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Abstract
Forward transition rates were originally introduced with the aim to evaluate life 
insurance liabilities market-consistently. While this idea turned out to have its limi-
tations, recent literature repurposes forward transition rates as a tool for avoiding 
Markov assumptions in the calculation of life insurance reserves. While life insur-
ance reserves are some form of conditional first-order moments, the calculation of 
conditional second-order moments needs an extension of the forward transition rate 
concept from one dimension to two dimensions. Two-dimensional forward transition 
rates are also needed for the calculation of path-dependent life insurance cash-flows 
as they occur upon contract modifications. Forward transition rates are designed 
for doing prospective calculations, and by a time-symmetric definition of so-called 
backward transition rates one can do retrospective calculations.

Keywords Life & health insurance · Non-Markov modelling · Prospective & 
retrospective reserves · Second-order moments · Free-policy option

1 Introduction

Forward transition rates describe the expected number of future transitions con-
ditional on the currently available information. If the current information is 
incomplete, then backward transition rates serve as a proxy for the number of past 
transitions. However, forward and backward transition rates do not describe the 
inter-temporal dependency structure of two successive jump events, so they are 
unsuitable for the calculation of second-order moments or for dealing with path-
dependent insurance cash-flows as they occur upon contract modifications. For 
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this reason, this paper introduces two-dimensional forward and backward transi-
tion rates and explains their use in life insurance calculations.

The research on forward transition rates originally emerged from the desire 
to calculate market values for life insurance liabilities. Miltersen and Persson 
[12] suggested to define mortality rates implicitly in such a way that the classical 
actuarial formulas reproduce market values instead of real-world expectations. 
They denoted these implicit mortality rates as forward mortality rates, inspired 
by the concept of forward interest rates from financial mathematics. Norberg [14] 
developed generalizations of the forward concept to multi-state life insurance but 
observed that the implicit definitions are lacking uniqueness. Christiansen and 
Niemeyer [7] observed that the implicit definitions often do not have any solution 
at all. So it turned out that the implicit concept has serious limitations. Buchardt, 
Furrer and Steffensen [3] suggested to overcome these limitations by introducing 
additional artificial states, but their concept is restricted to insurance contracts 
that have sojourn payments only and no transition payments.

Buchardt [2] discarded the implicit concept and presented an explicit definition 
that works for a doubly stochastic Markov framework. Buchardt actually drifts 
away from market-consistent valuation but without clearly mentioning.

Christiansen [5] discovered that Buchardt’s approach can be extended to a 
general recipe for calculating real-world expectations in fully non-Markovian 
life insurance frameworks. Christiansen and Furrer [6] enriched this non-Markov 
concept with a change of measure technique that makes it possible to deal also 
with path-dependent insurance payments. To put it into a nutshell, we find two 
divergent concepts of forward transition rates in the actuarial literature. First, 
there is the implicit concept which aims to reproduce market values, first sug-
gested by Miltersen and Persson [12] and taken on by numerous further authors. 
Second, there are the explicit definitions of Buchardt [2], Christiansen [5], and 
Christiansen and Furrer [6] that put the focus back on real-world expectations and 
use forward transition rates as a tool to cope with complex inter-temporal depend-
ency structures in life insurance models. This paper follows the second line of 
thought.

The change of measure technique in Christiansen and Furrer [6] transfers the 
complexity of path-dependent insurance cash-flows to auxiliary probabilistic mod-
els. This way the forward transition rates may stay one-dimensional, but each insur-
ance cash-flow needs another probabilistic model. Our aim is to have one probabil-
istic model only, and we achieve that by expanding the concept of forward transition 
rates to two dimensions. The price for having just one probabilistic model is an 
increased numerical effort that comes with the extra dimension. So the approach of 
Christiansen and Furrer [6] is beneficial when many scenarios are calculated for one 
and the same cash-flow, whereas the results of this paper are favourable when many 
different cash-flows ought to be calculated.

One-dimensional forward transition rates are designed as a tool for calculating 
expectations. Our two-dimensional concept can be used as a tool for calculating sec-
ond-order moments. The calculation of second-order moments in classical Markov 
models was first outlined in Hoem [9]. Helwich [8] presents general formulas for the 
calculation of variances in semi-Markov models.
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Calculation formulas for second-order moments in fully non-Markovian mod-
els do not exist yet in the literature. By introducing two-dimensional forward and 
backward transition rates we help to close that gap.

Markov modelling has a long tradition in life insurance. The classical concept 
to model the random pattern of states of the insured as a Markov process has been 
extended to semi-Markov modelling and further sophisticated Markov structures 
by numerous authors. The problem with any kind of Markov assumptions is that 
they come with model risk, while at the same time there is a lack of tools for 
quantifying the model error. This motivates the search for non-Markovian calcu-
lation techniques, and this paper is a major step into that direction.

