Journal of Cryptographic Engineering (2023) 13:235-249
https://doi.org/10.1007/s13389-023-00313-5

REGULAR PAPER O‘)

Check for
updates

StringENT test suite: ENT battery revisited for efficient P value
computation

Elena Almaraz Luengo'(® - Bittor Alafa Olivares’ - Luis Javier Garcia Villalba'® - Julio Hernandez-Castro? -

Darren Hurley-Smith3

Received: 14 March 2022 / Accepted: 25 February 2023 / Published online: 1 April 2023
© The Author(s) 2023

Abstract

Random numbers play a key role in a wide variety of applications, ranging from mathematical simulation to cryptography.
Generating random or pseudo-random numbers is not an easy task, especially when hardware, time and energy constraints
are considered. In order to assess whether generators behave in a random fashion, there are several statistical test batteries.
ENT is one of the simplest and most popular, at least in part due to its efficacy and speed. Nonetheless, only one of the tests
of this suite provides a p value, which is the most useful and standard way to determine whether the randomness hypothesis
holds, for a certain significance level. As a consequence of this, rather arbitrary and at times misleading bounds are set in order
to decide which intervals are acceptable for its results. This paper introduces an extension of the battery, named StringENT,
which, while sticking to the fast speed that makes ENT popular and useful, still succeeds in providing p values with which
sound decisions can be made about the randomness of a sequence. It also highlights a flagrant randomness flaw that the
classical ENT battery is not capable of detecting but the new StringENT notices, and introduces two additional tests.

Keywords Cryptography - ENT - Hypothesis testing - Pseudo-random number generator (PRNG) - P values - Statistical tests

suite - True random number generator (TRNG)

1 Introduction

Random numbers are ubiquitous, and their use is widespread
in technology. They have a myriad of applications: math-
ematical simulation and generation [1-6], initialization of
encryption algorithms [7—12], key generation [13-15], video

DX Luis Javier Garcia Villalba
javiergv @fdi.ucm.es

Elena Almaraz Luengo
ealmaraz@ucm.es

Bittor Alafia Olivares
balana@ucm.es

Julio Hernandez-Castro
jch27@kent.ac.uk

Darren Hurley-Smith

Darren.Hurley-Smith@rhul.ac.uk

Group of Analysis, Security and Systems (GASS),
Universidad Complutense de Madrid, Madrid, Spain
School of Computing, University of Kent, Canterbury, UK

Information Security Group, Royal Holloway, University of
London, London, UK

games [16,17], etc. Very often, even for cryptography use, we
seek to generate random numbers with very limited hardware
(and sometimes energy) resources available, in constrained
devices such as RFID tags or Internet of Things chips. In
order to meet these demands, True Random Number Gen-
erators (TRNGs) and Pseudo-Random Number Generators
(PRNGs) are used.

1. True random number generators use what we call entropy
sources, which are sources of intrinsic natural random-
ness, in order to draw random bits. Examples of such
natural phenomena include radioactive decay, thermal
noise, clock jitter, meteorological changes... However,
extracting this sort of information is usually rather costly,
and hence the speed of such generators cannot generally
match the demand of bitrate that is often required in many
applications. Moreover, usually the data has to be pro-
cessed through a so-called whitening process to get rid
of biases.

2. Pseudo-random number generators produce a seemingly
random output, which is usually obtained through deter-
ministic methods. They are initially fed with a seed,

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-023-00313-5&domain=pdf
https://orcid.org/0000-0002-5591-4550
http://orcid.org/0000-0001-7573-6272

236

Journal of Cryptographic Engineering (2023) 13:235-249

which ideally emanates from a TRNG or some high
entropy source.

There are numerous proposals that implement lightweight
PRNGs and TRNGs, so that they can be fit in small embedded
systems. Since these random numbers are frequently used for
security purposes, it is extremely important that they actually
behave as randomly as possible and that in particular there is
no way to predict their output by just looking at previously
generated numbers.

Hence, randomness tests play a major role in assessing
and designing new random number generator proposals.

On this paper, we will treat number sequences one byte at
a time. Therefore, for an n-byte sequence x = xoxi ...x;—1,
to be considered a random enough sequence we expect that
X0, X1, - .., X,—1 to be indistinguishable from independent,
identically distributed samples (i.i.d.) from a discrete uniform
distribution 2/{0, 1, ..., 255}. If we instead worked with the
sequence at the bit level, the equivalent definition would be
that their output bits cannot be efficiently and consistently
distinguished with a given test battery from i.i.d. samples
coming from a Bernoulli (%) distribution.

This paper is organized as follows: in Sect. 2, we describe
the theoretical foundation on which our work is based. In
Sect.3, we analyse the (in)dependence of the tests under
study. In Sect. 4, we describe a degenerate generator we have
designed that is able to fool the ENT battery, thus highlight-
ing its limitations. In Sect. 5, we carry out a detailed study of
the statistics underlying the ENT tests and define the p values
associated with them. In Sect. 6, we describe two tests that
we will incorporate into the new battery to extend its analy-
sis capacity and address the problem detected in Sect.4. In
Sects.7 and 8, we focus, respectively, on the measurement
of computational time and existing correlations. Finally, in
Sect.9, we draw the main conclusions of our work and point
out future research lines.

2 Randomness tests

We have established what we expect from arandom sequence.
Therefore, we now have a hypothesis that we can try and
contrast with a given byte sequence. This can be done
through hypothesis testing, by computing statistics from
which we derive p values. Suppose we have a sequence
X =2Xx0...X,_1, witheach x; € {0, 1, ..., 255}

2.1 Statistics

A statistic is a function of the sequence x, f(x). It can repre-
sent any kind of operation, for instance, the sequence mean,
the number of zeros that x has in binary representation, etc.
If we can derive the distribution of the statistic under the

@ Springer

assumption that x is random, this enables us to perform
hypothesis testing.

2.2 Hypothesis testing

Hypothesis testing is a statistical inference procedure that
allows us to check whether a certain hypothesis holds. We
call the hypothesis we want to test the null hypothesis, Hp.
In our case, the null hypothesis is that a given sequence is
random. The alternative hypothesis is the opposite of the null
hypothesis, and is denoted Hj. In our case, this means the
sequence is not random.

A statistic whose distribution under the null hypothesis
is known is computed. Since the distribution is known, we
can compute the probability of obtaining statistics as extreme
or more extreme than the ones observed. This is called a p
value.

We fix a number «, usually between 0.001 and 0.05, and
use it as a discriminating threshold. If the observed p value
is smaller than o, we deem the statistic to be too extremely
unlikely, and so we reject the null hypothesis. Otherwise, we
do not reject the null hypothesis.

Therefore, even when the null hypothesis is true, there is
a probability « that we will reject the null hypothesis. This
error is referred to as a Type I error. On the other hand, in
the scenario where the null hypothesis does not hold, but we
fail to obtain a p value smaller than & and hence we do not
reject the null hypothesis, we incur in a Type II error.

a = P(Reject Hy | Hy is true)
B = P(Fail to reject Hy | Hp is not true)

It is important to note that statistical tests are necessary
but will never be sufficient to completely evaluate the quality
of a generator. Designers and practitioners should never put
blind faith in their results, as only negative results are set in
stone. It is important to constantly keep in mind that many
poor and fully deterministic random number generators can
fool most if not all randomness tests easily, a case in point
been AES in counter mode.

