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Abstract
Recently a new type of side channels was discovered, called amplitude-modulated electromagnetic (EM) emanations from
mixed-signal circuits. Unlike power analysis or near field EM analysis, attacks based on amplitude-modulated EM emanations
do not require the close physical access to the victim device, which makes the attack particularly threatening. However, all
existing amplitude-modulated EM attacks on AES focus on implementations of unprotected TinyAES, which is less likely to
be used when the implementation is not overly resource constrained. This paper presents the first deep learning based side-
channel attack on AES-128 with a Rivain–Prouff masking scheme by using amplitude-modulated EM emanations as the side
channel. Rivian–Prouff masking scheme is a provably secure higher-order masking scheme for AES. To bypass the theoretical
strength of the addition-chain based Boolean masked SBox, we train neural networks on trace segments corresponding to the
MixColumns operation in which the data loading instructions for SBox output leak information. By comparing two different
training strategies, we show that it is feasible to recover the key from an ARM Cortex-M4 CPU implementation of AES-128
with a Rivain–Prouff masking scheme by using the amplitude-modulated EM emanations leaked from the victim device,
which has a Bluetooth module embedded on the board.

Keywords Side-channel attack · Amplitude-modulated EM emanations · Deep learning · AES · Rivian–Prouff masking
scheme

1 Introduction

Side-Channel Attacks (SCAs) [1, 2] exploit the weakness
of physical implementations of cryptographic algorithms by
aiming at nonprime, unintentional physical leakage during
the execution of algorithms. In the past two decades, power
consumption [3–5] and near field EM emissions [6–8] have
become two of the most widely and successful exploited side
channels. However, these attacks require adversaries to stand
close or even have the physical access to the victim device to
collect side-channel measurements, which makes the attack
less threatening.

Amplitude-modulated EMemanation is a new type of side
channel which waves the requirement of the close physical
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proximity to the device under attack. In 2018, [9] presented
the first amplitude-modulated EM emanations based side-
channel attack against a Bluetooth device implementation
of Advanced Encryption Standard (AES), in which they
observed that side channels from an implementation on a
mixed-signal chip might be mixed with radio carrier signal
and unintentionally transmitted by the on-chip antenna. They
experimentally showed that it is feasible to detect the leakage
and extract the secret at a much longer distance than attacks
based on power consumption and near field EM emissions.
By following the work in [9], the template attack in [10]
managed to use 5K traces captured at 15m distance with 1K
repetitions to recover a subkey of TinyAES [11], by using a
key enumeration up to 2.

Recently, [12, 13] utilized deep-learning techniques to
make amplitude-modulated EM side-channel attacks more
efficient. By applying models trained on ’clean’ traces cap-
tured by coaxial cable to classify noisy traces captured at
distance to the victim device, [13] is able to achieve a four
orders of magnitude improvement over the template attack
presented in [10].
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In addition to AES, [14] presented the first deep-learning
based far field EM side-channel attack on Saber Key Encap-
sulation Mechanism (KEM) [15], which is a finalist of the
NIST post-quantum cryptography standardization project. In
[16], they experimentally showed that their deep-learning
model can recover each bit of the session key with around
90% probability. Afterwards, the presented attack in [16]
achieved to recovermessageswith the probability 100% from
the profiling device and with around 74% probability from
the victim device.

To the best of our knowledge, all existing amplitude-
modulated EM side-channel attacks on AES [9, 10, 12, 13,
17–19] focus on implementations of TinyAES [11]. They
do not take into account that TinyAES is unlikely to be
usedwhen implementations are not excessively resource con-
strained. In security-sensitive applications, countermeasures
against SCAs are typically applied to protect secret in imple-
mentations of cryptographic algorithms. Among all existing
countermeasures, masking [20] is the most widely applied
one for both software and hardware implementations ofAES.
In general, a dth-order masking scheme splits the sensitive
intermediate value processed by the device into d+1 shares,
where d is called the order of the mask. Any d among d + 1
shares are supposed to be random and do not reveal the key-
dependent intermediate value. Thus, the correlation between
the sensitive intermediate value and side-channel measure-
ments are mitigated. Due to its characteristic of provable
security against any attack of order lower than d+1, Rivain–
Prouff (RP) masking scheme, which is an addition-chain
based scheme, became one of the most popular approaches
in security-sensitive circuits [21].

In this paper, we present the first result of an amplitude-
modulated EM emanations based side-channel attack on
implementations of AES-128 with a Rivain–Prouff masking
scheme. Our experiments are conducted on an Nordic Semi-
conductor nRF52832 development board embedded with a
Cortex M4 CPU, which supports Bluetooth 5. Our contribu-
tions can be summarized as follows:

1. We present the first deep-learning amplitude-modulated
EM attack on a Bluetooth device implementation of
masked AES-128. We use two different training strate-
gies to build neural networks and show that both
approaches are feasible to recover the key.