The paper is structured as follows: Sect.  2 introduces the fundamental life 
insurance modelling framework. Section  3 introduces the definition of two-
dimensional forward and backward transitions rates and develops a corresponding 
integral equation that generalizes Kolmogorov’s forward equation. For the latter 
integral equation Sect. 4 verifies the uniqueness of solutions. Section 5 then turns 
to the main purpose of two-dimensional forward and backward transitions rates, 
namely the calculation of certain conditional moments. In Sect. 6 we explain the 
calculation of conditional variances. Section 7 illustrates the calculation of path-
dependent cash-flows. Section 8 concludes and gives an outlook on open research 
questions.

2  Life insurance modelling framework

Let (Ω,A,ℙ) be a probability space with a filtration � = (Ft)t≥0 . We consider an 
individual life insurance contract and describe the status of the individual insured by 
an adapted càdlàg jump process

on a finite state space Z . Additionally, we set Z0− ∶= Z0 . Throughout this paper we 
assume that we are currently at time s ≥ 0 . So the time interval [0, s] represents to 
the past and the present, and the time interval (s,∞) represents the future. The real 
number s ≥ 0 is arbitrary but fixed. Based on Z we define state indicator processes 
(Ii)i∈Z by

and transition counting processes (Nij)i,j∈Z∶i≠j by

We generally assume that

which in particular implies that Z has almost surely no explosions. Let

Z = (Z(t))t≥0

Ii(t) ∶= 1{Z(t)=i}, t ≥ 0,

Nij(t) ∶= #{u ∈ (0, t] ∶ Z(u−) = i, Z(u) = j}, t ≥ 0.

(2.1)�[Nij(t)] < ∞, t ≥ 0 , i, j ∈ Z, i ≠ j,
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This construction is made so that Nii(t) satisfies

and is càdlàg everywhere. Definition (2.2) and many further definitions following 
below involve a case differentiation between t > s and t ≤ s . As time s is fixed, we 
omit it in the notation, but one should keep in mind the dependence of many of our 
definitions on the parameter s. The following equations show a useful direct link 
between the processes (Nij)i,j∈Z and (Ii)i∈Z:

and

The latter integrals and all following integrals in this paper are meant as path-wise 
Lebesgue-Stieltjes integrals.

The sigma-algebra Fs represents the available information at time s. In insur-
ance practice, the insurer often uses a reduced information set Gs for actuarial 
evaluations. In this paper we generally assume that

The special case Gs = �(Z(s)) is known as the as-if-Markov model, since it uses 
information of Markov-type only. The choice of Gs can be influenced by many fac-
tors. Some of these are listed here:

• By cutting down the information used, one can reduce the complexity of 
numerical calculations.

(2.2)

Nii(t) ∶= −
∑
j ∈ Z

j ≠ i

(Nij(t) − Nij(s)), t > s,

Nii(t) ∶= −
∑
j ∈ Z

j ≠ i

(Nji(t) − Nji(s)), t ≤ s.

dNii(t) = −
∑
j ∈ Z

j ≠ i

dNij(t), t > s,

dNii(t) = −
∑
j ∈ Z

j ≠ i

dNji(t), t ≤ s,

(2.3)Ii(t) = Ii(s) +
∑
j∈Z

�
(s,t]

Nji(du), t ≥ s, i ∈ Z.

(2.4)Ii(t) = Ii(s) +
∑
j∈Z

�
(t,s]

Nij(du), s ≥ t, i ∈ Z.

(2.5)𝜎(Z(s)) ⊆ Gs ⊆ Fs.
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• A lack of data for statistical inference may make it necessary to simplify the 
information model.

• For some actuarial tasks it is sufficient to study mean portfolio values only, 
and then it is convenient to minimize the individual information.

• Anti-discrimination regulation may be a limiting factor for the use of informa-
tion, such as unisex calculation.

• Data privacy regulation can restrict the information that the insurer actually 
gathers and stores. For example, the General Data Protection Regulation of the 
European Union gives individuals considerable control and rights over their 
personal data.

Let B be the insurance cash-flow of the individual life insurance contract, here 
assumed to be an adapted càdlàg process with paths of finite variation. We 
assume that the insurance contract has a maximum contract horizon of T, which 
means that

Throughout this paper we assume that

Let � be a càdlàg function that describes the value development of a savings account. 
We assume that � is strictly positive so that the corresponding discounting function 
1∕� exists. The random variable

describes the discounted accumulated future cash-flow seen from time s, and the 
random variable

is the compounded accumulated past cash-flow. In order to ensure integrability, we 
generally assume that 1∕�(⋅) is bounded on [0, T].

Classical Markov modelling focusses on benefit payment functions that may 
depend on current states or current jumps of the insured but not on past random 
events. This means that B is supposed to have a so-called one-dimensional canon-
ical representation.

Definition 2.1 A stochastic process A is said to have a one-dimensional canoni-
cal representation if there exist real-valued functions (Ai)i on [0,∞) that generate 
finite signed measures Ai(du) and there exist measurable and bounded real functions 
(aij)ij∶i≠j such that

B(dt) = 0, t > T .