That said, there are many randomness test suites which
compute various useful statistics in order to assess whether
a sequence looks random. To name a few, we can highlight
the following (for more details about batteries see [18]):

1. ENT (for Entropy) [19]. It is made of five simple tests,
which are extremely fast. Only one of the tests outputs
an approximate p value, and the rest just produce statis-
tics that can yield useful information with respect to the
apparent randomness of the sequence.

2. NIST SP 800-22 [20]. It is one of the most widely used
due to it being backed by the National Institute of Stan-

Journal of Cryptographic Engineering (2023) 13:235-249

237

dards and Technology. It is a quite demanding suite with
15 tests, and a relatively high computing cost, specially
compared to the former suite.

3. TESTUOL1 [21]. It treats the sequence as a collection of
floating point numbers in [0, 1). It has three sets of tests,
composed of 10, 96 and 100 tests each.

4. Dieharder [22]. This suite is built upon the famous suite
Diehard, and adds a number of tests from other sources
as well.

We will focus on ENT because it is very widely used due
to its speed. However, we will prove that this speed comes
with some caveats.

2.3 ENT

The ENT test suite [19] consists of the following statistics:
entropy, ideal compression rate, Chi-square test, arithmetic
mean, Monte Carlo estimation of 7 and serial correlation.

The Chi-square test is the only one which outputs an
approximate p value, which helps determine whether the
sequence is significantly non-random. We will now explain
what the tests compute.

2.3.1 Entropy

This test finds the entropy as classically defined in Informa-
tion Theory [23]. We denote the sequence X = {xk},ivz_ol.
The number of occurrences of values i between 0 and 255 is
counted. We then denote Px (i) = %, where Ap; = #{0 <
k <n —1:x; =i}. The entropy of X is then computed by
the following formula [23]:

i=255

H(X)=— Y Px(i)log, Px(i). (1

i=0

Intuitively, the entropy conveys the amount of bits per byte
of in-compressible information the sequence holds. There-
fore, it yields a value between 0 and 8. A value of O means the
sequence contains no information, and 8 means the sequence
is in-compressible, at the byte level. The ideal compression
percentage is also given, which is computed as:

8 — entropy
5 .

100 -

Therefore, it is really important to bear in mind that this is
simply one additional visualization of the entropy’s meaning,
and does not actually constitute a different independent test.

Note that perfect entropy is achieved when all values i
have Py (x;) = 278, as one can see that Eq. (1) is then equiv-
alent to 8.

2.3.2 Chi-square test

The Chi-square test measures the goodness of fit for the
observed number of occurrences with respect to a uniform
distribution. We draw a statistic known as X2, computed in
the following fashion:

X2 Z (Api — EAp;)? @)
, EAp;
0<i<255

where Ap; again denotes the occurrences of value i €
{0, 1,...,255} in the sequence, Ap; = #{0 <k <n—1:
xr =i}, and E Ap; are the expected appearances under the
perfect randomness hypothesis, that is 5.

After computing this value, the test displays an approxi-
mate p value in the form of a percentage. That is, it shows
what the probability is (under the randomness hypothesis) to
get a statistic X2 as the one observed. That is, the probability
of getting a worse fit. This p value is given by

p — value = P(x3s > X2),

where X2255 is the Chi-square distribution with 255 degrees
of freedom. Usually, as a rule of thumb, we require that the
output size be large enough to expect at least around 5 appear-
ances per bin. Otherwise, the distribution of X might not be
close enough to the x2255 distribution.

This test is also focused on measuring uniformity between
the values {0, 1, ..., 255} in the sequence.

2.3.3 Arithmetic mean

Since we interpret bytes as integers between 0 and 255, this is
simply the arithmetic mean of all observed bytes, which has
an expected value of 127.5 under randomness hypothesis.
We will write

n—1

=Y 3)
i=0

2.3.4 Monte Carlo Pi estimation

In order to perform this test, coordinates are generated in the
rectangle [0, 2% _ 1]. In order to do so, 3 bytes form the
value of x and another 3 characterize y. Since 3 bytes are
24 bits, these represent unsigned integer values from 0 to
224 _1.0Oncea pair (x, y) is generated, we check whether it
is inside the closed Euclidean ball of centre (0, 0) and radius
r =22 _ 1. This is true if and only if X2+ y2 <r2

Then the number of generated points within the circle is
counted. The rate between the points within the circle area

@ Springer

238 Journal of Cryptographic Engineering (2023) 13:235-249
1le7
1.6 1
141
12
1.0 4 -
Entropy = 7.787095 bits per byte.
Optimum compression would reduce the size of this 11619
0.8 byte file by 2 percent.
Chi square distribution for 11619 samples is 6567.22, and
0.6 randomly would exceed this value less than 0.01 percent
of the times.
044 Arithmetic mean value of data bytes is 110.0003 (127.5 =
' random).
Monte Carlo value for Pi is 3.392561983 (error 7.99 per-
0.2 1 cent).
Serial correlation coefficient is 0.098324 (totally uncorre-
00 T T T T T T T T lated = 00)
0.0 0.2 0.4 0.6 0.8 10 12 14 16

le7

Fig.1 Area of quarter of circle compared to rectangle [0, r]?

and the total number of points approximates the ratio between
the area of a quarter of a circle and the rectangle’s area. This
is given by:

circle part’s area 7 - 2 /4
2

points within circle

" rectangle’sarea
= /4. 4)

total points

~ points within circle
T = 4 e —_— =
total points

4. % The error percentage is also shown (Fig. 1).

So the 7 estimation is given by

2.3.5 Serial correlation

This test measures how one byte depends on the previous
byte. Alternatively, one can see it as a way of measuring
the predicting power of the last output byte over the follow-
ing one. It counts the appearances of each pair of bytes and
returns a value between —1 and 1, with 0 meaning no lin-
ear relation between bytes, and an absolute value of 1 being
complete linear dependence. This coefficient is computed as
the Pearson’s r correlation coefficient between the sequence
X = Xxg...x,—1 and the sequence shifted a byte “to the left”
X' =Xx1...X,-1X0.

The Pearson’s correlation coefficient r between two sam-
ples x and y is given by the following expression:

S A =D — 3)

r= . (5)
S — 02 i - 92

@ Springer

Fig.2 Results of applying tests to file entitle.gif of the battery

which in our case means

Y — D)~ X)

n—1 =
Zi:o (xi — x)2
:':_01 xix] — nx? — nx* 4 nx?

1 _
YT (¢} — 2x;iX + ¥2)
1 _

200 XiX(i+1) modn — N

n—1_.2 -2
i—g Xj —nx

This is the only test in the original ENT suite that tries, to
a certain extend, to measure independence as opposed to the
others which are concerned exclusively with uniformity.

