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Abstract To understand how statistical and other types of reasoning are coordinated with
actions to reduce uncertainty, we conducted a case study in vocational education that
involved statistical hypothesis testing. We analyzed an intern’s research project in a hospital
laboratory in which reducing uncertainties was crucial to make a valid statistical inference.
In his project, the intern, Sam, investigated whether patients’ blood could be sent through
pneumatic post without influencing the measurement of particular blood components. We
asked, in the process of making a statistical inference, how are reasons and actions
coordinated to reduce uncertainty? For the analysis, we used the semantic theory of
inferentialism, specifically, the concept of webs of reasons and actions—complexes of
interconnected reasons for facts and actions; these reasons include premises and conclu-
sions, inferential relations, implications, motives for action, and utility of tools for specific
purposes in a particular context. Analysis of interviews with Sam, his supervisor and teacher
as well as video data of Sam in the classroom showed that many of Sam’s actions aimed to
reduce variability, rule out errors, and thus reduce uncertainties so as to arrive at a valid
inference. Interestingly, the decisive factor was not the outcome of a t test but of the
reference change value, a clinical chemical measure of analytic and biological variability.
With insights from this case study, we expect that students can be better supported in
connecting statistics with context and in dealing with uncertainty.
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The endless cycle of idea and action,

Endless invention, endless experiment

T. S. Eliot

The aim of this article is to show how different types of reasoning (including
statistical reasoning) and actions are coordinated in making a statistical inference in a
real-life context with a focus on reducing uncertainty. This requires a theoretical
framework that convincingly shows how knowledge (including the ability to reason)
and action are coordinated. To this end, we deploy inferentialism—the topic of the
special issue.

In statistics and mathematics education, several researchers have already explored
the value of inferentialism (e.g., Bakker and Derry 2011; Hußmann and Schacht 2009;
Pratt 2012; Schindler and Hußmann 2013). Bakker and Akkerman (2014) propose that
inferentialism may provide a useful theoretical framework to analyze vocational and
workplace knowledge as coordinating various types of reasoning and actions (see also
Guile 2006). In the current article, we suggest that the different types of reasoning
(practical, mathematical, statistical, and chemical) and actions become coordinated
through inferential relations into webs of reasons and actions. Such reasons include
premises and conclusions, implications, motives for action, and utility of tools for
particular purposes in a particular context (cf. Bakker and Derry 2011). We think that an
analysis of webs of reasons and actions involved in a particular case can provide insight
into how types of reasoning and actions are coordinated and can eventually help to
improve the teaching of statistical reasoning in real-life contexts.

It is still not clear enough how students learn to make statistical inferences in context
(Makar et al. 2011). In line with this practical concern, more theoretical and empirical
study is needed on the relations between statistical inference and its application in
practice. To this end, we focus on the statistical inferences made in a vocational setting.
The study of such settings helps better understand what students need to learn and how
learning environments focusing on statistical inference can be improved. We present a
case study in an area of education that has so far received little attention, vocational
education. Rather than a narrow focus on statistical reasoning or inference, this area
requires a comprehensive approach in which attention to statistical or probabilistic
reasoning should be combined with attention to other disciplinary reasoning (e.g.,
chemical) as well as actions. As such, the case presented is one of the reasoning and
actions required to reduce uncertainty so as to arrive at a valid statistical inference.
Insights generated from the case study are also relevant for general education that takes
context or laboratory work seriously (e.g., Ben-Zvi and Aridor 2016; Dierdorp et al.
2011; Heinicke and Heering 2013; Makar et al. 2011).
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Theoretical background

Statistical inference

Statistical inference is at the core of statistics because it allows people to draw
conclusions from data about a wider universe such as a population or process
(Moore 1995, p. 3). Although students have difficulty with formal statistical inference,
many aspects of inference are relevant for everyday use—making predictions, estimat-
ing based on available information, and judging the reasonableness of a solution or a
claim all involve making inferences—as well as in workplaces (Bakker et al. 2008). It
has also been acknowledged that informal statistical inference is to be used with
nonspecialists such as school children, introductory statistics students, and in work-
place settings (Wild et al. 2011).