2. We show that by utilizing the trace segments related to the
data loading instructions of the MixColumn operation,
instead of the commonly used SBox segments, we can
successfully bypass the strength of addition-chain based
Boolean masked SBox implementation.

Algorithm 1 Pseudo-code of the SBox operation in AES-128
with RP masking scheme [21].
// SecSBox
// in: share xi satisfying ⊕i xi = x
// out: share yi satisfying ⊕i yi = SBox(x)
for i = 0 to d do

zi ← x2i � ⊕i zi = x2

end for
RefreshMasks(z0, z1, . . . , zd )
(y0, y1, . . . , yd ) ←SecMult((z0, z1, . . . , zd ), (x0, x1, . . . , xd )) � ⊕i yi = x3

for i = 0 to d do
wi ← y4i � ⊕iwi = x12

end for
RefreshMasks(w0, w1, . . . , wd )
(y0, y1, . . . , yd ) ←SecMult((y0, y1, . . . , yd ), (w0, w1, . . . , wd )) � ⊕i yi = x15

for i = 0 to d do
yi ← y16i � ⊕i yi = x240

end for
(y0, y1, . . . , yd ) ←SecMult((y0, y1, . . . , yd ), (w0, w1, . . . , wd )) � ⊕i yi = x252

(y0, y1, . . . , yd ) ←SecMult((y0, y1, . . . , yd ), (z0, z1, . . . , zd )) � ⊕i yi = x254

for i = 0 to d do
yi ← A f (yi )

end for
if d mod 2 = 1 then

y0 ← y0 ⊗ 0x63
end if

1.1 Related works

The side-channel security of addition chain basedSBoxes has
been first studied by Prouff and Rivain [22] and Alexandre
Duc et al. [23]. However, instead of using actual physi-
cal implementations of RP-masked AES, they illustrate the
security evaluation according to theoretical proofs [22] and
simulation paradigms [23]. By following the step of [22, 23],
[24] evaluates the side-channel resistance of anARMCortex-
M4 based STM32F407 development board implementation
of AES with the first-order addition-chain based masked
SBox. They show that by using the power consumption as
the side channel, their template attackmanaged to recover the
SBoxoutput byusing about 60 traceswith a 80%success rate.
However, when it comes to the case that using near-field EM
emissions as the side channel, the success rate of the template
attack in [24] drops to 40% with 1K traces. To further inves-
tigate how deep learning can help side-channel attacks on
implementations AES with the addition-chain based masked
SBox, [25] train a convolutional neural network (CNN) as
the classifier to conduct the attack. Under the same condi-
tions as in [24], the trained CNN model in [25] achieved
to recover the SBox output by using about 300 power con-
sumption traces with a 100% success rate. However, for the
near field EM traces which have much lower signal-to-noise
ratio (SNR), the CNN model failed to recover the SBox out-
put. Even though these existing works [24–26] have already
investigated the resistance of implementations of AES with
addition-chain based masked SBox, they use power con-
sumption or near field EM emissions as side channels. There
is still a lack of study on the resistance of implementations of
the addition-chain based masked AES against SCAs based
on amplitude-modulated EM emanations.

123



Journal of Cryptographic Engineering

Algorithm 2 Pseudo-code of the secure multiplication in
AES-128 with RP masking scheme [21, 27]
// SecMult
// in: share ai satisfying ⊕i ai = a, share bi satisfying ⊕i bi = b
// out: share ci satisfying ⊕i ci = ab
for i = 0 to d do

for j = i + 1 to d do
ri, j ← random()

r j,i ← (ri, j ⊕ ai b j ) ⊕ a j bi
end for

end for
for i = 0 to d do

ci ← ai bi
end for
for j = 0 to d, j �= i do

ci ← ci ⊕ ri, j
end for

In this paper, we go one step further by using the
amplitude-modulated EM emanations (far field EM ema-
nations) as the side channel to investigate the resistance of
implementations of the addition-chain based masked AES.
By doing this, we aim to investigate to which extent remote
attacks can be a threat to implementations of the addition-
chain based masked AES.

The rest of the paper is organized as follows. Sec-
tion2 provides background information on AES algorithm
with RP masking scheme and reviews how deep learning
side-channel attackswork. Section3 explainswhy themixed-
signal circuits can generate and transmit EM emissions to
long distance. Section4 presents our experimental setup and
shows how we pre-process the captured traces. Sections5
shows our leakage detection process and how the trace seg-
ments for training neural networks are decided. Sections6
describes the profiling stage to build our deep-learning mod-
els. Section7 summarizes the experimental results andSect. 8
concludes the paper.

2 Background

In this section, we start by reviewing the AES-128 algorithm
andRivain–Prouffmasking scheme.Afterwards,we describe
how deep-learning techniques help side-channel attacks.

