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Abstract
Solution processing of metal oxide-based semiconductors is an attractive route for low-cost fabrication of thin films devices. 
ZnO thin films were synthesized from one-step spin coating-pyrolysis technique using zinc neodecanoate precursor. X-ray 
diffraction (XRD), UV–visible optical transmission spectrometry and photoluminescence spectroscopy suggested conversion 
to polycrystalline ZnO phase for decomposition temperatures higher than 400 °C. A 15 % precursor concentration was found 
to produce optimal TFT performance on annealing at 500 °C, due to generation of sufficient charge percolation pathways. The 
device performance was found to improve upon increasing the annealing temperature and the optimal saturation mobility of 
0.1 cm2 V−1 s−1 with ION/IOFF ratio ~ 107 was achieved at 700 °C annealing temperature. The analysis of experimental results 
based on theoretical models to understand charge transport envisaged that the grain boundary depletion region is major source 
of deep level traps and their effective removal at increased annealing temperature leads to evolution of transistor performance.

Graphic Abstract
Single-step spin coating-pyrolysis synthesis of ZnO thin films from non-aqueous precursor zinc neodecanoate has been 
investigated for transistor applications.
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1  Introduction

Over the past 15 years, the area of oxide semiconductors 
has caught increasing attention for applications in the 
domain of large area electronics, flexible electronics and 
flat panel displays [1]. This has been mainly driven by the 
superior properties of oxide semiconductors compared to 
its conventional inorganic counterparts like a-Si:H [2, 3]. 
Among various oxide semiconductors, zinc oxide (ZnO) in 
particular has seen tremendous interest due to its versatile 
properties. Being a direct bandgap semiconductor with a 
wide-bandgap of ~ 3.3 eV, it is transparent to visible light 
[4, 5]. Additionally, its nontoxicity, high electron mobility 
and stability makes it an attractive candidate for a variety 
of functional applications [5, 6]. Moreover, its suitability as 
matrix material for doping with number of elements such 
as aluminium [7], indium [3, 8–11], gallium [3, 9, 10], tin 
[11–13], magnesium [14] allows for modulation of its prop-
erties. This has resulted in ZnO being utilized for a number 
of applications such as gas sensing [15–18], photovoltaics 
[14, 19], UV photodetectors [20–22], non-volatile memories 
[23–25], and piezoelectric generators [18, 19, 26].

The interest in ZnO TFTs accelerated after the reports 
that the carrier mobility of ZnO TFTs outperform that of 
a-Si:H [27–29]. Initially, majority of ZnO TFTs were pri-
marily fabricated using vacuum based deposition techniques 
such as ion beam sputtering [27], RF magnetron sputter-
ing [28, 29], pulsed laser deposition [30] and atomic layer 
deposition [31]. However, more recently low cost solution 
based techniques such as spin coating [6, 32], spray coating 
[5, 33] and ink-jet printing [34, 35] have also been explored 
to yield performance level comparable with vacuum based 
devices. Solution processed thin films of ZnO have been 
achieved either by utilizing a suspension of ZnO nanopar-
ticles or by decomposition of Zn precursors [36]. However, 
methods involving spin coating of nanoparticle suspension 
yielded poorer performance due to inter-particle voids which 
limits percolation [37]. Hence, precursor materials like zinc 
acetate [5, 6, 9, 12, 17] and zinc nitrate [9, 32, 34] have 
been widely utilized to obtain ZnO films by decomposing 
the precursors. In addition to this a number of novel process-
ing chemistry based on combustion synthesis [13, 38], metal 
alkoxide precursor [10], single source tailored organo-com-
plex precursors [39, 40] and photosensitive precursors [11, 
12, 41, 42] have also been demonstrated to exhibit excellent 
performance in metal oxide devices. Towards this end, we 
explore the usability of non-aqueous precursor zinc neode-
canoate, referred henceforth as Zn(NDN), as a novel precur-
sor material for ZnO based electronics with further prospects 

of fabrication steps being compatible with nanoscale direct-
writing through electron-beam exposure [43, 44].