Over the last decade, the statistics education research community has made consid-
erable progress on the theme of statistical inference (Makar and Rubin 2009) and the
informal inferential reasoning that underlies statistical inference (Ben-Zvi 2006; Makar
et al. 2011; Pfannkuch 2006; Zieffler et al. 2008). Makar and Rubin (2009) identified
three features that characterize a statistical inference: (1) a statement of generalization
beyond the data, (2) use of data as evidence to support this generalization, and (3) the
use of probabilistic (non-deterministic) language that expresses some uncertainty about
the generalization. These features apply to both formal techniques such as hypothesis
testing (e.g., using a t test) or point estimation and students’ beginning informal
conceptions of statistical inference (Wild et al. 2011).

Thus one key feature of statistical inference is the uncertainty involved. Statis-
tics education typically deals with uncertainty in terms of confidence intervals,
probabilities or p values. These statistical concepts are known to be difficult for
tertiary students (Garfield and Ben-Zvi 2008). What is known much less about is
how to deal with the uncertainties involved in making an inference in the broader
context of a modeling task, risk assessment, or an authentic project. In such cases,
the types of uncertainty that are not necessarily quantifiable need to be taken into
account, such as the quality of the design or of the measurement, and hence, the
quality of the data from which the statistical inference can be made (cf. Arnold
et al. 2013). Our purpose of mentioning these types is to emphasize that in our
case study, we intend to stay open to types of uncertainty that seemed relevant in
the actions taken to arrive at a valid inference.

Webs of reasons and actions

Several psychologists (e.g., Piaget 1970/2013) and philosophers have addressed the
relationship between knowledge and action. Dewey (1929/2008), for example, is
known for his analysis of the human quest for certainty and his explanation for why
education often treats knowledge as more important than action. This hierarchy is still
prominent today. For example, in learning to experiment in physics and chemistry
education, university students’ laboratory skills are generally poor. This is presumably
due to their education focusing purely on theoretical knowledge (Heinicke and Heering
2013). In vocational education, it is common for students to complain on the knowl-
edge taught in courses as being too abstract (Roth 2014; Wedege 1999).
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As announced, we focus on the work of a more recent philosopher whose work we
consider especially relevant to vocational education, but also general education: Robert
Brandom. Like Dewey, Brandom treats knowledge and action democratically (see also
Brandom 2008), without any prior assumptions about hierarchy. This is evident in his
discussion of action and judgment (a general term for statements, propositions, claims,
conclusions, and inferences). In line with Kant, Brandom (2000, p. 159) considers
judgments to be the minimal unit that one can be responsible for at a cognitive level,
just like actions are the minimal unit one can be responsible for at a practical level.
Following American pragmatists such as Dewey, Brandom has a pragmatist view on
concepts:

To grasp or understand (…) a concept is to have practical mastery over the
inferences it is involved in—to know, in the practical sense of being able to
distinguish, what follows from the applicability of a concept, and what it follows
from. (Brandom 2000, p. 48)

We should note that Brandom’s technical usage of the word inference is much
broader than the typical philosophical meaning (relation between a premise and a
conclusion) and the statistical meaning (a conclusion about some wider universe).
For Brandom, almost any judgment, even the smallest, is an inference. For example,
Bfire!^ is already part of an inferential network including the risk of a life-threatening
situation, which explains why a human would express such a statement (for a
philosophical discussion of noninferential statements, see Brandom 2002).