Unfortunately only one of these tests produces an approx-
imate p value. This means the interpretation of the rest of
statistics is not trivial. We will address this issue in Sect.5.
In Fig.2, we show the result we get from applying the clas-
sical ENT test to a gif file included with the source code.

3 Independence of tests

We studied the tests in ENT with good-quality pseudo-
random data, by analysing 10,000 files of size 15 MB, drawn
from Unix’s PRNG /dev/urandom. Firstly, we run the suite to
compute the resulting 50,000 statistics. We show a histogram
for the data in Fig.3. One of the first things we can notice
is that the entropy takes very few different values for these
random-like data. More precision for this output might be
desirable.

Journal of Cryptographic Engineering (2023) 13:235-249 239
3500 -
a4 300 1 50O
3000 -
S0 1 bSO | >0
2500 -
P00 - | |
2000 - 200 200
150 A 4]
1500 - 150 150
1000 - fl00 1 100 100 -
500 - 50 1 50 4 50 -
0 |] o 04 0
8000 200 250 300 350 127.45 127.50 127.55 31400 3142531450 -0.001 0.000 0.001

Entropy

Chi-square

Fig.3 Histograms for the /dev/urandom data

Table 1 P values of normality tests performed on two sets totalling
10, 000 15 MB files from /dev/urandom

Mean MCr SC
S1: Shapiro-Wilk p value 0.4267 0.0480 0.6155
S2: Shapiro—Wilk p value 0.5221 0.6927 0.7666
S1: Anderson—Darling p value 0.2896 0.1589 0.4614
S2: Anderson—Darling p value 0.5157 0.7258 0.8955

Another interesting fact we could notice in Fig.3 is that
the Mean, Monte Carlo 7 and Serial Correlation statistics
seem to be normally distributed. In order to check that this
is indeed the case, we run the Shapiro—Wilk test and the
Anderson—Darling test. Either test returns a p value. We
divide the 10, 000 files in two groups of 5, 000 and perform
a normality test in both sets (S1 and S2 respectively).

Table 1 confirms that indeed the Mean, Monte Carlo 7
and Serial Correlation statistics are normally distributed. This
will be very helpful in developing p values for these statistics
later in Sect. 5.

A quick look at the definition of the tests can hint that the
Chi-square test and the Entropy test might be closely related
since they both aim to measure the uniformity of bytes in
the sequence. First, we graph a scatter plot of the statistics
obtained for our data. See Fig.4.

Figure 4 shows that the data for the entropy and the Chi-
square tests lie almost exactly on a line. In order to have a
closer look at this, we compute the Pearson’s r correlation
coefficient, as defined in Eq. 5, between these two statistics.
This is shown in Table 2.

Table 2 shows there is an almost perfect negative corre-
lation between the entropy and the Chi-square statistic. This
is rather intuitive since an even allocation of numbers 0-255
in the sequence that leads to high entropy also leads to a
lower X2 value for the goodness-of-fit statistic. Nonetheless,
we have to beware of the fact that the entropy took very few
different values. A linear regression model showed that resid-

Mean Monte-Carlo-Pi

Serial-Correlation

uals were not normal, and so a linear expression cannot be
extrapolated that will work for both random and non-random
data. Nonetheless, it is clear that the Chi-square test and the
Entropy test are highly correlated. Note that the 7 estimation
and Mean test also have a remarkable correlation.

In Table 2, we have coloured each correlation coefficient
for which their corresponding p value under the indepen-
dence hypothesis was smaller than 0.01. This means the
compared tests are very likely not independent.

4 Modified counter with good results

Since most of ENT’s tests only focus on the uniformity of the
sequence or source under analysis, there might be many eas-
ily predictable sequences capable of obtaining good results
in the battery. For instance, a counter with values from 0 to
216 _ 1 where two bytes are output for each counter value
will seemingly have perfect entropy, very low error for Monte
Carlo m estimation, perfect arithmetic mean, and no serial
correlation. We show the results in Fig. 5 for 16 full loops of
this counter.

However, we can notice in Fig.5 that the X 2 gtatistic is
0.00 which is too good a fit. By modifying this counter a bit,
we can get a more “random looking” X? statistic but still very
good randomness results, even if the sequence still remains
essentially a counter.

In order to do so, first we express the 0 to 216 _ 1 counter
over two bytes as pairs (i, j) withi, j € {0, 1, ..., 255}. That
is, I is the most significant or left byte of the counter and j the
least significant or right one. Now, we are going to change
some appearances of the value 250 by appearances of 251,
as shown in Algorithm 1.

Note that in this pseudo-counter, all byte values from O to
255 will have precisely the number of expected appearances
35¢ except for 250 and 251.

@ Springer

240 Journal of Cryptographic Engineering (2023) 13:235-249

g = L L em—— =

= | e | e e —

> | L — - | e

a | =

g —

= = e —— e | e

s R o= S ee—— | ——— | ————————

- - o —-- -
.

Chi-square
—
e—

Mean
A A i
-—— e
- -
—_—
 — e
| ———
| —
- - ——

Monte-Carilo-Pi
—_——- .
L ——————

Senal-Correlation

L] L] L]

Entropy Chi-square Mean Monte-Carlo-Pi Serial-Correlation

Fig.4 Scatter matrix for statistics obtained for /dev/urandom

The change will be performed every time i mod k = 0,
and so this will result in L - 256/k more appearances than

Table 2 Correlation matrix for ENT statistics of /dev/urandom expected for 251. The value 250 will be that same amount
Entropy 2 Mean MC 7 SC short from the expected amount. Therefore, the X? statistic
of the sequence will be
Entropy 1.000 —0.966 —0.003 0.002 —0.006
X2 —0.966 1.000 0.007 —0.006 0.008 y2 _ (/256 + L -256/k —n /256)?
Mean —0.003 0.007 1.000 —0.424 0.022 - n/256
MC 7 0.002 —0.006 —0.424 1.000 —0.033 (n/256 — L - 256/k — n/256)? 122562
SC —0.006 0.008 0.022 —0.033 1.000 + =512 3 .
n/256 k*n
(6)

@ Springer

Journal of Cryptographic Engineering (2023) 13:235-249

241

Algorithm 1 Pseudo-code of modified k, L-counter.
l: for 1 <] <L do

2: for 0 <i <255 do

3: for 0 < j <255do
4: if j =250andi mod k =0 then
5: output < i

6: output < 251
7: else

8: output < i

9: output < j
10: end if

11: end for

12: end for

13: end for

Entropy = 8.000000 bits per byte.

Optimum compression would reduce the size
of this 2097152 byte file by 0 percent.

Chi square distribution for 2097152 samples is
0.00, and randomly would exceed this value
more than than 99.99 percent of the times.
Arithmetic mean value of data bytes is
127.5000 (127.5 = random).

Monte Carlo value for Pi is 3.140982762 (error
0.02 percent).

Serial correlation coefficient is
(totally uncorrelated = 0.0).

0.000000

Fig.5 Results for a 16-loop 2-byte counter in the range 0 to 26 — 1

Now, considering that the length of the file processed by
Algorithm 1 is n = L -2 - 256> (which is obvious by mul-
tiplying the range of the loops and considering that every
inner iteration outputs two bytes) it is easy to see from Eq.6
that it suffices to take L and k such that k> = L in order to
get a statistic of exactly 256, which is less suspicious that the
0.00 one we obtained before and much closer to the expected
value (of ~ 255.3 for 255 degrees of freedom).

