founded reasoning (CMR)

Creativity Plausibility Anchoring

New idea
Recreating a forgotten idea

Explanation of strategy choice
Explanation of strategy implementation
Explanation of why something is true

Ideas connected to mathematical 
properties and concepts

Intrinsic: mathematical concepts and 
properties
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explanations and justification of mathematical ideas. Students need to engage in a 
mutual exchange of ideas and actions to access each other’s thinking. In conversations, 
students can take turns suggesting, questioning, and negotiate ideas. Therefore, a cen-
tral interactional practice in conversations is turn-takings (Roschelle & Teasley, 1995; 
Sidnell, 2010). Turn-takings may therefore promote students’ co-construction of a 
shared understanding through processes where students build, monitor, and repair the 
meaning or a strategy for solving a problem (Roschelle & Teasley, 1995).

Trying to fix the differences in opinions (repairing), understanding an explana-
tion (monitoring), or introducing ideas and suggestions as well as accepting them 
(building) are important social interactions co-existing with students’ mathematical 
reasoning (Granberg & Olsson, 2015). Components of the collaborative processes 
are presented in Table 2.

Agency

A student can participate in group work by contributing with ideas or by listening 
to peers. The participation may include actively seeking to solve the task at hand, 
by making their own attempts, which involves guesses, trials and wrong paths, 
and investigations that may lead to evaluating their own mathematical production 
(Freudenthal, 1991). However, another student or the same student, in a different 
situation or in a different group, could refrain from making suggestions and actions, 
or active listening. A student may, for various reasons, resist to attend to a collabo-
rating peer. Therefore, the nature of a student’s exercised agency will vary within 
different interactions and situations (Gresalfi et al., 2009).

There are several possible perspectives to study when focusing on students’ exer-
cised agency in mathematics. Carlsen, Erfjord, Hundeland, and Monaghan (2016) 
point to how different cultures, people, and artifacts shape students’ actions and 
decisions, and thus, their exercised agency. Gresalfi et al. (2009) are concerned with 
students’ engagement in classroom activities. This focus concerns students’ act of 
complying or refraining (Sengupta-Irving, 2016), as well as about the given oppor-
tunities to act, either from a peer or from a teacher (Langer-Osuna, 2018). The latter 
aspect concerns distribution of agency (Gresalfi et al., 2009). A teacher may distrib-
ute agency through his or her authority to the given group (Engle & Conant, 2002), 
or there could be a social conflict between group members, consequentially inhibit-
ing students’ talk and activities (Langer-Osuna, 2018).

Table 2   Overview of central elements of collaborative processes

Collaborative processes for building and maintaining a shared understanding

Building Monitoring Repairing

Accepting ideas
Making suggestions
Stating a problem
Pointing out mathematical 

properties

Asking questions
Explaining an idea
Observing and responding to one 

another’s interpretations and ideas

Negotiations
Correcting conflicting interpreta-

tions
Counter-suggestions
Reformulations
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The mentioned aspects of teacher authority, social conflicts, or different cultures 
and artifacts are relevant for studying students’ collaboration and mathematical rea-
soning. However, to focus the agency aspect on student—student interaction, this 
study views students’ exercised agency as their engagement in participation for mak-
ing mathematical arguments or refraining from making mathematical arguments 
(Gresalfi et al., 2009).

To investigate students’ argumentation when collaboratively solving mathemati-
cal problems, a framework on how students’ agency is expressed in discursive prac-
tices (Mueller et al., 2012) is adopted. This framework is based on the definition on 
agency from Gresalfi et  al. (2009) and suggests that students may exercise differ-
ent agencies, such as shared agency, primary agency, or secondary agency (Mueller 
et al., 2012). See Table 3 for an overview of central elements of agency.

A shared agency is students’ co-construction of arguments, where all participants 
contribute with their ideas. Therefore, ideas, suggestions, and actions are all impor-
tant elements to building an argument from the ground, and only existing because of 
all the participants’ contributions (Mueller et al., 2012). Contrasting shared agency 
is students’ individual agency, where students are either a primary agent or a sec-
ondary agent. A student may act with primary agency when he or she makes the 
final argument based on correction from a peer or assimilates a peer’s argument, or 
by making sense of a peer’s faulty or flawed idea. A secondary agent makes inputs 
influencing the original argument. These inputs are either corrections or extended or 
flawed arguments, formed by the primary agent to a final argument (Mueller et al., 
2012).

Methods

The study is characterized as an instrumental case study (Stake, 2003)—an in-depth 
study of the particular case of four student pairs, to advance the understanding of 
an interplay between students’ creative reasoning, collaborative processes, and exer-
cised agency.

