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Abstract
Recently, card-based protocols have been extensively explored to illustrate relatively complex cryptographic concepts, such
as SecureMultiparty Computations, so that even non-specialists can understand them. These protocols rely on three elements:
a given alphabet with a set number of physical cards, encoding those cards, and shuffling operations. However, the execution
is becoming over-complicated, as most follow the same encoding: fixed uniform disclosed encoding, which constrains other
elements and decreases their expressiveness. This paper introduces the asymmetric five-card trick, a generalization of the
five-card trick (a seminal work in the field of card-based cryptography) with the added feature of allowing variable encoding.
To do so, we propose a pre-process called “handshake” that allows protocols to adapt operations based on players’ encoding.
The protocol handshake is included as part of the protocol’s production phase in the proposed general framework, which
is negotiated before its execution. Finally, this paper also introduces the notion of time and space complexity in card-based
protocols to assess their production and execution’s lower bounds.

Keywords Cryptographic protocols · Card-based cryptography · Secure multi-party computations · Probabilistic encryption

1 Introduction

Although the five-card trick by Den Boer [1] is believed to
be the first card-based cryptographic protocol, other authors
used playing cards to showcase cryptographic concepts long
before; for instance, Shamir, Rivest, and Adleman [2] (the
authors of RSA) created a game named Mental Poker using
playing cards to illustrate secure multi-party computation
without trusted third-party a decade before the five-card
trick. Nevertheless, the five-card trick was one of the first to
introduce the idea of using physical cards as cryptographic
primitives.

The five-card trick showed one way of performing two-
party zero-knowledge computation. The idea was illustrated
with a matchmaking scenario of two people (i.e., players)
where the “trick” would show a specific pattern only if both
players gave a positive “secret” response without disclosing
to the other party if one, or both, replied negatively.

The beauty of the five-card trick was its simplicity, as its
operation demands the minimum requirements from players,
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namely: (i) Arranging their cards in the desired ordering and
(ii) alternating to “cut the cards,” where the former was used
as binary encoding, while the latter as the simplest way to
hide the original arrangement using cyclic permutations.

Generally speaking, card-based cryptographic protocols
require the following:

(a) A set number of cards from a common alphabet repre-
senting (binary) bits.

(b) Encoding such bits with the cards that represent each
player’s message.

(c) A set of (shuffling) operations to securely compute the
functions with cards.

Card-based protocols can be used as educational tools
to visually illustrate relatively complex cryptographic con-
cepts (e.g., SecureMultiparty Computation) to cryptography
practitioners and, most importantly, non-experts such as high
school students [3] using the above elements. However, most
card-based cryptographic protocols exploit only points (a)
and (c), namely: Cards’Alphabet [4–10], the number of cards
[6, 11–16] and Shuffling Operations [11, 12, 17–21]. There-
fore, the encoding aspect (b) has been assumed, for the most
part, to be the same (known) fixed pattern for all players,
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constraining the other elements and the construction of new
protocols as the requirements have becomemore strict and, in
some cases, even impractical to be performed by the intended
target audience.

This study’s main contribution is providing players with
a framework to negotiate the operations of card-based pro-
tocols when the encodings are variable and also a method to
assess the time and space complexity. The specific advances
herein are as follows:

– The asymmetric five-card trick; a protocol that computes
the logical AND function of two input bits and gener-
alizes the five-card trick. After analyzing the different
versions of the five-card trick, we show that it is possi-
ble to choose the players’ positions, the position of the
auxiliary card, and their encodings flexibly, obtaining the
same result.

– We show the importance of the initial negotiation and
training of protocols. Unfortunately, most existing work
in the field neglects these aspects and only presents pro-
tocols at the execution phase, which is sometimes not as
straightforward as authors think.

– We present a thorough analysis to assess the protocol’s
time and space complexity using a practical method.

The points above can lead to more flexible protocol
designs, which in turn help to understand cryptographic prin-
ciples or information security concepts.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a brief summary of preliminary concepts
related to card-based protocols and the issues addressed in
this study. Then, Section 3 introduces the formal notation
used throughout the manuscript. The asymmetric five-card
trick is introduced in Section 4, including the idea behind it
and a thorough analysis of its complexity. This section also
describes the protocol handshake and the overall framework
for implementing card-based cryptographic protocols with
variable encoding, the details of which are discussed and
contrasted with related work in Section 5. Finally, Section 6
concludes this paper with final thoughts and future work.

2 Preliminaries

This section begins with a detailed review of the five-card
trick to show the importance of having variable encodings
and how to agree upon them in card-based protocols.

2.1 Den boer five-card trick

The original version of the five-card trick was presented by
den Boer [1], which was illustrated with a matchmaking
example. Let us introduce Alex and Bjorn–we give Alice and

Bob a break in this paper–who would like to know whether
they have mutual romantic interest without disclosing it to
others as theymight be embarrassed that other people around
know who rejected whom. Den Boer made this scenario pos-
sible using five playing cards with the following properties:

– All cards must have the same back-side (e.g., ? )
– Two of the five cards must be identical on the face side
(e.g., two-of-hearts 2♥ )

– The remaining three cards must be identical but other
than the former (e.g., two-of-spades 2♠ ).