0 ≤ s ≤ T < ∞.

(2.6)Y+ ∶= ∫
(s,T]

�(s)

�(u)
B(du)

(2.7)Y− ∶= ∫
[0,s]

�(s)

�(u)
B(du)
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Insurance cash-flows that involve contract modifications, such as a free-policy 
option, can not be brought into the form (2.8). For this reason we need to allow for 
more complex structures.

Definition 2.2 A stochastic process A is said to have a two-dimensional canonical 
representation if there exist real-valued functions (Ai)i on [0,∞) that generate finite 
signed measures Ai(du1) , real-valued functions (Aij)ij on [0,∞)2 that generate finite 
signed measures Aij(du1, du2) , and measurable and bounded real-valued functions 
(aikl)ikl∶k≠l , (aijkl)ijkl∶i≠j,k≠l on [0,∞)2 such that

Example 2.3 Suppose that B is an insurance cash flow that has a one-dimensional 
canonical representation with respect to suitable functions (Bi)i and (bij)ij∶i≠j . Then 
the squared process B2 has a two-dimensional canonical representation:

In order to see this, use integration by parts according to Proposition A.2 and Fubi-
ni’s theorem.

Example 2.4 Suppose that Z = S × {0, 1} , where the elements of S describe the 
health status of the individual insured and {0, 1} indicates whether the policyholder 

(2.8)
A(t) =

∑
i∈Z

�
[0,t]

Ii(u
−)Ai(du) +

∑
i, j ∈ Z

i ≠ j

�
[0,t]

aij(u)Nij(du), t ≥ 0.

(2.9)

A(t) =
∑
i,j∈Z

�
[0,t]2

Ii(u
−
1
)Ij(u

−
2
)Aij(du1, du2)

+
∑

i, k, l ∈ Z

k ≠ l

�
[0,t]2

Ii(u
−
1
)aikl(u1, u2)Ai(du1)Nkl(du2)

+
∑

i, j, k, l ∈ Z

i ≠ j, k ≠ l

�
[0,t]2]

aijkl(u1, u2)Nij(du1)Nkl(du2), t1, t2 ≥ 0.

(2.10)

B2(t) =
∑
i,j∈Z

�
[0,t]2

Ii(u
−
1
)Ij(u

−
2
)Bi(du1)Bj(du2)

+
∑

i, k, l ∈ Z

k ≠ l

�
[0,t]2

2Ii(u
−
1
)bkl(u2)Bi(du1)Nkl(du2)

+
∑

i, j, k, l ∈ Z

i ≠ j, k ≠ l

�
[0,t]2

bij(u1)bkl(u2)Nij(du1)Nkl(du2), t ≥ 0.
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has exercised a free-policy option. We assume here that the free-policy option can 
be exercised only once and that the policy cannot move back to a premium-pay-
ing status. Let � be the random time where the free-policy option is actually exer-
cised, i.e. � gives the time where Z moves from the set S0 ∶= S × {0} to the set 
S1 ∶= S × {1} . At time � the insurance payment scheme is rescaled by a factor 
�(�, Z�− , Z�) in order to maintain actuarial equivalence, cf. [6]. So, by writing C for 
the insurance payment scheme, the insurance cash-flow B equals

We assume that C has a finite horizon of T. For the sake of simplicity, let

almost surely, so that we almost surely have no lump sum payments at time � . Sup-
pose that the payment scheme C has a one-dimensional canonical representation 
with respect to suitable functions (Ci)i and (cij)ij∶i≠j . The cash-flow B can be decom-
posed to

We will now analyse both integrals separately. Beginning with the first one, we have

since 1{u<𝜏}Ii(u
−) = 0 and 1{u<𝜏}Nij(du) = 0 for all (i, j) ∉ S

2
0
 . Because of (2.11) and 

the fact that 1{u≤�}Ii(u−) = Ii(u
−) and 1{u<𝜏}Nij(du) = Nij(du) for i, j ∈ S0 , we fur-

thermore get

almost surely. So the insurance cash-flow prior to � almost surely has a one-dimen-
sional canonical representation. Since � is the unique jump time of the counting pro-
cess 

∑
k∈S0

∑
l∈S1

Nkl , by using assumption (2.11) the second integral in (2.12) can 
be almost surely transformed to

B(t) = �
[0,t]

�(�, Z�− , Z�)
1{�≤u}C(du).

(2.11)1{�=u}C(du) = 0, ∀i ∈ Z,

(2.12)B(t) = �
[0,t]

1{u<𝜏}C(du) + �
[0,t]

1{u≥𝜏}𝜌(𝜏, Z𝜏− , Z𝜏)C(du).