In this work, due to the simplicity of fabrication as well 
as suitability to various optical and electrical characteriza-
tions, we investigate the development of thin films and TFTs, 
using relatively unexplored Zn(NDN) precursor. Zn(NDN) 
being a non-aqueous processable precursor, avoids forma-
tion of hydrolyzed intermediate species that could affect 
ZnO grain growth, unlike widely pursued aqueous precur-
sors [43, 44]. Moreover, formation of hydrolyzed species 
at the semiconductor-dielectric interfaces leads to electron 
trapping that hinders n-type transport [45]. Previous reports 
of ZnO TFT devices prepared from Zn(NDN) have been lim-
ited to processes which involved multiple steps of spinning 
and decomposition in order to increase the ZnO film thick-
ness and prepare a void-free thin film [43, 44]. However, 
multiple spin-decompose method is unsuitable for develop-
ing direct write techniques, where alignment accuracy in 
multiple patterning steps becomes challenging specially for 
scaling down the devices to 100 nm dimensions and below. 
Here we employ a single spin-decompose method, lead-
ing to thinner ZnO films and performed a detailed study 
of evolution of ZnO film properties and their correlation 
to the device physics of ZnO TFTs. We report the effect 
of process variation on structural and optical properties of 
ZnO thin films, using X-ray diffraction (XRD), UV–visible 
optical transmission spectroscopy and photoluminescence 
(PL) spectroscopy. Furthermore, performance of the TFTs at 
various processing parameters is considered in order to find 
optimal fabrication conditions. The transport mechanism is 
then explored to obtain phenomenological understanding of 
the factors limiting the charge transport in these class of 
devices.

2 � Results and Discussion

2.1 � Structural Characterization of ZnO Thin Films

We performed structural characterization of the ZnO thin 
films fabricated from Zn(NDN), (chemical structure shown 
in Fig. 1a), by subjecting them to different annealing temper-
atures (400–700 °C) to understand the evolution in crystal-
line quality of the ZnO films. Typical SEM image of a ZnO 
thin film prepared from 15 % Zn(NDN) solution is shown 
in Fig. 1b. X-ray diffraction measurements were performed 
on ZnO films prepared by drop casting Zn(NDN) solution 
and annealed under different processing condition. The 
XRD peaks (Fig. 1c) obtained from the measurements were 
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indexed using polycrystalline wurtzite/zincite ZnO JCPDS 
card No. 36-1451 and the peaks at 2θ angles of 32°, 34.5° 
and 36.5° were assigned to (100), (002) and (101) orienta-
tion of ZnO, respectively [46, 47]. The peak at 33° may be 
attributed to contamination peak, similar to the case of zinc 
naphthenate [48]. From the XRD pattern shown in Fig. 1c, 
ZnO crystalline peaks are present over all the annealing tem-
peratures clearly suggesting the formation of polycrystalline 
ZnO films from the decomposition of the precursor at all 
temperatures [43]. Furthermore, upon increasing the calci-
nation temperature, a monotonous decrease in the FWHM 
(Fig. 1d) can be clearly seen for all three peaks, implicating 
increase in the average grain size of the ZnO films [5]. It 
should be noted that within our measurement range of 2θ 
angles (from 25° to 65°) the Si (100) peak (2θ ~ 70°) from 
the substrate is not seen.

2.2 � Spectroscopic Characterization of ZnO Thin 
Films

As a next step, UV–visible spectroscopy was carried out 
on ZnO films fabricated from 15 % precursor concentra-
tion and annealed at different temperatures. Nearly 100 % 
transmittance across visible range signifies the presence 

of transparent ZnO phase (Fig. 2a). A prominent onset in 
the spectra can be seen between 350 nm and 400 nm. As 
the annealing temperature increases from 400 to 700 °C 
stronger absorption is observed below ∼ 370 nm, which can 
be attributed to the improvement in the crystal quality of 
ZnO films and decrease in the impurity composition, con-
sistent with the XRD measurements (Fig. 1c). Tauc plots 
were then utilized to estimate the bandgap of the ZnO films, 
using the expression T = e−�t correlating the transmittance 
(T) to the optical absorption coefficient (α), where ‘t’ is the 
thickness of the thin film. In a direct bandgap semiconduc-
tor the optical bandgap ( Eg ) of the thin film material can 
be related to α, using the expression (�h�)2 = A