Both players would be co-located at the same table and per-
form the following steps, as detailed in [1]:

– Step 1: Alex and Bjorn are given two of each card type,
that is, one 2♥ , and one 2♠ card. The remaining card

( 2♠ ) would be left facing down on the table.
– Step 2: Then, they individually select the secret order-
ing of their cards to represent the positive answer and the
reverse ordering to represent the negative answer. Bjorn,
for instance,might arrange his cards as follows: heart on
top and spade at the bottom ( 2♥ 2♠ ) to reply “yes,”

and the inverse order (i.e., 2♠ 2♥ ) to reply “no” to the
matchmaking question. On the other hand, Alex might
arrange her cards differently; for instance, she could
“mirror” Bjorn’s ordering and choose spades on top and
heart at the bottom ( 2♠ 2♥ ) to reply positively and the
inverse otherwise.

– Step 3: Then, Bjorn places his cards on top of the inde-
pendent card, and Alex places hers at the bottom (both
with either a positive or negative reply). In card-based
protocols, this step is called a commitment. For instance,
if they both would answer positively, the initial state
would be as shown in Figure 1. We call this setup the
“working example,” as it works only for this particular
instance (card arrangements and position).

– Step 4: Afterwards, Alex and Bjorn take turns cutting
the cards until they are satisfied with the secrecy of their
initial selection.

– Step 5: Finally, the cards are placed on top of the table
and turned back to show the face side, and voilá, since
they both answered yes in the working example, they are
“magically” organized in a consecutive pattern of two
hearts ( 2♥ 2♥ ) as shown in Figure 2.

The “trick” part is that, regardless of the number of cuts,
only when both answers are positive does the resulting state
shows two consecutive heart suits ♥ cards.

This seminal application of cards is notmuch of a trick, but
mathematical concepts illustratedwith cards.Cards represent
bits, in the particular working example 2♥ = 1 and 2♠ =
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Fig. 1 Initial state of the “working example” as seen from below the
table. Alex (two cards on the right), Bjorn (two on the left) expressing
“yes”, and the independent card in the middle

Fig. 2 One of the possible resulting states in the “working example”
seen by everyone on the table. Note the consecutive pattern of cards

0. The ordering represents their bits’ encoding, while the cut
operations are cyclic permutations.

However, the five-card trick had certain hidden require-
ments for it to work, namely:

1. In Step 2, the encoding seems to be non-fixed for Alex
(A) and Bjorn (B), but in fact, Bjorn’smust be exactly the
opposite of Alex (B = A) and only works if the encoding
is the same as in the working example, i.e.:

A = 1 = 2♠ 2♥
B = 1 = 2♥ 2♠

2. In Step 3. Alex and Bjorn must place their cards pre-
cisely in the same positions: Bjorn’s cards on top of the
independent card and Alex’s on the bottom, i.e.:

? ?
︸ ︷︷ ︸

B

2♠ ? ?
︸ ︷︷ ︸

A

3. In Step 4, the random cuts must be valid cyclic permu-
tations. That means some cards must be taken from the
top and placed at the bottom.

4. Finally, Alex and Bjorn must be honest players. So, they
will not change their reply once the protocol has started.

If players fail to fulfill one of the above requirements, the
whole trick fails, meaning that the resulting permutation will
not show the pattern of consecutive cards 2♥ 2♥ (or any
of its cyclic variants) when both players answer positively.

An essential aspect of the five-card trick (and this paper’s
conception) is that Alex and Bjorn could arrange (encode)
their cards differently. However, as stated in the hidden
requirements above, this must be done using the same encod-
ing in a specific layout. This fact was cleared later on by
Crépeau and Kilian [4], which we briefly describe next.

2.2 Crépeau and Kilian’s variation of the five-card
trick

Crépeau and Kilian [4] presented a modified version of den
Boer’s five-card trick. The cards’ requirements are the same:
five cards with identical backs ? , two with identical faces
and three identical-faced but different from the former. For
simplicity, they used only the symbols ♥ and ♣ instead
of the playing cards. However, and most importantly for this
study, the secret ordering was pre-defined for both players:

♣ ♥ =1, ♥ ♣ =0

As a result, although the commitment is still secret, the
encoding is fixed, uniform, and disclosed to all players.

Moreover, as a consequence of the fixed encoding, they
needed two extra modifications:

– An extra step that shifts the commitment of one of the
players (i.e., negates the commitment) is required.

– The position of the independent card ( ♣ ) was moved
from the center to the far most right position.

These modifications allowed them to perform the trick.
That is, obtaining side-by-side heart suits ♥ ♥ cards, in
case both players have positive answers.

2.3 Issues with existing work

From Crépeau and Kilian’s [4] variant onwards, most, if not
all, versions of the five-card trick use a fixed encoding. How-
ever, they do not follow the same rules and operations.

For instance, Mizuki in [21] describes the five-card-trick
using three clubs, two hearts cards, no additional position
switching, and fixed encoding ♣ ♥ = 0, ♥ ♣ = 1 (i.e.,
the inverse of [1, 4]). Later, the same author in [6] describes
it using three hearts, two club cards (reverse of [21]), with no
change in the operations or encodings. In another instance,
Takashima et al. [22] add extra steps to the process by mov-
ing the auxiliary card from the initial far most right to the
central position and negating Alex’s commitment instead of
Bjorn’s. Toyoda et al. [23], move the auxiliary card to the far
most left; even if the authors claim the change was made for
explanation’s sake, it is nonetheless another version.