�
[0,t]

1{u<𝜏}C(du) =
∑
i∈S0

�
[0,t]

1{u<𝜏}Ii(u
−)Ci(du) +

∑
i, j ∈ S0

i ≠ j

�
[0,t]

1{u<𝜏}cij(u)Nij(du)

�
[0,t]

1{u<𝜏}C(du) =
∑
i∈S0

�
[0,t]

Ii(u
−)Ci(du) +

∑
i, j ∈ S0

i ≠ j

�
[0,t]

cij(u)Nij(du)
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So, at and after time � the insurance cash-flow almost surely has a two-dimensional 
canonical representation. All in all, we obtain for the insurance cash-flow B the 
almost sure representation

3  Two‑dimensional transition rates

This section generalizes the forward and backward transition rates of [5] from one 
dimension to two dimensions. We still suppose that we are currently at time s and 
have the information Gs available. As the parameter s is fixed we omit in the notation.

Let Pi = (Pi(t))t≥0 and Qij = (Qij(t))t≥0 for i, j ∈ Z be the almost surely unique 
càdlàg processes that satisfy

As we already mentioned after definition (2.2), the process Nii is càdlàg.

�
[0,t]

1{u≥�}�(�, Z�− , Z�)C(du)

=
∑
k∈S0

∑
l∈S1

�
[0,t]2

1{u1≥u2}�(u2, k, l)C(du1)Nkl(du2)

=
∑
k∈S0

∑
i,l∈S1

�
[0,t]2

Ii(u
−
1
)�(u2, k, l)Ci(du1)Nkl(du2)

+
∑
k∈S0

∑
i, j, l ∈ S1

i ≠ j

�
[0,t]2

�(u2, k, l)cij(u1)Nij(du1)Nkl(du2).

(2.13)

B(t) =
∑
i∈S0

�
[0,t]

Ii(u
−)Ci(du) +

∑
k, l ∈ S0

k ≠ l

�
[0,t]

ckl(u)Nkl(du)

+
∑
k∈S0

∑
i,l∈S1

�
[0,t]2

Ii(u
−
1
)�(u2, k, l)Ci(du1)Nkl(du2)

+
∑
k∈S0

∑
i, j, l ∈ S1

i ≠ j

�
[0,t]2

�(u2, k, l)cij(u1)Nij(du1)Nkl(du2), t ≥ 0.

Pi(t) = �[Ii(t)|Gs],

Qij(t) = �[Nij(t)|Gs].
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Let Pik = (Pik(t1, t2))t1,t2≥0 and Qijkl = (Qijkl(t1, t2))t1,t2≥0 for i, j, k, l ∈ Z be the 
almost surely unique random surfaces that are càdlàg in each variable and satisfy

In order to find suitable modifications of the conditional expectations so that the 
processes have the postulated càdlàg path properties, one can calculate the condi-
tional expectations on the basis of a fixed regular conditional distribution ℙ( ⋅ |Gs) . 
Then the càdlàg path properties follow directly from the càdlàg path properties of 
(Ii)i and (Nij)ij and the dominated convergence theorem. The càdlàg path properties 
imply that the processes Pi,Qij and the surfaces Pik,Qijkl are uniquely given by their 
values at rational time points only, which are countably many, so the whole pro-
cesses and surfaces are almost surely unique.

In the following the superscript ’±’ is a short notation for

Moreover, for the sake of brief formulas, we introduce the processes

and

Definition 3.1 For i, j ∈ Z let the stochastic process (Λij(t))t≥0 be defined by

and for i, j, k, l ∈ Z let the random surface (Λijkl(t1, t2))t1,t2≥0 be defined by

In case of t1, t2 > s we denote Λij(dt1) as (one-dimensional) forward transi-
tion rate and Λijkl(dt1, dt2) as two-dimensional forward transition rate. In case of 
t1, t2 ≤ s we call them backward transition rates. In order to ensure existence of 
(3.1) and (3.2) we generally assume that

Pik(t1, t2) = �[Ii(t1)Ik(t2)|Gs],

Qijkl(t1, t2) = �[Nij(t1)Nkl(t2)|Gs].

f (u±) ∶=

{
f (u−) ∶ u > s,

f (u) ∶ u ≤ s.

P̃ij(u) ∶=

{
Pi(u) ∶ u > s,

Pj(u) ∶ u ≤ s,

P̃ijkl(u1, u2) ∶=

⎧
⎪⎨⎪⎩

Pik(u1, u2) ∶ u1, u2 > s,

Pjk(u1, u2) ∶ u1 ≤ s, u2 > s,

Pil(u1, u2) ∶ u1 > s, u2 ≤ s,

Pjl(u1, u2) ∶ u1, u2 ≤ s.

(3.1)Λij(t) = ∫
(s∧t,s∨t]

1{P̃ij(u
±)>0}

P̃ij(u
±)

Qij(du),

(3.2)Λijkl(t1, t2) = ∫
(s∧t1,s∨t1]×(s∧t2,s∨t2]

1{P̃ijkl(u
±
1
,u±

2
)>0}

P̃ijkl(u
±
1
, u±

2
)
Qijkl(du1, du2).
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almost surely for all i, j, k, l ∈ Z.
According to [5] it holds that

for all i ∈ Z , where

This is a generalization of Kolmogorov’s forward equation to non-Markov models.