Thus, Brandom, in Hegelian spirit, puts emphasis on the inferential nature of
knowledge: BClaims both serve as and stand in need of reasons or justifications. They
have the contents they have in part in virtue of the role they play in a network of
inferences^ (Brandom 2000, p. 162). This inferential nature is privileged over the
representational nature of knowledge—an idea that has been eloquently formulated
by one of Brandom’s inspirators, Wilfrid Sellars (1956, §36):

in characterizing an episode or a state as that of knowing, we are not giving an
empirical description of that episode or state; we are placing it in the logical space
of reasons, of justifying and being able to justify what one says.

Philosophers use the term space of reasons for anything conceptual that
should be distinguished from the realm of law about causes and effects
(McDowell 1996). For our study of the reasons for actions that people perform
as part of their work, the term web of reasons (Brandom 1994, p. 5) seems
more useful. A web of reasons can be characterized as a complex of intercon-
nected reasons; these reasons include premises and conclusions, inferential
relations, implications, motives for action, and utility of tools for particular
purposes in a particular context (Bakker and Derry 2011). In the workplace
settings, reasons can be of a different nature: some are practical and some are
theoretical, often weighted by their relative merits. Bakker et al. (2008) give an
example from the automotive production industry in which practical reasons
outweighed theoretical reasons. Although not statistically sound, the employees’
decisions made sense in the light of the situation, ultimately avoiding any
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customer complaints. Bakker et al.’s analysis suggests that vocational students,
apprentices, and employees need to learn to reason with a web of multiple
relevant reasons (practical, statistical, and mathematical) when making action-
oriented decisions based on the projected implications for their practical
contexts.

Based on inferentialist ideas, we propose that coordination between knowledge (as
actualized or expressed in facts, statements, judgments, and conclusions) and action can
be constituted by reasons. Therefore, we use the term webs of reasons and actions.
Reasons are relational: R is a reason for S, where R and S can refer not only to
judgments (facts and claims) but also actions and even feelings (something can be done
to become happy). In line with the philosophical literature, we use the term reason in a
broad sense (McDowell 1996): a premise has a reasonable or inferential relation with a
conclusion and a motive with an action. In cognitive linguistics (cf. Sanders et al.
1992), many of such inferential relations are distinguished, for example:

& P is a premise for conclusion C,
& W is a warrant for statement S,
& M is a means to the end E,
& X is a motive for action A,
& T is a tool to get A done,
& D is done for the purpose of Q.

Note that many of the things related are judgments (P, S, and W), but some can be
actions or even feelings (A, Q, and X). In cognitive linguistics, these inferential
relations are considered interesting because they make texts coherent. We argue more
generally that such reasonable or inferential relations help to coordinate different types
of knowledge or reasoning (statistical mathematical, practical, and chemical). As such,
reasons and inferential relations seem to form the Bcoordination glue.^

With this theoretical background in mind, we expect to see in a vocational student’s
research project how diverse knowledge types and actions are inferentially related.
Having explained the main concepts in our case study (statistical inference and webs of
reasons and actions), we can now formulate our research question: in the process of
making a statistical inference, how are reasons and actions coordinated to reduce
uncertainty?

Methods

Participant and setting

The research presented here is a case study of Sam’s research project as part of
his internship in a hospital laboratory. The case is one of the knowledge and
actions required to reduce uncertainty so as to arrive at a valid statistical
inference (not Sam’s learning process). Sam (pseudonym) is 19 years old and
attends the highest level (4) of a Dutch senior secondary vocational laboratory
school (MBO) with which Bakker had prolonged engagement through both
survey and design-based research (Bakker 2014b; Bakker and Akkerman
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2014). This level of vocational education is below bachelor level; but with a
diploma, Sam would be entitled to enter higher professional education at a
bachelor level. This type of vocational education starts with primarily full-time
school-based education and ends with primarily full-time internships. During the
last year, students come back to school for 1 day every 2 weeks. It was during
such release days that the first author stimulated students to refresh their
statistics and link it to their research projects (see Bakker and Akkerman
2014 for the first design-based cycle in this school). The students had mainly
learned basic statistical concepts and procedures in the first 2 years with more
complex content in their third year such as correlation, regression, coefficient of
variation, and t test, but also more dedicated techniques such as statistical
process control. The t test is typically addressed in just one lesson (see
Bakker 2014b). According to the teachers and supervisors, most students of
laboratory education neither recall what they learned about statistics nor know
how to apply it.