(

h� − Eg

)

 
where h is Planck’s constant and � is frequency of photons 
corresponding to incident light [49, 50]. Figure 2b shows the 
Tauc plots for ZnO films annealed at different temperature. 
The thicknesses of the ZnO films estimated using ellipsom-
etry measurements are shown in Table S2. The bandgap of 
ZnO films estimated from the Tauc plots were in the range 
of 3.2–3.3 eV, with a higher bandgap obtained for films 
annealed at lower temperature. These bandgap values are in 
agreement with previous reports on solution processed ZnO 
thin films [5, 51, 52]. The observed variation in the band-
gap with the processing temperature can be attributed to the 

Fig. 1   a Chemical structure 
of Zn(NDN) Molecule b SEM 
image showing polycrystalline 
morphology in ZnO thin film 
prepared from 15 % Zn(NDN) 
annealed at 500 °C c X-ray dif-
fraction measurements of ZnO 
films prepared by drop casting 
15 % Zn(NDN) and annealed at 
different temperatures depicting 
polycrystalline nature of the 
films. The intensity of the cor-
responding XRD peaks can be 
seen to increase with annealing 
temperature. d Variation in 
the FWHM of the ZnO XRD 
peaks (100), (002) and (101) 
suggesting improvement in the 
crystalline quality with anneal-
ing temperature
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quantum confinement effect of nano-crystalline ZnO phase 
embedded in an amorphous ZnO matrix [50]. Increasing the 
annealing temperature causes grains to grow larger leading 
to a decrease in the optical bandgap [50].

In order to further understand the degree of static disorder 
in the ZnO films, PL measurements were also performed 
by varying both the precursor concentration as well as the 
annealing temperature. In general, the PL spectra for a ZnO 
thin film constitutes of a peak at ~ 380 nm corresponding to 
the near band edge (NBE) emission, attributed to recombi-
nation of free-exciton [53, 54] and a deep-level (DL) emis-
sion arising from non-stoichiometric ZnO phase or oxygen 
vacancies [55, 56]. We observe that for ZnO films of thick-
ness ~ 14.7 nm (Table S3) fabricated with 5% concentration, 
exhibit a weak NBE emission peak with respect to DL emis-
sion (Fig. 2c), indicating significant static disorder/vacan-
cies. Upon increasing the concentration, from 5 to 25 % the 
intensity of the NBE emission increases. Correspondingly, 
FWHM of the NBE peak decreases from 38.8 nm for 5 % 
to 24.3 nm for 25 % concentration. Further increasing the 
precursor concentration to 50 %, results in a higher relative 
DL emission, possibly originating from inefficient packing 
due to large sized ZnO particles.

PL measurements were then performed on ZnO films fab-
ricated from a solution of 15 % concentration and annealed 
at temperatures ranging from 400 to 700 °C (Fig. 2d). The 
higher DL to NBE emission ratio from films annealed at 
400 °C could be attributed to the smaller sized ZnO particles 
and presence of grain boundary regions. Upon increasing 

the annealing temperature of the films, improvement in the 
crystallinity causes the relative emission at NBE to increase 
compared with the DL emission. Additionally, higher tem-
perature assists with coalescence of smaller grains into the 
bigger ones, decreasing grain boundary regions as well as 
non-radiative defects [5, 57].