Remark 3.2 We introduce u± as it allows us to use forward calculation for t > s and 
backward calculation for t ≤ s . Consider the case t > s , where u± = u− . Then Defini-
tion 3.1 implies

when ΔΛ = Λ(t) − Λ(t−) contains the jump-discontinuities of Λ . Which allows us to 
obtain Pi(t) , i ∈ Z , from Pi(t

−) , i ∈ Z . If we replaced Definition 3.1 by

then we would get

which fails as a forward formula in case that

(3.3)
�
[0,t]

1{P̃ij(t
±)>0}

P̃ij(t
±)

Qij(dt) < ∞, t ≥ 0,

�
[0,t]2

1{P̃ijkl(t
±
1
,t±
2
)>0}

P̃ijkl(t
±
1
, t±
2
)
Qijkl(dt1, dt2) < ∞, t ≥ 0,

(3.4)Pi(t) = Ii(s) +
∑
j∈Z

�
(s∧t,s∨t]

Pj(u
±)Λ̃ji(du), t ≥ 0,

Λ̃ij(u) ∶=

{
Λij(u) ∶ u > s,

Λji(u) ∶ u ≤ s.

Pi(t) =
∑
j ∈ Z

j ≠ i

Pj(t
−)ΔΛji(t) − Pi(t

−)
( ∑
j ∈ Z

j ≠ i

ΔΛij(t) − 1
)
,

(3.5)Λij(t) = ∫
(s,t]

1{P̃j(u)>0}

P̃j(u)
Qij(du), t > s,

Pi(t) =

Pi(t
−) −

∑
j ∈ Z

j ≠ i

Pj(t)ΔΛij(t)

1 −
∑

j ∈ Z

j ≠ i

ΔΛji(t)
, t > s.
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This case can occur for example when semi-Markov effects are modelled by state 
space expansions as in [1]. If we replaced Definition 3.1 by

then Theorem 6.3 in [5] fails. In the case t < s analogous problems occur. Our defi-
nition allows us to do backward calculation on [0, s].

We now extend (3.4) from one to two dimensions.

Theorem  3.3 The processes (Pik)i,k∈Z , (Λijkl)i,j,k,l∈Z,(Pi)i∈Z and (Λij)i,j∈Z almost 
surely satisfy the equation

for t1, t2 ≥ 0 and i, k ∈ Z , where

Proof We show the proof for the case t1, t2 > s only. For the other cases the proof is 
similar. Let ℙ�(⋅) be a regular version of the conditional distribution ℙ(⋅|Gs) and let 
��[⋅] be the Lebesgue-Stieltjes integral of the argument with respect to the integra-
tor ℙ� . By applying Campbell’s theorem, see Section A.1, and Fubini’s theorem, we 
get for (a, b], (c, d] ⊂ [s,∞) and almost all � ∈ Ω

∑
j ∈ Z

j ≠ i

ΔΛji(t) = 1.

Λij(t) = ∫
(s,t]

1{P̃i(u)>0}

P̃i(u)
Qij(du), t < s,

(3.6)

Pik(t1, t2) = Ii(s)Ik(s) + Ik(s) ∫
(s∧t1,s∨t1]

∑
j∈Z

Pj(u
±)Λ̃ji(du) + Ii(s) ∫

(s∧t2,s∨t2]

∑
l∈Z

Pl(u
±)Λ̃lk(du)

+ ∫
(s∧t1,s∨t1]×(s∧t2,s∨t2]

∑
j, l ∈ Z

Pjl(u
±
1
, u±

2
)Λ̃jilk(du1, du2)

Λ̃ijkl(u1, u2) ∶=

⎧
⎪⎨⎪⎩

Λijkl(u1, u2) u1, u2 > s

Λjikl(u1, u2) u1 ≤ s, u2 > s

Λijlk(u1, u2) u1 > s, u2 ≤ s

Λjilk(u1, u2) u1, u2 ≤ s.
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since Pik(u
−
1
, u−

2
)(�) = 0 implies Ii(u

−
1
)Ik(u

−
2
) = 0 ℙ�(⋅)-almost surely and 

Ii(u
−
1
)Nij(du1) = Nij(du1) . By applying (2.3), we get for t1, t2 ≥ s and i, k ∈ Z

By using the assumption (2.5), the definition of (Qijkl)ijkl , the definition of (Qij)i,j , 
Fubini’s theorem, and Campbell’s theorem, we can conclude that

almost surely. The assertion follows now from (3.2) and (3.7).   ◻

Remark 3.4 The integral equation (3.6) can be solved in different ways. For example 
one could use an algorithm similar to Finite Element methods. The idea is to use a 
simple box integration method to approximate the integral on small sub-rectangles 
of (s,T] × (s,T] . Let t1, t2, ... be a partition of (s, T] we use the following approxima-
tion procedure:

This leaves us with the following formula:

(3.7)

∫
(a,b]×(c,d]

1{Pik(u
−
1
,u−

2
)(𝜔)>0}Qijkl(d(u1, u2))(𝜔)

= �𝜔

⎡⎢⎢⎣ ∫
(a,b]×(c,d]

1{Pik(u
−
1
,u−

2
)(𝜔)>0}Nij(du1)Nkl(du2)

⎤⎥⎥⎦

= �𝜔

⎡
⎢⎢⎣ ∫
(a,b]×(c,d]

Ii(u
−
1
)Ik(u

−
2
)Nij(du1)Nkl(du2)

⎤
⎥⎥⎦

= ∫
(a,b]×(c,d]

Qijkl(d(u1, u2))(𝜔)

Pik(t1, t2) = �[Ii(t1)Ik(t2)|Gs]

= �

[
Ii(s)Ik(s)

|||Gs

]
+ �

[
Ik(s) ∫

(s,t1]

∑
j ∈ Z

Nji(dt)
|||Gs

]
+ �

[
Ii(s) ∫

(s,t2]

∑
l∈Z

Nlk(dt)
|||Gs

]

+ �

[ ∑
j, l ∈ Z

∫
(s,t1]×(s,t2]

Nji(dt1)Nlk(dt2)
|||Gs

]
.

Pik(t1, t2) = Ii(s)Ik(s) + Ik(s) ∫
(s,t1]

∑
j ∈ Z

Qji(du) + Ii(s) ∫
(s,t2]

∑
l∈Z

Qlk(du)

+
∑
j,l∈Z

∫
(s,t1]×(s,t2]

Qjilk(du1, du2)

∫
(ti,ti+1]×(tj,tj+1]

f (x, y)G(dx, dy) ≈ f (ti, tj) ∫
(ti,ti+1]×(tj,tj+1]

G(dx, dy).
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under the conventions Λij((a, b]) ∶= ∫
(a,b]

Λij(dx) , and 
Λijkl((a, b] × (c, d]) ∶= ∫

(a,b]×(c,d]
Λijkl(dx, dy) . Combining this with an analogous pro-

cedure for the one-dimensional case, we obtain a recursion scheme.
We first calculate the points on the red lines in Fig. 1 from the centre to the edge. 

Then we calculate every point on the yellow line from left to right and proceed with 
the same notion for the points above. The reason this works is that the calculation 
of every point only depends on Points in the bottom left rectangle of the point, see 
the green rectangle for reference. This allows us to approximate Pik on all the grid 
points, and then we approximate Pik on the whole rectangle.

For an empirical Λ as a pure jump process, the approximation of the integral is 
exact, and our algorithm calculates Pij , i, j ∈ Z accurately on the whole square.

4  Uniqueness of solutions of the integral equations

Equation (3.4) is commonly used for the calculation of the state occupation prob-
abilities (Pi)i from given one-dimensional transition rates. Likewise, equation (3.6) 
may be used in order to calculate the two-dimensional state occupation probabilities 
(Pik)ik from the one-dimensional and two-dimensional transition rates, but it is cru-
cial then that (Pik)ik is the only solution.

Pik(tq, tp) ≈ Ii(s)Ik(s) + Ik(s)
∑
j∈Z

q−1∑
n=0

Pj(tn)Λji((tn, tn+1])

+ Ii(s)
∑
l∈Z

p−1∑
m̃=0

Pl(tm)Λlk((tm, tm+1])

+
∑
j,l∈Z

p−1∑
m=0

q−1∑
n=0

Pjl(tn, tm)Λjilk((tn, tn+1] × (tm, tm+1]),

Fig. 1  Sketch of an algorithm to 
calculate P

ik
(t1, t2)
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Theorem 4.1 There exists an almost surely unique solution (Pi)i , (Pik)ik to the sto-
chastic integral equation system formed by equations (3.4) and (3.6).

Proof The existence of a solution follows from Theorem 3.3, so it remains to show 
that the solution is almost surely unique. As the equations (3.4) and (3.6) are almost 
surely pathwise integral equations, in the remaining proof we identify without loss 
of generality all stochastic processes and random surfaces with just one of their 
paths. These paths have to be chosen such that (3.3) holds.