This design-based research setting provided us with the opportunity to do a more in-
depth case study of Sam’s research project; in this case, with a focus on uncertainty. For
this purpose, we deliberately focused on the webs of reasons and actions about
uncertainties involved in his project and the actions to reduce these uncertainties, which
eventually led to a statistical inference. We have chosen Sam for this case study because
his project is more easily conveyed to medical nonspecialists than those of the other
students.

Sam considered himself a Blousy student.^ He often came late, did not have books or
notes with him, and was not motivated to become a laboratory technician.

Sam’s research project

Like companies, hospitals have to be efficient with their resources and, therefore, use
modern process improvement techniques such as Six Sigma or Lean production to
reduce unnecessary use of time and money (Womack et al. 1991). One of the questions
that Sam’s work supervisor had was whether patient blood could be sent through the
pneumatic post more often rather than be brought by foot to the hospital laboratory for
blood testing. Hospitals use pneumatic post, tube systems, through which they send
materials quickly to their destinations within the hospital. Sending patients’ blood
samples to the laboratory by pneumatic post saves time. This is done for blood
component measurements that are considered to be relatively unaffected by the post,
for example, LDH (lactate dehydrogenase). However, some blood components are
known to be potentially affected by shaking or shocks. Shaking can lead to hemolysis,
the process of damaging the red blood cells (erythrocytes) and releasing their content
into the blood plasma. In red blood cells, the concentration of potassium (Na+), for
example, is high (about 140 mmol/L), but low in the plasma (about 4 mmol/L).
Potassium is typically measured in the plasma, so if hemolysis occurs, the
measurement of potassium concentration is escalated. Similar problems may occur
for other components such as thrombocytes. Shocks can also initiate coagulation which
would also lead to misleading measurements. This is why these components were being
measured after bringing the samples on foot to the laboratory through the hospital
corridors rather than relying on the faster pneumatic post.
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One may expect that researchers had already studied the effects of pneumatic posts
in hospitals. However, we were told that pneumatic posts can be quite different and a
few general rules hold. Sam’s task was to check whether the concentrations of several
blood components could be affected by the pneumatic post in the hospital where he was
doing his internship. We emphasize that this was a genuine research project in the sense
that the hospital did not know the effects of the pneumatic post on various blood
components and that Sam’s results had a real impact on the hospital’s policy.

In designing his study, which served as an assessment in a course within his
vocational education program, Sam had to devise his own initial plan, but he was
guided by laboratory technicians and a clinical chemist in working out the details of his
research project.

Data collection

The main data sources are video recordings of six 1-h meetings that the first author had
with three students and their teacher in the vocational laboratory school and video
recordings of Sam’s final presentation (30 min) and post-interview (20 min). We also
have audio recorded interview data with Sam and his workplace supervisor. In the
interviews, we made sure to ask for reasons for actions. All recordings were transcribed
verbatim. The data were collected by the first author, but analyzed collaboratively by all
three authors. Translations into English were done by a professional translator and
checked by the first author. We have both Sam and his supervisor’s permission to use
the data as collected by Sam.

Data analysis

Our analysis aimed to identify the reasons and actions involved in Sam’s research
project to reduce uncertainty and arrive at a valid statistical inference. This required
several steps. The first was to become familiar with the relevant disciplinary knowledge
required to understand the project (chemistry and practicalities of laboratory work). The
second step was to identify all actions and possible reasons for them as mentioned in
the transcripts and selected relevant parts of the meetings, presentation, and interviews.
For example, when Sam stated that citrate tubes had to be used first (action A3.1 in
Fig. 1) when tapping blood, he explained the reason (summarized as R3.1) as follows:

There’s a small rubber, you have a needle, then you have a cover in which sits a
small pricking device, which pierces through the rubber of the tubes. Sometimes
there’s already anti-coagulation stuff at the rubber of this tube and that is being
taken along by that pricking device to the next tube.