2.1 AES-128 with Rivain–Prouff masking scheme

The AES [28] is a symmetric encryption algorithm standard-
ized by NIST in FIPS 197 and included in ISO/IEC 18033-3.
In general, it uses an n-bit secret key K , n = {128, 192, 256}
to encrypt a 128-bit block of plaintext P . The output of the
AES algorithm is a 128-bit block of ciphertext C. The AES
algorithm in our experiment is called AES-128 with the key
size set to n = 128. There are ten encryption rounds in AES-
128 and for each round (except the last round) it repeats
the following four steps: non-linear substitution, SubBytes,

transposition of rows, ShiftRows, mixing of columns, Mix-
Columns, and round key addition, AddRoundKey.

Protecting AES from side-channel attacks has become a
realistic concern for cryptographic community. In general,
masking [20] is one the most widely used countermea-
sures which aims to split sensitive intermediate value into
randomshares, tomitigate the dependencybetween the sensi-
tive variable and side-channel measurements. Consequently,
masked AES is not vulnerable to traditional side-channel
attacks which aim to recover the sensitive variable directly
from a single leakage segment. When designing a mask
scheme to protect a block cipher, addition chain is one of
the most widely used approaches to implement masked non-
linear transformations (SBox operation in AES) which cost
less than the conventional lookup-table based approaches in
higher-order mask scheme.

Rivain–Prouff masking scheme [21] is the first provably
secure addition-chain based approach which supports any
order of mask. In an addition-chain based approach, the
non-linear operations can be unrolled and expressed as a
combination of squares and multiplications over a finite field
F2n . In [21], the nonlinear multiplications are implemented
by using the Ishai-Sahai-Wagner’s (ISW) scheme [27], as
shown in Algorithm 2. Based on the secure multiplication
SecMult() as shown in Algorithm 2, Algorithm 1 shows
the pseudo code of masked SBox in [21]. Instead of using
a memory lookup table to implement the non-linear substitu-
tion operation, the addition-chain based approach unrolls and
expresses the SBox as a combination of squares and multi-
plications over a finite field, as shown in Fig. 1. Afterwards,
the RefreshMasks() function is described in Algorithm 3,
in which we use A f () to denote the affine transformation
function.

For the ShiftRows, MixColumns and AddRoundKey oper-
ations in RP masking scheme, see [21].

2.2 Deep-learning side-channel attack

Machine learning techniques started helping power based
SCAs on AES in 2011 [29]. In general, a deep learning based
side-channel attack can be divided into two stages: profiling
and attack stage.

During the profiling stage, we assume that the attacker has
a full control to at least one profiling devicewhich is identical
to the victimdevice. Thismeans the attacker is able to encrypt
a large amount of plaintexts with known keys and record the
generated EM traces. Afterwards, the adversary can use the
captured traces to train deep-learningmodels which learn the
correlation between the side-channel measurements and the
corresponding key-dependent label.

At the attack stage,we assume that the attacker can capture
some far field EM traces at a distance to the victim dur-
ing the execution of the cryptographic algorithm. Then, the
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Algorithm 3 Pseudo-code of refreshing masks in AES-128
with RP masking scheme [21]
// RefreshMasks
// in: share xi satisfying ⊕i xi = x
// out: share xi satisfying ⊕i xi = x
for i = 0 to d do

mask ← random()

x0 ← x0 ⊗ mask
xi ← xi ⊗ mask

end for

attacker can use the trained deep-learning model to classify
these traces and derive the secret key.

3 EM emissions as side-channel

This section describes how the EM emissions are generated,
modulated, and transmittedwhenAES algorithm is executed.
We also show how the center frequency of the receiver can
be determined to collect these emissions.

3.1 EM emissions in amixed-signal circuit

A mixed-signal circuit is an integrated circuit that contains
both analog part and digital part. A mixed-signal circuit usu-
ally costs less materials and has a smaller board size, this
satisfies the market demands for cheaper and more portable
electronic devices. However, a big problem of integrating
digital and analog circuits on the same silicon die is how to
handle the noise generated during the execution of instruc-
tions in the digital part, since the RF block contained in the
analog part is extremely sensitive to the noise [30]. In SCAs’
contexts, this means that the RF block may also be affected
by the side-channel leakage generated by the executions of
crypto block in the digital circuit,when theRFblock is placed
close to the digital circuit. Afterwards, the analog circuit may
unintentionally amplify and broadcast the leakage alongwith
the wireless transmission channel.