The above are but a subset of versions available for this
simple protocol.

Now, imagine a Junior High School Mathematics Teacher
or a College Professor who would like to explain the concept
of Secure Multiparty Computations to 12-year-old students.
After explaining any of the five-card-trick versions above,
it would be more fruitful to let students develop their ver-
sion based on their understanding of the underlying concepts
instead of asking them tomemorize the constrained protocol.
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On the other hand, imagine the Teacher would like to
explain the concept of Public and Private Keys with the
same didactic cards. Since, to the best of our knowledge,
most existing literature only uses fixed symmetric encoding,
expressing these concepts in the current state of card-based
crypto has yet to be addressed.

Hence, this paper proposes a framework that allows play-
ers to explicitly negotiate and agree on the protocol before
it is executed. In particular, we focus on breaking the (self-
imposed) limitation of only using fixed encoding, as using
variable encoding could help card-based protocols express
other cryptographic concepts (e.g., Public-key cryptogra-
phy).

3 Definitions and notation

Prior to presenting the main part of this study, this section
introduces various formal definitions and notations related to
card-based protocols used throughout the paper. We partially
extend the nomenclature of Mizuki and Shizuya [24].

Initially, we start by defining a protocol P as a quin-
tuple P = (D,U ,Q,A ,E ) that computes a function
f : {0, 1}∗ → {0, 1} where D is a deck of cards com-
prised by a sequence of individual cards within an alphabet
Σ (e.g., Σ : {♥, ♣}∗) for the face-side and a standard (iden-
tical) back-side (e.g., ? ). Each card constitutes an atom c
that can be either face-up, denoted by c

? or simply c, or face-
down denoted by ?

c or ?. Cards can be arranged in a sequence
Γ ∈ U , which is the set of possible (valid) input sequences
into the protocol, e.g., ( ?

♣ , ?
♥ , ♣

? , ?
♣ , ?

♥ ) or (?, ?,♣, ?, ?) are
equivalent. The input sequence can transition from one state
qi ∈ Q : {q0, q1, ..., qn−1, qn} to another using a set of
actions in A ; being q0 the initial and qn the final state (also
denoted by q f ). We extend the model by adding a set E ,
which encloses the possible encoding rules λ ∈ E .

Each player uses a sequence of atoms (c) to encode a
commitment (C : {c}∗) using its encoding λc; for instance,
in den Boer’s [1] five-card trick, A encodes two bits (a, a)
using cards 2♠ 2♥ with the following encoding rule λa :
{♠♥ = 1, ♥♠ = 0}.

Note that most existing work in card-based cryptography
assumes the same rule to encode bits for all players; thus, it
is decided in advance. However, in our case, each player can
select its own encoding from a valid set.

Finally, the set of actions A is as follows:

– Place a card (place, {i}): Adds a card into the sequence.
This operation was originally to add a card facing up so
that players could confirm the value. We generalize it
to add a card, either face up (i.e., {c}) or face down
(i.e., {?}). Players can also place their commitments C ,

where the number of place operations is multiplied by
the number of cards encoding C .

– Turn a card over (turn, i): Turning from the face down
of the card to the face up or vice-versa (i.e., c � ?).

– Permutation (perm, π ): Rearrangement or permutation
of type π in the sequence. The operation is performed
in a symmetric group, that is, the resulting state Γ π ∈
Q. This operation can involve specific rearrangements
of card positions or the entire sequence. For instance, the
permutation π : C negates the player’s commitment.

– Shuffling cards (shuffle, Π ): The shuffling operation,
involves a permutationsπ ∈ Π .We assume the operation
will be performed in a closed group that is uniformly
distributed; thus, we omit the distribution in the original
model. Moreover, π must specify the type of shuffling;
for instance, a random cut shuffle is denoted asπRC : 〈σ 〉
where σ is the sequence.

– Result (result, {ϕ}): Returns the result of the computa-
tion (i.e., at q f ), and therefore the protocol ends. This
comprises the turn operation of ϕ, which might contain
specific cards’ positions or the whole sequence.

– Encode (encode,C, λ): Encodes players’ commitment
C according to the encoding rule λc ∈ E . This action
was not included in [24] or other models.

Based on the notation above, a protocol P performs a set
of actions A from the initial state q0 and terminates when
it reaches the final state qn/q f ∈ Q; during this process,
the sequence Γ ∈ U goes through changes within the same
group and returns either a positive (i.e, one or “yes” or “true”)
or negative (i.e., zero or “no” or “false”) value.

4 Proposed framework–working with
variable encodings in card-based protocols

Before delving into the proposed framework, this section
presents the overall idea through an example we call the
Asymmetric Five-Card Trick.

4.1 The asymmetric five-card trick

4.1.1 The trick behind the trick

Den Boer’s five-card trick [1] showcased an interesting use
of bits’ encoding, the properties of Commutative Groups,
Galois Fields, and cyclic permutations. However, the main
idea was working with “blobs” instead of individual bits to
compute Zero-knowledge Boolean functions [25].

A blob is the primitive for minimum disclosure of players’
commitments which must be computed to either 0 or 1 [26].
Moreover, a blob should contain some extra data to allow the
separation of the given bits [1]. For instance, in the working
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example of Section 2.1, Alex and Bjorn’s blobs are separated
by an extra zero (0) bit; therefore, the initial blob in vector
representation would be: i A,B = (b, b, 0, a, a). After the
randomcuts, the sequencewill turn into a different state rA,B ;
however, rA,B there could only be in one of the following
resulting patterns R1

A,B (state 1) if the blob is computed as

true/positive/1 or R0
A,B (state 2) otherwise.