Conjectures and conclusions about the actions and reasons were jointly discussed
until agreement was reached. In cases of doubt we verified conclusions with Sam or his
teacher, or with data collected at a later stage. Last we checked our analysis with Sam’s
workplace supervisor. In this way, as a last step, we were able to summarize webs of
reasons and actions related to uncertainties and inferences involved in his project which
provide an answer to the research question of how reasons and actions were
coordinated.
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Case study

One statistical inference

We start the case study with a key statistical inference of Sam’s report. Although it
was common practice to send LDH samples by pneumatic post, it turned out that
the LDH values measured in the pneumatic post condition were somewhat higher
on average than those in the walking condition. Comparison by means of a t test
yielded a p value of .0017. When focusing on the statistical inference, one may
conclude that because the difference between the two conditions was statistically
significant, hemolysis has occurred. It would therefore not be wise to send the
blood for LDH measurements through the pneumatic post. However, the case
study will show how Sam incorporated many more considerations than the p value
in his final conclusion and how his conclusion was different from what we had
expected based on the statistical inference. A more holistic approach is required to

Fig. 1 Aweb of reasons and actions involved in Sam’s experiment. A stands for action and R for reason. The
action-reason combinations are presented clockwise in chronological order. The more detailed action-reason
combinations are presented more toward the periphery
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understand how Sam carried out an experiment (action A in Fig. 1) to arrive at
valid inference (reason R). In order to make a valid inference, Sam needed to
collect valid data. We summarize several actions and their underlying reasons to
illustrate how he reduced uncertainty due to the quality of the design and the data.
Some of these we represent as webs to illustrate our point of the web-like nature
of Sam’s actions and reasons (Fig. 1). We have put the main action in the middle.
The actions are ordered clockwise in chronological order from A1 to A8. In
activity theory, it is common to distinguish between activity (e.g., the overall
experiment), action, and operation, but for our purpose of emphasizing the reasons
at stake, we do not need this distinction here.

Collecting valid data

The collection of valid data involved several actions. First, a sample of people had
to be selected (action A1) given the need for data to make an inference (reason
R1a) and impossibility to study a population of patients (reason R1b). Therefore,
Sam had to decide on the sample size (action A1.1). Considerations (reasons) for
determining sample size were: large enough to make a valid inference (reason
R1.1a) but small enough to minimize the number of people who would be
burdened with giving blood (reason R1.1b). Sam selected healthy colleagues
(action A1.2) so as not to unnecessarily burden patients with drawing blood
(reason R1.2a) and because colleagues are easily accessible (R1.2b). Moreover,
the issue to be studied apparently did not depend on people’s health (a reason not
represented in the figure).

A blood test is a laboratory analysis performed on a blood sample to determine
physiological and biochemical states, such as disease or mineral content. A blood
sample is usually drawn from a vein in the arm using a needle. Sam drew the blood
samples himself (action A2) to exclude some possible sources of variability (reason
R2). For example, he makes the band Bnot too tight^ (action A2.1) to ensure (reason
R2.1) that particular processes (e.g., hemolysis) do not occur that would distort the
concentrations to be measured. If the elastic band wrapped around the upper arm were
too tight, blood may be injected too fast so that blood cells would get damaged.
Concentrations of particular substances can seem to be too high because particles have
left the blood cells (hemolysis). Sam was aware of the proper blood sampling proce-
dures and underlying reasons.

There are further rules for taking blood samples for particular measurements in a
particular order for each patient (action A3) because some substances may be contam-
inated by anticoagulants in the rubber ring of particular tubes (reason R3). As Sam
explained after his final presentation (see quote in the BData analysis^ section), the
citrate tubes, without anticoagulants, have to be used first. The blood tubes rings that do
contain anticoagulants are used after the citrate tubes (action A3.1); otherwise, the
presence of these substances could influence the measurement of other components
(reason R3.1).