Data collection and participants

This article reports on four pairs of students, age 15–16, who collaboratively 
worked on a function task (Fig. 1). The students were enrolled in their first year of a 

Table 3   Overview of central elements of agency

Agency

Shared agency Primary agent Secondary agent

Co-construction of arguments Makes the final argument
Assimilates another student’s argu-

ment
Makes sense of a peer’s faulty or 

flawed argument

Makes input for the main argument
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theoretical mathematics program. Data was collected in a Norwegian upper second-
ary school in 2017, where three mathematics classes (69 students altogether) and 
their three teachers participated.

In the design process of the larger study, which this case is a part of, the three teach-
ers and the researcher (author) planned and evaluated lessons together emphasizing col-
laborative work and math-talk. Both prior to and after the planned lessons, the teachers 
and researcher discussed how to assist and interact with the students in order to promote 
mathematical reasoning and collaborative work. Students worked together in the same 
pairs over five consecutive months in their regular classroom setting. Based on the 
teacher–researcher conversations, the teachers attempted to ask open-ended questions 
with minimum guiding intervention, aiming to provide students with opportunities to 
make connections between function representations for understanding the function 
concept together. The three teachers were considered ordinary and engaged teachers, 
but not particularly used to organize classrooms for collaborative interactions. Hence, 
they were previous to the study not particularly aware of their teacher approach to sup-
port student pairs or whole classroom discussion for collaborative inquiries. This was a 
deliberate choice for the study, which this case study is a part of.

The students were organized into 33 pairs based on the following criteria: (1) rea-
soning competence; (2) understanding of functions; and (3) likeliness to engage in 
math-talk with one another. The two first criteria were based on the students’ scores 
on a mathematics test. The last criterion was based on conversations with the teach-
ers when considering point 1 and 2.

Due to practicality of observing students through video recordings, two pairs in 
each of the three classrooms were set as a condition. For an in-depth analysis of 
interactional aspects in students’ collaboration, six pairs were chosen. The six pairs 
were chosen based on the three criteria above, where two aspects particularly stood 
out: (1) students should express a high level of reasoning competence, which meant 
that they attempted to explain their thinking and anchored it in mathematics and 
(2) the likeliness of student pairs to be verbal and share thoughts with one another. 
These aspects were discussed with their teachers when making the pairs.

Two out of six student pairs did not exercise turn-takings, a criterion considered 
important for creating a shared understanding of the problem. These two pairs did 
not have successful conversations, since they were not engaged in sharing thoughts 
with one another. The four other student pairs exercised interactions with reasoning, 
collaborative processes, and different agencies. From the analysis (“Data analysis”), 
two distinct ways of interacting were seen, two pairs within each interaction pattern. 

Fig. 1   The function task (reformulated from Olsson (2018))
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In this article, four student pairs will illuminate the two typical interaction-patterns. 
These pairs’ interactions are presented in “Results.”

The linear function problem

During the time of the study, three main tasks were given. The presented task (Fig. 1) 
facilitated the richest conversations. In these conversations, students more often 
anchored their arguments in mathematical properties (Lithner, 2017), such as the slope 
number being a varying parameter, and students more frequently engaged in all of the 
collaborative processes of building, monitoring, and repairing of their shared under-
standing (Roschelle & Teasley, 1995).

The function tasks that were planned emphasized mathematical reasoning and non-
routine solving of tasks, where the struggle ought to be more like a challenge to solve, 
rather than an obstacle (Hiebert & Grouws, 2007; Lithner, 2017; Stein et al., 2008). In 
order to facilitate a challenge easy to discuss, however not too difficult, tasks without a 
known procedure for the students to follow were emphasized. Therefore, students were 
likely not to withdraw from mathematical conversations due to differences in their 
level of competence in mathematics. The task presented in Fig. 1 had previously and 
successfully been tested for similar purpose at another school (Olsson, 2018).

An aim with this task was also to facilitate opportunities for the students to connect 
different function representations to construct their own solutions to the linear 
function problem. In connecting different function representations, such as graphical 
and algebraic representations, students can build a more comprehensive function 
concept (Best & Bikner-Ahsbahs, 2017), rather than view functions as “topics” to 
 be learned in isolation of the others” (Thompson, 1994, p. 24). The function concept  
is regarded in school mathematics as difficult for students to learn, but very impor-
tant to understand, since it has a central role in organizing and connecting many 
mathematical ideas (Michelsen, 2006).