In our experiments, the encryption operations executed
in the Crypto block are interpreted as bit flips (0 → 1 or
1 → 0) controlled by the internal system clock from the
CPU core since the Crypto block is contained in the digital
part. Meanwhile, the CPU core in the digital part generates
a square wave noise since the frequently switching clock
signal. Side channels from the Crypto block get modulated
by this squarewave and then the resulting signal couples with
the baseband signal of Voltage-Controlled Oscillator (VCO)
in the analog part. This effect is because of the substrate
coupling [31]. Finally, the RF block modulates the signal to a
high frequency defined by the wireless transmission protocol
and sends it through the antenna. Consequently, it is possible
for adversaries to detect the indirect EM emissions at a long
distance.

3.2 Center frequency of the receiver

We use fs to denote the clock frequency of the square wave.
The clock signal s(t) can be presented by the formula 1.

s(t) =
+∞∑

n=−∞
Ane

i2nπ fs t , (1)

Formula 2 denotes the corresponding Fourier transform
S( f ), in which we use An to present the Fourier series coef-
ficients. Notice that the even terms of the Fourier series are
not exactly equal to zero since the square wave noise is not
an ideal square wave.

S( f ) =
+∞∑

n=−∞
Anδ( f − n fs) (2)

In An, τ is the duty cycle of the square wave and δ is the
impulse function.

An = sin nπτ

nτ
(3)

As we mentioned above, the side channel signal from the
Crypto block c(t) is first modulated by the square wave of
the clock signal s(t) and the resulting signal can be described
as c1(t) = c(t) · s(t) in time domain. In frequency domain,
the resulting signal is shown below.

C1( f ) = C( f ) ∗ S( f ) =
+∞∑

n=−∞
AnC( f − n fs) (4)

Themodulated signal c1(t) is then coupledwith the digital
signal which representing the ciphertext because of the sub-
strate coupling effect and afterwards transmitted to the RF
block in the analog part. In this part, the RF block modulates
the signal to a high frequency. We use ei2π fct to denote the
radio carrier, in which fc is the carrier frequency. Then, the
modulated signal in time and frequency domains is given by
formula 5. Afterwards, the signal is transmitted through the
antenna on chip.

c2(t) =
+∞∑

n=−∞
Anc(t)e

i2π(n fs+ fc)t

C2( f ) =
+∞∑

n=−∞
AnC( f − n fs − fc).

(5)

At the receiver side, if the center receiving frequency is
set to N fs + fc, the received signal is given by formula 6. To
recover the side-channel signal c(t), the adversary can use a
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Fig. 1 Illustration of the addition-chain based masked SBox in RP masking scheme

Fig. 2 Experimental setup

low pass filter.

r(t) =
∑

n �=N

Anc(t)e
i2π(n−N ) fs t + ANc(t)

R( f ) =
∑

n �=N

AnC( f − (n − N ) fs) + ANC( f ).
(6)

4 Experimental setup

In this section, we describe the equipment we used for cap-
turing and how the captured traces are pre-processed.

4.1 Equipment

Except the antenna, most of the equipment used in our exper-
iments are as the same as in [9, 12, 13]. Figure2 shows our
experimental setup in an office environment.

At the transmitter side, the victim device in our exper-
iments is an nRF52 development kit, which is a versatile
single board for Bluetooth Low Energy, Bluetooth mesh,
NFC, ANT and 2.4GHz proprietary development on the
nRF52832 SoC. The nRF52832 SoC supports Bluetooth 5
with the data transmission rate 2Mbps and it is built around

an Arm Cortex-M4 CPU with floating point unit running at
64 MHz. During the experiment, we implement AES-128
with RP masking scheme on the nRF52832 SoC.

At the receiver side, we use anEttus ResearchUSRPN210
networked Software Defined Radio (SDR) connected to a
vertical antennaVERT2450with 3dBi gain to receive the sig-
nal. The center receiving frequency is 2 fclock + fBluetooth =
2.528GHz, where fBluetooth = 2.4GHz. In our experiments,
we use the same sampling frequency as in [13], which is
5Mhz.

4.2 Trace acquisition and pre-processing

In the experiments, we use the nRF52832 device to encrypt
plaintext and send the data continuously. At the same time,
we use the USRP N210 SNR at the receiver side to capture
the amplitude-modulated EM traces. We can find traces cor-
responding to the AES execution in periodic blocks from the
received signal and we use a trigger signal to locate the first
round ofAES for eachAES execution block. The bottom plot
in Fig. 3 shows a 7000-point trace segment which represents
the thefirst roundofAES-128with thefirst-orderRPmasking
scheme. We can see there are two executions of AddRound-
Key operations from the trace. The patterns within approx.
500–700 points are for the AddRoundKey operation before
the 1st round and the patterns within approx. 6600–6800
points represent theAddRoundKey operation of the 1st round.
Patterns within approx. 700–5900 points, 5900–6000 points
and 6000–6600 points represent the SubBytes, ShiftRows and
MixColumns operation, separately

