
Journal of Cryptographic Engineering (2020) 10:321–336
https://doi.org/10.1007/s13389-020-00234-7

REGULAR PAPER

Error control scheme for malicious and natural faults in
cryptographic modules

Mael Gay1 · Batya Karp2 ·Osnat Keren2 · Ilia Polian1

Received: 2 February 2019 / Accepted: 8 June 2020 / Published online: 1 July 2020
© The Author(s) 2020

Abstract
Today’s electronic systems must simultaneously fulfill strict requirements on security and reliability. In particular, their
cryptographic modules are exposed to faults, which can be due to natural failures (e.g., radiation or electromagnetic noise)
or malicious fault-injection attacks. We present an architecture based on a new class of error-detecting codes that combine
robustness properties with a minimal distance. The new architecture guarantees (with some probability) the detection of faults
injected by an intelligent and strategic adversary who can precisely control the disturbance. At the same time it supports
automatic correction of low-multiplicity faults. To this end, we discuss an efficient technique to correct single nibble/byte
errors while avoiding full syndrome analysis. We also examine a Compact Protection Code (CPC)-based system level fault
manager that considers this code an inner code (and the CPC as its outer code). We report experimental results obtained by
physical fault injection on the SAKURA-G FPGA board. The experimental results reconfirm the assumption that faults may
cause an arbitrary number of bit flips. They indicate that a combined inner–outer coding scheme can significantly reduce the
number of fault events that go undetected due to erroneous corrections of the inner code.

Keywords Fault-injection attacks · Error-detecting and correcting codes · Security and reliability

1 Introduction

With the transition to the cyberphysical system (CPS)
paradigm, digital circuits are increasingly used for func-
tions that are safety- and security-critical at the same time.

A preliminary version of this paper was presented at the 7th
International Workshop on Security Proofs for Embedded Systems
(PROOFS) [12]. This research was supported by the ISRAEL
SCIENCE FOUNDATION Grant No. 923/16 and by the DFG
(German Research Foundation) Project Po 1220/7-2.

B Ilia Polian
ilia.polian@informatik.uni-stuttgart.de

Mael Gay
mael.gay@informatik.uni-stuttgart.de

Batya Karp
betty-miriam.karp@biu.ac.il

Osnat Keren
osnat.keren@biu.ac.il

1 Institute of Computer Engineering and Computer
Architecture, University of Stuttgart, Stuttgart, Germany

2 Faculty of Engineering, Bar-Ilan University, Ramat Gan,
Israel

For example, emerging car electronics will have to support
conventional safety features (like anti-lock braking sys-
tem or airbag control) and advanced electronic drive-assist
functions, which are safety-relevant and must be realized
in a failure-proof manner. However, the same electronics
will provide the customer with access to social networks
and payment functions over the Internet, which makes it
a target of deliberate security attacks. Moreover, emerg-
ing electronic systems are designed to operate in harsh
environments (including temperature extremes, vibration,
humidity), increasing the chance of failures due to natural
causes: noise and ageing. At the same time, their components
often lack a “protective perimeter” known from conventional
servers located in an access-controlled building and oper-
ated by authorized personnel. Cyberphysical infrastructures,
vehicles and production systems have parts designed to be
placed in public spaces and accessible by anybody, including
potential attackers. Therefore, malicious attacks on hardware
components can be expected and must be counteracted.

A variety of defences on different abstraction levels have
been suggested against natural failures and malicious attacks
alike [18]. Here, we relate only to failures and attacks that
create a tangible and observable change in the input-output

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-020-00234-7&domain=pdf
http://orcid.org/0000-0002-6563-2725

322 Journal of Cryptographic Engineering (2020) 10:321–336

Fig. 1 Detection, correction and validation architecture

behaviour of a circuit. In the context of natural failures, we
do not consider mechanisms with purely parametric effects
(e.g., ones which increase the circuit’s power consumption
but have no pronounced implications on the logic level).
In the malicious case, we restrict ourselves to attacks that
actively manipulate the operation of a circuit; purely passive
analysis [20] is not in scope of this paper. Such fault-injection
attacks [25] can aim at disrupting the application’s control
flow (e.g., jumping over password checks [34] or, in case of
cryptographic circuitry, extraction of secret keys via differ-
ential fault analysis [3] or fault-sensitivity analysis [19]. We
refer by the term “fault” to any logical effect due to either a
natural failure or a malicious (active) attack.

Out of various countermeasures against natural and mali-
cious faults, approaches based on error-detecting codes
(EDCs) stand out. They can be applied to protect memories,
communication channels and combinational circuitry. In the
case of natural failures or poorly-controlled malicious fault
injections, EDC competes with space- and time-redundancy
techniques, including duplication, modular redundancy, and
commit-rollback [18]. However, an intelligent attacker with
high-precision fault-injection equipment can circumvent this
protection by injecting multiple faults into redundant copies
such that they cancel each other out. Recent developments
such as dual-beam laser fault injectors make this threat prac-
tical [29]. On the contrary, special security-oriented EDCs
have been proposed [15,30]. They are designed to counter-
act a strategic attacker who knows the defences and aims at
circumventing them. It can be shown that all linear codes
offer limited protection against attacks under this assump-
tion, as there are faults that are never detected. Therefore,
the usual EDCs like parity or Hamming codes are inade-
quate in this case, and dedicated nonlinear security-oriented
codes are required.

In this paper, we consider and optimize architectures that
are designed to handle natural and malicious faults. The
architectures are based on a recent code construction, the
Rabii–Keren (RK) codes [26] in their generalized form [27].

RK codes are defined on the code alphabet of size q, which
is a power of 2. For example, q = 24 (q = 28) is a
natural choice for a circuit with a state organized in 4-bit
nibbles (8-bit bytes): a fault that affects a nibbles (bytes)
directly corresponds to an error of multiplicity a which can
be detected and/or corrected. RK codes combine three prop-
erties: a user-defined distance (and therefore the possibility
of error correction), a low masking probability (a metric for
resilience against malicious attacks), and a high rate (ratio
between data and check bits). The code-based architecture is
summarized in Fig. 1; notice that the syndrome of the code
is intended for processing at the system level, which can also
take into account further sources of information to decide
whether the detected fault was malicious or not and whether
it should be corrected or an alarm should be raised.

The feature to reliably correct errors up to a certain multi-
plicity is useful for both natural andmalicious faults. If a fault
could be corrected, the system can proceed with its regular
operation, while error-detection without correction requires
some handling, e.g., re-execution of the affected computa-
tion. Therefore, error-correction is attractive in particular for
safety-critical systems with real-time requirements, like air-
craft or chemical plants which cannot simply stop operation
and wait for fault handling. Note that even if an error can be
corrected, the system may still have to record the fault event.
Moreover, a system may monitor the faults to decide which
of them are due to natural causes or due to malicious tamper-
ing. The observed fault effect (fault rate andmultiplicity) can
be an input to such a monitoring procedure, but in general,
further inputs are needed for reliably distinguishing between
natural and malicious faults. For instance, a system which
operates in a high-radiation environment may be equipped
with a radiation sensor; if it reports high radiation, then the
fault is likely natural.

The contributions of this paper are the following:

– An efficient correction procedure for single nibble/byte
errors using RK codes is presented. The procedure,

123

Journal of Cryptographic Engineering (2020) 10:321–336 323

based on a compact Error Coefficient and Location Table
(ECLT) is a substantial improvement compared with the
regular syndrome analysis.

– Inner–Outer code-based architecture is presented. A
robust inner code is employed to detect and correct errors.
An outer robust code detects critical events of undetected
and miscorrected errors.

– Induced error statistics. We report experiments using a
clock glitch-based fault injector on cryptographic circuits
(full- and small-scale AES [5], LED, PRESENT) on the
SAKURA FPGA board. The experimental results con-
firm the long-standing assumption that an injected error
can be modeled as an additive symmetric error.

