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Abstract
Many insurers have started to underwrite cyber in recent years. In parallel, they devel-
oped their first actuarial models to cope with this new type of risk. On the portfolio
level, two major challenges hereby are the adequate modelling of the dependence
structure among cyber losses and the lack of suitable data based on which the model
is calibrated. The purpose of this article is to highlight the importance of taking a
holistic approach to cyber. In particular, we argue that actuarial modelling should not
be viewed stand-alone, but rather as an integral part of an interconnected value chain
with other processes such as cyber-risk assessment and cyber-claims settlement. We
illustrate that otherwise, i.e. if these data-collection processes are not aligned with
the actuarial (dependence) model, naïve data collection necessarily leads to a danger-
ous underestimation of accumulation risk. We illustrate the detrimental effects on the
assessment of the dependence structure and portfolio risk by using a simple mathe-
matical model for dependence through common vulnerabilities. The study concludes
by highlighting the practical implications for insurers.
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1 Introduction

1.1 Motivation

Cyber insurance still is a relatively new, but steadily expanding market.1 Insurers who
have recently entered themarket and started to establish their cyber portfolios, exploit-
ing the ongoing growth in demand, are becoming increasingly aware of the challenges
associated with insuring cyber risk. These include the dynamically evolving threat
landscape, interdependence of risks, heavy-tailed loss severities, and scarcity of reli-
able data to calibrate (nascent) actuarial models. Particularly the last point is repeated
like a mantra; and indeed, while there are growing databases on cyber incidents and
their consequences,2 they often do not contain the information necessary for the vari-
ous tasks of an actuary. In fact, the best data source which can be adjusted to contain all
details to calibrate an insurer’s individual model is the insurer’s own claims-settlement
department. While an increasing number of claims in cyber insurance strain insurers’
profitability margins, from the statistical point of view they should be welcomed as
the detailed and reliable data whose lack is so frequently lamented. To make full use
of the data collected in-house, however, the processes and systems around the under-
writing of a cyber portfolio need to be aligned using a holistic approach, where risk
assessment, product design, actuarial modelling, and claims settlement are treated as
complementary activities interconnected by feedback loops.

In this article, we aim at illustrating the importance for insurers of using the current
moment—namely when starting to underwrite cyber risk—to contemplate and estab-
lish data-collection processes in risk assessment and claims settlement which allow
them to actually use the collected data to calibrate and refine their actuarial models
continuously.

1.2 Literature review

In recent years, various academic papers and numerous empirical studies have been
devoted to proposing stochastic models for cyber risk. Within the scope of this work,
we give a concise summary of relevant research streams and refer e.g. to the excellent
recent surveys [6, 14, 19] for exhaustive complementary overviews. The first models
for cyber risk were mostly concerned with the behaviour of interconnected agents
in simple networks, e.g. regarding equilibria of interdependent security investments
with and without the existence of a cyber insurance market (e.g. [11, 43, 44]). A
detailed overview of these studies is provided in [32]. Recently, more advancedmodels
of epidemic spreading on networks have been suggested to study the development
of cyber epidemics via endogenous contagion in the “global” population (e.g. [23,
48]) and via (partially) exogenous contagion in an insurance portfolio ( [28, 29]).

1 In 2015, the global market size was estimated at approximately $2 billion in premium, with US business
accounting for around 90%.A rapidmarket growthwas projected, with total premium reaching $20+ billion
by 2025 ( [4]). This estimate currently still seems realistic, with an estimated global market size of around
$12 billion for 2022 and a projected near doubling to $22.5 billion in 2025 ( [36]).
2 See e.g. https://privacyrights.org/data-breaches for a publicly available dataset on data breaches and e.g.
the commercial provider (https://www.advisenltd.com/data/cyber-loss-data/) formore specialized datasets.
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These approaches, like models based on (marked) point processes to describe arrivals
of dependent cyber losses (e.g. [9, 38, 49]) represent a useful bottom-up view, as
they strive to understand and adequately formalize the underlying dynamics which
originate dependence between cyber losses. On the other hand, copula approaches
(e.g. [17]) have been used to analyze the scarce available empirical data, but provide
no “explanation” of the underlying cause of dependencies. Finally, let us mention
the steadily growing number of studies scrutinizing available empirical data (and
unearthing new data sources) to derive the statistical properties of e.g. data breaches
(e.g. [16, 18, 47]), general cyber incidents (e.g. [12, 20]), and with particular focus
on extreme cyber losses (e.g. [13, 25]). While these studies provide valuable insights
with respect to the ongoing development of actuarial models for cyber, they tend to
reach diverging conclusions (e.g. on the elementary question of whether the frequency
or severity of cyber losses exhibit a time trend), most likely due to the heterogeneity
of the underlying data.
While numerous models of varying complexity have been suggested to capture cyber
loss arrival dynamics and can yield interesting theoretical conclusions, models aimed
at (actuarial) applications most often make use of Poisson processes due to their
analytical tractability and well-established availability of e.g. statistical estimation
techniques.3

1.3 Contribution and structure of the paper

While this present study originated from a practical observation, it also complements
the academic body of research: With very few exceptions, the existing works studying
the statistical properties of cyber risk focus on the analysis of marginal distributions,
i.e. the proposal of adequate frequency and severity distributions for (extreme) cyber
losses and related questions (like time- or covariate-dependence of the parameters of
the suggested distributions). While it is uncontested that the standard independence
assumption is doubtful in the cyber context and many interesting bottom-up mod-
els including dependencies have been proposed (see above), the task of fitting these
models to empirical data must usually still be postponed with a remark on the non-
availability of representative data and replaced by exemplary stylized case studies.
Therefore, in this work we aim to highlight the (practical and academic) necessity of
data collection including dependence information in order to allow the calibration and
further development of models that transcend the mere analysis of marginal distribu-
tions, the latter being already a challenging task but by no means sufficient in order to
completely understand the risk from an insurance viewpoint.

The remainder of the paper is structured as follows: Sects. 2.1 and 2.2, respectively,
address the cyber insurance value chain in detail to illustrate the above mentioned
interconnections and to introduce one particular approach to modelling dependence
in cyber, namely via common vulnerabilities.
In Sect. 3 we introduce a (purposely simplified) mathematical model capturing such
a dependence structure to illustrate that straightforward, naïve data collection nec-

3 We refrain from providing an exhaustive overview of Poisson process modelling applications, but refer
to e.g. [33] for an excellent introduction.
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essarily leads to accumulation risk being underestimated, both in the statistical and
colloquial sense.We show that while this does not necessarily imply erroneous pricing
of individual contracts, it may lead to a dangerous underestimation of dependence and
portfolio risk. This is illustrated by comparing the common risk measures Value-at-
Risk and Expected Shortfall for the total incident number in the portfolio as well as
the joint loss arrival rate for any two companies in the portfolio.
Section4 concludes and highlights the practical implications of this study for insurers.

2 Two challenges for cyber insurance

2.1 A holistic approach to cyber-insurance underwriting

In practice, the establishment of cyber insurance as a new business line has occupied
many insurers and industry subsidiaries such as brokers, see e.g. [2]. Reviews of the
cyber insurance market and its development are provided e.g. in [32, 36]. Whenever
a new insurance line is introduced, the central tasks for actuaries will be technical
pricing of the to-be-insured risks and risk management of the resulting portfolio (or
more precisely in cyber, risk management of an established portfolio, which now
additionally contains risks from cyber policies). Underwriting and pricing risks can
be done based on expert judgement for each risk individually or—more commonly—
based on a chosen mathematical model. In other words, actuaries have to devise an
answer to the question: “How (do we choose) to model cyber risk?” The extensive
study of [41] provides an overview of existing cyber pricing approaches at the time,
corroborating that established actuarial models for this relatively novel risk type were
yet to be developed. Equally important, however, and often overlooked by academic
papers, is the observation that it is not reasonable for actuaries to come up with a
(no matter how accurate) answer to the above question in the isolation of an actuarial
department. Instead, the chosenmathematical model needs to be simultaneously based
on and itself be the basis of the business processes surrounding actuarial modelling
along the entire economic insurance value chain. The development, calibration, and
back-testing of an actuarial model are only sensible if they are based on information
and data from risk assessment, product design, and claims settlement, as detailed below
and illustrated in Fig. 1.

• Product design:Before even starting to devise an actuarial model, a clear-cut def-
inition and taxonomy of cyber risk(s) needs to be established in order to determine
which aspects of cyber are deemed insurable (anything else should be excluded
from the coverage by contract design) and which coverage components a cyber
insurance policy should consist of. This product design process naturally needs to
be revised regularly with the involvement of legal and market experts, as the cyber
threat landscape aswell as prospective clients’ coverage needs evolve dynamically.