Sam only collected blood samples of five colleagues each day (action A4) because
more samples could not be analyzed on the same day (reason R4a). Moreover, storing
blood in a freezer or waiting too long could lead to changing concentrations and distorted
measurements (reason R4b) and, thus, invalid inferences (underlying reason R).
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The two conditions

In line with the principles of a split sample experiment, each blood sample was split
into two equal halves. Half of the samples were brought by foot and half were sent by
the pneumatic post (action A5) to ensure that differences in measurements could only
be attributed to difference in condition (reason R5). From a clinical view, the order in
which the two samples of tubes are sent does not matter; but to rule out any potential
order effects (reason R5.1), Sam alternately brought the first by foot or sent it by post
(action A5.1). For the experimental condition, Sam used the longest tube in the
pneumatic post (action A6) to have the most extreme case (speeds up to 8 m/s and g
values above 10); this would allow him to infer that if no difference were found,
sending blood by post would be safe because other postings would be under less
extreme conditions (reason R6).

Measurement and calibration

For each patient, Sam analyzed the samples in the same order (action A7). In this way,
Sam reduced any variability potentially arising from reordering (reason R7). The blood
measurement machine is calibrated (action A8) on a daily basis because otherwise the
machine may produce wrong values (R8): measurement machines typically start to
become less accurate after some time due to small mechanical changes (cf. Bakker et al.
2011). However, Sam did not have to do this himself; it was done by the regular
laboratory technicians (A8.1) because this happened as part of the daily routine of the
laboratory anyway (reason R8.1).

Having carried out the experiment, Sam had made the aforementioned statistical
inference using a t test yielding a p value of .0017. For those trained in hypothesis
testing, this result may be reason for a simple action: the decision to keep walking the
blood to the laboratory rather than sending it by pneumatic post. After all the significant
difference points to hemolysis taking place otherwise. However, statistical significance
is only informative with an indication of the accompanying effect size (Ellis 2010). If
the effect size has not practical significance, then the statistical significance is of little
importance to decision-making. Sam did not use an effect size but a reference change
value (RCV), a clinical chemical measure of analytic and biological variability used in
laboratory settings that was also produced on the data generated in the experiment. This
RCV stayed within the limits of what counts as unproblematic variation in laboratory
and, hence, the decision made by the hospital was to send blood by pneumatic post
even if Potassium was to be measured. As a consequence, much time was saved, and
nurses who beforehand had to walk blood to the laboratory were happy. In Sam’s own
words:

They [the hospital administrators] were already very happy with these measure-
ments because they are now not allowed to go via tube mail, and it is allowed
what comes out of here. Then the departments are very happy, then they do not
have to run each time.

In Fig. 2, we have summarized how webs of reason and actions can be expanded so
as to include such emotions (which in turn can be reasons for actions). Of course, many
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more emotions played a role: for example, it was clear from the interviews that Sam
was proud of his project.

Discussion

As part of a larger research agenda of trying to understand how actions and different
types of reasoning (statistical, mathematical, chemical, clinical, and practical) can be
coordinated, especially in vocational educational settings, we carried out a case study of
the knowledge and actions required to reduce uncertainty so as to arrive at a valid
statistical inference. The case presented as a research project carried out by an intern in
a hospital laboratory. Using an inferentialist perspective and language, we suggest that
reasons are inferential relations that can provide the coherence between actions and
types of knowledge, here with a specific interest in statistics in context. We asked, in
the process of making a statistical inference, how are reasons and actions coordinated to
reduce uncertainty?

To highlight the nature of such coordination, our analysis focused on webs of
reasons and actions. Some laboratory procedures are well defined and prescribed,
and reasons for them were rather obvious (sampling of blood). Some actions were
based on a wealth of clinical and chemical knowledge oriented toward valid statistical
inference.