That is, if k2 = L we get

L22562 L2562
56 s 56

512—— ——
kZn k2L -2 - 2562

=512/2 = 256.

For instance, we can take L = 16, to loop 16 times as we
did for the initial counter, and k = 4. This yields the results
shown in Fig. 6.

Therefore, we have obtained impeccable results for the
battery using our modified counter. Figures7 and 8 show
two representations that should make abundantly clear how
non-random this source is, despite its excellent results with
ENT.

Entropy = 7.999912 bits per byte.

Optimum compression would reduce the size
of this 2097152 byte file by 0 percent.

Chi square distribution for 2097152 samples is
256.00, and randomly would exceed this value
47.06 percent of the times.

Arithmetic mean value of data bytes is
127.5005 (127.5 = random).

Monte Carlo value for Pi is 3.140925542 (error
0.02 percent).

Serial correlation coefficient is
(totally uncorrelated = 0.0).

-0.000000

Fig.6 Results for modified counter with k* = L = 16

0000 0001 0002 00063 0004 0OOS5 0006 0007
0008 0009 0OGa 0OOb ©66C 00Bd ©BBe ©OOT
0010 0011 0012 0013 0014 0015 6016 0017
0018 0019 001la 001b ©001c 601d ©01le ©01f
0020 0021 0022 0023 0024 0025 0026 0027
0028 0029 002a 002b ©002c 002d 062e 002f
0030 0031 0032 0033 0034 0035 0036 0037
0038 0039 003a 003b 003c 003d 003e 003f
0040 0041 0042 0043 0044 0045 0046 0047
0048 0049 004a 004b 004c 004d 004e 004f
0050 0051 0052 0053 0054 0055 0056 0057
0058 0059 005a 005b 005Cc 005d 005e 005f
0060 0061 0062 0063 0064 0065 0066 0067
0068 0069 006a 006b 006C 006d 006e 006
0070 0071 0072 0073 0074 0075 0076 0077
0078 0079 007a 007b 007c 007d 007e 007f
0080 0081 0082 0083 0084 0085 0086 0087
0088 0089 008a 008b 008c 008d 008e 008f
0090 0091 0092 0093 0094 0095 0096 0097
0098 0099 009a 009b 009c 009d 009%e 009f
00a0 00al 00a2 00a3 00a4 00aS 00ab6 00a7
00a8 00a9 00aa 00ab 0Gac 00ad 00ae 00af
00b0 06bl 06b2 ©00b3 ©00b4 ©0b5 00b6 ©6b7
00b8 06b9 ©6ba 06bb ©0bc ©00bd 66be ©Obf
00cO 00cl 00c2 00c3 00c4 00cS5 006cH 00C7
00c8 00c9 00ca 00cb 00cc 00cd 06ce OOCT
00d0 00d1 00d2 00d3 ©00d4 ©0d5 ©00d6 ©0d7
00d8 00d9 00da 00db 00dc 60dd ©0de ©odf
00e0 00el 00e2 00e3 00ed4 00e5 00eb6 00e7
00e8 00e9 00ea 00eb 00ec 0Ped OOee OOef
oofe eofl e0f2 00f3 eef4 e0f5 00f6 00f7
00f8 00f9 eefb eefb eofc eefd eefe eoff

Fig.7 First 512 bytes of modified counter

5 Calculating p values from existing statistics

One of the most obvious improvements the battery could use
is offering p values from the statistics that do not provide one.
This would allow us to perform proper hypothesis testing,
in order to find statistically sound results from which we
can conclude whether the hypothesis test can be rejected.
For instance, say we have a sequence with arithmetic mean

@ Springer

242

Journal of Cryptographic Engineering (2023) 13:235-249

Fig.8 Greyscale representation 0
of modified counter
200
400

600

800

-
]
-
-
-
-
]
-
-
-
-
]
-
-
-
1000 7]
0

250

127.9523. How do we know if this is too far from 127.5?
That will depend on the sequence length. That approximation
might be excellent for a 50-byte sequence, but extremely poor
for a 20 MB file.

However, there are some derivations by which we can
provide a p value, which will tell us how likely it would be
to obtain results “more extreme” than the ones observed if
the sequence were truly random.

5.1 Arithmetic mean

The arithmetic mean is arguably the most simple statistic
in the battery. For a sequence x = xg...x,—1, we get the
statistic X = % Zl’.’;ol x;. Under the randomness hypothe-
sis, x; are i.i.d. samples from a discrete uniform distribution
Y >~ U{0, 255}. Therefore, we can apply the Central Limit
and compare our results to a standard normal distribution
N, 1).

If each x; fori € {0,1,...,n — 1} is an independent
sample from Y, the Central Limit Theorem states that the
following holds:

asn — oo. @)

\/E’E;“ — 5 N, 1)

It is straightforward to find 1 and o. Since Y is a discrete
uniform distribution between 0 and 255, we get:

255 255
E[Y =§ i Py()=— Y i=127.
[Y])i Py (i) 3562 127.5

=0 i=0

255 255

. . 1 S 255-(2-255+1)

EY =Y i" Py()=-—) if=""""" (8
Y2 ,-=ol v (i) 256i=01 g (8)

2562 — 1 2562 — 1
2 2 2
=E[Y?]|-E[YP =" — _ =
o [Y-] [Y] 2 =0 B

@ Springer

500

]
.

|

750 1000 1250 1500 1750 2000

Therefore we can obtain a two-tailed p value. First we
compute the following z statistic:

e= vt ©)
o

Under the randomness hypothesis, z will approximately
follow a standard normal distribution. z will be near O if the
mean was near 127.5. Therefore, “more extreme” results than
z are those that have a bigger absolute value than |z|. Now
if we denote by ® the cumulative standard normal distribu-
tion, we get the p value from the following equation, which
resembles the two-tailed p values from [20]:
p=P1ZIzlzD=2-0—-2(z]). (10)

Since the original ENT code has a numerical approxi-
mation of ® from which it approximates the value of x2255,
we can perform this computation without adding too much
code, and thus turn the arithmetic mean into a more useful
and insightful test.

5.2 Serial correlation

For the serial correlation, the same problem holds. It’s hard to
tell what constitutes a critical boundary for serial correlation,
and how to factor in the sequence length.

If two sequences were independent, their serial correlation
should approximate zero. In the case of a random sequence,
we would expect the correlation between the sequence and
the sequence shifted one byte to be near zero. If this value
was too big, it would indicate the generator is predictable.

In order to obtain a p value from the Pearson’s correlation
coefficient between two sets of samples x = xp...x,_1 and
Y =13Y0...Yn—1, We use the statistic

Y

Journal of Cryptographic Engineering (2023) 13:235-249

243

which follows a Student t-distribution with n — 2 degrees
of freedom when the samples come from a bivariate normal
distribution. However, this requirement is usually dismissed
when the number of samples is large enough. Nonetheless,
there is always a caveat with this omission, and this can lead
to issues with small sample sizes [24].