We show the proof for the case t1, t2 > s only. For the other cases the proof is simi-
lar. We are going to use a fixed-point argument. For any choice of T ∈ (s,∞) , the set

is a linear space. The Hahn-Jordan decomposition offers for any finite signed meas-
ure a unique decomposition into a difference of two finite measures, and this decom-
position can be furthermore used to decompose also any f ∈ BV

|Z|
2

 into a difference 
f = f + − f − of nonnegative mappings f +, f − ∈ BV

|Z|
2

 . Based on this unique con-
struction of f + and f − , we then define |f | ∶= f + + f − . By equipping BV |Z|

2
 with the 

norm

we obtain a metric space. On this metric space, we define an operator 
O ∶ BV

|Z|
2

→ BV
|Z|
2

 as follows:

for t1, t2 ∈ [s,T] . We want this operator to be a contraction, but unfortunately this is 
not true, so we need to replace our norm for BV |Z|

2
 by another equivalent norm. Let

Because of assumption (3.3), each Λijkl , i ≠ j , k ≠ l , has an associated measure �Λijkl
 

that is almost surely finite on [s,T]2 . Hence, there exists a finite measure � that 
satisfies

We moreover define

BV
|Z|
2

∶=
{
f ∶ [s,T] × [s,T] → ℝ

|Z|2 ||| there exist finite signed measures �ik

with fik(x, y) = �ik([s, x] × [s, y]), x, y ∈ [s,T] × [s,T]
}

‖(fik)i,k∈Z‖ ∶=
�
i,k∈Z

∫
[s,T]×[s,T]

�fik�(dt1, dt2) +
�
i,k∈Z

�fik(s, s)�

(
O((fjl)j,l∈Z)

)
ik
(t1, t2) ∶ =

∑
j,l∈Z

∫
(s,t1]×(s,t2]

fjl(u
−
1
, u−

2
)Λjilk(du1, du2)

�(t1, t2) ∶= 4
∑

i, j, k, l ∈ Z

i ≠ j

k ≠ l

Λijkl(t1, t2), t1, t2 ∈ [s,T].

(4.1)�(t1, t2) = �([s, t1] × [s, t2]), t1, t2 ∈ [s,T].
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which are càdlàg by construction. For each K ∈ (0,∞) the mapping ‖ ⋅ ‖K defined by

is a norm on BV |Z|
2

 that is equivalent to the norm ‖ ⋅ ‖ . This construction of ‖ ⋅ ‖K is 
inspired by [4] but is here extended to the two-dimensional case. For any f ∈ BV

|Z|
2

 , 
(a, b] × (c, d] ⊂ [s,T] × [s,T] and k, i ∈ Z , the definitions of operator O and the two-
dimensional transition rates (Λijkl)i,j,k,l∈Z in conjunction with the triangle inequality 
yield that

Summation over i,  k and a reordering of some of the resulting sums lead to the 
inequality

Suppose now that f(s, s) is zero. Then it holds that

As a consequence, the norm ‖ ⋅ ‖K of O(f) has an upper bound of

�1(u) ∶ = �([s, u] × [s,T]),

�2(u) ∶ = �([s,T] × [s, u]), u ∈ [s,T],

‖(fij)i,j∈Z‖K ∶=
�
i,j∈Z

∫
[s,T]×[s,T]

e−K(�1(u1)+�2(u2))�fij�(du1, du2) +
�
i,k∈Z

�fik(s, s)�

�
(a,b]×(c,d]

|O(f )ik|(du1, du2) ≤
∑

l ∶ l ≠ k

j ∶ j ≠ i

(
�

(a,b]×(c,d]

|fjl(u−1 , u−2 )|Λjilk(du1, du2)

+ �
(a,b]×(c,d]

|fjk(u−1 , u−2 )|Λjikl(du1, du2)

+ �
(a,b]×(c,d]

|fil(u−1 , u−2 )|Λijlk(du1, du2)

+ �
(a,b]×(c,d]

|fik(u−1 , u−2 )|Λijkl(du1, du2)

)
.

∑
i,k

�
(a,b]×(c,d]

|O(f )ik|(du1, du2) ≤ 4
∑

i, j, k, l

i ≠ j, k ≠ l

�
(a,b]×(c,d]

|fik(u−1 , u−2 )|Λijkl(du1, du2)

≤ 4
∑
i,k

�
(a,b]×(c,d]

|fik(u−1 , u−2 )| �(du1, du2).

∑
i,k

�
(a,b]×(c,d]

|O(f )ik|(du1, du2) ≤ 4
∑
k,i

�
(a,b]×(c,d]

�
[s,u1)×[s,u2)

|fik|(dr1, dr2) �(dt1, dt2).
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where the last equality uses Fubini’s theorem. Moreover, for arbitrary but fixed 
u1, u2 ∈ [s,T] let

for the same � is in equation (4.1). Without loss of generality we assume that 
𝜇((u1, T] × (u2, T]) > 0 . Otherwise the conclusion that we want to draw is trivial. 
Then

correspond to cumulative distribution functions. Let C ∶= �̃�(u1, u2) > 0 and let 
(A, B) be a random vector that has �̃� as its two-dimensional cumulative distribution 
function. Then, by applying Sklar’s theorem, see e.g. Theorem 2.3.3 in [13], we can 
show that

for a suitable random vector (U,  V) whose components are uniformly distributed 
on (0,  1) and such that (A,  B) and (�̃�−1

1
(U), �̃�−1

2
(V)) have the same distribution. 