R1
A,B = {(1, 1, 0, 0, 0), (0, 1, 1, 0, 0), (0, 0, 1, 1, 0),

(0, 0, 0, 1, 1), (1, 0, 0, 0, 1)} (1)

R0
A,B = {(0, 1, 0, 1, 0), (0, 0, 1, 0, 1), (1, 0, 0, 1, 0),

(0, 1, 0, 0, 1), (1, 0, 1, 0, 0)} (2)

Given that the random cuts are cyclic permutations, the
five-card trick can only be “true” when the initial input iA,B

is already in R1
A,B . We call this condition a “True Blob Com-

mitment” (TBC), which we use to construct the following
proposition for the five-card trick:

Proposition 1 If players achieve the TBC in the initial state,
the encoding need not be fixed, uniform, or even disclosed to
others.

To prove the above proposition, consider the original five-
card trick [1] or Crépeau and Kilian [4] variation, whose
encodings and operations are different; nevertheless, the ini-
tial TBCs:

(1,0,0,0,1)= 2♥ 2♠ 2♠ 2♠ 2♥ and

(0,1,1,0,0) = ♣ ♥ ♥ ♣ ♣
respectively, are elements of R1

A,B (state 1). Or, in [23], the
position for the auxiliary card, the encodings, and the swap-
ping operations are different than in previous cases; yet, the
initial TBC (0, 0, 1, 1, 0) = ♥ ♥ ♣ ♣ ♥ is also an ele-

ment of R1
A,B (state 1).

Now, assume for the sake of contradiction that the result-
ing state rA,B ∈ R0

A,B even if the initial state i A,B ∈ R1
A,B on

a TBC, since the random cuts will simply perform circular
permutation in a closed group, this could not be possible,
unless the random cut operation has been violated, by one or
both players (intentionally or unintentionally).

Therefore, the initial true state will remain, regardless of
the players’ encodings, the auxiliary card’s position between
the commitments, or the number of (valid) random cuts.

The trick behind the trick is achieving the TBC in the
initial state. To do so, the protocol must adapt based on the
encoding using a process we call Protocol Handshake.

4.1.2 Protocol handshake

To illustrate how the protocol handshake works, consider the
following scenario. Assume Alex and Bjorn want to decide

Table 1 Encoding schemes (E ) for Alex and Bjorn

Case Alex (λa) Bjorn (λb)
Yes No Yes No

Case 1 ♥ ♣ ♣ ♥ ♥ ♣ ♣ ♥
Case 2 ♥ ♣ ♣ ♥ ♣ ♥ ♥ ♣
Case 3 ♣ ♥ ♥ ♣ ♥ ♣ ♣ ♥
Case 4 ♣ ♥ ♥ ♣ ♣ ♥ ♥ ♣

on a topic without revealing it to others who say “no” (false).
Mister Carl (their Math Teacher), who was nearby, heard the
issue and thought they could use the five-card-trick to solve
their problem. However, he does not remember the exact
operations nor how to arrange the cards. The only informa-
tion he remembers is that they must use five cards with two
different colors so that each one will receive one of each, an
auxiliary card with one of the colors, and the result would
be a sequential pattern of the cards if they replied positively.
He explains that to the students and gives them five cards he
held in his pocket.

For illustration’s sake, the available cards are as follows:
two types of cards ♥ ♣ as the face-side and ? as the
backside, so the Deck is as follows D : (♣,♣,♣,♥,♥).

Since Alex and Bjorn do not trust each other or Mr. Carl
yet, they do not want to share the arrangement (encoding);
and prefer to select them individually and in private. There-
fore, their selected encoding rules (λ) might be the same,
or each uses a different one; however, since the alphabet is
limited, it will be one of the instances in Table 1.

Mr. Carl explains to students that, since the input sequence
will be indistinguishable to all of them (Γ : {♥, ♣}5) once
they place their cards, before using their real commitments,
they must perform a pre-process, as test runs to agree on how
to adapt the protocol based on their encodings.

– Step 1: Alex and Bjorn are given one of each card, that
is, one ♥ and one ♣ .

– Step 2: Then, they must decide their secret encoding for
the true/yes/1 value, knowing that the reverse order will
be the opposite false/no/0.We assumeboth are honest and
will not change it afterward. For instance, let us assume
they independently select an encoding that matches case
3 in Table 1. Thus, Alex encodes her bits as ♣ ♥ for
A = 1 while Bjorn (independently of Alex’s) decided
♥ ♣ for B = 1.

– Step3:Oneof them,AlexorBjorn, places their cards face
downwith a True Commitment on the table. For example,
let us assume this time Alex will start. Therefore, her
cards will be:
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♣ ♥
︸ ︷︷ ︸

A=1

Note that these cards are facing down, so players only
see the backside of the card ? .