Since the sequences analysed by StringENT will typically
consist of at least thousands of bytes, this approximation will
be good enough. We will compute statistic ¢ and find a two-
tailed p value from Student’s t-distribution with n —2 degrees
of freedom, n being the number of bytes of the sequence. We
will denote such distribution 7. Since T is symmetric, this
p value’s computation is analogous to the one in Eq. (10):

p=PUTI|=|1t]. (12)

Nonetheless, the code in the ENT battery does not come
with any tables of Student’s t-distribution. Therefore, in order
to avoid adding too much new code to the battery, we have
made a compromise in accuracy vs. code length and used
an approximation of the t-distribution by the normal dis-
tribution, which yields three decimal digits’ precision. The
formula is given by [25,26]

PT<t)~ad[t(1 ! 1 ltz%l 13
(T <1t)~ <_E><+Z> (13)

Moreover, since the ¢-distribution converges to the normal
distribution as the degrees of freedom grow, and we will typi-
cally use it with very large values ford f = n—2, the accuracy
will be reasonably good. By joining Eqgs. (12) and (13), our
two-tailed p value will be given by:

p=2- (1_<1><|t| (1—5) (H%ﬂ)zl)). (14)

5.3 Monte Carlo Pi estimation

We look at Eq. (4). Given a coordinate (x,y) € [0, 224
11? at random, if x and y are independently and uniformly
distributed according to 2/(0, 2%* — 1), the probability that
(x, y) lies within the circle is given by /4, as is easy to
deduce from Fig. 1. Therefore, in our case, in which x and
y will be, under randomness hypothesis, i.i.d. samples from
U{0,2%* — 1}, we get that the probability that (x, y) lies
within the circle should be around /4.

Therefore, we can model the experiment “draw a coor-
dinate and see whether it lies within the circle” as a
Bernoulli(m/4) distribution. That is, an experiment with
probability 7 /4 of success, and 1 — /4 of failure.

Hence, since under randomness hypothesis each coordi-
nate is independent from all others, the number of coordinates

that lie within the circle follows a Binomial distribution with
p = 7 /4 and n = number of points, Binomial (7 /4, n).

A particular case of the Central Limit Theorem, known as
the De Moivre—Laplace Theorem [27], states that if B, fol-
lows a Binomial(p, n) distribution, and a, b € R U {00},
a < b, we get

. B, —np) 1 /b 2
Iim Pla < ———<b| = — e 2dx.
n—00 (~/np(1 — p) V21 Ja

(15)

Therefore, the number of points that will fall within the
circle can lead us to an approximately standard normal dis-
tribution.

This allows us to find a p value. Denoting by 7 the approx-
imation of 7 obtained through the observed sequence, and
using Eq. (4), we get that, if we refer to the number of coor-
dinates in the sequence as pts, where pts = Ln’”% , the
number of points within the circle is given by

T - pts
PtSin = 4

Therefore, since under the randomness hypothesis pts;,
is approximately distributed as a Binomial(w /4, pts), due
to Eq. (15) we get the following statistic with approximate
standard normal distribution:

DPtSin — pts - %

prs-%-(1-%)

=

We now follow the same path we did before. Under the
null hypothesis, the sequence is random, and the number of
points that is expected to be within the circle are around
7 - pts, and so the p value, just like in Eq. (10), is given by

P Z|zlzD=2-0=2(z). (16)

In order to double check that these formulae are indeed
well derived, we confirmed p value uniformity for the 10, 000
files of /dev/urandom which we used in Sect. 3.

If the p values are well formulated, they should be uni-
formly distributed between O and 1. In order to check that
such is the case, we perform a Chi-square uniformity test,
dividing the p values in 15 bins that partition [0, 1] in even
intervals, and measuring the goodness of fit for the number
of p values in each bin compared to the expected 10,000/15.
The resulting p values for this uniformity test are shown in
Table 3, and they confirm our expectations of uniformity. In
order to see this graphically, we also show the corresponding
histograms in Fig.9.

@ Springer

244

Journal of Cryptographic Engineering (2023) 13:235-249

Table 3 P values after applying a 15-bin Chi-square uniformity test to
the p values obtained from /dev/urandom

Test Mean Serial correlation Monte Carlo 7 estimate
p value 0.5605 0.7504 0.8766
S B
@ N
)
[
o
O o
g 2
Q
< o
wn
o

[T T T T 1
0.0 0.2 04 0.6 0.8 1.0

(a) Arithmetic mean

R - - -
o
w N
()
c
o
S o
g 2
Q
< o
w
o
I I I I I 1
0.0 0.2 0.4 0.6 0.8 1.0
(b) Serial correlation
. n - -
o
N
7]
(V]
c
<}
O o
s HHW
Q
< o
wn
o
[T T T T 1
00 0.2 0.4 0.6 08 1.0

7 estimate

(¢) Monte Carlo

Fig. 9 Histograms of our new p values for 10,000 15 MB files from
/dev/urandom

6 New tests

We decided to add a couple of very fast tests in order to extend
the capabilities of the original ENT battery and address the
issue detailed in Sect. 4.

6.1 Runs test

Firstly we add a simple runs test, as explained in [28], which
in turn takes it from [29]. This test is one of the most well-
known and used for randomness testing. In fact, all the most
popular test suites include this test as an important element,

@ Springer

Table 4 Signs for runs test

Number 23 201 3 165 242

Sign — + - - +

for example, the NIST SP 800-22 battery, Dieharder, Crypt-
X, and SPRNG, among others, as well as older batteries such
as the Knuth or Diehard batteries.

Given a sequence x = Xxg...X,_|, We create a sequence
of n 4+ and — signs, by comparing each value to the median
127.5. If a value is below the median, we assign the sign —,
and if it is above it we assign a 4. We show a small example
in Table 4.

A runis then defined as a subsequence of the sign sequence
consisting entirely of +’s or —’s, such that the signs at either
end of the run are different from the sign of the run.

For instance, the example of Table 4 consists of 4 runs: 2 of
+ signs and 2 of — signs. We will define n; as the number of
— signs and n; as the number of + signs. Then, the expected
number of runs is given by

2niny(2nyny —ny —np)
(n1+n2)*(ny +np— 1)

_ 2nino
R=—"+1
ny+ny

2 _
SR—

We denote by R the number of observed runs and 512e its
variance [29]. Since R follows a binomial distribution, we
get that

R—R

SR

Z= — N(0,1)asn — oo.

Therefore, a two-tailed p value is obtained just like in
Sect.5.1.

6.2 Local means test

We also created a specific test to address the problem of the
pseudo-counter passing the battery successfully. This test is
based on two principles: the arithmetic mean’s p value of
Sect.5.1 and a Chi-square goodness-of-fit test.