– The effectiveness of the RK code in detecting faults caus-
ing an arbitrary number of bit-flips is confirmed. The
experiments show that the proposed architectures are
capable of detecting errors of arbitrary multiplicity and
correcting single errors, reliably recognizing erroneous
corrections. The architectures are especially effective
when they combine codes with a distance larger than
3 and an additional system-level validation by an outer
code.

– The experimental results indicate that a system level
fault manager that employs a Compact Protection Code
(CPC) [28] as an outer code is able to detect erroneous
RK corrections with high probability. It can decrease the
probability that a malicious fault will not be detected (at
the first cycle it effects that computation), exponentially
with the number of the CPC’s redundant bits.

The remainder of the paper is organized as follows. Sec-
tion 2 gives background on natural and malicious faults
and briefly introduces the concept of security-oriented error-
detecting and error-correcting codes. Section 3 outlines the
detection and correction architectures for codes of distance 3
and distance larger than 3. Section 4 presents an (inner) RK
code-based detection and correction architecture combined
with an (outer) CPC-based validator which further reduces
miss correction events. Experimental results are reported in
Sect. 5. Section 6 concludes the paper.

2 Preliminaries

2.1 Natural andmalicious faults

Both natural and malicious faults can result in correctable or
uncorrectable errors. If a natural fault stems from aminor dis-
turbance (e.g., a low-energy particle discharge), it will likely
affect only a few bits and the resulting error will be corrected
and no further action will be needed. Moreover, the effect of
natural faults is usually local; for example, a natural fault in
a circuit of an 8-bit SBox can flip at most eight bits. When

q-ary error detecting/correcting codes are implemented, the
number of errors induced by a fault is counted in terms of
the number of erroneous q-ary symbols. That is, if q = 28,
such a natural fault causes a single error, and if q = 24, at
most two errors may occur.

Malicious attacks often have quite strong effects [25]; e.g.,
if the circuit’s clock is glitched or the voltage is lowered [2],
many outputs will typically be affected. When the effect of
faults on the number of bit-flips at the circuit output (or on
their pattern) cannot be characterized, we refer to such faults
as ones that cause arbitrary errors. Security-oriented code are
codes which are designed to detect arbitrary errors with high
probability.

Errors stemming from such malicious attacks should be
detected but it is unrealistic to reliably correct them. Even
very pinpointed attacks, like laser fault injections and EM
injections which aim at flipping one particular logic gate out-
put or memory cell, typically start with a tuning phase when
(detectable but uncorrectable) multi-bit errors are produced
[25].

If an attack is run with a restricted fault model, like single-
byte faults in Tunstall’s attack on AES [31], the error can
be corrected by the RK code with single-error correction
capability (distance 3 or larger). Since the correction would
happenwithin the circuit, the attackerwould observe no fault-
affected ciphertext and therefore would not be able to mount
the attack. Another class of attacks where the correction is
very useful from the defender’s point of view is statistical
impossible fault analysis (SIFA) [7]. In SIFA, the secret infor-
mation is leaked by the observation whether an injected fault
had an effect or not; this leakage is prevented by correcting
the resulting error.

In this paper,we employq-aryRKcodeswhich can correct
a single erroneous symbol(nibble/byte) and detect with high
probability any number of bit flips. Therefore, the proposed
architecture can protect the circuit against any fault injection
technique.

2.2 Security-oriented codes

Given a vector space Fn
q of dimension n over Fq = GF(q), a

code C is a subset of size |C|. A code C is said to be systematic
if every codeword is of the form c = (x, w(x))where x ∈ F

k
q

is the information portion, and w ∈ F
r
q is the redundancy

portion.
Let c ∈ C be the correct codeword and denote by ĉ the

distorted word. It is convenient to model a fault that distorts
a symbols as an additive error e = ĉ−c of Hamming weight
a; a is called the error multiplicity. In this paper, an error
is represented as a q-ary vector e = (ex , ew) ∈ F

n
q where

ex is the error in the information portion and ew is the error
in the redundancy portion. In addition, the multiplicity of a

123

324 Journal of Cryptographic Engineering (2020) 10:321–336

malicious error is considered here as arbitrary, i.e., 1 ≤ a ≤
n.

The effectiveness of a reliability-oriented code is usually
measured in terms of its decoding error, that is the proba-
bility the decoder will fail to correctly decode a tampered
word. Since the most probable error has the lowest Ham-
ming weight, these codes are evaluated using the minimum
distance d which is the minimal Hamming distance between
all codewords. A security-oriented code is evaluated using
the maximal error masking probability, Q, which is the
maximum probability that any nonzero error e will map a
codeword to another codeword in C.

In this sense, when codes are analyzed for reliability, the
average case is considered, whereas the analysis for security
is based on the worst case scenario.

The upper bound on the minimum distance d of a code is
linearly dependent on the number of redundancy symbols,
d ≤ r + 1, whereas the lower bound on Q is exponentially
dependent on the number of redundancy symbols.

A security-oriented code can have a deterministic encoder
[1,13,14,22] or incorporate randomness [6,23,33]; the latter
includes the non-malleable codes [8]. The error detection
capabilities of codes with random-encoding depend on the
entropy of the random number generator (RNG). However,
the hardware implementation of a true RNG is expensive and
difficult, and the RNG must be shielded from fault injection
attacks which could neutralize it. For this reason, codes with
deterministic encoding are an attractive alternative. In fact,
when properly designed, such codes can be more effective
than randomcodes of the same rate [16]. Thiswork dealswith
robust codes, which are codes with deterministic encoding.

Notice that an additive error e is masked by a codeword
c ∈ C if c ⊕ e ∈ C. Similarly, an error e is detected by a
codeword c ∈ C if c ⊕ e /∈ C. This leads to the following
definition of the error masking probability:

Definition 1 The error-masking probability of an error e,
Q(e), is the probability that an error e will be masked by
the codewords of C. That is,

Q(e) =
∑

c∈C
Pr(c)δC (c ⊕ e)

where Pr(c) is the probability of the codeword c and δC is
the characteristic function of C,

δC (z) =
{
0 if z /∈ C
1 if z ∈ C

In the case of uniformly distributed codewords, it is con-
venient to represent the error masking probability in terms
of the autocorrelation function of the code. That is, Q(e) =

R(e)/qk where

R(e) = |{c | c, c + e ∈ C}| =
∑

z∈Fnq
δC (z)δC (z ⊕ e).

For some codes, the set of codewords that mask an error
form a linear subspace. Thus a good code will be a union
of small disjoint subspaces. On the relationship between the
autocorrelation function and the representation of a code as
a union of disjoint subspaces see [17].

The detection kernel of a code, denoted Kd , contains all
the error vectors that are never detected by the codewords of
C, i.e., all the errors that are masked with probability Q(e) =
1.

Definition 2 (Robust codes) A code C is called robust if any
nonzero error can be detected with some probability greater
than zero. Meaning, Q(e) < 1 for any nonzero error e, or
alternatively, Kd = {0}.
Definition 3 (Partially Robust codes) A code C is partially
robust if it has a detection kernel of size 1 < |Kd | < |C|.

Linear codes have a detection kernel Kd = C, and there-
fore linear codes are not robust and cannot be used for
security.

There are two known basic high rate binary systematic
robust codes: the Quadratic Systematic (QS) code [13], and
the Punctured Cubic (PC) code [1,22]. All other systematic
robust codes use these codes as base codes. While the QS
code is an optimum robust code when k = 2sr and q is any
power of a prime number, and the PC code is a close to opti-
mum robust code for any 1 < r ≤ k and q is a power of
two. Another high rate robust code is the Compact Protec-
tion Code (CPC) which exists for any set of parameters and
has low implementation cost [28]. However, neither of these
codes have correction capabilities. Some minimum distance
partially robust codes exist, for example the Vasil’ev code
[32], the Phelps code [24], the one switching code, and the
generalized cubic code [9,21]. While these codes provide the
wanted correction capabilities, they are not robust.