– Step 4: The other player, in this example Bjorn since
Alex performed Step 3, places his cards face down with
a True Commitment (i.e., B = 1) on the table. He can
choose to place them on the left or right of Alex’s cards:

R: ♣ ♥
︸ ︷︷ ︸

A=1

♥ ♣
︸ ︷︷ ︸

B=1

L: ♥ ♣
︸ ︷︷ ︸

B=1

♣ ♥
︸ ︷︷ ︸

A=1

For example, let us assume he places them at the right
(R) viewed from above. Therefore, in this example, the
initial player’s placement is:

♣ ♥
︸ ︷︷ ︸

A=1

♥ ♣
︸ ︷︷ ︸

B=1

Note that they must remember their position.
– Step 5: Then, the other player, in this example Alex,
decides where to place the extra (auxiliary) card ♣ fac-
ing up in any of the following positions: leftmost (L),
middle (M), or rightmost (R) from their commitments:

L: ♣ ♣ ♥
︸ ︷︷ ︸

A=1

♥ ♣
︸ ︷︷ ︸

B=1

M: ♣ ♥
︸ ︷︷ ︸

A=1

♣ ♥ ♣
︸ ︷︷ ︸

B=1

R: ♣ ♥
︸ ︷︷ ︸

A=1

♥ ♣
︸ ︷︷ ︸

B=1

♣

For instance, let’s assume he/she decides to place it in
the middle (M). Therefore, in this example, the initial
full card placement would look as follows:

♣ ♥
︸ ︷︷ ︸

A=1

♣ ♥ ♣
︸ ︷︷ ︸

B=1

Note that, for convenience, the auxiliary card would be
initially placed facing up, so players do not mix it up with
their commitments. However, in a later step, this will be
turned face down.

– Step 6: The other player, Bjorn in this example, then
performs (if he/she wants) an operation on their commit-
ments. For simplicity, these operations might be shifting
the placement of players (i.e., (A) � (B)) or negating

any of the commitments by switching the positions of the
cards (i.e., A or B). However, he/she could also leave the
cards as they are. In this example, for the sake of brevity,
let us assume that Bjorn would like to switch the place-
ments from Alex and his (α : (A) � (B)). Therefore,
the setup would look as follows after the operation:

♥ ♣
︸ ︷︷ ︸

B=1

♣ ♣ ♥
︸ ︷︷ ︸

A=1

– Step 7: The other player (Alex) has one last optional
operation in the commitments, as in the previous step, or
he/she could also skip the operation. For this example,
let us assume he/she decides to skip any extra operation
and move to the next step directly. This is the initial state
of the protocol (q0) denoted by the variable i A,B .

♥ ♣ ♣ ♣ ♥ = i A,B

– Step 8: Any of the players flips the auxiliary card ♣
down so that all cards are on their backs.

? ? ? ? ?

– Step 9: Then, players take turns performing Random
Cuts until they are satisfied with the secrecy of the True
commitment, which will constitute the final state (q f )
denoted by the variable rA,B .

〈

? ? ? ? ?
〉

→ ? ? ? ? ? = rA,B

– Step 10: Finally, the cards are revealed to all players.

Based on the configuration in the steps above (i.e., encod-
ing and operations), rA,B can be either:

(i) ♥ ♥ ♣ ♣ ♣ including its cyclic permutations, or

(ii) ♣ ♥ ♣ ♥ ♣ including its cyclic permutations

If the resulting state is (i), the pre-processing was suc-
cessful, so they achieved a TBC state. Therefore, players
can use their “real commitments” (not necessarily positive)
using the same selected encoding and operations as in the
pre-processing. Of course, they can try the same steps until
they are convinced the procedure is correct. Moreover, Mr.
Carl can leave the room at this point, as it is no longer needed.

On the contrary, if the result shows the pattern in (ii),
the conditions were not met for the TBC; therefore, the pre-
process must restart from Step 1.

We call this pre-process the protocol handshake, as the
steps are negotiated by the players.
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A more compact description of the above handshake is
shown in Pseudocode 1, which uses the notation described
in Section 3. The loop can take one to multiple tries until
the players agree on the set of placements and operations to
achieve the True Blob State. However, once the handshake
has finished, the protocol has a straightforward execution. For
instance, Pseudocode 2 shows the resulting five-card trick
built with the process above.

Readers may verify the resulting state will be in R1
A,B (i)

in the example above. However, it is worth mentioning that
multiple versions could have made the protocol achieve a
TBC depending on the players’ encoding and placement, the
position of the auxiliary card, and the operations performed
by each player. Therefore, the possibilities for building and
adapting a protocol increase considerably and are no longer
constrained by the same encoding or operations.

Although the protocol (in this case, the five-card trick)
would use the same procedure after a handshake, the hand-
shake itself does not follow a symmetrical pattern.Moreover,
the protocol built by two players might not be the same as
others. Hence the name: the asymmetric five-card trick.

The resulting protocols include all possible variations,
which makes the asymmetric five-card trick a generaliza-
tion of the five-card trick. For instance, Pseudocodes 3 and 4
were constructed using different handshakes, achieving the
original den Boer [1] and Crépeau and Kilian [4] variation,
described in Sections 2.1 and 2.2, respectively.

Pseudocode 1 The Asymmetric Five-Card Trick Protocol
Handshake. Player A bits encoded in {a, a} according to
selected encoding λa , Player B bits encoded in {b, b} accord-
ing to selected encoding λb. Terminates when rA,B ∈ R1

A,B .