When students solved the function tasks, they were encouraged to use the dynamic 
software program GeoGebra, which may promote active investigation of different function  
representations (Olsson, 2019; Preiner, 2008). The strength of the program, to easily adjust  
representations in the algebraic field or the graphical field, gave students rapid feedback 
on well-justified suggestions or simple guesses. Students’ engagement with GeoGebra 
for solving a function task may contribute to students’ mathematical reasoning (Granberg 
& Olsson, 2015) and, thus, their way of interacting. However, GeoGebra does not interpret  
the meaning. Students need to make their own meanings of their findings, which is impor- 
tant for students in producing their own mathematics. In this case study, the unit of analy-
sis is the student–student interaction, unlike Olsson (2018) where GeoGebra additionally 
was included in the unit of analysis.

Data analysis

Video recordings of the eight students’ talk and actions were viewed multiple times, 
and the first step of analysis comprised denoting longer sequences where students 
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often made justifications and explanations anchored in mathematical properties as 
sequences of creative reasoning (CMR) (Lithner, 2017). These sequences were thus 
coded as CMR-sequences (creating a solution with plausible arguments anchored in 
mathematics) and further transcribed.

Then, a second analytical step comprised the coding of each student’s utterance in 
the CMR-sequences with respect to collaborative processes (Roschelle & Teasley, 
1995). How a CMR sequence was coded for collaborative processes (see Table 2 for 
details) and for aspects of creative reasoning (see Table 1 for details) is exemplified 
in “Bi-directional interaction.”

The third step in the analytical process was to provide a thick description (Powell et al., 
2003) of the four pairs’ collaboration and reasoning within their CMR sequences. This 
step enabled a description of students’ participation in the collaborating dyads, which 
made it possible to characterize students’ agency in their conversations as primary, sec-
ondary, or shared (Mueller et al., 2012). First, a description was made on the students’ 
interactions when engaged in reasoning, concerning how they attempted to engage with 
each other. If students constructed a solution sequence where they connected ideas and 
thoughts making a shared understanding of the current situation, it was recognized as 
shared agency. If students engaged individually, clearly having different roles when sug-
gesting ideas or explaining thoughts, their agency was recognized as primary or second-
ary. After characterizing students’ interactions, it was possible to describe students’ typi-
cal roles in their engagement connected to how they reasoned about linear functions and 
the ways they collaborated to solve the given task.

Tables 1, 2, and 3 present an overview of characterization of codes for CMR, collabo-
rative processes, and agency, respectively. The headings in the tables are the interactional 
categories, and the bullet points describe the interactional aspects within each category 
and were used as codes in the analysis. Excerpts in “Results” outline typical interactions 
found between the student pairs in their CMR sequences. The excerpts are chosen because 
of their clear interaction patterns.

Results

Studying students’ interactional aspects of reasoning, collaborative processes, and agen-
cies contributed to rich descriptions of students’ participation, which further grew into two 
distinct ways of interacting in the conversation, here named bi-directional interaction and  
one-directional interaction. Characteristics for the bi-directional interaction were students 
who engaged with similar roles; mutually attempting to understand each other’s ideas; 
making suggestions, listening, and negotiating mathematical properties; and mutually 
driving the problem solving process forward. Such interaction was found in the student 
pairs: Philip and Noah, and Emma and Hannah. Characteristics for the one-directional 
interaction were students who engaged with different roles and one student who led the 
conversation by being the primary reasoner and suggestion-maker for solving the prob-
lem, which a peer attempted to understand and occasionally contributed with input to the 
final outcome of a reasoning sequence. Such interaction was found in the student pairs: 
Olivia and Oscar, and Leah and Isaac. In the following excerpts, interactional aspects of 

822 E. K. S. Hansen



1 3

reasoning, collaborative processes, and exercised agency are italicized followed by a num-
ber from the students’ utterances in the conversations.

Bi‑directional interaction

Philip and Noah had found instances for when two linear functions were perpendicular 
onto each other. In the challenge that followed, they attempted to make a rule explain-
ing when the functions were perpendicular to each other.

Excerpt 1

1 Noah I don’t know how we should write it [the rule], because…
2 Philip Okay. It’s slope number. What is it called? It’s m… (writ-

ing on the laptop)
3 Noah Yes
4 Philip Divided by 1, right. Then we’ll have…
5 Noah No. One divided by m is right

Noah stated a problem for formulating the rule, thus initiating a new focus in a pro-
cess characterized as building (1). Philip responded by monitoring their problem 
when he asked what the slope number was called, which was answered by himself 
(2). In Philip’s turn, he also built their shared understanding by suggesting a focus 
anchored in the slope number (2). Noah continued to build when he accepted the 
initiation of formulating the rule (3). Again, Philip continued to build when he sug-
gested it was m divided by 1 (4). This was not logical to Noah, and he disagreed with  
Philip’s suggestion of the rule. Noah made a counter-suggestion: 1 divided by m (5). 
Thus, Noah’s countersuggestion can be seen as a repairing of their shared under-
standing. Together, Noah and Philip created a new reasoning sequence for making a 
rule based on the generalized slope number m.