We divide the sequence in N parts of M bytes each
(and discard n mod M bytes). We denote each block X; =
XiMXiM41---XGi+1).M—1 fori =0,..., N —1. Wegetaz;
statistic by replicating Eq. (9)

Xi— 1

zi=+/n

o

where o y p are the same as in Equation (8), and X; =
Xi-MXi.M+1---X(i+1)-M—1. Since the z; are approximately
distributed as standard normals, we can now take a goodness-
of-fit statistic, via

Journal of Cryptographic Engineering (2023) 13:235-249

245

StringENT | Results report

Entropy = 7.99991171413 bits per byte.
Optimum compression would reduce the size
of this 2097152 byte file by 0 percent.

Chi square distribution for 2097152 samples is
256.00.
p-value 0.470609

Arithmetic mean value of data bytes is
127.5005 (127.5 = random).
p-value 0.992366

Monte Carlo value for Pi is 3.140925542 (error
0.02 percent).
p-value 0.810200

Serial correlation coefficient is -0.000000
(totally uncorrelated = 0.0).

p-value 0.999690

The number of runs is 1048576.
p-value 0.998898

The local means test’s X"2 statistic is
524263.812 for 2048 blocks.

p-value 0.000000 ***

* Significant for a=0.05
**%. Significant for «=0.01
***. Significant for a=0.001

Fig. 10 Results of applying StringENT to modified 4,16-counter

X*=3"2 (17)

Under randomness hypothesis, each block X; is indepen-
dent from all blocks X; with j # i, and so the statistic of
Eq.17 has a X%/ distribution, that is, a Chi-square distribu-
tion with N degrees of freedom. Therefore, we can obtain a
one-tailed p value by reusing the Chi-square test already in
the battery, with no extra code.

Note that this test in the bit mode becomes the block fre-
quency test used in [20], and is inspired by it. We will take
M = 1024 as default.

After introducing these changes, and setting a bigger pre-
cision for the entropy output, we run the extended battery
on the modified counter of Sect.4. The output is shown in
Fig. 10.

We see that the local means test is able to easily detect the
non-randomness of the modified counter. Since each block
in the output of the counter has very skewed means from
the expected 127.5, the goodness-of-fit statistic is extremely

high, and so the corresponding p value is less than 1079,
Therefore, we get a significant result at « = 0.01 that allows
us to confidently reject the randomness hypothesis for the
modified counter.

7 Execution times

In this section, we look at the new changes we introduced to
the battery code, and what computational cost they bring.

1. Computation of the p value for the arithmetic mean test
When the battery calculates the arithmetic mean, the cost
associated with this computation is a case of computing
Egs. (10) and (9), which is done in a constant number of
steps. Thus these computations are on the order of O(1).

2. Computation of the p value for the serial correlation test
Similarly to the previous case, this is performed in a con-
stant number of operations that does not depend on the
length of the sequence, so its complexity is of the order
of O(1).

3. Computation of the p value for the estimation of the Monte
Carlo estimation of m It is also a constant number of
operations, since the battery has already calculated the
number of points inside the circle and the total number
of points. Therefore we have a complexity on the order
of O(1).

4. Runs test The runs can be calculated in a single pass to
the sequence, because while the i -th byte is being studied,
its sign can be compared with that of the i — 1 byte, and
it can be determined at the same time whether there is a
new run or not. Finally, the number of operations must be
added to find the p value, but this is constant whatever the
number of runs and the number of positive and negative
signs. Therefore, this has a complexity order of O(n),
where n is the number of bytes in the sequence.

5. Local means test Like the runs, in a single pass through
the sequence, all the means are found, normalized,
squared, and the X? statistic of Eq. 17 is updated. Thus,
the complexity is of the order of O(n).

Therefore, while doing more calculations that will take
slightly longer, the order of complexity of StringENT is still
at O(n), which is the same that all ENT computations have.
To empirically verify this result, we experimented with dif-
ferent files of varying sizes and compared the results. We will
also include the results when applying the NIST SP 800-22
battery as a reference, it is one of the most commonly used in
practice. We note that, although the execution time has gone
up, it is still extremely fast, particularly when compared to
the NIST SP 800-22 suite. The results are shown in Table 5.
These were computed using a standard Windows 10 (64-bit)

@ Springer

246

Journal of Cryptographic Engineering (2023) 13:235-249

Table 5 Execution time comparisons

File size (MB) ENT (s) StringENT (s) NIST SP 800-22
1 0.028 0.049 6.065 s

5 0.122 0.202 30.367 s

10 0.197 0.39 1m1.045s

13 0.255 0.473 1 m 19.608 s

machine with an AMD Ryzen 3700XT (3.6 Ghz, 8§ cores, 16
threads) CPU and 64GB of RAM.

8 Redundancies

After the derivation of the arithmetic mean p value, we
noticed that p values for the arithmetic mean and the uni-
formity Chi-square test are the same in the bit mode of the
suite. This makes sense since in the ENT bit mode, the Chi-
square test just measures how many ones and zeros there
are, and compares that to the expected rate of 0.5. That is,
in bit mode, the Chi-square test and the arithmetic mean test
perform the very same computation.

This is also true for the newly introduced runs test and the
serial correlation test, and consequently they output the same
p values (save for digit precision). Therefore, we acknowl-
edge that by using the bit mode of the battery we can incur
in many undesirable redundancies and hence we discourage
its usage.

On the other hand, we saw in Sect.3 that the Entropy
test and the Chi-square test are very highly correlated, which
means they also provide similar information. Both tests focus

Fig. 11 Seaside picture of
Zumaia (copyright-free by
Angel Pérez)

@ Springer

StringENT | Results report

Entropy = 7.96850018978 bits per byte.
Optimum compression would reduce the size
of this 780470 byte file by 0 percent.

Chi square distribution for 780470 samples is
34797.80.
p-value 0.000000 ***

Arithmetic mean value of data bytes is
126.6121 (127.5 = random).
p-value 0.000000 ***

Monte Carlo value for Pi is 3.184796814 (error
1.38 percent).
p-value 0.000000 ***

Serial correlation coefficient is
(totally uncorrelated = 0.0).
p-value 0.000000 ***

0.010767

The number of runs is 384137.
p-value 0.000000 ***

The local means test’s X722 statistic is
1417.428 for 762 blocks.

p-value 0.000000 ***

*. Significant for a=0.05
**. Significant for «=0.01
***. Significant for a=0.001

Fig. 12 StringENT results for Zumaia seaside picture

Journal of Cryptographic Engineering (2023) 13:235-249

247

>
g 4
c
m b
§]
A
c
[
L
=
a
g -
Y
% “
=
c
=
-
2
£
Q
'
©
c
X -
w
c 4
=)
o
L] L L A \J L L] L] L) Ll L) L L L
Entropy Chi-square Mean Monte-Carlo-Pi Serial-Correlation Runs
Fig. 13 Scatter plot matrix including better Entropy precision and Runs test
Table 6 Correlations of StringENT statistics for /dev/urandom files
Entropy Chi-square Mean Monte-Carlo-Pi Serial-correlation Runs LM-p-value
Entropy 1.0000 —1.0000 —0.0071 0.0058 —0.0083 0.0084 —0.0094
Chi-square —1.0000 1.0000 0.0071 —0.0058 0.0083 —0.0084 0.0094
Mean —0.0071 0.0071 1.0000 —0.4239 0.0219 —0.0194 0.0057
Monte-Carlo-Pi 0.0058 —0.0058 —0.4239 1.0000 —0.0334 0.0364 —0.0050
Serial-Correlation —0.0083 0.0083 0.0219 —0.0334 1.0000 —0.7458 —0.0279
Runs 0.0084 —0.0084 —0.0194 0.0364 —0.7458 1.0000 0.0264
LM-p-value —0.0094 0.0094 0.0057 —0.0050 —0.0279 0.0264 1.0000