1: (encode, (a, a), λa) 
 Player 1
2: (encode, (b, b), λb) 
 Player 2
3: repeat
4: (place, ( a, a)) 
 Player 1 true commitment
5: (place, ( b, b)) 
 Player 2 true commitment
6: commitment ∈ {( a, a, b, b), ( b, b, a, a)}
7: (place, ♣) 
 Aux. card ♣ by Player 1
8: ini t = i A,B ∈ {(♣, a, a, b, b), (a, a, ♣, b, b),

(a, a, b, b, ♣), (♣, b, b, a, a), (b, b, ♣, a, a), (b, b, a, a, ♣)}
9: if exist(α) then 
 Op. 1 by Player 2
10: ini t += (perm, α)
11: else
12: if exist(β) then 
 Op. 2 by Player 1
13: ini t += (perm, β)
14: end if
15: end if
16: (turn, ♣) 
 by Player 2
17: i A,B = ini t
18: rA,B = (shuffle, 〈i A,B〉) 
 Both Players
19: (turn, rA,B ) 
 Any Player
20: until rA,B ∈ R1

A,B

Pseudocode2TheAsymmetric Five-CardTrickSamplePro-
tocol from the steps in Section 4.1.2. Player A bits encoded
in {a, a} as λa : {♣♥ = 1,♥♣ = 0}, Player B bits
encoded in {b, b} as λb : {♥♣ = 1,♣♥ = 0}. Permuta-
tion α : (A) � (B). Computes to 1 if rA,B ∈ R1

A,B , and 0
otherwise.
1: (place, ( a, a))
2: (place, ( b, b)) 
 Right-side of A
3: commitment = (a, a, b, b)
4: (place, ♣) 
 Middle of A and B
5: ini t = (a, a, ♣, b, b)
6: (perm, α : (A)(B))
7: i A,B = (b, b, ♣, a, a)

8: (turn, ♣)
9: rA,B = (shuffle, 〈i A,B〉)
10: (result, rA,B )

Pseudocode 3 Original den Boer’s Five-Card Trick. Player
A bits encoded in {a, a} as λa : {♣♥ = 1,♥♣ = 0}, Player
B bits encoded in {b, b} as λb : {♥♣ = 1,♣♥ = 0}. No Per-
mutations. Computes to 1 if rA,B ∈ R1

A,B , and 0 otherwise.

1: (place, ( a, a))
2: (place, ( b, b)) 
 Left-side of A
3: commitment = (b, b, a, a)

4: (place, ♣) 
 Middle of A and B
5: i A,B = (b, b, ♣, a, a)

6: (turn, ♣)
7: rA,B = (shuffle, 〈i A,B〉)
8: (result, rA,B )

Pseudocode 4 Crépeau and Kilian’s Five-Card Trick. Player
A bits encoded in {a, a} and Player B bits encoded in {b,
b} as λa = λb : {♣♥ = 1,♥♣ = 0}. Permutation α : B.
Computes to 1 if rA,B ∈ R1

A,B , and 0 otherwise.

1: (place, ( a, a))
2: (place, ( b, b)) 
 Right-side of A
3: commitment = (a, a, b, b)
4: (place, ♣) 
 Right-most side
5: ini t = (a, a, b, b, ♣)

6: (perm, α : B)
7: i A,B = (a, a, b′, b′, ♣)

8: (turn, ♣)
9: rA,B = (shuffle, 〈i A,B〉)
10: (result, rA,B )

4.2 Proof of correctness and security

Since the asymmetric five-card trick is an augmented (gener-
alized) version of the original five-card trick,we rely upon the
correctness and security from the correctness and security of
the original five-card trick itself in [1]. For completeness, we
also gave a thorough description and proved the correctness
of Proposition 1 in 4.1.1.

Moreover, the protocol handshakemight generate a degree
of unintentional information leakage if repeated several
times. However, in principle, the only public information
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is that players use their true commitment and the operations.
Nevertheless, the secrecy of the response when executing the
actual protocol is as secure as the original five-card trick.

4.3 Complexity of the protocol

This section describes the overall protocol’s time and space
complexity analysis. The intuition behind the complexity is
to approximate the resources required to perform the asym-
metric five-card trick, not in the traditional computer science
sense but in a practical manner

4.3.1 Space complexity

The space complexity is defined as the number of cards
required to execute the protocol. As with the original five-
card trick, we require two cards for encoding bits per player
plus an auxiliary card, thus: 2n+1, where n is the number of
players, in this case, only two players. Therefore, the space
complexity of the asymmetric five-card trick is five.

4.3.2 Time complexity

The time complexity is the time required to perform the pro-
tocol. To calculate this metric, we use the average time per
action, i.e., place, perm, shuffle, and encode denoted as tplace,
tturn, tperm, tshuf , and tencode respectively (as in [27]).

However, we separate the protocol’s execution from the
production, a notion not considered in existent work.

– Execution time: This phase measures the protocol exe-
cution of a single run, starting after players receive their
cards until the protocol halts its operation when reaching
the final state. We define the total execution time (XT ) of
a protocolP as the summation of individual operations:

XTP =
(

tencode + tplace + tturn + tperm + tshuf
)

(3)

Note that each component denotes the occurrence of the
action throughout the protocol.