To specify the coding procedure for this excerpt: The sequence was characterized 
as CMR (Lithner, 2017), because in the conversation students’ reasoning was new to 
them when they created an expression for the rule. Their explanation involved a con-
nection between the perpendicular functions which was anchored in the mathemati-
cal property of the slope number m . Their solution made sense to the student pair. 
Thus, it was plausible to them. Concerning their collaborative processes (Roschelle 
& Teasley, 1995); students were, for instance, building a shared understanding when 
suggesting a focus of the rule anchored in the slope number, and repairing when 
making a countersuggestion to the rule.

In the further unfolding problem-solving path, the student pair continued in a 
turn-taking conversation.
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Excerpt 2

6 Philip Yeah, but is it a rule?
7 Noah Yes
8 Philip How we should say something, in a way
9 Noah A rule. Oh yeah. The slope number on one line is something in connection to the other line. 

I don’t know how to formulate, explain it. (Pause)
You have the slope number for one [line] and slope number for the other one. To figure out 

the second one, I use that formula (pointing at the formula they have written down). So …
10 Philip No, right. We need to figure out something better to say than the first and the second. Maybe 

like a and b, or something
11 Noah Yes. I can try (writing on the laptop). Slope number for line b is −m∕1 . Wait. −1 divided by 

the slope number for line a. We say that. At line a
12 Philip Yeah, but slope number (pointing at the screen). We can use m, as mx + c . Instead of “slope 

number.” To add some subject content, concepts, with numbers and letters

Philip and Noah agreed upon the rule −1∕m . However, Philip was initially not 
sure whether it was a proper mathematical rule (6, 8). Noah explained his take on 
the meaning of a mathematical rule and attempted an explanation of the rule they 
had found (9). Noah was building their shared understanding by anchoring his 
reasoning on how two linear function’s slope numbers were connected (9). Together 
both contributed to generalize their findings (10, 11) into a rule constructed from 
observations of pairs of perpendicular lines, which they emphasized as “subject 
content, concepts, with numbers and letters” (12). Their attempt to create a rule was 
co-constructed through their turn-taking conversation.

Thus, Noah and Philip were both actively participating in solving the problem by 
making suggestions, observing suggested strategies, taking initiatives, and making 
counter-suggestions. The students’ line of thought in the excerpts is collaboratively 
built, and their reasoning is co-constructed and does not exist without the peer’s 
input. Hence, Noah and Philip exercised shared agency creating arguments together 
through collaborative processes and CMR.

Emma and Hannah began their problem solving by testing different linear func-
tions to be perpendicular to the line y = 4x + 2 . Their dialogue was focused on var-
ying parameters (slope number and constant), and an anticipation where the lines 
would appear in the coordinate system. Excerpt 3 shows Emma and Hannah’s con-
tinuing conversation and struggle about the connection between linear functions for 
being perpendicular.
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Excerpt 3

13 Hannah y equals. I have Caps Lock on. Eh, what should we try?
14 Emma x. 1 divided by 4…. plus 2
15 Hannah No, it’s not the same. I thought, if it were the same 

[the rule could be] that we only put minus sign in the 
front. But that doesn’t work

16 Emma I don’t know what we have been doing
17 Hannah Wait. If we take 4 divided by minus… (writing on a 

paper). No
We have. What we actually have been doing… We put 

number 4 as the denominator in the fraction, in a 
way. But I don’t know

Emma and Hannah struggled to make sense of their own suggestions (15, 16, 17). 
Hannah initiated a new sequence of guess and check, thus collaboratively build-
ing (13). Emma responded with further building when suggesting a new linear 
function: y = 1∕4x + 2 (14). Her suggestion conflicted with Hanna’s expectation 
of perpendicularity of two linear functions (15). She thought that the pair of slope 
numbers should have been 4 and −4 . Hannah’s correction, at least for herself, was 
about the conflicting interpretation of the connection between the linear functions 
(15). Thus, Hannah observed that what she had previously thought did not make 
sense, which is characterized as repairing their progress (15). Emma observed that 
their input did not result in a desired outcome, and she monitored their problem 
situation (16). Hannah continued monitoring by attempting a further explanation 
of the algebraic representation, stating indirectly that the slope number of one line 
was found as a denominator in the slope number of a perpendicular function (17). 
She vaguely suggested that it ought to be a negative slope number but rejected her 
own suggestion (17).