• Risk assessment:The risk-assessment process serves to elicit information deemed
relevant to estimate a prospective policyholder’s susceptibility to cyber risk.
For cyber insurance, this process should naturally include an assessment of the
client’s IT infrastructure and existing cyber-security provisions. For an accurate
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Fig. 1 The diagram illustrates the interconnections between different tasks in a holistic insurance value
chain. While actuaries are typically mainly involved in risk assessment and actuarial modelling, there are
crucial connections to other areas which must not be overlooked. In particular, the necessity to create
awareness that meaningful data, which can (and should) be tailored to the chosen actuarial model, is being
collected daily in the claims-settlement department (usually by a completely disjoint group of experts, who
do not have actuarial modelling aspects on their agenda of primary concerns) should be emphasized

assessment of such technical systems, cooperation with IT security experts is
indispensable. However, how to adequately include extensive qualitative knowl-
edge about an IT system’s vulnerabilities and security into a stochastic model
is a complex, unresolved issue in itself. Nevertheless, the questions asked and
information gathered from prospective policyholders during the risk-assessment
process should depend on the actuarial model that is subsequently used for pricing
of individual contracts and risk management of the cyber portfolio.

• Actuarialmodelling:The actuarial modelling step aims at developing a stochastic
model which allows an estimation of the distribution of each policy’s and the
overall portfolio’s loss from cyber risk. This serves as the basis for (technical)
pricing and risk management. The model should be calibrated—and ideally back-
tested—using adequate data (once available) and expert judgement. In summary,
the choice of stochastic model depends on product design (which types of cyber
losses are to be modelled) and in order to calibrate and develop it further, adequate
data must be gathered through risk assessment and claims settlement.

• Claims settlement: Claims settlement deals with incoming claims from cyber
losses in existing policies. In practice, this task is often treated completely disjoint
from the above-mentioned processes (except product design), and is typically con-
ducted by legal experts whosemain concern is to understand the intricacies of each
individual claim well enough to judge whether and to which extent it is covered by
the components of the policy. The manner of data collection and storage is mostly
dictated by legal (and efficiency) concerns. For cyber it is relevant to stress that
technical expertise cannot be expected in a classical claims-settlement department.
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However, this is a crucial shortcoming: The information that needs to be collected
in order to make claims data usable for model calibration is dictated by the choice
of model. Vice versa, additional information collected may uncover flaws or omis-
sions of the actuarial model and support its continuing development. Therefore, it
is important to collect historical claims information with the underlying actuarial
model in mind. In cyber, it is well-established consensus that any actuarial model
needs to take dependence between cyber losses into account. The exact choice of
dependence model is of course an insurer’s individual decision,4 but it is clear that
if one strives to calibrate such a model based on data, the model choice needs to be
reflected in the data-collection process from the insurer’s own claims experience.

Depending on the reader’s own practical experience, interconnection of the above
processes and cooperation between all stakeholders may sound like a utopia or a
matter of course. We agree that for established business lines, either may be the case,
depending on whether systems and processes were set up and continuously monitored
intentionally or rather were allowed to grow historically. It is clear that as cyber
insurance is just being established, now is the moment to intentionally set up this
value chain in a way that enables insurers to cope with the dynamic challenges of this
new and continuously evolving risk type in the future.

2.2 Dependence in cyber via common vulnerabilities

It is uncontested that a core actuarial challenge in cyber risk is the failure of the
independence assumption between claim occurrences, which underlies the diversifi-
cation principle in insurance. Due to increasing interconnectivity, businesses, systems,
and supply chains become ever more dependent on functional IT infrastructure and
crucially, more interdependent. Therefore, including the modelling of dependence in
an actuarial model for cyber risk is indispensable. The actuarial literature discusses
several approaches for this, most commonly using epidemic spreading on networks /
graphs (e.g. [23, 48]), based on (marked / self- or cross-exciting) point processes (e.g.
[7, 38, 49]), or employing copula approaches (e.g. [27, 34, 39]).
Regardless of the concrete modelling approach, dependence between cyber losses is
worrisome for insurers as it may entail accumulation risk, which can be defined e.g.
as the

risk of large aggregate losses from a single event or peril due to the concentration
of insured risk exposed to that single event or peril.5

Of course, accumulation risk is not limited to cyber insurance; other lines of business
typically confronted with exposure concentrated to a single event are lines subject to
natural catastrophes (e.g. Hurricane Katrina has been named as the most expensive
event ever to the insurance industry world-wide, see [3]) or marine insurance (see e.g.

4 We will advocate for modelling common vulnerabilities as the source of dependence in cyber in the
coming sections, but the exact choice of dependence modelling is irrelevant for this argument.
5 Compare the definition of risk exposure accumulation by Casualty Actuarial Society (https://www.casact.
org/).
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[22]). Therefore, the modelling results and their practical implications are in principle
not limited to the cyber risk context, but can be useful for other lines of insurance
where the assumption of independence between loss occurrences is questionable and
accumulation risk due to common events causing multiple dependent incidents may
be present. In our view, the particular urgency to consider this problem in the cyber
context stems from the novelty of this risk type and the naturally resulting lack of
experience with respect to adequate data collection and subsequent calibration of
dependence models. Moreover, it seems reasonable to assume that e.g. in the context
of natural catastrophes, it is generally much easier (compared to cyber) to recognize
incidents as belonging to a common event.

Following the classical decomposition of risk into a combination of threat, vulner-
ability, and impact (see e.g. [32]), a cyber threat only manifests itself as an incident
(with potential monetary impact) if there is a corresponding vulnerability in the target
system. Therefore, we postulate that any cyber incident is caused by the exploitation
of a vulnerability in the company’s system, where it can be distinguished between
symptomatic and systemic6 vulnerabilities (see [8, 10]), the former affecting a sin-
gle company while the latter affect multiple companies simultaneously. Commonly
cited examples of systemic vulnerabilities are the usage of the same operating system,
cloud service provider, or payment system, affiliation with the same industry sector,
or dependence on the same supplier.

Example 1 Wegive two recent examples of commonvulnerabilitieswhichprominently
exposed many companies to a cyber threat simultaneously. The following information
and more technical details on both examples can be found in the report [45]. These
examples serve to illustrate that in some cases, it might be quite obvious for an insurer
to determine from incoming claims data that several cyber claims are rooted in the
same common vulnerability, whereas in other cases this is very difficult to detect.

• Microsoft Exchange: In the first quarter of 2021, threat actors exploited four zero-
day vulnerabilities in Microsoft Exchange Server. The attacks drew widespread
media attention due to the high number of affected companies (estimates of 60.000
victims globally, see [46]) within a short time frame, enabled by the ubiquitous
use and accessibility of Exchange Servers at organizations world-wide and by
their ability to be chained with other vulnerabilities. Due to the massive media
coverage, leading to high awareness among companies, and the relatively clear
time frame (the attacks had begun in January and were rampant during the first
quarter of 2021), it was relatively easy for insurers to identify whether incoming
cyber claims during (or slightly after) this time frame were rooted in one of the
Microsoft Exchange vulnerabilities.

• Print Spooler / Print Nightmare: In the third quarter of 2021, several zero-day
vulnerabilities were disclosed in Windows Print Spooler, another widely used

6 We remark that some authors (see the recent survey paper [6]) employ a slightly diverging nomencla-
ture: They denote dependency of cyber risks from common vulnerabilities as systematic risk and, in turn,
understand systemic risk to mean cyber risk due to contagion effects in interconnected networks. To avoid
misunderstanding, we emphasize that in this work, following the nomenclature of [49], we understand
systemic risk in the cyber context as stemming from common vulnerabilities as entry points for external
threats, entailing the potential for common ‘shocks’ within the portfolio causing multiple dependent loss
occurrences.
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service in Windows environments. As mentioned in [45], the same service was
already exploited in 2010 in the so-called Stuxnet attacks. Stuxnet was a mali-
cious worm consisting of a layered attack, where Windows systems were infected
first (through zero-day vulnerabilities), but not the eventual target; i.e. the infec-
tion would have usually stayed undetected in the Windows system and seeked
to propagate to certain (Siemens) PLCs (see, e.g., [24, 42]). These 2010 attacks
were not immediately connected to an insurance context. However, if an analo-
gous mechanism (e.g. through the recent Print Spooler vulnerabilities) were to
cause cyber insurance claims, it would certainly be hard to attribute all claims
to the same common vulnerability for two reasons: First, the eventual target sys-
tem where the (economic) impact is caused differs from the system affected by
the common vulnerability and second, the time frame is much less clear than in
the previous example, as the delay between exploitation of the vulnerability and
economic impact is somewhat arbitrary.

In any case, in order to calibrate a model that uses common vulnerabilities as the
source of dependence, an insurer needs to collect at least some information about the
root cause for each claim to be able to estimate the dependence structure correctly.
We now give a very general overview of how information on common vulnerabilities
would be reflected in the insurer’s risk modelling process, before introducing a more
concrete, slightly simplified mathematical model in Sect. 3.