In a recent paper Rabii and Keren introduced a construc-
tion for a new class of nonlinear robust q-ary codes with
q = 2m and error correction capability [26]. The code is built
upon systematic linear codes [n, k, d]q where the n−k redun-
dant symbols that were originally allocated to increase the
minimum distance of the code, are modified to provide both
correction capability and robustness. The following (gener-
alized) definition of the RK code is taken from [27].

Construction 1 (Rabii–Keren code) Let f : F2m �→ F2m

be an Almost Perfect Nonlinear (APN) bijective function,
and let G = (I |A) be a generator matrix of a systematic
linear q-ary code C with minimum distance dL where A =

123

Journal of Cryptographic Engineering (2020) 10:321–336 325

{ai j }k,ri, j=1, ai j ∈ F2m . Let x = (x1, x2, . . . , xk) where xi ∈
F2m for 1 ≤ i ≤ k. Code C̃ is defined as follows,

C̃ = {(x, w) : x ∈ F
k
2m ,

w = (w1, w2, . . . , wr) ∈ F
r
2m ,

w j =
k∑

i=1

ai j f (xi)}

To simplify the writing, when it is clear from the context,
for a vector v ∈ F

k
q we define

f (v) = (f (v1), f (v2), . . . , f (vk))

f −1(v) = (f −1(v1), f −1(v2), . . . , f −1(vk))

The robustness and the effectiveness of the RK code are
due to the high nonlinearity of f . For odd values ofm, the best
function to use is the cubic function, f (xi) = x3i , which is an
invertible APN function of (relatively) small implementation
cost [27]. However, as shown in [27], it is possible to use
other functions, for example f (xi) = x−1

i , with even values
ofm and to paywith a higher errormasking probability Q(e).
Namely, the errormasking probability of the codes is Q(e) ≤
2/q for odd values of m and 4/q for even m.

Rabii and Keren did not present encoding, decoding, and
error correction algorithms, and their code was not imple-
mented and tested in a realistic environment. This paper aims
to close this gap.

3 Detection and correction architecture for
Rabii–Keren codes

In this section we present a novel low-cost implementation
of error detection and correction architectures based on RK
codes. We start with codes of distance d = 3 and then gen-
eralize the decoder for codes with d > 3. We demonstrate
the effectiveness of these codes in correcting single erroneous
SBox’s output and detecting multi-erroneous SBox’s outputs
in Sect. 5.

3.1 Construction algorithm of systematic
Rabii–Keren codes

In order to use the RK construction, one has to construct
a systematic generator matrix for the corresponding linear
code. Algorithm 1 constructs a generator matrix based on
the check matrix of a shortened BCH code over an alphabet
of sizeq. Note that q = 16 for SBoxes that work on 4-bit
nibbles, and q = 256 for bytes.

Note that thematrix Horig,d defined in Step 8 of Algorithm
1 has elements from Fqm . Since Fqm and Fm

q are isomorphic,

Fig. 2 BCH check matrix Horig,3

an element αi in Horig,d can be represented as an m tuple
(ai,0, . . . ai,m−1). For example, the element αi in F162 corre-
sponds to a pair (ai,0, ai,1) in F2

16.
Consider, an (n = 19, |C| = 24·16, d = 3)16 Rabii–Keren

code for protecting 16 4-bit SBoxes (q = 16) by using
12 redundant bits; i.e., r = 3. The code is based on the
[19, 16, 3]16 shortened BCH code with distance d = 3. The
check matrix of the shortened BCH code, Horig,3, has two
rows; the first corresponds to first 19 powers of α0, and the
second to the powers of α1, here, α is a root of the primitive
polynomial π(x) = x2 + 11x + 5.

An equivalent representation of the check matrix Horig,3
overF16 is given in Fig. 2. In thismatrix, each element inF162
is represented by a pair in F16 defined with the polynomial
π(x) = x4 + x + 1. Note that the matrix has three rows (and
not four) because α0 = (1, 0) ∈ F

2
16.

Horig,3 =
⎛

⎝
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 11 5 9 3 1 5 0 13 7 3 3 8 11 6 11 4 6 15
0 7 11 2 2 1 3 4 3 9 4 10 7 2 12 4 7 0 1

⎞

⎠ ← α0

← α1

To simplify the implementation complexity, weworkwith
a systematic check matrix H3 = (A3, I). The matrix A3

used forRKconstructionwas obtained bymultiplying Horig,3

(Fig. 2) by H−1
r ,

A3 =
⎛

⎝
6 2 12 2 5 12 3 10 0 15 12 10 4 6 9 15
9 1 3 11 6 4 1 11 10 12 14 4 4 13 3 5
14 2 14 8 2 9 3 0 11 2 3 15 1 10 11 11

⎞

⎠ .

3.2 Detection and correction architecture for RK
codes of distance d = 3

The general process of error correction is the same for a
linear code and a nonlinear code. (The linear version can be
obtained by skipping nonlinear operations, in this case the
inversion.)

Let c = (x, w) be the correct codeword, and let z =
(zx , zw) = (x + ex , w + ew) be the word received by the
checker. The simplest RK decoder works in multiple steps:
See Fig. 3 (which can be considered a more detailed version
of “protected subsystem” in Fig. 1). First, it prepares the
received word for the BCH decoder by applying the inverse
function to the elements of zx . Namely, it generates the vector
y = (yx , yw) = (f −1(zx), zw). Then, it uses y to compute
the syndrome s = Hd · yT . Note that unlike in linear codes
the syndrome depends on both, the correct codeword and the
error vector:

123

326 Journal of Cryptographic Engineering (2020) 10:321–336

Fig. 3 Decoding process for a
Rabii–Keren nonlinear code
where f (x) = x−1

Algorithm 1 Construct A
1: Choose the size of the alphabet, q. (In this paper, q = 16 = 24.)
2: Choose the dimension of the code, k.
3: Choose the distance of the code, d. (d is assumed to be relatively small.)
4: Determine the root field using the rule: qm − 1 > k + (d − 1)m. We want to choose the minimal m that will uphold the condition. (In this paper

m = 2 was sufficient.)
5: Choose b the power of first root in the sequence of d − 1 consecutive roots of the generator polynomial. (Usually b = 1 is chosen for a simple

code; however, we found that by choosing b = 0 we could use a smaller number of redundancy symbols.)
6: Once d, b, q,m are determined, find r the degree of the generator polynomial.
7: Shorten the code by defining ñ = k + r given the r that we found.
8: Represent the shortened check matrix

Horig,d =

⎛

⎜⎜⎜⎝

1 αb · · · αb(k−1) αbk · · ·αb(ñ−1)

1 α(b+1) · · · α(b+1)(k−1) α(b+1)k · · ·α(b+1)(ñ−1)

.

.

.
.
.
.

.

.

.
.
.
.

1 α(b+d−2) · · · α(b+d−2)(k−1) α(b+d−2)k · · ·α(b+d−2)(ñ−1)

⎞

⎟⎟⎟⎠=(Hl |Hr) (1)

9: Compute the check matrix Hd = (Ad | I), where Ad = H−1
r Hl . Note that Hr is an invertible matrix since the code is cyclic.

s = (Ad , I)(f
−1(x + ex), f −1(x)AT

d + ew)T

s = ((f −1(x + ex) + f −1(x))AT
d + ew)T

Recall that an error is detected if the syndrome s is not zero.
To this end, the decoding process is simply to re-encode the
information portion x̂ = x + ex into ŵ, and compare it with
the redundant portion of the output vector z; i.e., compare the
q-ary vectors ŵ and w + ew. Each syndrome is associated
with an error vector, ê = (êx , êw), and the decoded ẑ is

ẑ = (f (f −1(zx) + êx), zw + êw).

If the distance between the received word z and the correct
word c is less than or equal to the correction capability of
the code, the obtained ẑ is in fact the desired codeword c. In
other words, if the number of distorted symbols is less than
or equal to the correction capability of the code, the decoder
will work as desired.