By following the training approach in [13], the training
set used in the profiling stage contains ’clean’ traces which
are captured by coaxial cable and each trace is the average
of 100 measurements with the same encryption. A coaxial
cable is capable to transmit signals that oscillate at high RF
frequencies without radiating them outside. When the trans-
mitter and the receiver are connected by such a cable, the
latter receives the EM emission directly, in the form of the
RF signal sent from the RF block on the chip.
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Fig. 3 T-test results on traces of AES-128 with RP masking scheme with all masks set to 0

The scaling is necessary since we followed the profiling
strategy in [13].During the training stage, themodel is trained
on traces captured by a coaxial cable. At the testing stage, we
test our models on traces patured remotely in some experi-
ments. For this reason, traces for profiling and testingmaynot
at the same scale as shown in [13]. A coaxial cable is capa-
ble to transmit signals that oscillate at high RF frequencies
without radiating them outside. When the transmitter and the
receiver are connected by such a cable, the latter receives the
EM emission directly, in the form of the RF signal sent from
the RF block on the chip.

We use max-min scaling [32] to map the amplitude of
all traces to the interval [0,1]. Given a set of traces T , each
trace T = (τ1, . . . , τm) ∈ R

m of T is mapped into T ′ =
(τ ′

1, . . . , τ
′
m) ∈ I

m for all i ∈ {1, . . . ,m},

τ ′
i = τi − τmin

τmax − τmin
, (7)

where τmin and τmax are the minimum and themaximum data
points in T .

5 Leakage detection

In side-channel analysis’ context, the task of identifying the
leakage interval of side-channel measurements related to the
secret-dependent information is called leakage detection. In
most side-channel attacks, the first step for adversaries is to
find the points of interest (POIs) in traces by using leakage
detection methods. Among all these leakage detection meth-
ods, theTestVector LeakageAssessment (TVLA) [33]which
is based on the well-known Welch’s t-test [34], becomes to
one of the most widely used statistical techniques to detect
the first-order leakage [14, 16, 35, 36]. We use TVLA to
assess the first-order leakage and to find the POIs in far field
EM traces.

In a TVLA, side-channel traces are firstly divided into
two sets according to the corresponding secret-dependent
intermediate value (label) processed by the device. For exam-
ple, one set T 0 can be traces with HW (label) > t and
another T 1 contains traces with HW (label) < t . We use
HW (label) to denote the Hamming weight of the processed
intermediate value label, which is the number of 1’s in binary
representation of label. The t-test takes a sample from each
of the two trace sets and establishes whether they differ by
assuming a null hypothesis that the means of two sets are
equal. In a TVLA, the adversaries can compute the the sum
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of squared pairwise t-differences (SOST) of two trace sets
T 0 and T 1 to assess the leakage [37].

The SOST value of of two trace setsT 0 andT 1 is defined
by formula 8. In formula 8, μi and σi denote the mean and
standard deviation of trace set T i and ni represents the num-
ber of traces in set T i , for i ∈ {0, 1}

SOST =

⎛

⎜⎜⎝
μ0 − μ1√

σ 2
0
n0

+ σ 2
1
n1

⎞

⎟⎟⎠

2

(8)

In the following leakage detection process, we use the
value of SBox input and output in the first round of AES-
128 as the attack point to detect the leakage and locate the
POIs for training neural networks. The value of SBox output
is a common attack point for software implementations of
AES-128. An attack point is an intermediate value during the
execution of a cryptographic algorithm which can be used to
describe the side-channelmeasurements of the victim device.

5.1 Traces with 0-mask

We first run t-test on traces of first-order masked AES-128
with all masks set to 0.

The top picture in Fig. 3 shows the t-test results for
each subkey ki on 0-mask traces without repetition. We use
500K traces in total and traces are divided into two sets:
HW (label) < 4 and HW (label) > 4. From the top picture
in Fig. 3, we cannot see any clear leakage on 0-mask traces
without repetition and we believe it is because the quality of
the trace. Thus, we further do t-test on averaged traces. In
[13], it is proved that averaging is a technique that efficiently
reduces the external noise and interference.

The middle picture in Fig. 3 shows the t-test results for
each subkey ki on 5K0-mask traces and each trace is the aver-
age of 100measurementswith the same encryption. From the
middle picture in Fig. 3, we can clearly see a leakage interval.
Notice that in a first-ordermasking scheme, the value of SBox
output SBox(pi ⊕ ki ) in the first round of AES-128 is split-
ted into two shares s0(SBox(pi ⊕ ki )), s1(SBox(pi ⊕ ki )),
where:

SBox(pi ⊕ ki ) = s0(SBox(pi ⊕ ki )) ⊕ s1(SBox(pi ⊕ ki ))

(9)

Since we set the value of all masks to 0, the second
share of SBox output is computed as s1(SBox(pi ⊕ ki )) =
SBox(0) = 99 and the first share is consequently derived
from formula 9, which is s0(SBox(pi ⊕ ki )) = SBox(pi ⊕
ki ) ⊕ 99.