– Production time: This phase calculates the preparation
time before the actual execution, including training play-
ers on how to perform the protocol or, if necessary,
convincing them the protocol works (i.e., testing). All
materials (i.e., cards and other possible auxiliary items)
are assumed to be already available. We separate this
phase from the actual execution time since it might take
non-negligible time to memorize the protocol, especially
when it involves complicated shuffling operations or spe-
cific permutations. In particular, the proposed protocol
handshake is also part of this phase, whose time (HT ) is

defined as:

HTP =
m

∑

i=1

(

tencode + tplace + tturn + tperm + tshuf
)

(4)

This step might be the most time-consuming production
phase since the protocol handshake can take from one
to multiple times to reach the TBC state. Moreover, we
assume that the protocol testing would involve at least
two runs (i.e., a positive and a negative sample) to show-
case the operation. Therefore, the testing time (T T ) of a
protocol P is defined as:

TTP =
n

∑

j=2

XTP (5)

Therefore, the Production Time of a protocol (PT ) of a
protocol P is defined as:

PTP = HTP + TTP (6)

Note that in the existing protocols, the production time
will be equivalent to the testing time PTP = TTP since
they directly execute the protocol.

Based on the above framework, we can analyze the time
complexity of the asymmetric five-card trick as follows.

Let us start with the Execution Time of the resulting asym-
metric five-card trick in Pseudocode 2.

Since the encoding is decided, both need only to consider
whether to encode their answer once every execution (i.e.,
1tencode). However, we assume the time needed to decide on
an encoding is equivalent. Then, players must place their
commitments plus the auxiliary card (i.e., 5tplace). The aux-
iliary card is then turned face-down during the execution,
and all five cards are turned face-up to show the result (i.e.,
6tturn). Finally, since the protocol only uses Random Cuts as
shuffling operations, players will need to perform at least two
random cuts with no upper limit, as they might perform as
many as they deem necessary to hide the initial commitment.
Thus the protocol would need

∑∞
s=2 tshuf (i.e., at least 2tshuf )

to shuffle. In summary, if we replace the values in (3), the
Execution Time is at least:

XTP2 =
(

tencode + 5tplace + 6tturn + tperm + 2tshuf
)

(7)

Now, in terms of Production Time, since testing the pro-
tocol would need at least two runs, the testing time is
TTP2 = 2XTP2 , as defined in (5). Regarding the Hand-
shake Time in (4), except for the number of permutations
(i.e., from 0 to 2), it would be equivalent to an Execution
Time. However, recall that in the best-case-scenario players
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would need at least one try to achieve the handshake; thus,
HTP2 = XTP2 . Therefore, replacing the values in (6), the
total Production Time of the asymmetric five-card trick in
Pseudocode 2 would be at least:

PTP2 = 3XTP2 (8)

For instance, let us set the same values as in [27]: tplace =
tturn = 0.8s; tperm = 7tturn; tshuf ≥ tperm. Moreover, we
additionally set the encoding time as tencode = 5s, and
since the random cut operation is pretty straightforward, that
tshuf = tperm. Therefore, replacing these values in (7) and (8)
the time complexity lower bounds (Ω) for the asymmetric
five-card trick (in Pseudocode 2) are as follows:

Ω(XTP2) = 30.6s (9)

Ω(PTP2) = 91.8s (10)

Regarding the upper bounds (O), the handshake might
take several rounds to finish (at the production phase), and
since the asymmetric five-card trick is a Las Vegas protocol
that uses Random Cut operations, it has no finite runtime but
expected finite states. Therefore, it is difficult to determine a
close upper bound.

4.4 General framework

This section describes the proposed general framework for
using variable encoding in card-based cryptographic pro-
tocols. Note that this process could be applied to existing
protocols or the design of new ones. In the latter case, when
developing new protocols, authors could start by setting up
fixed and uniform encodings and then apply a handshake to
adapt the operation in the execution phase.

Figure 3 depicts the overall process, as observed, in the
production phase (on top), players have to choose their
encodings individually. Then, based on those encodings, they
need to negotiate how the original protocol will be adapted,
which is tested until they have reached an agreement on
the operations and are convinced of the correctness. Sub-
sequently, the execution phase (at the bottom) is the actual
protocol runtime, using the players’ actual commitment.

Note that most, if not all, existing protocols only show the
executionphase; however, as described inSection4.3.2, play-
ers would need at least a test run for the true commitments as
well as for the opposite, for training and showcasing the pos-
sible results. Therefore, these phases should be present even
when using fixed and uniform encodings so that players can
execute protocols without incurring mistakes that can lead to
distrust.

Y Ready?
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Encode

Test

Execute

Start

End

Pr
od

uc
tio

n

Successful Handshake?

Done?Ex
ec

ut
io

n

Y

N

N

N
Y

Fig. 3 Overall Framework for variable encoded card-based protocols.
Above the Production phase and below the Execution phase

5 Discussion and related work

Although protocols for computing logical Boolean functions
have been extensively explored in the past few years, as
described in Section 1, most of the effort has been devoted
to using different alphabets, using fewer cards, or protocol
operations.However, very fewworks address the use variable
encoding in card-based cryptography.

In particular, protocols that use non-conventional alpha-
bets for cards (e.g., [6–10]) present interesting encodings. For
instance, in [6], the authors propose rotationally asymmetric
encoding such that ♣ =0 and ♣=1 with interesting opera-
tions. However, they still use the same uniform encoding for
all players.