More efficient error location and correction procedure
is presented in Algorithm 2. Here too, the decoding starts
by computing the syndrome associated with the intermedi-
ate word y (Algorithm 2, line 1) Next, the decoder checks
whether the error is correctable (Algorithm 2, lines 2–4);
Denote by s j the first value in s that is not equal to zero and
by gi the first value in hi that is not equal to zero. Calculate
ŝ = s/s j and ĥi = hi/gi . ŝ = ĥi and therefore s = ei ĥi/gi .
Overall we can find the value of ei = s j gi and then correct

Algorithm 2 Correct single error
1: Calculate syndrome s = Hd yT .
2: Normalize the first (m + 1) symbols of the syndrome ŝ =

(s1/s j , s2/s j , ..., sm+1/s j)T .
3: Find normalized syndrome in ECLT and determine gi and i (see,

e.g., Tables 1 and 2).
4: If found, correct the error at position i ŷi = yi − s j gi .
5: Update the syndrome s̃ = s − s j gi hi .
6: If the syndrome is equal to zero, there was a single error.
7: Else, more than one error occurred.

the single error at position i :

ŷl =
{
yl − ei l = i
yl l �= i

.

We can easily find s j when calculating the original syndrome
and gi and i can be stored in an error-coefficient along with
the possible corresponding ĥi values. The error-coefficient
and location table (ECLT) is a table of size n × (r + 2)
where each row contains a different ĥi of length r , the column
indicator i , and the factor gi . Finally, the decoder verifies that
the error has been corrected (lines 5–6).

For example, the table for the (19, 264, 3)16 Rabii–Keren
code (described by the above matrix A3) is shown in Table
1.

Note that the original decoder (based on the original BCH
check matrix Horig,3 (Fig.2)) requires a table of (q −1) ·n =

123

Journal of Cryptographic Engineering (2020) 10:321–336 327

Fig. 4 Low-complexity single error correction architecture based on ECLT

Table 1 ECLT for RK code with parameters n = 19, k = 16, d = 3

ĥi i gi ĥi i gi

1 10 12 0 7 1 5 8 11 12

1 9 1 1 9 1 1 13 12 13

1 13 6 2 10 1 5 3 13 7

1 12 4 3 9 1 6 5 14 2

1 15 5 4 11 1 14 7 15 8

1 14 5 5 10 1 0 0 16 1

1 14 1 6 14 0 1 0 17 1

1 13 0 7 12 0 0 1 18 1

0 1 13 8 12

1 10 3 9 8

1 6 13 10 10

15 ·19 entries, each with a syndrome vector (3 q-ary symbols
or 12 bits), position (5 bits), and the value of the error (4 bits).
This amounts to 15 · 19 · 21 bits. In contrast, the proposed
architecture in Fig. 4 employs a table with 19 entries of 18
bits each.

Clearly, when protecting a full scale cipher with 8-bit
SBox, the size of the table can be reduced from 255n to
n entries.

The following example demonstrates how the decoding
works for the (19, 264, 3)16 RK code described above:

Example 1 Take, for example, the predicted word c whose
information portion is

x = [9, 11, 9, 3, 11, 14, 2, 2, 12, 7, 1, 13, 1, 9, 3, 5]

and the received word

zx = x + ex = [9, 11, 9, 3, 11, 3, 2, 2, 12, 7, 1, 13, 1, 9, 3, 5]

Using Algorithm 2, we can detect and correct one error:

1. After encoding zx using the RK code, the redundancy is
zw = [0, 8, 10] and the syndrome is calculated as s =
[3; 1; 15].

2. Normalize the syndrome where s j = 3. Using calcula-
tions over F16, obtain ŝ = ĥ = [1; 14; 5].

3. Using the ECLT, we find that i = 5, which corresponds
to an error in the sixth symbol of the information portion,
and gi = 10.

4. We can now calculate ei = s j gi = 13 and the corre-
sponding error vector

e = [0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

As can be seen in Fig. 4, in order to find the corrected
codeword, emust be subtracted from y = (f −1(zx), zw)

and the result inverted once again.

y = [2, 5, 2, 14, 5, 14, 9, 9, 10, 6,
1, 4, 1, 2, 14, 11, 0, 15, 12]

ŷ = y − e

ŷ = [2, 5, 2, 14, 5, 3, 9, 9, 10, 6,
1, 4, 1, 2, 14, 11, 0, 15, 12]

Once inverted, we do in fact receive the predicted code-
word

ẑ = c

ẑ = [9, 11, 9, 3, 11, 14, 2, 2, 12,
7, 1, 13, 1, 9, 3, 5, 0, 8, 10]

The updated syndrome is then s̃ = s − s j gi hi =
(3, 1, 15)T − 13 · (12, 4, 9)T = 0. We have successfully
corrected the single error; the flag “corrected” will be set to
1.

3.3 Detection and correction architecture for RK
codes of distance d > 3

Small-scale natural faults or some precise faults injected by
a sophisticated attacker manifest themselves as a single erro-
neous symbol. However, there is an advantage in protecting
the system with a code of distance d > 3. A code of distance

123

328 Journal of Cryptographic Engineering (2020) 10:321–336

d > 3 allows the correction of a single erroneous symbol
(i.e., SBox output) and avoids a miscorrection of up to d − 2
erroneous symbols.

In this section, we show how the idea presented in the
previous section can be generalized to codes with d > 3. We
show that instead of using a table with (q − 1)n entries each
of size

(1 + (d − 2)m) log2 q︸ ︷︷ ︸
syndrome

+ log2(n)︸ ︷︷ ︸
error−location

+ log2 q︸ ︷︷ ︸
error−value

bits, one can use a table with n entries each of size (m +
2) log2 q + log2(n).

Let us start with an example before the correctness of this
statement is proven.

Example 2 Consider a (23, 216, 5)16 Rabii–Keren code for
SBoxes with q = 16 and distance d = 5. The check matrix
of the code Horig,5 (Fig.5) is the following:

The corresponding matrix A5 is

AT
5 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 12 0 15 0 14 13 6 15 12 3 9 15 10 0 15
11 12 12 3 15 8 8 2 5 2 2 15 10 13 10 3
5 2 12 10 3 12 4 5 4 12 13 9 9 14 13 12
10 4 2 0 10 5 7 13 9 5 1 8 5 1 14 1
7 8 4 9 0 6 0 6 6 11 12 11 3 6 1 5
15 15 8 14 9 5 1 4 12 14 9 2 1 15 6 11
12 0 15 0 14 13 6 15 12 3 9 15 10 0 15 14

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

It follows from the definition of the BCH code that the
3 × (k + 3) top left submatrix of Horig,5 (Fig. 5) is identical
to Horig,3 (Fig.2), whereas A3 and A5 are different. Never-
theless, the first three (1 + m) rows of A5 have the property
that any two or less columns are linearly independent:

Theorem 1 The first (1 + m) symbols of the syndrome s,
s[0:m] ∈ F

m+1
q , uniquely define the location of the erroneous

symbol and its value.

Proof To prove the theorem, it is sufficient to show that, for
the linear code, for any two errors e1 and e2 of Hamming
weight one, the corresponding partial syndromes s1,[0:m] and
s2,[0:m] are distinct.

Recall that the code is of distance d > 3, thus the syn-
dromes s1 = (Ad |I)eT1 and s2 = (Ad |I)eT2 ∈ F

1+m(d−2)
q are

distinct. Assume (by contradiction) that s1,[0:m] = s2,[0:m].
Then,

(Ad |I)(e1 − e2)
T = (0m+1,�s)T

where �s ∈ F
m(d−3)
q . Since e1, e2 consist of elements in Fq ,

and Fq ⊂ F
m
q , the last equality can be written over Fqm as

follows:

Horig,d(e1 − e2)
T − Hr (02, �̃s)T = 0

Table 2 ECLT for RK code with parameters n = 23, k = 16, d = 5

ĥi i gi ĥi i gi

1 11 5 0 1 1 15 10 10 14

1 1 7 1 10 1 13 1 11 2

0 1 1 2 10 1 15 4 12 8

1 11 15 3 8 1 3 4 13 12

0 1 11 4 8 0 1 3 14 12

1 11 7 5 3 1 11 10 15 8

1 6 3 6 4 1 0 0 16 1

1 14 8 7 7 0 1 0 17 1

1 14 6 8 8 0 0 1 18 1

1 7 1 9 10

where �̃s is a vector of length d−2 overFqm . In other words,
we get that the sum of at most 2+ (d−3) columns of Horig,d

are linearly dependent. This contradicts the fact that Horig,d

defines a code of distance d.
�
For example, the columns in the first 1 + m = 3 rows

of A5 are all distinct, moreover, one is not a multiple of
the other. Hence the location of a single erroneous nibble is
uniquely defined by ŝ[0:2]. Table 2 contains the location and
error coefficient value for the correctable syndromes.