Formalization: Idiosyncratic incidents and systemic events

Assume that an insurer’s portfolio consists of K ∈ N companies. From the view-
point of each company, indexed i ∈ {1, . . . , K }, cyber incidents arrive according to

a simple point process with corresponding counting process (N (i)(t))t≥0 =
(
|{k ∈

N : t (i)k ∈ [0, t]}|
)

t≥0
, in the simplest case a homogeneous Poisson process with rate

λi > 0. This rate may differ between companies (i.e. some are assumed to be more
frequently affected than others) and the main focus of cyber risk assessment (e.g. via
a questionnaire, see [26] for a blueprint, or a more extensive audit for larger risks) is
to gather information about characteristics which are considered relevant to determine
a prospective policyholder’s rate (classical covariates are e.g. company size, type and
amount of data stored, types of business activities, see e.g. [20, 40, 41]).
As the λi are naturally unknown, the insurer usually estimates them given past claims
experience of similar policyholders (depending on the portfolio size, more or less
homogeneous groups would be considered similar). The overall arrival of incoming
incidents to company i is actually composed of several (assumed independent and
Poisson) arrival processes (from idiosyncratic incidents and common events), i.e. the
overall Poisson rate for company i ∈ {1, . . . , K } decomposes into

λi = λi,idio +
∑
s∈S∗

i

λs,syst > 0, (1)
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where λi,idio ≥ 0 is the rate of idiosyncratic incidents arriving to company i , possibly
modelled as some function of the covariates (for example, fitting a standard GLM or
GAM here would be common practice), S∗

i ⊆ {1, . . . , S} is the subset of S known
systemic risk factors (any common factor through which multiple companies in the
portfolio could be affected simultaneously) present at company i , and λs,syst ≥ 0
is the overall occurrence rate of an event due to exploitation of systemic risk factor
s ∈ {1, . . . , S}. In this modelling step, several “pitfalls” could occur:

(1) If questions about relevant covariates are omitted during risk assessment (e.g.
because their influence on the frequency of cyber incidents is unknown), this
may introduce a bias when estimating λi,idio (in either direction, i.e. over-
/underestimation depending on the covariates).

(2) If certain systemic risk factors are unknown and therefore not inquired about
during risk assessment (e.g. no question about the choice of operating system
or cloud service provider) for some or all companies, an underestimation of the
true rates is introduced, as the set S, resp. subsets S∗

i , do not contain all possible
events.

The errors (1) and (2) should be mitigated by refining risk assessment procedures con-
tinuously based on expert input and evaluation of claims data. This leads to the main
point of inquiry in this article: Given (correct) assumptions about covariates and sys-
temic risk factors, the goal is to enable the insurer to estimate the corresponding rates,
both idiosyncratic and systemic, using historical claims data. As the insurer monitors
incoming claims over a policy year [0, T ], where typically T = 1, in addition to
client-related data and basic claims-related data, usually a description of the incident
(i.e. the order of occurrences that lead to a monetary loss) is provided by the client.
This is unstructured data, and depending on the case could e.g. be given in the form
of a phone conversation or e-mail report to an insurance agent or via a scanned PDF
containing a report of an IT forensics expert. This information is typically reviewed
by the insurance agent in order to decide whether the claim is covered, but may not
or only in abbreviated form be entered into the insurer’s claims database. This means
that information allowing claims to be identified as stemming from the same systemic
vulnerability is often not available or (fully or partly) discarded. In the following, we
illustrate the detrimental effect of this omission of information about the extent of
systemic events on the estimation of dependence and portfolio risk. We again empha-
size two points: When considering the underestimation of risk, one might intuitively
think of incomplete information about frequency or severity of cyber incidents e.g.
due to reporting bias. In this study, we aim to illustrate that even with complete and
correct information on marginal frequency and severity, an underestimation of risk
can be introduced by incomplete information on the dependence structure. While in
a general context, such incomplete information on the underlying dependence could
introduce a bias in either direction (over- or underestimation of the total risk), for the
models we consider realistic in the cyber context (as formalized above and in the next
section), necessarily an underestimation of portfolio risk occurs.
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3 Mathematical model

To quantify the effect we have introduced and discussed on a qualitative level in Sect.
2, we now construct a simple mathematical model which captures common events
(‘shocks’) and allows to analyze the effect of underestimating the extent of joint
events.

3.1 An exchangeable portfolio model and themodelling of missing information

We assume that the insurer’s portfolio consists of K ∈ N homogeneous companies
and let ∅ ⊂ I ⊆ {1, . . . , K } denote a non-empty subset of the portfolio affected by a
commonevent.Assume that cyber events (to any set I ) arrive according to independent,
homogeneous Poisson processes.7 In theory, each subset I could potentially have
a different arrival rate of common events, leading to the prohibitive complexity of
needing to estimate 2K − 1 rates. To avoid the curse of dimensionality, we make the
following assumption.

Assumption 1 (Exchangeability: Equal rates for subsets of equal size) Assume that
arrival rates only depend on the number of companies in the subset, i.e. the insurer
aims at estimating a vector of K arrival rates λ := (λ|I |=1, . . . , λ|I |=K ), where λ|I |=k

denotes the arrival rate of events affecting any subset of size k ∈ {1, . . . , K }.
We denote as model (M) the model given these ‘true’ rates λ.8 Assumption 1 leads to
homogeneous marginal arrival rates λi , i ∈ {1, . . . , K }, for each company of

λi =
K∑

k=1

λ|I |=k

(K
k

)
(

K − 1

k − 1

)
=

K∑
k=1

k

K
λ|I |=k

= λ|I |=1

K︸ ︷︷ ︸
idiosyncratic incidents

+
K∑

k=2

k

K
λ|I |=k .

︸ ︷︷ ︸
incidents from common events

(2)

Note that (2) is a simplified formalisation of (1).

7 We remark that researchers studying data on pure cyber attack rates sometimes considermore complicated
arrival processes and methods from (high-frequency) time-series analysis (e.g. [50, 51]). On the contrary,
models concerned with actuarial applications most often consider the standard choice of a Poisson process
for frequency modelling of cyber losses (e.g. [13, 20, 25]). This choice is made due to its theoretical
tractability as well as due to the fact that actual cyber incidents in an insurance portfolio are rare which
hampers the calibration of complex arrival dynamics on observed cyber incidents.
8 Note that model (M) describes a setting where the first claim-arrival times, denoted τ = (τ1, . . . , τK ),
of the companies in the portfolio follow an exchangeable Marshall-Olkin distribution, see [31], p. 122ff.
Note that in contrast to [31], we denote by λ|I |=k the arrival rate of the Poisson process that is essentially
the superimposed process of all arrival processes to subsets of size k, i.e. the rate for every particular subset

of size k would be (independently of the subset) given by λk := λ|I |=k

(K
k )

. For example, for k = 1, λ|I |=1

describes the overall rate of events affecting one single firm. As the model is exchangeable, each firm is
equally likely to be affected by such an event, i.e. from the viewpoint of each of the K firms, these events

arrive with rate λ1 = λ|I |=1

K .
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It is well-known that the maximum likelihood estimator of the rate of a homogeneous
Poisson process is given by the samplemean (see e.g. [15]) over the observation period,
i.e. in our case each estimator λ̂|I |=k is given by the mean total number of observed
events affecting precisely k companies, i.e. for L > 0 observed policy years

λ̂|I |=k = 1

L

L∑
�=1

n̂|I |=k
� ,

where n̂|I |=k
� is the number of observed events to subsets of size k during policy year

(or simulation run) � ∈ {1, . . . , L} and for simplicity, we have assumed policy years
of length T = 1, during which the portfolio does not change.

Assumption 2 (Missing information on common events) Assume that, independently
for each common event to a subset of any size |I | ≥ 2 and independently for each
company in the subset, i.e. i ∈ I , the probability that the arrival at this company is
correctly identified as belonging to the common event (affecting all companies in I )
is given by p ∈ [0, 1].9

Example 2 To illustrate Assumption 2, consider the following situation: A vulnerabil-
ity in a commonly used software could be exploited, leading to hackers gaining access
to confidential data which allowed them to defraud several companies throughout the
policy year. After the policy year, when historical claims data is analyzed, all inci-
dents in the database are first considered independent. Those incidents where detailed
information is available, in this case that the original cause of the loss was the exploit
of the common vulnerability, are then identified as belonging to a common event.
If originally five companies were affected in this way, but only for three of them the
required information was available, instead of (correctly) counting one observed event
on a subset of five companies (contribution to the estimator λ̂|I |=5), the insurer would
(incorrectly) count one event on a subset of three companies and two independent
incidents (contribution to the estimators λ̂|I |=3 and twice to λ̂|I |=1).

Mathematically, Assumption 2 means that the Poisson arrival processes to subsets
of size |I | = k ≥ 2 are subject to thinning (with probability (1−pk)) and superposition
of (K − k) other Poisson arrival processes.

Definition 1 (Model (M̃) - missing information) Assumption 2 leads to a different
model, denoted (M̃), with Poisson arrival rates denoted ˜λ := (̃λ|I |=1, . . . , λ̃|I |=K )

given by

9 A straightforward generalisation would be to assume different detection probabilities for different event
sizes, i.e. a vector p := (p|I |=2, . . . , p|I |=K ). Intuitively, this may e.g. be used to represent the assumption
that incidents from larger events are more likely to be detected, as such events are often subject to public
coverage (see e.g. the Microsoft Exchange example above) and therefore insurers may already be alert to
check if recorded claims belong to this same root cause.
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λ̃|I |=1 = λ|I |=1 +
K∑

i=2

λ|I |=i
[
i
(

fBin(0; i, p) + fBin(1; i, p)
)

+
max(i−1,2)∑

j=2

(i − j) fBin( j; i, p)
]
, (3)

λ̃|I |=k =
K∑

i=k

λ|I |=i fBin(k; i, p), k ∈ {2, . . . , K }, (4)

where fBin(k; i, p) = (i
k

)
pk(1 − p)i−k is the p.m.f. of a Binomial distribution.