@ Springer

248

Journal of Cryptographic Engineering (2023) 13:235-249

Table 7 P values of observed correlations in StringENT statistics for /dev/urandom files

Entropy Chi-square Mean Monte-Carlo-Pi Serial-correlation Runs LM-p-value
Entropy 0.0000 0.0000 0.4753 0.5638 0.4076 0.4009 0.3478
Chi-square 0.0000 0.0000 0.4769 0.5636 0.4080 0.4004 0.3485
Mean 0.4753 0.4769 0.0000 0.0000 0.0285 0.0521 0.5711
Monte-Carlo-Pi 0.5638 0.5636 0.0000 0.0000 0.0008 0.0003 0.6154
Serial-Correlation 0.4076 0.4080 0.0285 0.0008 0.0000 0.0000 0.0053
Runs 0.4009 0.4004 0.0521 0.0003 0.0000 0.0000 0.0082
LM-p-value 0.3478 0.3485 0.5711 0.6154 0.0053 0.0082 0.0000
on the uniformity of the values {0, 1, ..., 255}. Since the all existing test) and two new tests. Now the user can call

compression rate is linearly related with the Entropy, it adds
no additional information. However, what tests are run can
be ultimately decided by the user.

In order to illustrate this, we run the battery on a jpg picture
of a seaside landscape. It is displayed in Fig.11, and the
corresponding results in Fig. 12. By looking at the output we
can confirm:

1. Displaying a O per cent compression rate is not neces-
sarily a good indicator of randomness at all, as it takes
“relatively little” entropy (it is just 0.03 below the maxi-
mum of 8 bits/byte for this file). Therefore, even a picture
with multiple non-random patterns can achieve a 0 per
cent compression rate, although the picture is clearly non-
random. This is particularly true of compressed formats
such as jpg/mpeg/webP, etc.

2. The rest of tests all fail with a very high statistical signif-
icance, as one should expect.

Also, having now more digits of precision for the Entropy
and the new tests, we checked correlations again. Figure 13
shows a scatter plot matrix of some of the StringENT statis-
tics for the 10, 000 /dev/urandom files. Table 6 shows the
correlations obtained for the data in these tests, and Table 7
has the associated p values. We can see, as highlighted
in bold, that many tests are not independent. Therefore, if
we really want to maximize StringENT efficiency, we can
remove some of these.

9 Conclusions and future work

We have studied the popular ENT test suite for evaluating
random number generators, shown that some trivially flawed
generators (i.e. pseudo-counter) can fool it and then proposed
an extension we call StringENT.

With StringENT, we keep most of the simplicity and speed
that made ENT so widely used, but add some much needed
functionalities (in particular the computation of p values for

@ Springer

the execution of various tests through a parameter in the exe-
cutable, to find a convenient trade-off between speed and
coverage.

With all tests now offering a p value, it becomes easier to
analyse their correlation, and we do this next in our work.

This also means the interpretation of the output statistics
is easier now.

Future work could focus on designing, implementing and
selecting new sets of tests which are similarly fast but do not
incur on any kind of correlation.

To sum up, we believe that a promising way forward will
consist in adding more tests to StringENT that maintain the
characteristic speed of the battery while offering indepen-
dent, uncorrelated insights.

Acknowledgements We would like to thank the reviewers for their
comments, which have helped us to improve our work. This work
has received funding from THEIA (Techniques for Integrity and
Authentication of Multimedia Files of Mobile Devices) UCM project
(FEI-EU-19-04)and from THEIA I (Techniques for integrity, authenti-
cation and scene recognition in multimedia files of mobile devices - Part
I) UCM project (FEI-EU-21-01).Julio Hernandez-Castro was supported
during this work by EPSRC’s Quantum Communications Hub (grant
number EP/T001011/1) and Innovate UK Industrial Strategy Challenge
Fund (ISCF) Project No. 106374-49229 AQuRand (Assurance of Quan-
tum Random Number Generators).

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Cryptographic Engineering (2023) 13:235-249

249

References

10.

11.

12.

13.

. Kawai, R., Masuda, H.: On simulation of tempered stable ran-

dom variates. J. Comput. Appl. Math. 235(8), 2873-2887 (2011).
https://doi.org/10.1016/j.cam.2010.12.014

. Wang, Y., Nicol, T.: On statistical distance based testing of pseudo

random sequences and experiments with PHP and Debian Open
SSL. Comput. Secur. 53, 44—-64 (2015). https://doi.org/10.1016/j.
cose.2015.05.005

. Wang, P, You, F,, He, S.: Design of broadband compressed sam-

pling receiver based on concurrent alternate random sequences.
IEEE Access 7, 135525-135538 (2019). https://doi.org/10.1109/
ACCESS.2019.2942687

. Yao, Y., Chen, X., Kang, W., Zhang, Y., Zhao, W.: Thermal Brown-

ian motion of Skyrmion for true random number generation. IEEE
Trans. Electron Devices 67(6), 2553-2558 (2020). https://doi.org/
10.1109/TED.2020.2989420

. Srikanth, C.: Certain sequence of arithmetic progressions and a

new key sharing method. Cryptogr. Commun. 12, 597-612 (2020).
https://doi.org/10.1007/s12095-019-00416-z

. Goémez, AL, Gémez-Pérez, D., Pillichshammer, F.: Secure pseu-

dorandom bit generators and point sets with low star-discrepancy.
J. Comput. Appl. Math. 396, 1-8 (2020). https://doi.org/10.1016/
j.cam.2021.113601

. De Matteis, A., Pagnutti, S.: Pseudorandom permutation. J. Com-

put. Appl. Math. 142(2), 367-375 (2020). https://doi.org/10.1016/
S0377-0427(01)00425-3

. Sarkar, P.: Modes of operations for encryption and authenti-

cation using stream ciphers supporting an initialisation vector.
Cryptogr. Commun. 6, 189-231 (2014). https://doi.org/10.1007/
$12095-013-0097-7

. Ak, M., Hanoymak, T., Selcuk, A.A.: IND-CCA secure encryption

based on a Zheng—Seberry scheme. J. Comput. Appl. Math. 259,
529-535 (2014). https://doi.org/10.1016/j.cam.2013.06.042
Mohanty, A., Sutaria, K.B., Awano, H., Sato, T., Cao, Y.: RTN in
scaled transistors for on-chip random seed generation. IEEE Trans.
Very Large Scale Integr. VLSI Syst. 25(8), 2248-2257 (2017).
https://doi.org/10.1109/TVLSI.2017.2687762

Hamann, M., Krause, M.: On stream ciphers with provable beyond-
the-birthday-bound security against time-memory-data tradeoff
attacks. Cryptogr. Commun. 10, 959-1012 (2018). https://doi.org/
10.1007/s12095-018-0294-5