2.3 � ZnO Thin Film Transistors

To obtain the optimal thickness for TFT performance, ZnO 
thin film devices were fabricated from different concentra-
tions of precursors (5 % to 50 %) and annealed at 500 °C 
(details of the device fabrication is provided in the Experi-
mental Section and Supplementary section S2). Variation 
in precursor concentration resulted in a thickness variation 
(as seen from Cross–section SEM images in Figure S1) 
from ~ 14.7 to ~ 38.5  nm as estimated by ellipsometry 
measurement (Table S3). TFTs fabricated from these ZnO 
thin films exhibit reasonable hysteresis free transfer char-
acteristics indicating n-type transport (Fig. 3a) and near-
ideal output characteristics with a distinct linear and sat-
uration regime (Fig. 3b and Supplementary section S3a). 
The field effect mobility estimated from the saturation 
regime of transport (µsat) was obtained to be in the range 
of ~ 10−3–10−2 cm2 V−1 s−1. The ON current increases by 
more than an order of magnitude when the precursor con-
centration is increased from 5 to 15 %. Correspondingly, 
the average µsat magnitude increased from 6.8 × 10−4 to 
2.1 × 10−2 cm2 V−1 s−1 (Fig. 3c). Note that for precursor 

Fig. 2   Optical characterization 
of ZnO films prepared from 
Zn(NDN) a Transmission spec-
tra of ZnO film prepared from 
15 % Zn(NDN) and annealed at 
different temperatures b Tauc 
Plot extracted from transmis-
sion spectra with linear fits for 
the estimated bandgap Eg c PL 
spectra of ZnO films prepared 
from different concentrations 
of Zn(NDN) after anneal-
ing at 500 °C d PL spectra of 
ZnO films prepared from 15 % 
Zn(NDN) after annealing at 
different temperatures
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concentration above 15 % the magnitude of ON current 
remains fairly constant. Lower magnitude of ON current for 
the thin films prepared from 5 % precursor concentration can 
be attributed to smaller ZnO grain size (as obtained from 
AFM images shown in Figure S5) and insufficient percola-
tion pathways for current flow. It should be noted that opti-
mized TFT performance was obtained in the present case 
with ZnO film prepared from 15% precursor concentration 
with highest ION/IOFF ratio (~ 105) as well as minimum values 
of subthreshold swing (4.1 V/decade) and trap concentra-
tion per unit energy (1.5 × 1013 eV−1 cm−2). However, for 
ZnO films prepared from precursor concentration higher 
than 15 % the transport properties are observed to decrease 
(Fig. 3c–f) which can possibly be attributed to inefficient 

packing due to larger grains (Figure S5), consistent with the 
PL measurements shown in Fig. 2c.

As a next step we study the impact of precursor annealing 
temperature, on ZnO thin films prepared from 15 % precur-
sor concentration and annealed at temperatures ranging from 
400 to 700 °C for 1 h (details in the experimental section). 
Upon increasing the annealing temperature, following fea-
tures are observed in the transistor characteristics: (a) the 
transfer characteristics exhibit an increase in the ON cur-
rent and decrease in the hysteresis (Fig. 4a); (b) the output 
characteristics approach a clean saturation behavior (Fig. 4b 
and Supplementary section S3b); and (c) the µsat increases 
from 1.8 × 10−4 cm2 V−1 s−1 for films fabricated at 400 °C 
to 0.1 cm2 V−1 s−1 at 700 °C (Fig. 4c). This performance 
improvement can be attributed to the observed increase in 

Fig. 3   a Transfer curves attained from ZnO TFTs prepared from dif-
ferent concentrations of Zn(NDN) b Output characteristics of ZnO 
TFT prepared from 15 % Zn(NDN). Variation in c saturation mobil-
ity d ION/IOFF ratio e subthreshold swing f Interface trap density with 
Zn(NDN) concentration. Errors bars depict standard deviation over 5 
devices