Note that use ofRabii–Keren code as a nonlinear error cor-
recting code would require a table with 152 ·(232

)+15 ·(231
) =

57, 270 entries, each of 7 ·4+2(5+4)) = 46 bits (2,634,420
bits in total). In contrast, the architecture presented in Fig. 4
requires a table with 23 entries each of 3 · 4 + (5 + 4) = 21
bits (483 bits in total).

The following example demonstrates the decoding tech-
nique for a (23, 264, 5)16 Rabii–Keren code using the matrix
A5 and the shortened ECLT as described above:

Example 3 Take the predictedword cwhose information por-
tion is

x = [5, 5, 0, 2, 13, 12, 1, 2, 10, 12, 11, 13, 14, 13, 12, 4]

and the received word

zx = [5, 5, 0, 6, 13, 12, 1, 2, 10, 12, 11, 13, 14, 13, 12, 4]

Using Algorithm 2, we can detect and correct one error as
follows:

1. After encoding zx using the RK code, the redundancy is
w = [15, 14, 4, 11, 3, 13, 8] and the syndrome is calcu-
lated as s = [5, 1, 6, 0, 7, 11, 0].

2. Normalize the first m + 1 = 3 symbols of the syndrome
where s j = 5. Using calculations over F16, obtain ŝ =
ĥ = [1; 11; 15].

123

Journal of Cryptographic Engineering (2020) 10:321–336 329

Fig. 5 BCH check matrix
Horig,5

3. Using the ECLT,we find that i = 3, which corresponds to
an error in the fourth symbol of the information portion,
and gi = 8.

4. We can now calculate ei = s j gi = 14 and the corre-
sponding error vector

e = [0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Again, e must be subtracted from y and the result must
be inverted once again.

y = [11, 11, 0, 7, 4, 10, 1, 9, 12, 10, 5, 4,
3, 4, 10, 13, 8, 3, 13, 5, 14, 4, 15]

ŷ = [11, 11, 0, 9, 4, 10, 1, 9, 12, 10, 5, 4,
3, 4, 10, 13, 8, 3, 13, 5, 14, 4, 15]

Once inverted, we do in fact receive the predicted code-
word

ẑ = [5, 5, 0, 2, 13, 12, 1, 2, 10, 12, 11,
13, 14, 13, 12, 4, 15, 14, 4, 11, 3]

We have successfully corrected the single error.

4 Inner–outer code-based architecture

In this section we introduce four classes of fault events
and present an inner–outer code-based architecture that can
reduce the probability that a critical fault event will occur.

We consider architecturesworking on cipherswhere infor-
mation is organized in 4-bit nibbles (like LED or PRESENT)
or in 8-bit bytes (like AES). In the former case, one nibble
is naturally mapped to a symbol over F16 used in the Rabii–
Keren code construction. For 8-bit ciphers, we consider two
architectures. In the first architecture, each byte corresponds
to two 4-bit symbols (32 symbols for the complete 128-bit
state in the case of AES); note that an error in a single byte
may affect two (neighbouring) symbols. The second architec-
ture uses two decoders, one over 16 “upper” symbols, where
each symbol stands for four most significant bits of a state
byte, and one over 16 remaining “lower” symbols.

To assess the capability of an architecture to detect and cor-
rect faults, we introduce the following classification of fault
events.A fault event is one circuit operation (encryption)with
a specific input (plaintext) whose output (ciphertext) devi-
ated from the fault-free value. We deliberately avoid using
the term “fault” or “error” to avoid confusion with scenarios
when multiple inputs are used and a fault detected by one of
the inputs is counted as detected. This view is appropriate for
permanent faults, but fault events considered here are tran-
sient. Each of the fault events is attributed to the following
categories (Fig. 7).

– Class C1: Undetected by the RK code Faults which were
undetected, i.e., resulted in the all-zero syndrome. Fault
events of class C1 occur when an error maps a codeword
onto another codeword.

– Class C2: Single errors Faults which affected only one
symbol and could be corrected to the original code-
word. Note that our experimental setup keeps the fault-
unaffected ciphertext for reference and thus can attribute
the fault precisely; an actual device under attack would
not know the multiplicity of the injected attack. Fault
events of class C2 occur when the error shifts a code-
word to a word within a Hamming ball of radius t around
it where t is the maximal number of erroneous symbols
that the decoder is allowed to change, t ≤ (d − 1)/2.

– ClassC3:Recognizedas suspiciousFaultswhich resulted
in multi-symbol errors and where the correction proce-
dure stopped since it did not find a fitting entry in the
ECLT.

– Class C4: Erroneous correction Faults which were cor-
rected but into a different codeword than the original
one. This can happen if, e.g., for distance-3 code, an
error of multiplicity 2 transforms a codeword into a non-
codeword with distance 1 to a different codeword. Fault
events of class C4 happen when the error shifts a code-
word into any Hamming ball whose center is a different
codeword.

Fault events from classes C1 and C4 are potentially criti-
cal, as they are associatedwith errors not properly handled by
theRKcode. The probability of a critical event is aboutVtq−r

whereVt is the size of aq-aryHamming ball of radius t . Thus,
it is possible to decrease the probability of critical events by
using a code with correction ability t smaller than (d − 1)/2

123

330 Journal of Cryptographic Engineering (2020) 10:321–336

Table 3 Two decoders-fault classification

(as we did in Sect. 3.3). Although this solution costs in code
rate, and hence additional area overhead, the probability that
a critical event will occur is significantly reduced. This can
be followed by considering the percentages of unrecognized
fault events for distances 3 and 5 in Table 4.

Another option is to use a system-level fault manager that
uses an error detecting robust code to validate the decoders
decisions. In our case, we use CPC as the outer robust code
and the RK code as an inner code (see Fig. 6). The outer
CPC predictor adds ro redundant bits to the k = kq · m
output bits of the original component. Since a CPC code
exists for every word length and security parameter Q [28],
ro can take any value, it is not restricted to multiples of
m. For the simplicity of computation, we used as a ground
code a binary Punctured Cubic code whose error masking
probability equals Q̄ pc = 21−ro . The RK-based predictor
generates rq redundant symbols which together with the
kq + ro/ log2(q) symbols form an RK codeword.

In a configuration in which two decoders work in parallel
on twodisjoint subsets of the output bits, the probability of the
four fault events depends on the outcome of both decoders.
Note that theremaybe a correlation between the decoders due
to the nonlinearity of the SBox function. In what follows, we
take into account this correlation by classifying a fault event
according to Table 3. For example, if one decoder masks the
error (C1) and the second corrects (C2), then overall the error
is miscorrected (C4).