Remark 1 (Interpretation of the rates ˜λ) The rates ˜λ can be interpreted as follows:

• For k = K , the rate in the model with missing information is given by

λ̃|I |=K = λ|I |=K fBin(K ; K , p) = λ|I |=K pK ,

i.e. the original rate thinned by the probability that all (of the K independently
investigated) incidents are identified correctly. Note that for p ∈ [0, 1), λ̃|I |=K <

λ|I |=K , i.e. the rate of events that jointly affect the whole portfolio is obviously
lowered.

• For 1 < k < K , the rate in the model with missing information is given by the sum
of the original rate for i = k thinned by the probability of classifying all k incidents
correctly (summand for i = k) and the rates resulting from the probabilities of
misclassifying events to more than k firms incorrectly such that they are counted
as events to k firms (summands for i > k); compare Example 2. λ̃|I |=k can thus
be higher or lower than λ|I |=k , depending on λ and p. However, in general, the
cumulative rate of ‘small’ events (i.e. all events up to any size k) does not decrease,
i.e.

k∑
i=1

λ̃|I |=i ≥
k∑

i=1

λ|I |=i , ∀k ∈ {1, . . . , K }.

• The rate for idiosyncratic incidents in model (M̃) is given by the sum of the
original rate (these incidents are never “misclassified”) and all the “fallout” from
classifying common events incorrectly: If for an event to a subset of size i , none
or only one of the firms are classified correctly, all i incidents will be counted
as idiosyncratic (first part in square bracket in (3)); if j ≥ 2 firms are attributed
correctly, the remaining i − j are classified as idiosyncratic (second part in square
bracket in (3)). Therefore, for p ∈ [0, 1), it holds λ̃|I |=1 > λ|I |=1, i.e. the rate of
idiosyncratic incidents is increased.

Lemma 1 (Marginal rates remain unchanged) The marginal arrival rates for each
company stay unchanged between model (M) and model (M̃), i.e.

λ̃i = λi =
K∑

k=1

k

K
λ|I |=k, i ∈ {1, . . . , K }.
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Proof Intuitively, the statement is clear, as an incorrect (non-)identification of common
events does not lead to missing a claim, but to wrongly attributing its cause. A formal
proof is given in Appendix 1. 	


The interpretation of Lemma 1 is of high practical relevance: For pricing of (cyber)
insurance policies, usually only the individual loss distribution of a company is taken
into account. As the marginal arrival rates stay unchanged, prices for all individual
insurance contracts would stay unchanged (i.e. ‘correct’) between models (M) and
(M̃). This means that omitting information about common events would not lead to
mispricing of individual policies. This identity of marginal rates is actually dangerous,
as the crucial oversight of underestimating the extent of common events would not
be evident as affecting (average) profitability, but only in a (worst-case) scenario that
an unexpectedly large loss (exceeding the estimated risk measure, typically Value-at-
Risk, which may be much smaller in model (M̃) than the actual one in model (M),
see next section) manifests.

3.2 Implications for dependence- and risk-measurement

Measuring portfolio risk

Despite the marginal rates staying unchanged when moving from (M) to (M̃), see
Lemma 1, omitting information about common events may have dangerous implica-
tions for risk management. We first illustrate how it may lead to an underestimation of
portfolio risk, measured e.g. by Value-at-Risk, denoted VaR1−γ , of the total incident
number in the portfolio in a policy year.10 VaR1−γ for a r.v. X in an actuarial context
(where positive values denote losses) is defined as

VaR1−γ (X) = inf
{

x ∈ R : P(X ≤ x) ≥ 1 − γ
}
, γ ∈ (0, 1). (5)

Note that the overall incident number in a portfolio of size K follows a compound
Poisson distribution, i.e.

S(T ) :=
N (T )∑
i=1

Zi , where N (T ) ∼ Poi
(

T
K∑

k=1

λ|I |=k
)
,

{Zi }i∈N i.i.d. with P(Zi = k) = λ|I |=k

∑K
k=1 λ|I |=k

, ∀k ∈ {1, . . . , K }.

10 As the term Value-at-Risk is often directly associated with a monetary loss or capital requirement, we
emphasize that in this study, it is purely used as a risk measure associated with the random (discrete)
distribution of cyber incident numbers (as the lower (1 − γ )-quantile of the distribution) and does not
directly correspond to a monetary quantity. The same holds for Expected Shortfall as considered in a
later subsection. We only consider incident numbers here, as of course the results would not be qualitatively
different if for an insurance application, one were to equip each incident with a (random)monetary loss size.
For completeness, we nevertheless include an exemplary implementation using log-normal loss severities
in Appendix 1.
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The rate
(∑K

k=1 λ|I |=k
)
corresponds to the overall Poisson arrival rate of events (of

any size), and {Zi }i∈N correspond to the associated “jump sizes” of the total incident
number, i.e. the number of companies affected in the i th event. Therefore, we can use
thePanjer recursion formula (based on [37], for details seeAppendix 1) to compute the
probability mass function (p.m.f.) and corresponding cumulative distribution function
(c.d.f.) and Value-at-Risk (as in Eq. (5)) of the total incident number in a policy year
under models (M) and (M̃) for chosen λ and p ∈ [0, 1]. We choose an exemplary
set of rates for a portfolio of size K = 10 as given in Table 1, where λ again denotes
the rates of an original model (M) and ˜λ the rates of the corresponding model (M̃)

resulting from Assumption 2.
Figure2a displays the p.m.f. under model (M) and highlights the comparison of
VaR0.995 for p = 1 (full information, i.e. original rates), p = 0.5 (partial information
about common events, compare Table 2), and p = 0 (no information about com-
mon events, i.e. complete independence assumption). Figure2b compares VaR1−γ

for (1 − γ ) ∈ {0.95, 0.995} and p ∈ [0, 1], based on the c.d.f. of total incident num-
bers under the rates λ and ˜λ. This small example already highlights the importance
of gathering (full!) information about the origins of cyber incidents, as otherwise the
portfolio risk will be drastically underestimated.
Finally, let us mention an observation that can be made by considering the p.m.f. (and
corresponding c.d.f.) for different p ∈ [0, 1], as exemplarily depicted in Fig. 3: When
moving from (M) to (M̃), no events / incidents are missed completely, thus the c.d.f.s
of the total incident number in the portfolio are not ordered in the sense of usual
stochastic order, i.e. it does not hold that for all x ≥ 0 : FSM̃ (T )(x) ≥ FSM (T )(x),
where SM (T ) (resp. SM̃ (T )) denotes the total incident number under model (M) (resp.
(M̃)).
We have observed, however, from the results illustrated in Table 2 and Fig. 2, that this
ordering of c.d.f.s does hold for certain large values of x . Figure3b shows that indeed
it holds exactly for large values of x , more precisely x > x0 for some x0 ≥ 0, i.e. the
so-called single-crossing condition or cut-off criterion (see e.g. [35]) is fulfilled here.
This is meaningful as it is a sufficient condition for another (weaker) type of stochastic
order, so-called increasing convex order, which has an important connection to the
class of coherent risk measures; this will be addressed more generally in a subsequent
section.

Quantifying dependence by joint loss arrival rate

From a practical viewpoint, the illustrations of the last section already emphasize the
detrimental effects of missing information about common events. Theoretically, there
are different quantities one might use to assess the extent of “missed / overlooked
dependence” in model (M̃) compared to the true model (M). From a risk manage-
ment perspective, it is clear that simultaneous losses by multiple policyholders carry
potentially greater risk than independent, diversifiable losses. Therefore, one might
look at the instantaneous rate of two policyholders i, j ∈ {1, . . . , K }, i 
= j , simul-
taneously experiencing a cyber claim. As we are assuming an exchangeable model,
one can set w.l.o.g. i = 1, j = 2. As arrivals of cyber incidents to policyholder
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Fig. 2 Panel 2a shows the p.m.f. of the total incident number for parameters as in Table 1 and again T = 1.
The solid vertical line depicts the corresponding VaR0.995 if full information about common events is
available (p = 1), i.e. all incidents are classified correctly. The dashed lines depict analogously VaR0.995
for partial information (p = 0.5, i.e. for each event on average half of the resulting incidents are attributed
correctly), and no information (p = 0, i.e. all incidents regarded as idiosyncratic) about common events.
In both latter cases, the true risk is clearly underestimated (compare VaR0.995 for p = 0 with the ‘true’
underlying distribution!). Panel 2b shows VaR· for (1 − γ ) ∈ {0.95, 0.995} and p ∈ [0, 1] (in steps of
� = 0.01), based on underlying rates λ and ˜λ. As expected, the lower the probability p of correctly
identifying a common root cause, the more severe is the resulting underestimation of the risk
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Fig. 3 Panel 3a shows the p.m.f. of the total incident number for rates λ as in Table 1, T = 1, and resulting
rates˜λ for p ∈ {0, 0.5}. Panel3b analogously plots the c.d.f.s, illustrating thatwhile the c.d.f.s are not ordered
in the sense FSM̃ (T )(x) ≥ FSM (T )(x), ∀x ≥ 0, there is a threshold value x0 s.t. this ordering holds (exactly)
for large values x > x0 ≥ 0, i.e. the so-called single-crossing condition is fulfilled here. In the actuarial
context, one is typically interested in high quantiles of the loss distribution (VaR1−γ for (1 − γ ) close to
1), i.e. the region where in this case it holds for the quantile functions F←

SM̃ (T )
(1 − γ ) ≤ F←

SM (T )
(1 − γ ),

leading to the observations for the portfolio risk measure discussed in this section
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i ∈ {1, . . . , K } follow a Poisson process with rate λi (see (2)), the first arrival time,
denoted τi , follows an exponential distribution and for small T > 0 it holds by a
first-order Taylor expansion

P(τi ≤ T ) = 1 − e−λi T ≈ 1 − (1 − λi T ) = λi T ⇐⇒ 1

T
≈ λi

P(τi ≤ T )
.