To locate the leakage interval, we draw an averaged trace
in the bottom picture in Fig. 3. In the bottom picture of Fig. 3,

Fig. 4 T-test results on traces of AES-128 with RP masking scheme
with all masks set to random

the dashed red lines illustrate the beginning and the end of
the MixColumns operation in the first round of AES. From
the assembly code of AES-128 with first-order RF masking
scheme, we know that the leakage showed in the middle pic-
ture of Fig. 3 is from the first share of theMixColumns input,
which is loaded to the register. From AES-128, we know the
value of the first share of theMixColumns input equals to the
first share of the SBox output. This explains why we can see
the leakage by using the value of the SBox output as the attack
point in the interval related to the MixColumns operation.

The green box crossing the middle and bottom pictures
shows the leakage interval, which is approx. [5999 : 6267]
points in the bottom picture of Fig. 3. Close to the leak-
age interval [5999 : 6267], we can see another interval
[6267 : 6535] which contains the same pattern as the leak-
age interval. These two identical patterns are corresponding
to the executions of MixColumns for two shares. Figure5
shows how well the trace segment corresponding to the first
share of MixColumns fits segment of the second share.

5.2 Traces with random-mask

Next, we run t-test on traces of first-order masked AES-128
with all masks set to random.

Figure4 shows the t-test results for each subkey ki on r-
mask traces without repetition. We use 500K traces in total
and traces are divided into two sets: HW (label) < 4 and
HW (label) > 4. From the top picture in Fig. 4, we cannot
see any leakage on r-mask traces. However, unlike the 0-
mask case, we cannot apply averaging to r-mask traces since
the value of masks are changed for every execution and every
trace contains different unknown masks (Fig. 5).

6 Profiling stage

This section describes how we train neural networks at the
profiling stage.We useT = {T1, . . . , T|T |}, where Ti ∈ R

m ,
for i ∈ {1, . . . , |T |}, to denote a set of traces corresponding
to the computation of the first round of AES-128 with first-
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Fig. 5 Trace segment of the first share fits segment of the second share
well

order RFmasking scheme. InT , traces are captured from the
profiling device(s) for randomly generated plaintexts Pi ∈
{0, 1}128 and a fixed key K ∈ {0, 1}128. For kth byte of a
16-byte plaintext Pi , we use Pi,k to represent it, with k ∈
{0, 1, . . . , 15}.

For a dth-order RP masking scheme, no side-channel
attack with order lower than d + 1 is possible to break it
[21]. Thus, to reveal the key from an implementation of first-
order masked AES, the deep-learning model is required to
deal with two instants to derive the key-dependent value. In
our experiments,we compare twodifferent training strategies
for utilizing two shares of the sensitive intermediate value.

6.1 Multi-step strategy

In Sect. 5, we show that by using the value of the SBox output
as the attack point, the leakage interval is approx. [5999 :
6267] points in the bottom picture of Fig. 3. Close to the
leakage interval [5999 : 6267], we can see another interval
[6267 : 6535]which contains the same pattern as the leakage
interval. These two identical patterns are corresponding to
the executions of MixColumns for two shares. The loading
instructions of the first and second share of SBox output are
the reason of the leakage.

To implement a higher-order attack, the multi-step strat-
egy is to train a neural network on traces with interval
corresponding to the first share of a key-dependent interme-
diate value. At the profiling stage, the adversary can first set
all masks to 0 and afterwards derive the first share of SBox
output by using the recorded plaintexts and keys, which is
SBox(pi ⊕ ki ) ⊕ 99 as discussed in section 5. To train the
model, each trace is the average of 100 measurements with
the same encryption and labeled by SBox(pi ⊕ ki ) ⊕ 99.

Afterwards, we apply the trained model to classify traces
on interval corresponding to different shares respectively
and combine these classification results to derive the key-
dependent intermediate value. Figure6 shows how to use the
multi-step strategy to implement a second-order attack.

Fig. 6 An illustration of the multi-step strategy for the second order
attack

6.2 Single-step strategy

The single-step strategy is to train a neural network on traces
with interval contains information related to all shares of a
key-dependent intermediate value. Afterwards, we apply the
trained model to classify traces on interval corresponding to
all shares and let neural network to deal with these shares.
Figure7 shows how to use the single-step strategy to imple-
ment a second-order attack.

At the profiling stage, the adversary can first set all masks
to a non-zero constant so that the SBox output is splitted to
two randomvalues.Afterwards, themodel is trained on traces
interval which is approx. [5999 : 6535] points and each trace
is the average of 100measurementswith the sameencryption.
Since all masks are set to a constant at the profiling stage, we
can repeat the same encryption. The label for the single-step
strategy is SBox(pi ⊕ ki ).