Emma and Hannah struggled actively together attempting to find a pair of perpendicu-
lar lines. Both students addressed the slope numbers of the perpendicular pair of linear 
functions, and their reasoning sequence was anchored in the mathematical property of the 
slope number, mainly referred to in the algebraic expressions. The students attempted in 
a joint effort to solve the linear problem with co-constructed reasoning. Therefore, their 
participation in the interaction, seen in the excerpt and before and after, is characterized as 
a shared agency.

The two pairs, Philip and Noah, and Emma and Hannah, typically attempted to 
make sense of each other’s ideas and thoughts. Similar for both pairs were a joint 
effort and engagement in different aspects of working together: making sugges-
tions, listening to one another, and expressing disagreement with actions or sug-
gestions made by each other or oneself. Although the two collaborating pairs often 
were engaged in similar ways, Philip and Noah stood out when it came to working 
together through reasoning and engagement in all the collaborative processes. This 
pair more often entered processes of repairing of their shared understanding of the 
function problem, compared to Emma and Hanna.
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One‑directional interaction

Olivia and Oscar were not engaged in a mutual exchange of ideas and actions for 
solving the function problem. In the following conversation Olivia and Oscar began 
their problem solving.

Excerpt 4

1 Oscar Okay. y = x + 1 (Olivia begins to use the laptop). And then you can take −x + 1 . It should be 
perpendicular

2 Olivia Now?
3 Oscar Yeah. There. It’s perpendicular. Um. Rule. Um. You put… They have the same value, but 

minus in front. I don’t know. Constant x has the same value, wait…
4 Olivia It’s not the same value, or?
5 Oscar No. When they have the same constant, but one is positive and one is negative, I don’t know. 

It’s kind of a rule. Wait. We should have a rule (looking at the given task). Yes, this works. 
Right?

6 Olivia Yes, it’s not a formula, so it’s okay
7 Oscar But if the slope values are the same, because the constant can be different. It’ll only go higher 

or lower on the first line-thing (pointing at the laptop screen). The straight line, as it was 
called

Oscar was the driving force for solving the problem. He made suggestions, such as 
y equals x + 1 and −x + 1 , and stated problems “They have same value, but minus 
in front… Constant x has the same value” (1, 3). Oscar attempted an explanation 
about the observation of the linear functions, justified in the “constant x,” which 
was plausible to him and anchored in mathematical property of the slope number (3, 
5). Olivia accepted Oscar’s explanations and suggestions, by putting her own words 
to Oscar’s ideas: “Yes, it is not a formula, so it’s okay” (6) and later she said “Yes, 
the constant can be different, and it doesn’t have to be the same.” Thus, the students 
were suggesting and accepting, in the process of building.

Oscar and Olivia demonstrated the process of monitoring when Olivia asked if 
her input looked correct (2), and when she questioned the meaning of the numbers 
having same value (4). Oscar monitored when he attempted an explanation trying to 
say that the slope numbers should be the same numbers only with different signs (5). 
In his last statement, he differentiated between the slope number and the constant 
(7). Thus, Oscar expressed more details to their rule: the perpendicular lines had to 
have the same slope numbers with opposite signs and the constant could be arbitrary 
numbers.

From their interaction and way of participating, Oscar and Olivia had different 
roles in the building and monitoring process, which characterized their interactions 
throughout their problem-solving path. They did not have instances of repairing. 
Oscar exercised agency when suggesting and explaining his ideas. Thus, he was the 
initiator and primary agent of reasoning in the conversation. Olivia accepted Oscar’s 
explanation of the rule, which she distinguished from a formula (6). Oscar further 
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explained his thoughts, after Olivia’s acknowledgement of his suggestions (7). 
Olivia was a secondary agent who contributed with trying to understand how Oscar 
was thinking and what she should do to execute his ideas into action in GeoGe-
bra. Their student–student interaction did not demonstrate a mutual and synchronous 
way of making and maintaining a shared understanding of the problem. Nor did they 
exercise a shared agency for solving the problem.

Leah and Isaac found a set of linear functions making a perpendicular pair: 
y = x + 3 and y = −x + 3 . They expressed a relation between the two linear 
functions: two opposite slope numbers, which they further referred to as either 
−x and x , or −1 and +1 . They agreed upon this relation as the rule and Leah ini-
tiated testing of their rule for other linear functions.