This implies for the instantaneous joint loss arrival rate

lim
T ↘0

P(τi ≤ T , τ j ≤ T )

T
≈ lim

T ↘0

λi
P(τi ≤ T , τ j ≤ T )

P(τi ≤ T )

= λi lim
T ↘0

P(τ j ≤ T | τi ≤ T ) = λi LTDC ,

(6)

where τi , τ j are the first arrival times of a cyber claim to policyholders i and j ,
respectively, and LTDC denotes the lower tail dependence coefficient of the bivariate
copula C of (τi , τ j ). We know (see [31], p. 122ff) that by Assumption 1 the survival
copula of the random vector of all K first claim-arrival times, (τ1, . . . , τK ), is an
exchangeable Marshall–Olkin (eMO) survival copula, and its two-margins (i.e. the
survival copula of (τi , τ j )) are bivariate Cuadras–Augé copulas with parameter α

given by (see a previous footnote on the relation of λ|I |=i and λi ):

α = 1 −
∑K−1

i=1

(K−2
i−1

) 1
(K

i )
λ|I |=i

∑K
i=1

(K−1
i−1

) 1
(K

i )
λ|I |=i

= 1 −
∑K−1

i=1

(K−2
i−1

)
λi∑K

i=1

(K−1
i−1

)
λi

. (7)

From (7), some interpretation of α is immediately visible:

• Comonotonicity occurs iff only common events to the whole portfolio occur, i.e.
α = 1 ⇐⇒ λK > 0, λi = 0 ∀i ∈ {1, . . . , K − 1};

• Independence occurs iff only idiosyncratic incidents occur, i.e. α = 0 ⇐⇒ λ1 >

0, λi = 0 ∀i ∈ {2, . . . , K }.
Definition 2 (Bivariate Cuadras–Augé copula, [31], p. 9) For α ∈ [0, 1], let Cα :
[0, 1]2 �→ [0, 1] be defined by

Cα(u1, u2) := min{u1, u2}max{u1, u2}1−α, u1, u2 ∈ [0, 1].

Remark 2 [Tail dependence coefficients of Cuadras–Augé (survival) copula ( [31], p.
34f)] For a bivariate Cuadras–Augé copula Cα , the tail dependence coefficients are
given by

UTDCα = α, LTDCα = 1{α=1}.

Note that in general for a copula C and its survival copula Ĉ , it holds (provided
existence) that UTDC = LTDĈ and LTDC = UTDĈ , respectively.
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This means for the comparison of the instantaneous joint loss arrival rate in (6), we
are interested in comparing the parameter α (as in (7)) for models (M) and (M̃).

Remark 3 (LT DĈα
for constant λ) Assume λ|I |=i ≡ λ̄ > 0, ∀i ∈ {1, . . . , K }. Then,

in model (M) the lower tail dependence coefficient of the bivariate copula of (τi , τ j )

is given by

LT DĈα
= α = 2

3
,

and the instantaneous joint loss arrival rate in (6) is given by

lim
T ↘0

P(τi ≤ T , τ j ≤ T )

T
= λiα = λ̄(K + 1)

2
· 2
3

= λ̄(K + 1)

3
.

Proof See Appendix 1. 	

Lemma 2 [Relation of LT DĈα

for models (M) and (M̃)] Let (M) be an exchangeable

model as in Assumption 1 with any vector of arrival rates λ and let (M̃) be the corre-
sponding model according to Definition 1. Let α and α̃ be the respective parameters
of the bivariate survival copulas of (any two) first-arrival times (τi , τ j ) as given in
(7). Then, it holds that α̃ ≤ α and more specifically, under Assumption 2,

α̃ = p2α

for any p ∈ [0, 1].
Proof See Appendix 1. 	


Lemma 2 implies that inmodel (M̃), by omitting information about common events
according to Assumption 2, the instantaneous joint loss arrival rate for any two com-
panies in the portfolio is underestimated by a factor of p2, which intuitively makes
sense, as this factor indicates the probability of independently not overlooking a joint
event in two companies.

Stochastic ordering and coherent risk measures

Above, we have observed exemplarily that the portfolio risk when measured by Value-
at-Risk (at ‘relevant’ levels in an actuarial context, see the remark about the single-
crossing condition above and illustration in Fig. 3b) is underestimated in a model with
missing information (M̃) compared to an original model (M). Another important risk
measure is Expected Shortfall (at level (1 − γ )), in the following denoted ES1−γ (X)

for a r.v. X in the actuarial context, defined as (see e.g. [1]):

ES1−γ (X) = 1

γ

∫ 1

1−γ

VaRz(X)dz, (8)
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where VaRz(X) is defined in (5). It is well-known that ES1−γ possesses in a certain
sense preferable analytical properties compared to VaR1−γ , in particular ES1−γ is a
coherent risk measure. We refer to the seminal work of [5] for the definition and prop-
erties of coherent riskmeasures and e.g. [21] for a collection of proofs of the coherence
of expected shortfall.11 The fact of ES1−γ being coherent allows to draw some inter-
esting theoretical conclusions for the present study presented below in Corollary 1. As
a basis, we use the more general observation on the stochastic ordering of compound
Poisson random variables summarized in the following theorem.

Theorem 1 (Increasing convex order for specific compound Poisson distributions)
Let L > 0 and � ∈ N and consider two independent homogeneous Poisson processes
with intensities λ > 0 and λ̃ := � λ > 0, denoted N (t) := (N (t))t≥0 and Ñ (t),
respectively. For any fixed T > 0, let

S(T ) :=
N (T )∑
i=1

L = L N (T ) and S̃(T ) =
Ñ (t)∑
i=1

L

�
= L

�
Ñ (T ).

Then, E
[
S(T )

] = E
[
S̃(T )

]
and

S(T ) ≥icx S̃(T ), (9)

where ≥icx denotes ‘increasing convex order’.

Proof See Appendix 1.12 	

Remark 4 (Notes to Theorem 1)

1. Note that S(T ) ≥icx S̃(T ) and E
[
S(T )

] = E
[
S̃(T )

]
is equivalent to S(T ) ≥cx

S̃(T ) (‘convex order’), see [35], Theorem 1.5.3.
2. In actuarial science, a perhaps more common, synonymous name for ‘increasing

convex order’ (≥icx ) is ‘stop-loss order’ (≥sl ), which stems from an important
characterization of≥icx by the so-called stop-loss transforms (see [35], Theorem
1.5.7):

X ≤icx Y ⇐⇒ E
[
(X − t)+

] ≤ E
[
(Y − t)+

] ∀t ∈ R. (10)

3. Note that S(T ) and S̃(T ) can be interpreted as two collective risk models with
equal expected total claims amount E

[
S(T )

] = E
[
S̃(T )

]
, where

11 Note that the term ‘expected shortfall’ is often simply used interchangeably with ‘average / tail / con-
ditional Value-at-Risk’ or ‘tail conditional expectation’, which are in turn usually used synonymously. In
an actuarial context, the most well-known definition is TVaR1−γ (X) = E[X |X ≥ VaR1−γ (X)], i.e. the
expected loss given that a loss at least equal to the Value-at-Risk occurs. However, many equivalencies
between the above risk measures, and in particular the coherence of the risk measures other than ES1−γ

as defined in (8), only hold if X follows a continuous distribution; see [1] for a detailed discussion. As in
the context of this work, discrete underlying distributions (of incident numbers) occur, we therefore only
consider ES1−γ .
12 Somewhat surprising to us, we did not find the (or a correspondent) statement of the theorem in the
literature, hence, for completeness we provide an elementary proof in the Appendix.
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� S(T ) is the total claims amount from a model with relatively few, large losses
(of deterministic size L > 0), and

� S̃(T ) is the total claims amount from a model with relatively many, small
losses (of deterministic size 0 < L

�
< L).

Thus, Theorem 1 states that the model with on average many (independent) small
losses is preferable (‘less risky’) in the sense of increasing convex order compared
to a model with equal expected claims amount and on average few (independent)
large losses.

Corollary 1 [Expected Shortfall for models (M) and (M̃)] Let ES1−γ (·) denote
Expected Shortfall as in (8) and let SM (T ) and SM̃ (T ) denote the total incident
number in the portfolio under models (M) and (M̃), respectively, until a fixed time
T > 0. Then, for any T > 0 and any γ ∈ (0, 1), it holds

ES1−γ

(
SM (T )

) ≥ ES1−γ

(
SM̃ (T )

)
. (11)

Proof See Appendix 1. 	

This implies that by omitting information about common events, the portfolio risk

is necessarily underestimated when using expected shortfall (or any other coherent
risk measure).