Fig. 4   a Transfer curves obtained from ZnO TFTs prepared from 
15 % Zn(NDN) and annealed at different temperatures b Output char-
acteristics of ZnO TFT annealed at 700 °C. Variation in c saturation 
mobility d ION/IOFF ratio e subthreshold swing f Interface trap den-
sity with annealing temperature. Errors bars depict standard deviation 
over 5 devices
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grain size of the ZnO films (Figure S6), thus reducing the 
grain boundary regions which act as scattering/trapping 
centers [33, 58, 59]. This is consistent with the increase in 
crystallinity of the ZnO films as observed from the XRD 
measurement (Fig. 1c–d) [59]. Consequentially, we also 
observe three orders of magnitude increment in ION/IOFF 
(Fig. 4d), more than threefold decrease in the subthresh-
old swing from 7.6 V/decade at 400 °C to 2.3 V/decade at 
700 °C (Fig. 4e) and a decrease in trap density (DT) from 
2.7 × 1013 eV−1 cm−2 at 400 °C to 8.1 × 1012 eV−1 cm−2 at 
700 °C (Fig. 4f). Thus, the observed enhancement in the 
TFT characteristic can be attributed to the overall improve-
ment in the dielectric-semiconductor interface due to the 
enhancement in the electronic quality of the ZnO thin films 
and the corresponding metal–semiconductor and semi-
conductor-dielectric interface. While some of the vacuum 
deposited ZnO thin film based transistor devices have shown 
subthreshold swing values down to 69 mV/dec [60–62], the 
best subthreshold swing values achieved in our work are 
comparable to the previous reports of oxide-transistors pre-
pared from solution processing [59, 63–66].

To further understand the role of grain boundary on the 
TFT characteristics, TFTs were fabricated with varying 

channel length. We observe an increase in the TFT perfor-
mance characterized by enhanced µsat (increase by a factor 
of ~ 3), decrease in DT and SS upon decreasing the channel 
length from 50 to 5 µm (Fig. 5a and Figure S7). This trend 
can be attributed to the fact that the charge carriers in large 
channel devices encounter higher number of grain bounda-
ries, resulting in higher degree of trapping/scattering. The 
channel length dependent mobility measurement brings out 
the limiting factor of charge transport in polycrystalline ZnO 
films to be grain boundary scattering rather than external 
factors originating from contact resistance in these devices.

Temperature dependent mobility measurements were then 
performed on TFTs fabricated with ZnO films obtained from 
annealing at 400 °C and 700 °C. Transfer curves were meas-
ured over a temperature range of 300–420 K and the mobil-
ity is fitted with an Arrhenius trend,

where µ0 is the mobility at 0 K and Ea is the activation 
energy as shown in Fig. 5b. Low temperature measurements 
were not possible with these devices because of the loss 

� = �0 exp

(

−Ea

kbT

)

Fig. 5   a Evolution of transistor saturation mobility with channel length 
b Arrhenius plots of saturation mobilities extracted from ZnO thin film 
transistors with films annealed at 400 °C and 700 °C c Linear correla-
tion plot of ln(�

sat
T
0.5) vs 1

/

k
b
T signifying grain boundary thermionic 

emissions limited transport d–g Mobility vs gate voltage plots of TFTs 

fabricated from ZnO films annealed at different temperatures. The 
change in � value from 0.51 to 0.12 at 700 °C suggests deviation from 
trap limited transport, dominant at lower annealing temperatures
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of gate modulation under vacuum, possibly due to forma-
tion of oxygen vacancies or oxygen desorption. Neverthe-
less, in the range of temperature measured we observe that 
the activation energy Ea decreases from 0.13 to 0.078 eV 
upon increasing the annealing temperature of the ZnO films, 
which is consistent with the decrease in grain boundary 
induced trapping/scattering mechanism. Interestingly, the 
value of activation energy, for the device fabricated from 
films annealed at 400 °C, is close to the energetic levels of 
zinc interstitials which was suggested by Cordaro et al. to 
be around 0.17 eV [67]. Removal of these deep traps as a 
consequence of higher annealing temperature may explain 
the improved performance of the devices.