Excerpt 5

8 Isaac Okay. Then we create a line. We choose the line y equals, we choose 2x + 3 . 
Okay. It’s probably a bad number. Okay, and then for every x there is 2 . Then 
the negative version of this should be y = −2x , and then it should intersect… 
(writes on the laptop) But it isn’t going to… It’s always minus… The line 
should always be −x . Like that (writes on the laptop)

9 Leah Always?
10 Isaac Yes, because if I use −2x , it doesn’t work. y = −x and it should intersect…
11 Leah 3
12 Isaac Are you sure?
13 Leah Yes. Try (Isaac writes on the laptop)
14 Isaac Hmm. No. 4
15 Leah Oh. It’s… (Leah uses the laptop). It’s because this is f***ed
16 Isaac Okay, but wait. It doesn’t work for every number. Okay, we’ll figure it out
17 Leah I think it’s wrong to say it’s always −x . Try minus… What did you use here? 2?
18 Isaac This is 2x + 3

19 Leah Then you should try −2x.

Isaac contended for their new pair of linear functions that always one of the slope 
numbers had to be −x (8). Leah questioned his statement (9), which Isaac replied 
to by pointing out the different variables −2x and −x (10), which is likely his 
way of anchoring the reasoning in the mathematical property of the slope num-
bers being −2 and −1 . They further attempted to evaluate their input in GeoGebra 
(11–15). Towards the end of the turn-taking sequence, Isaac interpreted their 
observations with guessing and checking with GeoGebra and said that it did not  
work for every case (16). Leah repeated his observation and specified that a per-
pendicular line not always was −x (17), meaning that for a pair of linear functions 
one line did not have to have a slope number equal to −1 . She continued build-
ing by suggesting −2x for a perpendicular line (19), which Isaac previously had 
observed would not result in a perpendicular line (10).
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In Leah and Isaac’s conversation, there were mainly collaborative processes 
characterized as building by making suggestions for pairwise linear functions (8, 
10, 13, 18, 19), which was monitored by observations, evaluations, and questions 
(9, 12, 14, 16). They did not engage in processes of repairing. Both students con-
tributed to the problem-solving process; however, it was primarily Isaac that sug-
gested and made arguments connected to mathematical properties anchored in the  
algebraic representation of the slope number. Isaac acted as the primary agent 
leading the conversation and making the final arguments. Leah, on the other hand, 
either built by accepting Isaac’s ideas or monitored by questioning, repeating, and  
observing how Isaac’s ideas and utterances played out in GeoGebra. Therefore, 
she exercised secondary agency.

In the interaction of the two pairs, Olivia and Oscar, and Leah and Isaac, only 
one student attempted to make sense of the collaborating peer’s suggestions. Sim-
ilar for both pairs were a mutual attempt to solve the function problem where 
they exercised different roles in the problem-solving session. Moreover, it was 
Oscar and Isaac who led the conversations, whereas Olivia and Leah attempted 
to understand their peers’ thoughts and actions. The student pair Olivia and Oscar 
stood out compared to Leah and Isaac in the way that their roles in the inter-
action were more clearly divided in primary and secondary agency, particularly 
how Oscar made the reasoning sequences which Olivia tried to understand. The 
interplay in the interaction patterns found in their attempt of collaboration is in a 
clear contrast to, particularly, Philip and Noah’s well-functioning collaboration.

Discussion

The study’s research question is What are the patterns of interaction for creating a 
shared understanding through the interplay between students’ creative reasoning, 
collaboration, and exercised agency in a mathematical problem-solving session?

The case study has analyzed videos of students’ attempt to collaborate and engage 
in mathematical talk to solve a linear function problem. The findings reveal an inter-
play between exercised agency, reasoning, and collaborative processes, affecting how 
student–student interactions are expressed. Based on the students’ roles in pairwise 
collaboration, considering interactional aspects, a pattern for their interaction evolved 
in the analysis process into bi-directional interaction and one-directional interaction.

If students exercise mutual attempts to understand one another (e.g., Mueller 
et al., 2012; Roschelle & Teasley, 1995), using arguments logically, and anchored 
in mathematical properties of the reasoning sequence (Lithner, 2017), where both  
are the driving force of the problem-solving process, they are in a bi-directional 
interaction. Philip and Noah, and Hannah and Emma revealed such an interac-
tional pattern. Students typically negotiated mathematical properties (Lithner, 
2017) to make a pair of perpendicular lines, and they often represented functions 
dynamically. Students’ active investigations of mathematics using GeoGebra 
is seen as support for students’ reasoning and activity (e.g., Granberg & Olsson, 
2015; Olsson, 2019; Preiner, 2008), and observed in the two student pairs’ 
engagement. Students expressed functions algebraically and graphically, thus, 
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actively engaged with GeoGebra’s feedback. Therefore, functions were not oper-
ated on as separate topics to be learned (Thompson, 1994), important for a deeper 
understanding of the function concept (Best & Bikner-Ahsbahs, 2017).