4 Conclusion

When insurers started to develop actuarialmodels for cyber risk, they soon emphasized
that one major challenge is the lack of adequate data to calibrate and backtest their
models. Many classical actuarial models are based on the assumption of independence
between losses and historical data is mainly used to draw inference about individual
policyholders’ loss distributions (i.e. the parameters of their loss frequency and sever-
ity distribution for a certain risk). Indeed, this is sufficient in markets where the claims
are independent. Risk assessment and claims settlement therefore usually take into
account this individual client-specific information. However, in the case of cyber, col-
lecting such individual information alone is not sufficient, as not only parameters of
the individual (marginal) loss distributions, but also those of an adequate model of
dependence, have to be calibrated. This is only possible if information about depen-
dence between historical claims, i.e. that losses may have stemmed from the same
cause, is thoroughly collected.

This article has used a stylized mathematical model to highlight the effects on port-
folio risk measurement if information on common events is fully or partly discarded.
This is particularly relevant as in practice efforts are often concentrated on and limited
to striving to correctly model marginal distributions. We illustrate that even with full
and correct understanding of the marginal distributions, in the cyber context the port-
folio risk is necessarily underestimated without a likewise full understanding of the
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underlying dependence structure. In practice, and we have to raise a big warning sign
here, the resulting underestimation of accumulation risk would only become evident
too late, namely once a (to-be-avoided) extreme portfolio loss has occurred. These
results are particularly relevant in the cyber context, where the development of actu-
arial models and connected processes in the insurance value chain is still nascent and
historical loss data is scarce, but may in principle likewise be applied to established
insurance lines where accumulation risk due to common events is present.
The urgent practical implications for insurers are evident: As outlined in Sect. 2.1,
actuarial modelling of cyber cannot be regarded as an isolated challenge, but as
one interconnected step in the insurance value chain. Actuaries therefore must be
in continuous exchange with other stakeholders, in particular legal experts (regarding
insurability of cyber, product design, and requirements on the collection of claims
settlement data) and information security experts. The central importance of the latter
group for the actuarial modelling of cyber can hardly be overstated; their expertise is
essential in tackling important challenges such as how to include an extensive qualita-
tive assessment of a company’s IT landscape, including existing security provisions,
into a stochastic actuarial model.
Only continuous interdisciplinary cooperationwill allow to develop a holistic approach
which allows insurers to proactively steer their cyber underwriting activities without
exposing themselves to potentially starkly underestimated levels of accumulation risk.

Appendix A

Proof of Lemma 1

Proof of Lemma 1 Starting from Definition 1, we observe that the new marginal rates
for any � ∈ {1, . . . , K } are given by

λ̃� =
K∑

i=1

i

K
λ̃|I |=i = 1

K
λ|I |=1 + 1

K

[ K∑
i=2

λ|I |=i
[
i
(

fBin(0; i, p) + fBin(1; i, p)
)

+
max(i−1,2)∑

j=2

(i − j) fBin( j; i, p)
]]

+
K∑

i=2

i

K

K∑
j=i

λ|I |= j fBin(i; j, p)

= 1

K
λ|I |=1 + 1

K

[ K∑
i=2

λ|I |=i i
(

fBin(0; i, p) + fBin(1; i, p)
)

︸ ︷︷ ︸
(S1)

+
K∑

i=2

λ|I |=i
max(i−1,2)∑

j=2

(i − j) fBin( j; i, p)

︸ ︷︷ ︸
(S2)

+
K∑

i=2

i
K∑

j=i

λ|I |= j fBin(i; j, p)

︸ ︷︷ ︸
(S3)

]
.
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It remains to show that the sum in the square bracket equals
∑K

j=2 jλ|I |= j . Reversing
the order of summation in (S3) and renaming i ↔ j in the remaining terms yields

[
(S1) + (S2) + (S3)

]
=

K∑
j=2

λ|I |= j j
(

fBin(0; j, p) + fBin(1; j, p)
)

+
K∑

j=2

λ|I |= j
max( j−1,2)∑

i=2

( j − i) fBin(i; j, p) +
K∑

j=2

λ|I |= j
j∑

i=2

i fBin(i; j, p)

=
K∑

j=2

λ|I |= j j
(

fBin(0; j, p) + fBin(1; j, p)
)

+
K∑

j=2

λ|I |= j
( j−1∑

i=2

j fBin(i; j, p) + j fBin( j; j, p)
)

=
K∑

j=2

jλ|I |= j
j∑

i=0

fBin(i; j, p)

︸ ︷︷ ︸
=1

=
K∑

j=2

jλ|I |= j .

	


Comparison of portfolio Value-at-Risk including loss severities and details on Panjer
recursion

As outlined above, the first part of Sect. 3.2 focuses on the overall incident number in
the portfolio as opposed to an overall monetary portfolio loss. This choice was made
in order not to distract from the main focus of the analysis (i.e. the effect of missing
dependencies between incident occurrences) as well as for the sake of simplicity, as
it allows the application of the Panjer recursion scheme (based on [37]) to derive
the (cumulative) distribution function of the overall incident number in the portfolio.
In non-life insurance, it is often necessary to study the probability distribution of a
random sum of random variables, i.e. of the type

S =
N∑

i=1

Zi ,

where N is the number of observed losses in a time interval of interest and {Zi }
are i.i.d. positive r.v.s representing the loss sizes. While in general it is not possible
to compute the c.d.f. of such a r.v. S in closed form, the Panjer recursion scheme
allows its derivation under the conditions that the distribution of the counting r.v. N
belongs to the Panjer class satisfying the recursion formula P(N = 0) =: p(0) >

0, P(N = n) =: p(n) =
(

a + b
n

)
p(n − 1) for n ∈ N, a, b ∈ R, a + b > 0

and the distribution of loss sizes {Zi } is discrete (otherwise, a discretized version is
used). In this case, the distribution of S is also discrete and its p.m.f. can be computed

recursively via fS(0) = p(0), fS(i) = ∑i
j=1

(
a + bj

i

)
fZ1( j) fS(i − j), i ∈ N. This
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Table 3 Resulting expected portfolio loss and risk measures V̂aR1−γ (L(T )) at three levels for p ∈
{0, 0.5, 1} and T = 1. Crucially, marginal distributions and thus the expected portfolio loss E[L(T )] do
not change, while V̂aR1−γ (L(T )) at all chosen levels is again lowered when common event information
is partly or fully disregarded. Quantities equipped with ·̂ denote estimates based on 1.000.000 simulation
runs

Model p E[L(T )] ̂E[L(T )] V̂aR0.95(L(T )) V̂aR0.99(L(T )) V̂aR0.995(L(T ))

(M) 1 3017.95 3017.93 4905.31 5822.73 6177.05

(M̃) 0.5 3017.95 3018.63 4139.68 4673.82 4883.00

(M̃) 0 3017.95 3018.36 3707.62 4010.85 4122.92

likewise directly allows the derivation of the c.d.f. FS(i) = P(S ≤ i), i ∈ N, and the
Value-at-Risk as in (5).
While Value-at-Risk can in principle be used as a characteristic of any probability
distribution, we acknowledge that it is often directly associated with a monetary value
(and therefore the distribution of a total monetary portfolio loss). Therefore, and for
the sake of completeness, we provide an example analogous to the first part of Sect. 3.2
where each cyber incident is associated with a loss size following a log-normal distri-
bution (a choice inspired by the empirical results of e.g. [20] for cyber loss severities).
We remark that for the resulting compound distribution, the application of the Pan-
jer scheme is no longer viable, as—opposed to the example in the main part of the
paper—the distribution of the counting r.v. no longer lies within the Panjer class.
In the following, we therefore use all parameters for the arrival rates under models
(M) and (M̃) as in Sect. 3.2 and consider the overall portfolio loss

L(T ) :=
S(T )∑
i=1

Li ,

where S(T ) is as in Sect. 3.2 and Li ∼ LogNormal(4, 0.1), i.i.d. for i ∈ N.
Analogous to Table 2, we compare in Table 3 the theoretical expected portfolio loss
(based onWald’s equation) and the estimated expected portfolio loss as well as Value-
at-Risk at three levels based on 1.000.000 simulation runs. We observe that the results
are qualitatively analogous to Sect. 3.2.

Analogously to Figs. 2a and 3b we plot below in Panels 4a and 4b the empirical
density of the total portfolio loss under the originalmodel (M) comparedwith V̂aR0.995
for the three models as well as the comparison between the empirical cumulative
distribution functions, respectively. Again, we observe analogous results to Sect. 3.2.
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Proof of Remark 3

Proof of Remark 3 Note that due to the properties of the Binomial coefficient, it holds
that

(K−1
i

)
( K

i+1

) = i + 1

K
,

(K−2
i

)
( K

i+1

) =
K−1−i

K−1

(K−1
i

)
( K

i+1

) = K − 1 − i

K − 1
· i + 1

K
= (K − (i + 1))(i + 1)

K (K − 1)
.

Inserting this into the expression in (7) yields

α = 1 −
∑K−2

i=0

(K−2
i

) 1
( K

i+1)
λ|I |=i+1

∑K−1
i=0

(K−1
i

) 1
( K

i+1)
λ|I |=i+1

= 1 −
1

K (K−1) λ̄
∑K−2

i=0 (K − (i + 1))(i + 1)
1
K λ̄

∑K−1
i=0 (i + 1)

= 1 − 1

K − 1

∑K−1
i=1 (K − i)i∑K

i=1 i
= 1 − 1

K − 1

1
6 K (K + 1)(K − 1)

1
2 K (K + 1)

= 1 − 2

6
= 2

3
.