6.3 Model structure

Architecture of Multi-Layer Perceptron (MLP) used in our
experiments for two strategies is shown in Table 1. The
Nadam optimizer is used and the learning rate α is 0.00002.
From the training set, 20% of traces are randomly selected
for validation.
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Fig. 7 An illustration of the single-step strategy for the second order
attack

Table 1 Model architecture summary

Layer type Output shape

Batch normalization (None, 268) (multi-step)

(None, 536) (single-step)

Dense (None, 1024)

Dense (None, 512)

Dropout (None, 512)

Dense (None, 256)

Output (dense) (None, 256)

MLP model called MLP1 is trained on 100K 0-mask
traces captured from the profiling device by using the multi-
step strategy. The input size ofMLP1 is 268. Model called
MLP2 is trained on 100K constant-mask traces captured
from the profiling device by using the single-step strategy.
The input size of MLP2 is 536. To train both models, each
trace in the training set is the average of 100 measurements
of the same encryption and with max-min normalization.

7 Experimental results

This section presents the results of our experiments. We first
run first-order attacks on traces with all masks set to 0 cap-
tured by coaxial cable and at 10cm distance to the victim.
Afterwards, we run the second-order attack on traces with
all masks set to random captured by coaxial cable and at
10cm distance. All attacks were carried out in an office envi-
ronment. The subkey k1 is selected as the target subkey to

Fig. 8 Average PGE of MLP1 tested on 0-mask traces captured by
cable and at 10cm

be recovered and the choice of the subkey does not seem
to affect the average results. To get the averaged result, we
repeat multiple tests for each attack. For each test, we ran-
domly select a subset from the test traces. Instead of using
the averaged Partial Guessing Entropy (PGE) [38] to derive
the averaged number of traces required for an attack, we use
the point where the PGE of the real subkey reaches 0 in the
majority of tests, which is a termination condition suggested
on [13].

7.1 Results on 0-mask traces

Although 0-mask implementations are impractical in real
attack scenario, our experiments on 0-mask traces aim to
explore to which extent the mask can make deep-learning
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Table 2 Average number of traces required by MLP1 to recover a
subkey from traces with 0-mask captured by coaxial cable and at 10cm
to the victim device (for 100 tests)

Distance to the victim device # Repetitions

N = 100 N = 10 N = 1

Cable 13 227 1285

10cm 22 300 2806

Each trace is the average of N measurements of the same encryption

Table 3 Average number of traces required by MLP1 and MLP2 to
recover a subkey from traces with random-mask captured by coaxial
cable and at 10cm to the victim device (for 50 tests)

Model Distance to the victim device # Traces

MLP1 Cable 192,775

MLP2 Cable 168,152

MLP1 10cm 290,848

MLP2 10cm PGE=22.6/300K

based attacks less efficient by comparing to the real random-
mask cases.

In this experiment, all traces in test sets are with 0-mask.
Thus, the key-dependent information is only contained in the
first share of the intermediate value. We run the first order
attack on traces with segment corresponding to the execu-
tions of the first share of MixColumns input (SBox output)
by using MLP1.

Figure8 shows the average PGE plots ofMLP1 tested on
0-mask traces captured by cable and at 10cm. Table 2 shows
the average number of traces required byMLP1 to recover
the subeky from traces captured from the victim device by
coaxial cable and at 10cm. For each test, we use 5K traces
in total. To compute the average number of traces required
by the tested model to recover the subkey, we permute the
trace set T̂ 100 times and calculate the point where the PGE
result of the correct subkey value reaches 0 in the majority
of test sets T̂ j , j ∈ {1, . . . , 100}. From Table 2, we can
find that even though our deep-learning model is trained on
trace segments corresponding to the MixColumns operation
to bypass the protection of the addition-chain based masked
SBox, themodel can still recover the key efficiently compared
to the results against TinyAES in [9, 10, 12].

Next, we demonstrate second order attacks on random-
mask traces by using both multi-step strategy with MLP1

and single-step strategy withMLP2.

7.2 Results on random-mask traces

In this experiment, we investigate the attack efficiency of
deep-learning models on traces with random masks cap-
tured by coaxial cable and at 10cm distance. We repeat the
first-order attack as presented in the 0-mask case and as we
expected, the first-order attack fails. In this scenario, key-

Fig. 9 Average PGE of MLP1 and MLP2 tested on random-mask
traces captured by cable and at 10cm

dependent information of an intermediate value is split into
two random shares. Recovering only one share cannot lead
us to derive the key. Thus, it is necessary to run second-order
attack as shown in Figs. 6 and 7. Notice that in this exper-
iment, we do not have test sets in which each trace is the
average of multiple measurement with the same encryption,
since the masks are set to random for each encryption.