Fig. 2 Web of reasons and actions regarding the final decision
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Although we have focused on actions and reasons, there were also emotions
involved. Sam seemed proud about his surprising results, and the hospital supervisor
and nurses were happy with the results as they saved employees walking and the
hospital money (Fig. 2).

The case study points to several more specific conclusions. First, the hypothesis
testing (in this case, t tests) typically taught in introductory statistics courses only
played a subsidiary role in Sam’s analysis. In the end, the clinical relevance of the
chemical measure of RCV was a more decisive factor than the t test outcomes in
deciding whether blood samples could be sent through the pneumatic post.
Statistics courses teach what a t test is for and under what assumptions it can be
used, but may be limited in helping students to understand under what conditions
such a test is helpful and what conclusions can be drawn. The inferentialist and
pragmatist view on concepts cited earlier implies that statistics educators should
help students Bknow, in the practical sense of being able to distinguish, what
follows from the applicability of a concept, and what it follows from^ (Brandom
2000, p. 48). We, as authors, initially without the clinical-chemical background
required, were inclined to conclude that LDH measurement should not be carried
out on blood samples sent through the pneumatic post. If statistics educators want
to point out that statistical significance may not be practically relevant, they may
refer to large sample size or the importance of effect size. However, even differ-
ences with a medium effect size may be practically not very relevant. Sam’s
supervisor told us that the amount of hemolysis pointed to by the statistically
significant outcome is so small that it would not lead to clinically wrong advice to
medical specialists. He based this view on the interpretation of the RCV. In our
view, this highlights the need for a holistic view on concepts and techniques, and
shows that integration of different types of knowledge is required to draw sensible
conclusions (cf. Bakker and Akkerman 2014).

The second point we want to make is that the actions and underlying reasons
mentioned in our case study are of course only some of the more prominent ones.
The web of reasons and actions we included here (Fig. 1) was but one portion of Sam’s
project. It seems impossible to represent full webs of reasons and actions involved: for
every fact, judgment, emotion, and action, there are underlying reasons, and partici-
pants in the practice under investigation may even not be aware of many of them. We
have confined our analysis to those explicitly mentioned by Sam and validated with his
supervisor. In our view, Sam’s awareness of the main reasons was rather well coordi-
nated, although we understood his project better after having interviewed his supervi-
sor. Despite Sam’s self-image of a Blousy student,^ he had quite detailed knowledge
about the practical, chemical, and statistical issues involved in relation to what was
clinically relevant. He used techniques that are well beyond anything taught in general
secondary education (t tests are not taught in the Dutch mathematics curriculum and
neither is RCV part of the science curriculum). As such, his knowledge can be
characterized as contradicting the typical complaint in vocational education that theory
and practice often remain separate domains for students and interns (Guile 2006;
Tynjälä 2008). The case study also shows that internship with good preparation and
supervision can provide a powerful learning environment in which even a less moti-
vated student can be enthused for a research project involving statistical inference. The
involvement in authentic decision-making seems to have been crucial.
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The third point to note is that an inferentialist perspective may be useful beyond the
vocational one. Coordination and related concepts, such as coherence and integration,
are major themes in general education as well (Linn 2006; Nilsson 2009), for example
when promoting coherence between mathematics and science (Dierdorp et al. 2014).
The literature on coherence and integration (e.g., Berlin and Lee 2005) pays attention to
curricular issues, but little attention to what may help elements to cohere or become
integrated at a micro-level. An inferentialist view points to the importance of inferential
relations and reasons as the glue. Inferentialism, of course, does not in itself provide
guidelines on which inferential relations task designers should focus, but can
presumably help to frame theory on task design. For example, Ainley et al. (2006)
argue that purpose and utility are important foci in task design. A task needs to have a
purpose from a student perspective (a reason to come to action) and what students learn
needs to have utility; it has to be useful for solving a problem they care about. From an
inferentialist perspective, purpose and utility are among the many possible reasons in
larger webs. In Sam’s case, the purpose was clear: to test whether it was necessary to
bring particular blood samples to the laboratory by foot. The utility of what he learned
was also clear: chemical and statistical knowledge helped him draw a valid conclusion
that the hospital cared about.