Both student-pairs participated in turn-taking conversations (Sidnell, 2010) 
building on suggested and explained ideas (Alrø & Skovsmose, 2004). Students 
exercised coordination and synchronicity in their interaction which characterizes 
“true” collaboration, where it is likely to achieve a shared understanding (Baker, 
2015; Roschelle & Teasley, 1995; Sarmiento & Stahl, 2008).

Philip and Noah’s interaction, viewed holistically, showed an interaction pat-
tern where both students engaged in collaborative processes of building, monitor-
ing, and repairing. When Philip and Noah engaged in a repairing process, they 
more often anchored their reasoning in mathematical properties of linear func-
tions, compared to the other pairs. Moreover, Philip and Noah willingly shared 
ideas and entered situations with conflicting ideas (Dillenbourg, 1999), such as 
the formulation of the rule using the connection between an algebraic expression 
and a graphical representation of the function concept. In the mutual and syn-
chronous interaction, Philip and Noah co-constructed reasoning sequences and 
participated with shared agency. Therefore, their agency co-existed with collabo-
rative processes and creative reasoning important for shared understanding.

When students exercise different roles in the problem-solving process where 
the final outcome is expressed repeatedly by one of the students (Mueller et al., 
2012), they are in a one-directional interaction. In such an interaction, this study 
suggests that, a primary agent utters creative reasoning, and a secondary agent 
listens or tries to understand a peer’s argumentation. Thus, a student with a sec-
ondary agency rarely or never engages in creative reasoning. Moreover, their 
collaborative processes are characterized by building and monitoring instances, 
missing the important repairing instances valuable for a possible evolving of stu-
dents’ understanding.

Such a pattern was demonstrated in the student pairs Olivia and Oscar, and Leah 
and Isaac. In both pairs, one student led the process of solving the task. The co-
working student often attempted to understand suggestions or explanations made 
by the primary agent. Thus, students engaged with different agencies. Here, Oscar 
and Isaac participated as the primary agents, and Olivia and Leah as the secondary 
agents. The secondary agents exercised their agency through expressed ideas and 
questions about the primary agents’ ideas. Their input was either assimilated into 
the final outcome (Mueller et al., 2012) of the reasoning, or considered by the peer 
who refined the input or neglected it. Concerning collaborative processes for making 
a shared understanding (Roschelle & Teasley, 1995): Olivia and Oscar or Isaac and 
Leah did not experience conflicting ideas. Even though they attempted to collabo-
rate, they did not seem to have a shared understanding, and they rarely experienced 
discrepancies in their ideas, which they would have to repair.

Oscar expressed more details to the solution strategies, and anchored ideas in 
mathematics (Lithner, 2017) concerning aspects of the rule for making two linear 
functions perpendicular than the other primary agent Isaac, who often led the con-
versation and made suggestions for solving the problem. Both Olivia and Leah tried 
to understand how their peers were thinking. Consequentially, their student–student 
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interaction was not a mutual and synchronous way of creating a shared understand-
ing of the function problem.

Students who engage in a bi-directional or one-directional manner may change 
roles in a problem solving process (Child & Shaw, 2016). A student might assimi-
late a peer’s input to construct a final argument, which is in this study recognized as 
a primary agent (Mueller et al., 2012) in a one-directional interaction and as shared 
agency (Mueller et al., 2012) in a bi-directional interaction. Therefore, characteris-
tics of “assimilating a peer’s construct into a final argument” do not indicate what 
kind of agency a student has exercised. Therefore, to categorize the interactional 
aspect agency, it is important to study the collaborating pair’s turn-takings and 
other interactional aspects at play, such as collaborative processes and mathematical 
reasoning.

Concluding thoughts

This study illuminates two interactional patterns from four student pairs: Noah and 
Philip, Hannah and Emma, Oscar and Olivia, and Leah and Isaac. The limitation of 
the small sample is acknowledged; however, rich descriptions and the detailed analy-
sis have provided important insights in students’ interactions when collaborating and 
reasoning about functions. More student pairs’ interactions should be studied, and 
their engagement in a broader specter of mathematical problems, to further reveal 
nuances to interactional patterns found in students’ attempt to collaborate and reason 
mathematically. Researching several instances of students’ interactions in different 
settings may contribute to more nuances in how students, of different age, learning 
different mathematical topics, in different environments, develop their own mathe-
matical voice (Schoenfeld, 2013; Sengupta-Irving, 2016).