Recall that fault events from class C2 are valid corrections
which need no further handling, and fault events from class
C3 are already recognized as erroneous before the system-
level fault manager has been invoked. Thus the role of the
CPC-based checker is to detect erroneous corrections and
RK undetected errors. The fault events from the classes C1
and C4 are therefore subdivided into classes S1 and S2 based
on the outcome of this validation:

– Class S1: Recognized by the outer code Seemingly
successful but erroneous corrections which created an
inconsistency when recalculating the outer code. Ta

bl
e
4

E
xp

er
im

en
ta
lr
es
ul
ts
on

er
ro
r
de
te
ct
io
n
an
d
co
rr
ec
tio

n

A
rc
hi
te
ct
ur
e

Sy
m
bo

ls
B
its

Fa
ul
te
ve
nt
s

C
ir
cu
it

d
#D

ec
k q

r q
k

r
N
on

lin
ea
r
ch

ec
ke
r

Sy
st
em

-l
ev
el
fa
ul
t
m
an

ag
er

C
la
ss

C
1

C
la
ss

C
2

C
la
ss

C
3

C
la
ss

C
4

C
la
ss

S1
C
la
ss

S2

U
nd

et
ec
te
d
by

th
e

R
K
co
de

Si
ng
le

er
ro
rs

(c
or
re
ct
ed

by
R
K

co
de
)

R
ec
og

ni
ze
d

as
su
sp
ic
io
us

(b
y

R
K
co
de
)

E
rr
on
eo
us

co
r-

re
ct
io
ns

by
R
K

co
de

R
ec
og

ni
ze
d

as
er
ro
ne
ou
s

by
C
PC

ou
te
r
co
de

U
nr
ec
og
ni
se
d

as
er
ro
ne
ou
s

by
C
PC

ou
te
r
co
de

Sm
al
l-
sc
.

3
1

16
3

64
12

0.
01
79

5.
93
37

87
.4
10
1

6.
63
83

62
46
3
(9
3.
8%

)
40
99

(6
.2
%
)

A
E
S

5
1

16
7

64
28

0
5.
93
37

94
.0
66
2

0.
00
01

1
(1
00
%
)

0
(0
%
)

A
E
S

3
1

32
3

12
8

12
0.
02
39

0.
00
33

86
.7
27
2

13
.2
45
6

12
43
47

(9
3.
7%

)
83
48

(6
.3
%
)

3
2

32
6

12
8

24
0.
00
67

0.
00
33

88
.1
00
6

11
.8
89
4

11
75
40

(9
8.
8%

)
14
21

(1
.2
%
)

5
2

32
14

12
8

56
0

0.
00
33

99
.9
95
6

0.
00
11

11
(1
00
%
)

0
(0
%
)

L
E
D
-6
4

3
1

16
3

64
12

0.
02
34

0.
00
15

92
.6
68
2

7.
30
69

68
92
3
(9
4.
0%

)
43
80

(6
.0
%
)

5
1

16
7

64
28

0
0.
00
15

99
.9
98
5

0
0

0

Pr
es
en
t

3
1

16
3

64
12

0.
02
29

0
92
.7
01
8

7.
27
53

68
42
7
(9
3.
8%

)
45
55

(6
.2
%
)

5
1

16
7

64
28

0
0

10
0

0
0

0

123

Journal of Cryptographic Engineering (2020) 10:321–336 331

Fig. 6 Code-based architecture with concatenation of two robust codes: inner RK code and outer CPC

Fig. 7 Classification of fault
event effects at code and at
system level

– Class S2: Unrecognized by the outer code Seemingly
successful but erroneous corrections not noticed by the
system.

Figure 7 visualizes the four classes C1–C4 and their relation-
ship to system-level classes S1 and S2.

In the next section, we discuss the fault-injection exper-
iments into actual cryptographic circuits protected by the
inner–outer code-based architecture from this section and
the distribution of the observed effects among classes C1,
C2, C3, C4, S1 and S2.

5 Experimental results

We consider error detection and correction architectures for
four block ciphers: small-scale AES (with state consisting of
4 × 4 four-bit nibbles instead of bytes); regular AES; LED-
64; and PRESENT. The state of AES is organized in bytes,
and it incorporates 8-bit SBoxes, whereas all other consid-
ered ciphers have nibble-based states and 4-bit SBoxes. We
implemented Rabii–Keren (RK) codes of distance 3, and 5
over F16, that is, one symbol corresponding to four bits. For
all ciphers except AES, one symbol corresponds to one ele-
ment. ForAES,we consider a one-decoder and a two-decoder
architecture, as explained in the beginning of Sect. 4.

The first seven columns of Table 4 summarize the con-
sidered architectures. Its first three columns show the base
circuit, distance d of the RK code and whether one or two
decoders are used (the latter only happens for full-scale
AES as the only byte-oriented cipher). The subsequent four
columns show the number of information and redundant
data of the RK code, first expressed in the numbers of (4-
bit) symbols and then in bits. Note that the numbers for the
two-decoder architecture are twice the numbers for a single
decoder. The check-bit for the outer code is not included in
the table.

5.1 Fault injectionmethodology

For the sake of clarity, we distinguish between faults and
errors. Faults are injected into the circuitry,whereas errors are
defined on the outputs of the circuit (or of its protected part).
Therefore, timing-based fault injections used here can result
in errors of different multiplicity, determined by two factors.
First, the manipulated (faster-than-nominal) clock runs in
parallel through the entire fault-injection campaign, resulting
in different and unpredictable deviations between the nomi-
nal and the manipulated clock which accumulate over time.
When the clock is switched fromnominal tomanipulated, the
next clock edge can occur very quickly, resulting in a large
number of failing paths within the circuit and therefore high-

123

332 Journal of Cryptographic Engineering (2020) 10:321–336

(a) Induced bit flip characterisation - AES 444 (b) Induced bit flip characterisation - AES 448

(c) Induced bit flip characterisation - LED64 (d) Induced bit flip characterisation - PRESENT

Fig. 8 Induced bit flip characterization

multiplicity errors on outputs, or it can happen only slightly
before the regular clock edge, such that only one critical path
to a circuit output fails. Second, the fault effect propagates
through the (unmanipulated) rounds of the cipher after the
fault injection, and the diffusion property of the cipher can
lead to a higher multiplicity of the error on the circuit’s out-
puts.

We ran fault-injection experiments on the mentioned
architectures synthesized on Spartan-6 LX75 FPGA on
Sakura-G board. We created a faster-than-nominal clock
using the FPGA-level digital clock manager and switched to
that clock during a specific cycle of encryption. This resulted
in a wide distribution of errors of different multiplicity and is
a good model of a malicious attack using a rather imprecise
equipment. For each architecture, we collected and charac-
terized 1,000,000 fault events.

5.2 Induced error statistics

Fault events cause erroneous output. In Sect. 2.2, we mod-
eled the corrupted output as the sum of a fault free circuit
output and a binary error vector. Namely, we assumed that
each output bit can be represented as a correct bit that passed
through a symmetric binary channel with a crossover proba-
bility p = p0→1 = p1→0. The experimental results reported
in Fig. 8 confirm this assumption. Moreover, it indicates that
a fault in the circuit can be modeled as an additive error vec-

tor over the alphabet of the code Fq . The figure shows the
distribution of the p0→1 and p1→0 crossover probabilities
for the 64 and 128 bit ciphers. It is clear from the figure the
p0→1 ≈ p1→0.

In all tested ciphers, the majority of the bits have a
crossover probability p ≈ 0.25. Therefore, we expect that
on average there will be k · p = 16 or 32 bit flips in the infor-
mation part. Recall that in a q-ary code the number of errors
is counted in terms of erroneous q-ary symbols (and not in
terms of bit errors). Figure 9 shows the probability that the
j’th q-ary symbol is erroneous, and Fig. 10 shows the distri-
bution of the error multiplicity. It is clear from the figure that
some symbols are more vulnerable than others (this depends
on the architecture of the circuit, to the delays of specific
structures on an FPGA and on the particular mapping chosen
by the FPGA synthesis tool). The average error multiplicity
is 9.14 for small-scale AES, 13.32 for full-scale AES, 13.60
for LED-64 and 11.25 for PRESENT. This number is sig-
nificantly larger than the error correction capability of the
code, and therefore this histogram validates our assumption
that the multiplicity of the injected error can be considered
as arbitrary.