Another area where inferentialism may help to make progress is in the realm of
webbing and situated abstraction. These are potentially useful concepts, but have hardly
been further developed since Noss and Hoyles (1996) and Pratt and Noss (2002). In
particular, the nature of coordination and how exactly reason and action are webbed has
remained undertheorized. In analyzing how learners construct meaning, Noss and
Hoyles (1996) argued for a perspective of Blearning as the construction of a web of
connections—between classes of problems, mathematical objects and relationships,
‘real’ entities and personal situation-specific experiences^ (p. 105, emphasis in origi-
nal). Their idea of webbing is domain contingent and conveys a structure that learners
can choose to step onto, rely on, and/or reconstruct for support as they wrestle with
meaning-making (cf. Bakker 2014a). Noss and Hoyles (1996) see webbing and situated
abstraction as complementary, challenging the separation between what is learnt and
how it is learnt (p. 120), implying that situations and learners Bco-produce knowledge
through activity^ (citing Brown et al. 1989, p. 32). Situations (whether they be
classroom activities or laboratory contexts) generate linguistic and conceptual resources
that extend and point to structures beyond specific activities. Abstraction becomes a
resource for activity when new meaning is created and learners (or laboratory techni-
cians) exploit the invariances they experience to achieve a goal.

Like the technological environments in which Noss and Hoyles applied their idea of
webbing, the authentic context of the laboratory acts as an action/linguistic framework
to support the creation of meaning. Rather than ignore the agency of the learner, the
situatedness of the context, and the way that the setting could create structures, Noss
and Hoyle’s (1996) perspective of webbing challenges Bthe notion that mathematics
achieves its power by suppression rather than extension of meanings, and that the very
existence of meaning mitigates against generality^ (p. 130). Rather than provoke a
dichotomy between situation-specific knowing and generality, webbing blurs this
division by acknowledging meaning as being reshaped and recreated in action. Our
study has shown how the coordination of actions and reasons is one way in which such
webbing can take place.
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More generally, we think that Brandom’s inferentialist ideas help us study knowl-
edge and action in relation to each other while avoiding a dichotomy between them (cf.
Heusdens et al. 2016). Other dichotomies that can be avoided with the help of
inferentialism are individual versus collective cognition (Schacht and Hußmann
2015) and statistical versus contextual knowledge (Bakker et al. 2008).

Despite Brandom’s somewhat rationalist language, his ideas fit well with the
Vygotskyan emphasis on not separating cognition from activity and affect (Vygotsky
1986). Our example on Sam’s pride and the happiness expressed by the hospital
supervisor point to the possibility that emotions can be part of webs of reasons and
actions (an emotion can be a reason for an action, but an action can also be the reason
for an emotion). More generally, Derry (2008, 2013) has argued that Brandom’s ideas
are compatible with Vygotsky’s (which were also influenced by Hegel), which makes
Brandom’s inferentialism interesting to sociocultural researchers. At the same time,
Brandom gives a careful account of concepts and concept use, which is not so common
in sociocultural research with its focus on practice and activity (as observed by Guile
and Young 2003). Analyses of practices or activity systems common in sociocultural
traditions tend to focus on what is done for a general objective. Such a focus does not
necessarily give much insight into the fine-grained inferential structure of practices or
how actions, knowledge, and emotion can be interwoven. Yet such fine-grained
analysis may be useful for designing learning environments, not only in vocational
education where actions and practical knowledge are evidently important (Bakker and
Akkerman 2014), but also in general education that aims to take coordination (coher-
ence and integration) seriously and seeks for holistic development of students’ knowl-
edge, skills, and attitudes.
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