The µsat versus temperature trend can be modelled as a 
consequence of thermionic emission across grain boundary 
potential barrier of polycrystalline semiconductor, using the 
expression,

where B represents exponential pre-factor while EB corre-
sponds to grain boundary potential barrier [20, 68]. As 
shown in Fig.  5c, a linear correlation exists between 
ln(�satT

0.5) and 1
/

kbT
 for devices fabricated at both the 

annealing temperatures (400 °C and 700 °C). The grain 
boundary potential barrier is estimated to be 0.15 eV for 
ZnO films annealed at 400 °C as compared to 0.095 eV in 
the case of 700 °C.

To further analyze the transport mechanism, we evaluated 
the Vg dependence of the mobility for the TFT devices fabri-
cated with ZnO films annealed at different temperatures. The 
field effect mobility can be expressed as a power law behav-
ior given by, �FET = K

(

Vg − Vth

)� ; where K and γ are chosen 
appropriately to fit the data. The value of fitting exponent 
γ elucidates the type of transport mechanism assumed [69]. 
When γ is closer to 0.7 the transport mechanism is expected 
to be trap limited charge (TLC) transport and as the value 
approaches 0.1, effect of trapping mechanism decreases and 
other mechanisms of transport such as percolation domi-
nated conduction (PC) are exhibited [66, 69]. Figure 5d–g 
depicts the representative plots of µFET versus Vg for TFT 
devices fabricated under different annealing condition along 
with the respective power law fits. For TFT devices fabri-
cated with ZnO films annealed at temperatures from 400 to 
600 °C the exponent � attains values closer to 0.7, suggesting 
TLC dominated transport mechanism. However, two trans-
port regimes can be identified for the devices where the films 
were annealed at 700 °C (Fig. 5g). At Vg, just higher than 
threshold voltage, � has value of 0.51, pointing to the trans-
port still dominated by TLC; whereas at higher Vg regime 
the exponent � drops to 0.12. This, in turn, implies that in 
high Vg regime, most of the traps are filled up and hence 

�sat =
B

T0.5
e
−

EB

kbT

all the charges accumulated by the gate voltage thereafter 
can go directly to the conduction band and can add to the 
current flow. Nevertheless, from the analysis based on differ-
ent transport models it can be proposed that grain boundary 
depletion region could be the major source of deep level 
traps in these ZnO thin films.

3 � Conclusion

In conclusion, application of Zn(NDN) functional pre-
cursor was explored for fabricating ZnO TFTs. Based on 
detailed optical, structural, and electrical characterization 
it was found that films prepared with 15 % concentration 
of Zn(NDN) in toluene exhibit the best TFT device perfor-
mance with near unity transmission suitable for transparent 
electronics. It was possible to observe µsat reaching up to 
0.1 cm2 V−1 s−1, current modulation of ~ 107 and subthresh-
old swing as low as 2.3 V/decade when the devices are fab-
ricated with an annealing temperature of 700 °C. Finally, 
the transport mechanism in the ZnO films prepared from 
Zn(NDN) was also investigated using different transistor 
mobility models. We observe a decrease in static disorder 
signified by lower activation energy and decrease in the 
depletion barrier for grain boundary thermionic emission 
upon increasing the annealing temperature of precursor to 
700 °C. This was consistent with the deviation from trap 
limited behavior in the transfer characteristics for devices 
obtained at higher temperatures. Our study thus provides 
a general guideline for developing non-aqueous precursors 
towards oxide-based high performance transparent elec-
tronic applications.

4 � Experimental Section

Precursor preparation- Zinc neodecanoate (molecular 
weight 407.9 g/mol; structure shown in Fig. 1a) was pro-
cured from Alfa Aesar and diluted from the commercial den-
sity 1.1 g/cc to the required concentration (v/v) using toluene 
as a solvent (details in Table S1). The precursor solution was 
subjected to ultrasonic agitation at 80 °C for 3 h to obtain a 
thoroughly dissolved solution. The vial was then allowed to 
cool down naturally. Once dissolved, the solution is stable 
for months.