For the marginal rates λi in (2), it holds

λi =
K∑

k=1

k

K
λ|I |=k = λ̄

K

K∑
k=1

k = λ̄

K

K (K + 1)

2
= λ̄(K + 1)

2
,

implying the remark. 	


Proof of Lemma 2

Proof of Lemma 2 By definition, α and α̃ are given by

α = 1 −
∑K−1

i=1

(K−2
i−1

)
λi∑K

i=1

(K−1
i−1

)
λi

=: 1 − Zα

Nα

, α̃ = 1 −
∑K−1

i=1

(K−2
i−1

)
λ̃i∑K

i=1

(K−1
i−1

)
λ̃i

=: 1 − Zα̃

Nα̃

,

where λi = λ|I |=i

(K
i )

and λ̃i = λ̃|I |=i

(K
i )

.

We use the following properties of the Binomial coefficient and the Binomial distri-
bution

(
K − 1

i − 1

)
= i

K

(
K

i

)
, (BIN1)

(
K − 2

i − 1

)
= K − i

K − 1

(
K − 1

i − 1

)
= K − i

K − 1

i

K

(
K

i

)
, (BIN2)
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(
K − 2

i − 2

)
=

(
K − 1

i − 1

)
−

(
K − 2

i − 1

)
. (BIN3)

X ∼ Binom(K , p) �⇒ E[X ] = K p, (BIN4)

X ∼ Binom(K , p) �⇒ E
[
X2] = K p(1 − p) + K 2 p2. (BIN5)

This implies the following auxiliary result:

Nα − Zα =
K∑

i=1

(
K − 1

i − 1

)
λi −

K−1∑
i=1

(
K − 2

i − 1

)
λi

(BIN3)= λK

+
K−1∑
i=2

(
K − 2

i − 2

)
λi =

K∑
i=2

(
K − 2

i − 2

)
λi . (12)

Furthermore, it holds that Nα = Nα̃ , as

Nα̃ =
K∑

i=1

(
K − 1

i − 1

)
λ̃i

=
K∑

i=1

(
K − 1

i − 1

)
λ̃|I |=i

(K
i

) (BIN1)=
K∑

i=1

i

K
λ̃|I |=i Lemma 1=

K∑
i=1

i

K
λ|I |=i = Nα. (13)

We will show that for Zα̃ it holds that

Zα̃ = λ1 +
K∑

i=2

λi

[(K − 1

i − 1

)
−

(
K − 2

i − 2

)
p2

]
. (∗)

This implies the claim, as one can rewrite

Zα̃ = λ1 +
K∑

i=2

λi

[(K − 1

i − 1

)
−

(
K − 2

i − 2

)
p2

]

=
K∑

i=1

(
K − 1

i − 1

)
λi − p2

K∑
i=2

(
K − 2

i − 2

)
λi

(12),(13)= Nα − p2(Nα − Zα). (14)

From this it follows

α̃ = 1 − Zα̃

Nα̃

(13),(14)= 1 − Nα − p2(Nα − Zα)

Nα

= 1 −
[
1 − p2

(
1 − Zα

Nα

)]
= p2α.
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To show (∗), we rewrite (3) as

λ̃|I |=1 = λ|I |=1 +
K∑

i=2

λ|I |=i
[
i
(

fBin(0; i, p) + fBin(1; i, p)
)

+
max(i−1,2)∑

j=2

(i − j) fBin( j; i, p)
]

= λ|I |=1 + λ|I |=22
(

fBin(0; 2, p) + fBin(1; 2, p)
)

︸ ︷︷ ︸
(1−p2)

+
K∑

i=3

λ|I |=i
[

i
i−1∑
j=0

fBin( j; i, p)

︸ ︷︷ ︸
i(1−pi )

−
i−1∑
j=2

j fBin( j; i, p)

︸ ︷︷ ︸
±∑

j=0,1,i j fBin( j;i,p)

]

(BIN4)= λ|I |=1 + λ|I |=22(1 − p2)

+
K∑

i=3

λ|I |=i [i − i pi − (
i p − i p(1 − p)i−1 − i pi )]

= λ|I |=1 + λ|I |=22(1 − p2) +
K∑

i=3

λ|I |=i i(1 − p + p(1 − p)i−1)

= λ|I |=1 +
K∑

i=2

λ|I |=i i(1 − p + p(1 − p)i−1).

Changing to the rates λ̃1 = λ̃|I |=1

K (LHS) and λi = λ|I |=i

(K
i )

(RHS) yields

λ̃1 = λ1 +
K∑

i=2

i

K

(
K

i

)
λi (1 − p + p(1 − p)i−1)

(B I N1)= λ1

+
K∑

i=2

(
K − 1

i − 1

)
λi (1 − p + p(1 − p)i−1),

i.e. for fixed i ∈ {2, . . . , K }, the coefficient of λi from λ̃1, which appears in Zα̃ with
factor

(K−2
0

) = 1 is given by
(K−1

i−1

)
(1− p+ p(1− p)i−1). Analogously, the coefficients

of λi from
∑K−1

j=2 λ̃ j , scaled by
(K−2

j−1

)
, are illustrated as the column sums in Table 4

and given by
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λi

(
K

i

)

︸ ︷︷ ︸
λi(

K
i )=λ|I |=i

i∑
j=2

(
i

j

)
p j (1 − p)i− j

(
K − 2

j − 1

)

︸ ︷︷ ︸
Def. of Zα

1(K
j

)
︸︷︷︸

λ j = λ|I |= j

(K
j )

(BIN2)= λi

(
K

i

) i∑
j=2

K − j

K − 1

j

K
fBin( j; i, p) = λi

(K
i

)

(K − 1)K

[
K

i∑
j=2

j fBin( j; i, p)

−
i∑

j=2

j2 fBin( j; i, p)
]

(BIN4),(BIN5)= λi
(K

i

)

(K − 1)K[
K (i p − i p(1 − p)i−1) − [

i p(1 − p) + i2 p2 − i p(1 − p)i−1]]

= λi
(K

i

)

(K − 1)K

[
K ip − K ip(1 − p)i−1 − i p + i p2 − i2 p2 + i p(1 − p)i−1

]

= λi
(K

i

)

(K − 1)K

[
(K − 1)i p − (K − 1)i p(1 − p)i−1 − (i − 1)i p2

]

= λi

[(K

i

)
i

K
p −

(
K

i

)
i

K
p(1 − p)i−1 −

(
K

i

)
i(i − 1)

K (K − 1)
p2

]

(BIN1)= λi

[(K − 1

i − 1

)
(p − p(1 − p)i−1) −

(
K − 2

i − 2

)
p2

]
.

Thus, adding the coefficients of λi from λ̃1 and
∑K

j=2 λ̃ j
(K−2

j−1

)
for each fixed

i ∈ {2, . . . , K − 1} yields
(

K − 1

i − 1

)
(1 − p + p(1 − p)i−1) +

(
K − 1

i − 1

)
(p − p(1 − p)i−1) −

(
K − 2

i − 2

)
p2

=
(

K − 1

i − 1

)
−

(
K − 2

i − 2

)
p2,

which implies (∗) and therefore the claim. 	


Proof of Theorem 1

Proof of Theorem 1 Step 1: Increasing convex order for some discrete random vari-
ables
For an integer K > 0, consider a Bernoulli r.v. Z ∼ Ber(p), p ∈ [0, 1] and K i.i.d.
copies of it denoted Zi , i ∈ {1, . . . , K }.
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Furthermore, consider the r.v.s X and Y defined as follows:

X = K Z ,

Y =
K∑

i=1

ki Zi , i ∈ {1, . . . , K }, (15)

where k := (ki )i∈{1,...,K } is an N
K
0 -vector s.t. ∀i : ki ∈ {0, . . . , K } with ∑K

i=1 ki =
‖k‖1 = K . Assume w.l.o.g. ki ≥ ki+1, ∀i ∈ {1, . . . , K −1}, and let i∗ := |{ki : ki >

0}|, then the first i∗ entries of k represent a partition of K (and the remaining entries
equal 0).
It is obvious that for any r.v. Y as above

E[Y ] = E[X ] = K p,

and we will now show that for any such Y it holds that

Y ≤icx X

by using the following sufficient condition (the so-called cut criterion or crossing
condition, see e.g. [35], p. 23): If for two r.v.s X and Y with c.d.f.s FX and FY

respectively, it holds that E[Y ] ≤ E[X ] and in addition, there exists t0 ∈ R s.t.

FY (t) ≤ FX (t) ∀t < t0,

FY (t) ≥ FX (t) ∀t ≥ t0,
(16)

then this implies Y ≤icx X .
Let us in the following exclude the trivial cases p ∈ {0, 1} and k = (K , 0, . . . , 0) as
they lead to FX = FY . Note that in all non-degenerate cases we have i∗ > 1.
Then, for r.v.s X and Y as defined in (15), there exists t0 ∈ [1, K − 1] s.t. the single-
crossing condition is fulfilled:
For t < 0 and t ≥ K , obviously FX (t) = FY (t).
For t ∈ [0, 1), we use that p ∈ (0, 1) and i∗ > 1 to see

FY (t) = P(Y = 0) = (1 − p)i∗ < 1 − p = P(X = 0) = FX (t).