5.3 Classification of fault events

The distribution of the 1,000,000 fault events to four classes
C1–C4 is shown in the next four columns of Table 4. The

123

Journal of Cryptographic Engineering (2020) 10:321–336 333

Fig. 9 Erroneous symbol location

(a) Error multiplicity - AES 444 (b) Error multiplicity - AES 448

(c) Error multiplicity - LED64 (d) Error multiplicity - PRESENT

Fig. 10 Error multiplicities

final two columns of Table 4 present the fault events from
classes S1 and S2. The events are classified with respect to
indications provided by a fault manager based on a relatively
weak outer code—a CPC with ro = 4. Note that the number
of S1 and S2 events sum up to the sum of classes C1 and
C4, and that the percentages relate to this sum. For example,
the number of fault events for the distance-3 architecture for
small-scale AES that need system-level handling is 179 (C1)
+ 66,383 (C4) = 66,562; out of these, 62,463 or 93.8% are

detected by the outer code (S1) and the remaining 4099 or
6.2% are not (S2).

From the application point of view, the results indicate
the suitability ofRK-based architectures formixed detection-
correction architectures. In particular, using a codewith some
“reserves” in terms of detection capability (here: distance-5
code) results in no undetected fault events and no unrecog-
nized erroneous corrections. This means that the architecture

123

334 Journal of Cryptographic Engineering (2020) 10:321–336

Table 5 The probability of class
S2 event with different outer
CPCs

Circuit d #Dec kq rq k r ro = 4 ro = 8 ro = 12 ro = 16

Small-sc. 3 1 16 3 64 12 0.4099% 0.0246% 0.0017% 0.0001%

AES 5 1 16 7 64 28 0% 0% 0% 0%

AES 3 1 32 3 128 12 0.8348% 0.0539% 0.0035% 0.0002%

3 2 32 6 128 24 0.1421% 0.0085% 0.0004% 0.0001%

5 2 32 14 128 56 0% 0% 0% 0%

LED-64 3 1 16 3 64 12 0.4380% 0.0288% 0.0024% 0.0001%

5 1 16 7 64 28 0% 0% 0% 0%

Present 3 1 16 3 64 12 0.4555% 0.0290% 0.0021% 0.0001%

5 1 16 7 64 28 0% 0% 0% 0%

Table 6 Size comparison in numbers of configurable logic blocks (CLBs)

Cipher Unprot. round RK (d = 3) BCH (d = 3) RK (d = 5) BCH (d = 5) TMR

Small-scale AES 37 202 169 328 267 108

AES (1 decoder) 173 388 392 −− −− 421

AES (2 decoders) 173 465 419 572 462 421

LED-64 39 221 213 257 248 133

Present 23 165 148 240 243 57

Fig. 11 Percentage of S2 fault events in PRESENT for different CPC
sizes

can correct low-magnitude disturbances, i.e., single-symbol
errors, without much risk of missing attempted attacks.

5.4 Critical fault events

The decision of the RK encoder are validated by a system-
level fault manager. Table 5 shows the performance of a
system level fault manager that employs a CPC as an outer
code (and doesn’t use additional system level information
such as consistency checks, sensors’ indications). Four CPCs
with ro = 4, 8, 12 and 16 redundant bits are considered.
From Table 5, it can be seen that the vast majority of fault
events in potentially critical classes C1 and C4 are handled
successfully on the system level and are included in class
S1. If distance-3 inner RK codes are used, less than 1% of
fault events go undetected (class S2) just by adding 4 redun-
dant CPC bits. Figure 11 shows that this number decreases

Table 7 Comparison between the robust RK code and the linear BCH
code [10]

Cipher Code #Bits Undetected faults

Distance k r Linear RK

Small scale 3 64 12 176 179

AES 5 64 28 0 0

Full scale 3 128 12 234 239

AES 5 128 28 0 0

LED 64 3 64 12 239 234

5 64 28 0 0

Present 3 64 12 231 229

5 64 28 0 0

exponentially with ro. In our experiments, S2 events never
occurred for distance-5 inner RK codes.

Even for distance-3 codes, one can assume that, prior to an
unnoticed fault, the adversary will have to inject a large num-
ber of detected faults, such that the circuit can go into state of
alert and, e.g., replace the secret key. The rather low number
of successful corrections (single errors in Table 4) is just the
number of single-symbol errors in the fault injection experi-
ment. The code guarantees that every single error that shows
up will be successfully corrected; this also eliminates the
threat of precise single-nibble or single-byte fault injections
[11,31]. Themajority of uncorrectable faults are reliably rec-
ognized by either the RK code directly or by the outer code.
For distance-5 code, the number of erroneous corrections is

123

Journal of Cryptographic Engineering (2020) 10:321–336 335

extremely small (between 0 and 11 out of 1000,000), and all
of them are identified by the outer code.

5.5 Implementation cost

Table 6 shows a comparison of the size of our architec-
ture, a purely linear BCH architecture and a triple modular
redundant (TMR) architecture code in numbers of needed
FPGA configurable logic blocks (CLB). It can be noticed
that the robustness, and thus the increase in security, of the
RK architecture comes at a low cost compared to the linear
(and therefore non-robust) BCH implementation (which also
used the ECLT-based approach). The highest increase due to
inversions introduced by the RK code is 24% increase; in one
case there is even a small decrease due to optimizations dur-
ing FPGA synthesis. The cost of our architectures exceeds
TMR for small basic ciphers, as some required circuitry is
cipher-independent. Note, however, that TMR can be inter-
preted as repetition code and is not robust (the attacker can
simply apply the same error to all copies), and therefore its
security is inherentlyworse comparedwith a robust RK code.
In the case of theAES, the number of CLBs are similar which
further encourages the use of our architecture.

While the detection and correction performance of the
architecture is extremely attractive, the hardware cost of
the solution based on advanced nonlinear codes is a major
limiting factor. For this reason, the ECLT-based approach
presented here is an important step towards making these
architectures practical. Finally, it is important to note that the
used q-ary codes demand more complex operations (multi-
plications and the inversions) than binary codes. However, it
turns out that binary codes with comparable detection and
correction properties need considerably more redundancy
bits. For example, our distance-5 code over F16 requires
r = 56 redundancy bits for k = 128 data bits, whereas
a binary BCH code with the same correction capability
(d ≥ 2 · 8 + 1) necessitates r = 112 redundancy bits for
the same k. Moreover, the decoding is more complex since
the ECLT technique from this paper is not applicable and the
Berlekamp–Massey algorithm must be used instead. Note
that this algorithm cannot be performed in a single cycle, so
our higher expenditures in hardware complexity are offset by
execution time savings.

5.6 Comparison with conventional codes

A comparison between the performances of the RK code and
the corresponding linear BCHcodewith the same parameters
is given inTable 7. The table gives the number of faults (out of
1,000,000 randomly generated faults) that were not detected.
Both codes have excellent detection performance and, con-
sistent with [4], there are minimal fluctuations for distance-3
codes.Note that this finding applies to the simulated average-

case scenario, namely a large number of random faults of
arbitrary multiplicity. In contrast, the advantage of a robust
code refers to the worst-case scenario, where the attacker
can strategically inject the error such as to stay undetected.
In the comparison of Table 7, the RK code can withstand
attacks in this worst-case scenario while the linear code can-
not, whereas the average-case performance of both codes is
quite similar.

6 Conclusions

The precision of physical attacks is steadily improving,
giving a strategic attacker the potential to overcome detec-
tion strategies based on duplication, modular redundancy,
or conventional (linear) error-detecting codes. We presented
an architecture based on security-oriented nonlinear codes
which can detect and correct errors due to natural and mali-
cious causes. The architecture is based on previously intro-
duced Rabii–Keren codes and combines them with Compact
Protection Codes (CPCs) in an inner–outer code construc-
tion in order to increase detection performance.We discussed
the associated encoding, decoding, and error correction algo-
rithms. In particular, we proposed an improved technique for
detecting single errors using the Error Coefficient and Loca-
tion Table (ECLT), which reduces the correction effort by
several orders of magnitude and makes this approach feasi-
ble for practical use. Experimental results using a physical
fault injector on an FPGA show, for several cryptographic
circuits, that the architecture can reliably detect and correct
faults of arbitrary multiplicity, recognizing erroneous cor-
rections. The results reported in this paper relate to error
detection probabilities at the first cycle in which the fault
was injected. The probability that faults whose effect on the
system lasts more than one clock cycle will go undetected
are expected to decrease exponentially with the number of
cycles it lasts.