Other authors, e.g., Niemi and Renvall [5], use a non-fixed
encoding with off-the-shelf deck of cards as a numbered set
to represent the players’ encodings; the encoding rule is as
follows, two distinguishable cards with sequential values i
and j where i �= j ‖ i, j ∈ {1, 2, 3, .., 52} represent one bit,
which corresponds to 0 if the value of the card on the left is
less than the one on the right and 1 otherwise:

i j =̂
{

0, if i < j,
1, if i > j .

(11)

Using the above-mentioned encoding, the authors con-
struct protocols for computing Boolean functions (i.e.,
AND, NOT, COPY, OR, XOR). These protocols were then
improved by Mizuki [28], who used Random Bisection Cuts
to decrease the number of shuffling operations. Moreover, a
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process to change the base of a commitment (i.e., the pair
{i, j}) even when these commitments are hidden or opaque
(as the author called it) was also introduced.

Koch, Schrempp, and Kirsten [29] thoroughly analyzed
and formally defined the impact of encoding in card-based
protocols (as a complement to the work above). They proved
that under certain conditions, it is possible to freely choose
the encoding for adapting protocols by adding shuffles and
turns (card reveals). Similarly to [28], the premise is to per-
form a basis transformation with a process called relabeling,
that consists of cyclic permutations on the input until the
initial state matches the intended card sequence. One such
condition is that cards must be distinguishable from each
other and follow the same encoding as in (11). Therefore,
although the contribution of the above work is remarkable,
they were still working under a uniform and openly disclosed
encoding rule.

Finally, Miyahara et al. [30] propose card-based proto-
cols to deal with Yao’s millionaire problem, some of which
use non-uniform encodings. Since their protocols compare
integer values, the resulting commitment will be (naturally)
non-uniform. However, the encoding rules are still fixed for
each player. Moreover, given the sensitive data to compare,
players would require more than a few tries to determine how
(and if) the protocol works. Therefore, having a negotiation
phase would still help these types of protocols.

Complementing the above work, this paper showed that it
is possible to build protocols using variable encodings using
a pre-process we called handshake, where players adapt and
agree on the protocol’s operation before the actual execution.

Of course, implementing the handshake over the five-card
trick was relatively straightforward as it is a very simple
protocol that uses only Random Cuts as the shuffling oper-
ation. Moreover, the five-card trick has a unique TBC state,
namely when the initial state is in the appropriate position
(i A,B = (rA,B)π ∈ R1

A,B).
However, let us consider, for instance, the AND Protocol

in [21], which does not have a single but two true states,
and the operations are (for lack of a better word) hard-
coded to the fixed uniform encoding for all players (i.e.,
♣ ♥ = 0, ♥ ♣ = 1). The transformation might not
be as straightforward (or possible) for protocols with these
characteristics. Consequently, entirely new protocols might
need to be reconstructed.

Another discussion point might be related to the neces-
sity/utility of the non-disclosed (i.e., secret) encoding while
building protocols. A public and fixed encoding and opera-
tions will facilitate the protocol, even if players do not follow
themainstream ones. However, a private/secret encoding and
the liberty to build their own operations in a systematic man-
ner without altering the underlying principles would provide
more credibility and trust in these types of protocols.

Finally, as mentioned in Section 2.3, using variable
encoding could help express cryptographic concepts to non-
cryptography practitioners. For instance, consider the asym-
metric five-card trick to explain the basic notionofPublic-key
cryptography. In this scenario, each player’s encoding would
act as their private key to encrypt their messages (in this case,
a simple “yes” or “no”); the resulting pattern might act as the
public key, and the Random Cuts might act as the encryp-
tion algorithm. On the other hand, the Protocol Handshake
could be used to explain how communication protocols (e.g.,
TLS) can negotiate a secure connection between the client
and server by using handshaking. Of course, limitations exist
on what can be expressed with such limited resources, but it
could serve as a visual aid to describe the basic notion.

6 Conclusions and future work

Card-based protocols have proven to be a powerful tool for
educational purposes, even for non-cryptography practition-
ers. These protocols rely on the alphabet, the number of
cards, the encoding, and the shuffling operations to build and
explain relatively complex concepts such as secure multi-
party computations. However, for themost part, the encoding
aspect has been relegated, leading to the over-dependence on
the operations, which are becoming more and more difficult
to perform. Consequently, these protocols are losing their
simplicity and moving away from their core rationale.

In this paper, we presented the asymmetric five-card trick,
a generalized version of the five-card trick, as an exam-
ple of how protocols can integrate variable encodings so
that it becomes part of the elements used to illustrate secu-
rity and cryptographic concepts visually. Moreover, we also
presented a general framework for constructing card-based
protocols (or adapting existing ones) and amethod for bench-
marking them in terms of their required time and space
complexity. This framework comprises the production and
execution phases, where the former is usually overlooked
and treated in a lightweight manner, leading to mistakes and
mistakes during execution.

Finally, we also presented a practical method for assess-
ing time and space complexity (or at least the lower bounds)
since these factors would determine whether a protocol is
worth implementing or executing. For instance, if the pro-
tocol takes an unreasonably long time to execute, or needs
a large number of cards, or specially crafted objects, then
players would be reluctant to use it when digital tools are
available; surprisingly, this point is barely discussed in exist-
ing work.

As future directions of this research, we plan to study
the effects of variable encoding in different types of pro-
tocols than the five-card trick. These include but are not
limited to, committed protocols, multi-party protocols, non-
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binary-entry protocols, protocols with asymmetric inputs,
and protocols with nonstandard alphabets.
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