If students interact in a dynamic way, as described above, where both partici- 
pate in equal roles and show authority over mathematical ideas during the problem-
solving process, they might construct a shared understanding from merging an inter-
play of ideas. Such dynamic structure of pairwise collaboration reveals important 
components in students’ mathematical communication (Sidenvall, 2019), to better 
understand underlying mechanisms for fruitful collaboration (Child & Shaw, 2018; 
Kuhn, 2015; Seidouvy & Schindler, 2019). These identified conditions are both 
being promoters in a problem-solving process, both making reasoning anchored 
in mathematical properties, and both being engaged in different collaborative pro-
cesses. Such an interactional pattern in a bi-directional interaction promotes learn-
ing of mathematics through quality interactions (Pijls and Dekker, 2011; Varhol 
et al., 2020).

The contrast to such a dynamic interplay is a monotonic one-directional inter-
play, where only one student evolves his or her individual problem space. In such 
instances of one-directional interaction, teacher involvement should be suggested for 
supporting both students to build (accept and suggest) and monitor (explain and ask 
question) emphasizing plausible and mathematically founded argumentation.

Reasons for the two patterns of interactions that occurred might have several 
explanations. One reason might be students’ individual experiences and personalities. 
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Comparing the student pairs in the study, the student pair Philip and Noah stood 
out and demonstrated a productive interaction, as described above and in results. It 
is likely that their individual personalities were a good match. Thus, affective pat-
terns or individual personalities come into play and influence students’ conversations 
(Cobb et al., 2009). Other influencing aspects are students’ background and disposi-
tion for learning, self-confidence and past success in mathematics, and beliefs about 
their roles and roles of others (Mueller et al., 2012).

A second reason is the given task. Although the given task presents an opportu- 
nity for  creative reasoning (Granberg and Olsson, 2015), it does not automatically initiate  
a productive engagement in the other interactional aspects of this study. To promote 
interactional aspects such as collaboration and agency, a mathematical problem 
might entail other features than explicitly discussing the slope number and constant 
in a linear function found in an algebraic and graphical expression. If an individual 
student has experienced constraints with mathematics, it might prevent them for 
further engaging in a productive social interaction with a peer. Therefore, it might 
be worthwhile considering a relatable or meaningful context for students to reason 
about, and for translating between function representations.

A third reason to consider is classroom norms and teacher involvement in stu-
dents’ interactions. Regarding the first aspect, classroom norms, Yackel and Cobb 
(1996) differentiate between a social norm as an expected explanation to a given 
task, whereas a sociomathematical norm is an acceptable mathematical explana-
tion. Both aspects are important for individual and collective learning, and students’ 
engagement in both would influence their pattern of interaction. The second aspect, 
teacher involvement, has the potential to provide students with necessary resources 
for social norms and sociomathematical norms. A study found that important teacher 
guidance for collaborative inquiry happens through supporting student contributions 
with well-defined structure for mathematical work (Staples, 2007).

An agenda for further research on the three mentioned reasons for the two interac-
tional patterns could be studies of different tasks promoting CMR, collaborative pro-
cesses, and exercising of shared agency. Another future study could focus on teacher 
guidance: opportunities and limitations with teacher actions for students’ productive 
interactional pattern. A third study could include interviews with students focus-
ing on individual variables, such as beliefs about one-self as a mathematics learner, 
self-confidence, and the role of the collaborating peer. A broader understanding of 
these influential aspects might give a more complete understanding of the underly-
ing mechanisms for productive interactions through the interplay of collaborative 
processes, mathematical reasoning, and exercising of agency.

If a teacher observes such an interaction pattern, the teacher could facilitate a 
change of roles: a secondary agent attempts to suggest strategies and explain out-
comes or connection anchored in mathematical properties. A teacher’s awareness 
of interactional patterns concerning collaboration processes, reasoning, and agency, 
has the potential to contribute to students’ fruitful interactional dynamic. Moreo-
ver, such teacher actions has the potential to model important aspects to facilitate 
students’ synchronicity and coordination pooling knowledge together to construct 
their own mathematical knowledge for understanding mathematical ideas (Stockero 
et  al., 2019). Therefore, further research on teacher’s actions facilitating dynamic 
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interactions between the peers, where students are exercising shared agency, might 
provide additional insights to foster students’ learning of mathematics through qual-
ity interactions.
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