Acknowledgements OpenAccess funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

336 Journal of Cryptographic Engineering (2020) 10:321–336

References

1. Admaty, N., Litsyn, S., Keren, O.: Puncturing, expurgating and
expanding the q-ary BCH based robust codes. In: IEEEConvention
of the Electrical & Electronics Engineers in Israel, pp. 1–5 (2012).
https://doi.org/10.1109/EEEI.2012.6376995

2. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.:
The sorcerer’s apprentice guide to fault attacks. Proceedings of the
IEEE 94(2), 370–382 (2006)

3. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of elim-
inating errors in cryptographic computations. J. Cryptol. 14(2),
101–119 (2001)

4. Breier, J., He, W., Jap, D., Bhasin, S., Chattopadhyay, A.: Attacks
in reality: the limits of concurrent error detection codes against
laser fault injection. J. Hardw. Syst. Sec. (2017)

5. Cid, C., Murphy, S., Robshaw, M.J.B.: Small Scale Variants of the
AES, pp. 145–162. Springer, Berlin (2005)

6. Cramer, R., et al.: Detection of algebraic manipulation with
applications to robust secret sharing and fuzzy extractors. In:
EUROCRYPT, pp. 471–488. Springer, Berlin (2008)

7. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F.,
Primas, R.: SIFA: exploiting ineffective fault inductions on sym-
metric cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018(3), 547–572 (2018)

8. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes.
Cryptology ePrint Archive. Report 2009/608 (2009)

9. Engelberg, S., Keren, O.: A comment on the Karpovsky–Taubin
code. IEEE Transactions on Information Theory 57(12), 8007–
8010 (2011)

10. Gay, M., Karp, B., Keren, O., Polian, I.: Towards error-correcting
architectures for cryptographic circuits based on Rabii–Keren
codes. IEEE Embed. Syst. Lett. (2019). https://doi.org/10.1109/
LES.2019.2907232

11. Jovanovic, P., Kreuzer, M., Polian, I.: A fault attack on the LED
block cipher. In: COSADE, Lecture Notes in Computer Science,
vol. 7275, pp. 120–134. Springer (2012)

12. Karp, B., Gay, M., Keren, O., Polian, I.: Detection and correc-
tion of malicious and natural faults in cryptographic modules. In:
Batina, L., Kühne, U., Mentens, N. (eds.) PROOFS 2018, Kalpa
Publications in Computing, vol. 7, pp. 68–82. EasyChair (2018)

13. Karpovsky, M., Kulikowski, K., Wang, Z.: Robust error detection
in communication and computational channels. In: Int’l Workshop
Spectral Methods & Multirate Signal Proc. (2007)

14. Karpovsky,M., Taubin, A.: New class of nonlinear systematic error
detecting codes. IEEE Trans. Inf. Theory 50(8), 1818–1819 (2004)

15. Karpovsky,M.G.,Wang, Z.:Design of strongly secure communica-
tion and computation channels by nonlinear error detecting codes.
IEEE Trans. Comput. 63(11), 2716–2728 (2014)

16. Keren, O., Karpovsky, M.: Relations between the entropy of a
source and the error masking probability for security-oriented
codes. IEEE Trans. Commun. 63(1), 206–214 (2015)

17. Keren, O., Levin, I., Stankovic, R.S.: A technique for lineariza-
tion of logic functions defined by disjoint cubes. I.—Theoretical
aspects. Autom. Remote Control 72(3), 615–625 (2011)

18. Koren, I., Krishna, C.: Fault-Tolerant Systems.Morgan Kaufmann,
Burlington (2010)

19. Li, Y., Ohta, K., Sakiyama,K.: New fault-based side-channel attack
using fault sensitivity. IEEE Trans. Inf. Forensics Secur. 7(1), 88–
97 (2012)

20. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks—
Revealing the Secrets of Smart Cards. Springer, Berlin (2007)

21. Neumeier, Y., Keren, O.: A new efficiency criterion for security
oriented error correcting codes. In: 2014 19th IEEE European Test
Symposium (ETS), pp. 1–6. IEEE (2014)

22. Neumeier, Y., Keren, O.: Robust generalized punctured cubic
codes. IEEE Trans. Inf. Theory 60(5), 2813–2822 (2014)

23. Ngo,X.T., Bhasin, S.,Danger, J., Guilley, S.,Najm,Z.: Linear com-
plementary dual code improvement to strengthen encoded circuit
against hardware Trojan horses. In: IEEE International Symposium
on Hardware Oriented Security and Trust, pp. 82–87 (2015)

24. Phelps, K.: A combinatorial construction of perfect codes. SIAM
J. Algebraic Discrete Methods 4(3), 398–403 (1983)

25. Polian, I., Regazzoni, F.: Counteracting malicious faults in crypto-
graphic circuits. In: IEEE European Test Symposium (2017)

26. Rabii, H., Keren, O.: A new construction of minimum distance
robust codes. In: International Castle Meeting on Coding Theory
and Applications, pp. 272–282. Springer (2017)

27. Rabii, H., Keren, O.: A new class of security oriented error cor-
recting robust codes. Cryptogr. Commun. (2018). https://doi.org/
10.1007/s12095-018-0340-3

28. Rabii, H., Neumeier, Y., Keren, O.: High rate robust codes with
low implementation complexity. IEEE Trans. Dependable Secure
Comput. 16(3), 511–520 (2019)

29. Selmke, B., Heyszl, J., Sigl, G.: Attack on a DFA protected AES
by simultaneous laser fault injections. In: FDTC, pp. 36–46. IEEE
Computer Society (2016)

30. Tomashevich, V., Neumeier, Y., Kumar, R., Keren, O., Polian, I.:
Protecting cryptographic hardware against malicious attacks by
nonlinear robust codes. In: DFT, pp. 40–45 (2014)

31. Tunstall, M.,Mukhopadhyay, D., Ali, S.: Differential fault analysis
of the advanced encryption standard using a single fault. In: Works
Information Security Theory & Practice, pp. 224–233 (2011)

32. Vasil’ev, J.: On nongroup close-packed codes. Probl. Kibern. 8
(1962), 337–339. English translation in Probleme der Kybernetik
8, 92–95 (1965)

33. Wang, Z., Karpovsky, M.: Algebraic manipulation detection codes
and their applications for design of secure cryptographic devices.
In: IEEE Int’l On-Line Test Symposium, pp. 234–239 (2011)

34. van Woudenberg, J.G.J., Witteman, M.F., Menarini, F.: Practical
optical fault injection on secure microcontrollers. In: FDTC, pp.
91–99 (2011)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/EEEI.2012.6376995
https://doi.org/10.1109/LES.2019.2907232
https://doi.org/10.1109/LES.2019.2907232
https://doi.org/10.1007/s12095-018-0340-3
https://doi.org/10.1007/s12095-018-0340-3

	Error control scheme for malicious and natural faults in cryptographic modules
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Natural and malicious faults
	2.2 Security-oriented codes

	3 Detection and correction architecture for Rabii–Keren codes
	3.1 Construction algorithm of systematic Rabii–Keren codes
	3.2 Detection and correction architecture for RK codes of distance d=3
	3.3 Detection and correction architecture for RK codes of distance d>3

	4 Inner–outer code-based architecture
	5 Experimental results
	5.1 Fault injection methodology
	5.2 Induced error statistics
	5.3 Classification of fault events
	5.4 Critical fault events
	5.5 Implementation cost
	5.6 Comparison with conventional codes

	6 Conclusions
	Acknowledgements
	References