We first use MLP1 to run the attack as shown in Fig. 6,
to recover the subeky from traces captured from the victim
device by coaxial cable and at 10cm. Afterwards, we use
MLP2 as shown in Fig. 7. For the case that traces are cap-
tured by cable, we use 200K traces in total for each test. For
the case of 10cm distance, we use 300K traces for each test.
To compute the averaged result, we permute the trace set 50
times and calculate thepointwhere thePGEof the real subkey
reaches 0 in themajority of test sets. Figure8a shows the PGE
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Fig. 10 Experimental setup for longer attack distances

plot ofMLP1 andMLP2 on random-mask traces captured
by coaxial cable and Fig. 9 shows the PGE plots of MLP1

andMLP2 on traces captured at 10cm to the victim device.
Table 3 summarizes these results. We can see that when it

comes to the case that traces are captured at distance to the
victim device, multi-step strategy is a better choice than the
single-step one. We can also conclude that, even if we can
bypass the theoretical strength of the addition-chain based
masked SBox, it takes a very large number of traces to recover
a subkey. Considering that the implementations in our exper-
iments are with first-order masks, higher-order RP masking
scheme seems to be considerably more secure than unpro-
tected AES to attacks based on far field EM emissions.

7.3 Experiments at other distances

Next, we further capture traces at distances of 0.5, 1, 3, 6, 9,
12, and 15ms from the victim device to investigate whether

we can detect the leakage at longer distances, like the exper-
iments on far field EM attacks on TinyAES as shown in [10,
12, 13].

In this experiment, to obtain traces with higher SNR, we
change the antenna from the vertical antenna VERT2450 (as
shown in Fig. 2) to a grid parabolic antenna TL-ANT 2424B
with 24dBi Gain, which is the same antenna used in [10,
12, 13]. Figure 10 shows the overall experimental setup at
15m distance to the victim device. At the transmitter side
(Fig. 10a), the nRF52 device periodically runs AES with the
RP masking scheme and transmits the ciphertexts through
the on-chip antenna. At the transmitter side (Fig. 10b), we
use an Ettus ResearchUSRPN210 SDRwith a grid parabolic
antenna attached to receive the signal. The center receiving
frequency is set to 2.528GHz. All the traces are captured in
an office corridor environment.

We first compare the plots of traces captured at different
distances in order to know how traces changes with distance.
Figure 11 shows the plots obtained by averaging 100 mea-
surements with the same encryption captured at different
distances. No scaling is applied to the traces. The dashed
dark blue lines show the zoomed-in view of the trace cap-
tured at 15m from the victim device. It is evident that the
signal strength of the EM traces captured by coaxial cable
are considerably stronger than traces captured at other dis-
tances. But we can still distinguish different executions from
the traces captured at 15mdistance. Thus,we believe it is fea-
sible for adversaries to conduct a successful attack on traces
captured at a long distances (≥ 10m)withmore traces. Com-
paredwith the attack results based onpower consumption and
near field EM emissions shown in [24, 25], our experiments
show a great potential of using amplitude-modulated EM
emissions as the side channel to conduct a remote attack on
implementations of the addition-chain based masked AES.

Next, we run t-test on traces captured at 0.5, 1, 3, 6, 9, 12,
15m distance to the victim device with all masks set to 0.

Fig. 11 The plots obtained by averaging 100 measurements with the same encryption captured at different distances
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According to the results presented in Section. 5.1, we run the
leakage detection process on traces which are the average of
100 measurements with the same encryption. All traces are
divided into two sets: HW (label) < 4 and HW (label) > 4.
The t-test results showed that, except for traces captured at 0.5
m from the victim equipment, it is difficult to detect obvious
leakage from traces captured at longer distances by using
5K traces with 100 repetitions. Our hypothesis is that more
traces are required for identifying the leakage.

In this section, we show that it is feasible to capture traces
with clear patterns for different executions at 15m distance
to the implementation of RP-masked AES. This verifies that
the maximum measuring distance for far field EM traces
is mainly depends on the wireless protocol applied to the
embedded device [13], rather than on the cryptographic algo-
rithm implemented on the digital blocks. Considering that it
takes a very large number of traces to recover a subkey when
traces are captured at 10cm (see Sect. 7.2), to conduct a suc-
cessful attack on implementations of RP masked AES at a
long distance may require a huge a mount of traces, which is
impractical at this stage. Further research may be necessary
to improve the efficiency of attacks.

8 Conclusion

We demonstrate the first deep-learning far field EM attack
on a Bluetooth device implementation of AES-128 with RP
masking scheme. By comparing two different approaches of
deep-learning based higher-order attacks, we show themulti-
step profiling strategy outperforms the single-step strategy.
Our neural network trained on traces from one Bluetooth
device can recover the key from random-mask traces cap-
tured at 10cm distance to another device.

The results in our experiments are preliminary and proba-
bly can be improved. Future works include mounting similar
attacks to break the Bluetooth device at a longer distance and
training models for breaking higher-order masked AES.
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