For t ∈ (K − 1, K ), again with p ∈ (0, 1) and i∗ > 1,

FY (t) = P(Y ≤ K − 1) = 1 − P(Y = K ) = 1 − pi∗ > 1 − p = P(X = 0) = FX (t).

Lastly, note that

• t �→ FX (t) is constant for t ∈ (0, K − 1] at the level FX (t) ≡ 1 − p.
• FY (t) ismonotone increasing (being a c.d.f. ) for t ∈ (0, K −1]with (non-negative)
jumps at some of the {1, . . . , K −1} and FY (0+) = (1− p)i∗ < 1− p < 1− pi∗ =
FY (K − 1).
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Thus, due to the monotonicity of FY , there must be a unique t0 ∈ [1, K − 1] fulfilling
(16).
Step 2: Implication for (compound) Poisson process setting
Now, fix a time horizon T > 0 and consider two independent homogeneous Poisson
processes N (t) := (N (t))t≥0 with rate λ > 0 and Ñ (t) := (Ñ (t))t≥0 with rate
�λ > 0, � ∈ N. As Ñ (t) can be understood (in the sense of being equal in distribution)
as the superposition of � independent Poisson processes Ñ j (t), j ∈ {1, . . . , �}, all of
them with rate λ > 0 (see e.g. [30], p. 16), one can write S(T ) and S̃(T ) as

S(T ) =
N (T )∑
i=1

L = L N (T ),

S̃(T ) =
Ñ (T )∑
i=1

L

�

D= L

�

�∑
j=1

Ñ j (T ).

Due to the properties of the homogeneous Poisson process and by Wald’s equation, it
follows immediately that

N (T ), Ñ j (T ) ∼ Poi(λ T ), j ∈ {1, . . . , �},
E

[
N (T )

] = E
[
Ñ j (T )

] = λ T , j ∈ {1, . . . , �},
E

[
S(T )

] = E
[
S̃(T )

] = λ T L,

where Poi(λ) denotes the Poisson distribution with density fPoi(λ)(k) = λk e−λ

k! , k ∈
N0, λ > 0. Now, consider the following random variables:

Xi = L 1{N (T )≥i} =
{

L if N (T ) ≥ i,

0 else,
�⇒ Xi

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L w.p. 1 −
i−1∑
j=0

fPoi(λT )( j),

0 w.p.
i−1∑
j=0

fPoi(λT )( j),

Y i
j = L

�
1{Ñ j (T )≥i} =

{
L
�

if Ñ j (T ) ≥ i,

0 else,
�⇒ Y i

j

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L
�

w.p. 1 −
i−1∑
j=0

fPoi(λT )( j),

0 w.p.
i−1∑
j=0

fPoi(λT )( j),

j ∈ {1, . . . , �}.
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Note that Xi denotes the size of the i th jump of the Poisson process N (t) if it occurs
until time T (of deterministic size L > 0 if the process jumps at least i times until
time T , and of size 0 else), and analogously the � independent random variables Y i

j

denote the sizes of the i th jump of each of the independent Poisson processes Ñ j (t)
if they occur until time T .
As the Y i

j , j ∈ {1, . . . , �}, are independent, one can derive the density of their sum,

denoted Y i , from arguments borrowed from the Binomial law:

Y i :=
�∑

j=1

Y i
j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L w.p.
(
1 −

i−1∑
j=0

fPoi(λT )( j)
)�

,

�−1
�

L w.p.
(

�
�−1

)(
1 −

i−1∑
j=0

fPoi(λT )( j)
)�−1 i−1∑

j=0

fPoi(λT )( j),

· · ·
1
�

L w.p.
(
�
1

)(
1 −

i−1∑
j=0

fPoi(λT )( j)
)( i−1∑

j=0

fPoi(λT )( j)
)�−1

,

0 w.p.
( i−1∑

j=0

fPoi(λT )( j)
)�

.

Note that this illustrates the fundamental difference between the two considered cases
(process N (t) vs. superposition of � processes Ñ j (t)): In the notation of a collective
risk model, if the claim occurrences are driven by the process N (t) (corresponding to
relatively few events) and claim sizes are relatively large (i.e. of size L), either a large
total claims amount occurs or no claim at all occurs for each jump. On the contrary, if
claim occurrences are driven by the independent processes Ñ j (t) or equivalently their
superposition Ñ (t) (relatively many events) and claim sizes are relatively small (i.e.
of size L

�
), for a large total claims amount of size L from all the first (second, third,

. . .) jumps to occur, all � processes Ñ j (t) independently need to jump at least once
(twice, three times, . . .); equivalently, � independent jumps need to occur before time
T in the superimposed process Ñ (t). Likewise, to obtain no claim at all from the i th

jumps, any of the processes Ñ j (t) independently must not jump more than (i − 1)
times; or equivalently, the superimposed process may not jump more than (i − 1)�
times until T . Therefore, the probability of both large (i.e. size L) and no (size 0) total
claims amounts is reduced, and probability mass is shifted to the intermediate cases
that some (but not all or none) of the independent processes observe at least i jumps.
As

E[Xi ] = E[Y i ] = L
(
1 −

i−1∑
j=0

fPoi(λT )( j)
)

– note that the weights for Y i are akin to the density of a Binomial distribution with
N = �, p = 1 − ∑i−1

j=0 fPoi(λT )( j) – for any i ∈ N the discrete random variables Xi

and Y i are akin to X and Y from the first part of the proof, Xi being a Bernoulli r.v.
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with positive mass only on the largest admissible value L and Y i following a discrete
density supported on the set of values {0, L

�
, · · · ,

(�−1)L
�

, L} with equal expectation.
It follows from the above derivations that Xi ≥icx Y i , i ∈ N. As (increasing) convex
order is preserved under summation (this follows immediately from the transitivity of
≤icx ), this implies the statement of the theorem as

S(T ) =
∑
i∈N

Xi ≥icx

∑
i∈N

Y i = S̃(T ).

Note that it is straightforward to again extend the result to a case where not all
deterministic jump sizes corresponding to the � arrival processes Ñ�(t) are equally
of size L

�
, but instead one replaces them by a collection {Li }i∈{1,...,�}, such that

Li > 0,∀i ∈ {1, . . . , �}, and ∑
Li = L . 	


Proof of Corollary 1

Proof of Corollary 1 It is a well-known result that for any two integrable r.v. X and Y ,
convex order is equivalent to the ordering of expected shortfall at all levels q, i.e.

Y ≤cx X ⇐⇒ ESq(Y ) ≤ ESq(X), ∀q ∈ (0, 1),

see e.g. [21] and the references therein. Therefore, the statement of the corollary is
equivalent to showing SM (T ) ≥cx SM̃ (T ). As fromLemma 1 (and linearity) it follows
that E[SM (T )] = E[SM̃ (T )], it is sufficient to show SM (T ) ≥icx SM̃ (T ) (see first
point of Remark 4).
This follows immediately from Theorem 1: Recall that in model (M), the arrival rates
for events of size k ∈ {1, . . . , K } are given by λ := (λ|I |=1, . . . , λ|I |=K ) and that
all arrivals are independent (from arrivals of events of the same or any other size).
The total incident number until time T can therefore again be written as a sum of K
independent compound Poisson r.v.s:

SM (T )
D=

K∑
k=1

k Nk(T ),

where Nk(t) := (Nk(t))t≥0, k ∈ {1, . . . , K }, are independent Poisson processes with
rates λ|I |=k . In turn, for any k, the process Nk(t) can (artificially) be understood as the
superposition of (k +1) independent Poisson processes Nk, j (t) := (Nk, j (t))t≥0, j ∈
{0, . . . , k}, with rates λ|I |=k fBin( j; k, p), where in model (M) each of the arrivals of
each of these processes is associated with a jump of size k.
Then, the total incident number from events of size k until time T > 0, denoted Sk(T ),
and events of all sizes, denoted S(T ), are given by the following compound Poisson
r.v.s, respectively:

Sk(T ) =
k∑

j=0

k Nk, j (T )
D= k Nk(T ), S(T ) =

K∑
k=1

Sk(T ) =
K∑

k=1

k∑
j=0

k Nk, j (T ),
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where
D= denotes equality in distribution.

In model (M), for any k ∈ {1, . . . , K } each Poisson arrival process N j,k(t) is asso-
ciated with jumps of size k. In model (M̃), each arrival process N j,k(t) is replaced
by several independent processes with equal Poisson rate, but associated with smaller
jump sizes (which sum up to k), as represented in Table 5. From Theorem 1, it follows
immediately that the compound incident number in the second column (model (M))
of each row dominates in increasing convex order the compound incident number of
the corresponding processes in the third column (model (M̃)). By summing over all
rows (recall that ≤icx is preserved under summation), the same holds for the com-
pound incident number from each process Nk(t), k ∈ {1, . . . , K }, in model (M) as
compared to the overall compound incident number from all the corresponding inde-
pendent processes in model (M̃). By summing over all k ∈ {1, . . . , K }, it follows that
SM (T ) ≥icx SM̃ (T ) for any fixed T > 0 and thus the statement of the corollary. 	
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