Bharadwaj, B., Sairabanu, J.: Image encryption using a modified
pseudo-random generator. In: 2020 International Conference on
Emerging Trends in Information Technology and Engineering (ic-
ETITE), pp. 1-6 (2020). https://doi.org/10.1109/ic-ETITE47903.
2020.094

Tuncer, T., Avaroglu, E.: Random number generation with LFSR
based stream cipher algorithms. In: 2017 40th International Con-
vention on Information and Communication Technology, Electron-
ics and Microelectronics (MIPRO), pp. 171-175 (2017). https://
doi.org/10.23919/MIPRO.2017.7973412

. Sarkar, S., Dey, P., Adhikari, A., Maitra, S.: Probabilistic signa-

ture based generalized framework for differential fault analysis of
stream ciphers. Cryptogr. Commun. 9, 523-543 (2017). https://doi.
org/10.1007/s12095-016-0197-2

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Saha, R., Geetha, G., Kumar, G., Kim, T.-H., Buchanan, W.J.:
MRC4: a modified RC4 algorithm using symmetric random func-
tion generator for improved cryptographic features. IEEE Access 7,
172045-172054 (2019). https://doi.org/10.1109/ACCESS.2019.
2956160

Bontchev, B.: Modern trends in the automatic generation of content
for video games. Serdica J. Comput. 2, 133-166 (2016)

Kristian Lundedal Nielsen, R., Grabarczyk, P.: Are loot boxes gam-
bling? Random reward mechanisms in video games. Trans. Digit.
Games Res. Assoc. 4(3), 171-207 (2019)

Almaraz Luengo, E., Garcia Villalba, L.J.: Recommendations on
statistical randomness test batteries for cryptographic purposes.
ACM Comput. Surv. 54(4), 1-34 (2022). https://doi.org/10.1145/
3447773

Walker, J.: ENT: a pseudorandom number sequence test program.
https://www.fourmilab.ch/random/ (2008)

Bassham, L.E., Rukhin, A.L., Soto, J., Nechvatal, J.R., Smid, M.E.,
Barker, E.B., Leigh, S.D., Levenson, M., Vangel, M., Banks, D.L.,
Heckert, N.A., Dray, J.E,, Vo, S.: SP 800-22 Rev. la. A statistical
test suite for random and pseudorandom number generators for
cryptographic applications. Technical report, National Institute of
Standards & Technology, Gaithersburg, MD, USA (2010)
L’ecuyer, P., Simard, R.: TestuO1: a C library for empirical testing
of random number generators. ACM Trans. Math. Softw. 33(4),
1-40 (2007)

Brown, R.G., Eddelbuettel, D., Bauer, D.: Dieharder: a random
number test suite (version 3.31.1). https://webhome.phy.duke.edu/
~rgb/General/dieharder.php (2014)

Gray, R.M.: Entropy and Information Theory, 1st edn. Springer,
New York (2013)

Kowalski, C.J.: On the effects of non-normality on the distribution
of the sample product-moment correlation coefficient. Appl. Stat.
21(1), 1-12 (1972). https://doi.org/10.2307/2346598

Yerukala, R., Boiroju, N.K., Krishna, M.: Approximations to the
t-distribution. Int. J. Stat. Math. 8(1), 19-21 (2013)

Zogheib, B., Elsaheli, A.: Approximations to the t-distribution.
Appl. Math. Sci. 9, 2445-2449 (2015)

Dunbar, S.R.: Topics in probability and stochastic processes:
the de Moivre-Laplace central limit theorem. https://www.math.
unl.edu/~sdunbar1/ProbabilityTheory/Lessons/BernoulliTrials/
DeMoivreLaplaceCLT/demoivrelaplaceclt.pdf

NIST: Runs test for detecting non-randomness. https://www.itl.
nist.gov/div898/handbook/eda/section3/eda35d.htm (2013)
Bradley, J.V.: Distribution-Free Statistical Tests, 1st edn. Prentice-
Hall, Englewood Cliffs (1968)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.1016/j.cam.2010.12.014
https://doi.org/10.1016/j.cose.2015.05.005
https://doi.org/10.1016/j.cose.2015.05.005
https://doi.org/10.1109/ACCESS.2019.2942687
https://doi.org/10.1109/ACCESS.2019.2942687
https://doi.org/10.1109/TED.2020.2989420
https://doi.org/10.1109/TED.2020.2989420
https://doi.org/10.1007/s12095-019-00416-z
https://doi.org/10.1016/j.cam.2021.113601
https://doi.org/10.1016/j.cam.2021.113601
https://doi.org/10.1016/S0377-0427(01)00425-3
https://doi.org/10.1016/S0377-0427(01)00425-3
https://doi.org/10.1007/s12095-013-0097-7
https://doi.org/10.1007/s12095-013-0097-7
https://doi.org/10.1016/j.cam.2013.06.042
https://doi.org/10.1109/TVLSI.2017.2687762
https://doi.org/10.1007/s12095-018-0294-5
https://doi.org/10.1007/s12095-018-0294-5
https://doi.org/10.1109/ic-ETITE47903.2020.094
https://doi.org/10.1109/ic-ETITE47903.2020.094
https://doi.org/10.23919/MIPRO.2017.7973412
https://doi.org/10.23919/MIPRO.2017.7973412
https://doi.org/10.1007/s12095-016-0197-2
https://doi.org/10.1007/s12095-016-0197-2
https://doi.org/10.1109/ACCESS.2019.2956160
https://doi.org/10.1109/ACCESS.2019.2956160
https://doi.org/10.1145/3447773
https://doi.org/10.1145/3447773
https://www.fourmilab.ch/random/
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://doi.org/10.2307/2346598
https://www.math.unl.edu/~sdunbar1/ProbabilityTheory/Lessons/BernoulliTrials/DeMoivreLaplaceCLT/demoivrelaplaceclt.pdf
https://www.math.unl.edu/~sdunbar1/ProbabilityTheory/Lessons/BernoulliTrials/DeMoivreLaplaceCLT/demoivrelaplaceclt.pdf
https://www.math.unl.edu/~sdunbar1/ProbabilityTheory/Lessons/BernoulliTrials/DeMoivreLaplaceCLT/demoivrelaplaceclt.pdf
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35d.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35d.htm

	StringENT test suite: ENT battery revisited for efficient P value computation
	Abstract
	1 Introduction
	2 Randomness tests
	2.1 Statistics
	2.2 Hypothesis testing
	2.3 ENT
	2.3.1 Entropy
	2.3.2 Chi-square test
	2.3.3 Arithmetic mean
	2.3.4 Monte Carlo Pi estimation
	2.3.5 Serial correlation

	3 Independence of tests
	4 Modified counter with good results
	5 Calculating p values from existing statistics
	5.1 Arithmetic mean
	5.2 Serial correlation
	5.3 Monte Carlo Pi estimation

	6 New tests
	6.1 Runs test
	6.2 Local means test

	7 Execution times
	8 Redundancies
	9 Conclusions and future work
	Acknowledgements
	References