Substrate preparation- Prime grade boron doped p++ Si 
(100) wafers with 100 nm thermally grown SiO2 were used 
as substrate for the fabrication of ZnO TFTs. The 4″ wafers 
were diced into 12 mm x 12 mm sized substrates, cleaned 
by 10 min ultrasonic agitation in acetone and isopropyl alco-
hol and dried using compressed nitrogen flow. The samples 
were then placed in a freshly prepared piranha solution (1:3 
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volume mixture of hydrogen peroxide and sulphuric acid) 
for 15 min and thoroughly rinsed in HPLC grade deionized 
water. After blow drying with compressed nitrogen, samples 
were treated with oxygen plasma for 10 min and then baked 
on a 200 °C hotplate.

ZnO thin film synthesis- The precursor solution, filtered 
through 0.2 µm PTFE syringe filter, was spin coated on the 
precleaned Si or quartz substrates at 2000 rpm for 60 s with 
ramp rate of 2000 rpm/sec for device and spectroscopic stud-
ies respectively. The samples were then baked at 115 °C for 
1 min to dry off the residual solvent. This was followed by 
loading the samples into a Carbolite tube furnace which 
was ramped up at 10 °C/min to obtain the final annealing 
temperature which in the present study ranges from 400 to 
700 °C. The samples were maintained at the final annealing 
temperature for 1 h followed by slow cooling down back to 
room temperature. During the annealing step one end of the 
tube was connected to the exhaust line to maintain a small 
air flow.

XRD Measurements- For the XRD measurements ZnO 
thin films were synthesized from a 15% Zn(NDN) solution 
drop casted on a cleaned Si-SiO2 substrates and left over-
night to remove the solvent. This was followed by annealing 
the substrates at specific annealing temperature ranging from 
400 to 700 °C for 1 h.

Optical Characterization- Transmission (300  nm to 
700 nm) measurements were obtained on ZnO thin films 
synthesized from a 15% concentration of Zn(NDN) spin-
coated on pre-cleaned quartz substrates and annealed at 
various temperatures ranging from 400 to 700 °C. Photo-
luminescence (PL) measurements were conducted on ZnO 
films synthesized over Si substrates, using a 266 nm Laser 
with an incident power of 2.2 mW power.

Transistor fabrication and characterization- The thin film 
transistors fabricated in this study are Bottom Gate-Top Con-
tact devices. Once the ZnO thin films were prepared on the 
Si-SiO2 substrates, the source and drain contacts were 
obtained using standard photo–lithography and lift–off pro-
cess to obtain devices with 500 µm channel width and chan-
nel lengths varying from 5 to 50 µm. Unless otherwise 
stated, the transistor devices discussed here have the channel 
length of 5 µm. The complete processing flow is shown in 
Figure S2 and details of the lithography patterning is pro-
vided in the supplementary section S2. All the devices, 
unless stated otherwise, were characterized using SUSS-
Microtec Probe station and Keithley 4200 SCS under ambi-
ent air conditions at room temperature in dark. For the 
transconductance measurements, Vds = 50 V was applied, 
and Vg was swept from -20 V to 70 V with a step size of 
2.5 V for both forward and reversed direction. During the 
Id-Vd output measurements a constant Vg was applied, and 
Vds was swept from 0 to 50 V with a 1 V step. This way, Vg 
was varied from 10 to 70 V with 10 V step. The mobility in 

the saturation regime of a transistor channel was estimated 

using the following expression: �sat =
2L

WCo

�

�
√

Id

�Vg

�2

 where L 

and W are channel length and width respectively, Co oxide 
capacitance per unit area. Oxide capacitance was estimated 
to be 3.5 × 10−8 F cm−2 based on the specifications of the 
oxide layer (100 nm thick SiO2 gate oxide and relative die-
lectric constant (εr) of 3.9). Subthreshold swing was calcu-
lated using the expression: = �Vg

� log Id
 . The trap concentration 

per unit energy (DT) was also calculated using the following 
expressions: DT =

Co

e2

(

eS

kbT ln 10
− 1

)

 [70, 71].
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