Note here that the copula of (U, V) may be non-trivial. The inverse functions �̃�−1
1

 
and �̃�−1

2
 are here defined as �̃�−1

n
(t) ∶= inf{x ∶ �̃�n(x) ≥ t} , n = 1, 2 for t ∈ (0, 1) . Since 

�̃�1(�̃�
−1
1
(t)) ≥ t for t ∈ (0, 1) , see e.g. Theorem 3.1 in [17], the inequality (4.3) has an 

upper bound of

(4.2)

‖O(f )‖K =
�
i,k

�
[s,T]×[s,T]

e−K(�1(u1)+�2(u2))�O(f )ik�(du1, du2)

≤ �
i,k

�
[s,T]×[s,T]

e−K(�1(u1)+�2(u2)) �
[s,u1)×[s,u2)

�fik�(dr1, dr2) �(du1, du2)

=
�
i,k

�
[s,T]×[s,T]

�
(r1,T]×(r2,T]

e−K(�1(u1)+�2(u2))�(du1, du2))�fik�(dr1, dr2),

�̃�(r1, r2) ∶=
𝜇((u1, r1] × (u2, r2])

𝜇((u1, T] × (u2, T])
, r1 ∈ (u1, T], r2 ∈ (u2, T],

�̃�1(r1) ∶= �̃�(r1, T),

�̃�2(r2) ∶= �̃�(T , r2), (r1, r2) ∈ (u1, T] × (u2, T],

(4.3)

�
(u1,T]×(u2,T]

e−K(𝜈1(r1)+𝜈2(r2))𝜈(dr1, dr2)

≤ Ce−K(𝜈1(u1)+𝜈2(u2) �
(u1,T]×(u2,T]

e−CK(�̃�1(r1)+�̃�2(r2))�̃�(dr1, dr2)

= Ce−K(𝜈1(u1)+𝜈2(u2) �
[
e−CK(�̃�1(�̃�

−1
1
(U))+�̃�2(�̃�

−1
2
(V)))

]

�
(u1,T]×(u2,T]

e−K(�1(r1)+�2(r2))�(dr1, dr2) ≤ Ce−K(�1(u1)+�2(u2) �
[
e−CK(U+V)

]
.
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By applying Theorem 10.6.4 in [10], we can show that the latter expectation has an 
upper bound of

since x ↦ exp{−CKx} is a convex function. As U is uniformly distributed on (0, 1), 
we moreover have

We set K = 1 . Then, all in all we can conclude that the inequality (4.2) has an upper 
bound of

whenever f(s,  s) equals zero. Suppose now that we have two solutions R = (Pik)ik 
and R� = (P�

ik
)ik of (3.6) for given (Pi)i . Then R − R� ∈ BV

|Z|
2

 is a fixed point of the 
operator O and (R − R�)(s, s) is zero. So we have

which necessarily implies that R − R� is zero on [s,T] × [s,T] . In an analogous way 
it is possible to proof R = R� also on the three rectangles [0, s]2 , [0, s] × (s,T] and 
(s,T] × [0, s] . Since T ∈ (s,∞) was arbitrary, we can expand the uniqueness prop-
erty to infinity.

With the same ideas that we used in this proof, one can also show the uniqueness 
of a solution (Pi)i∈Z of (3.4) with respect to (Λij)i,j∈Z . The one-dimensional case is 
actually even simpler. The equation system formed by equations (3.4) and (3.6) can 
then have only one solution (Pi)i , (Pik)ik . This completes the proof.   ◻

5  Conditional expectations of canonical representations

According to [5], for any stochastic process A that has a one-dimensional canoni-
cal representation of the form (2.8), it holds that

�
[
e−CK(U+V)

] ≤ �
[
e−CK(2U)

]

�
[
e−CK(2U)

]
= �
(0,1)

e−CK(2u)du

=
1

2KC

(
1 − e−2KC

)

≤ 1

2KC
.

‖O(f )‖K ≤ 1

2K

�
i,k

�
[s,T]×[s,T]

e−K(�1(u1)+�2(u2))�fik�(du1, du2)

=
1

2
‖f‖K

‖R − R�‖K ≤ 1

2
‖R − R�‖K ,
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and

almost surely. These formulas are classical in the life insurance literature in case that 
Z is a Markov process, and the recent contribution of [5] was to show that Markov 
assumptions are actually not needed here. The formulas (5.1) and (5.2) are used in 
life insurance for the calculation of prospective and retrospective reserves at time s. 
They are typically applied as follows: For given one-dimensional transition rates, 
calculate the corresponding one-dimensional state occupation probabilities by solv-
ing (3.4), and then solve the integrals in (5.1) and (5.2) in order to obtain the desired 
conditional expectations. The solving usually happens numerically.

The following three propositions will allow us to generalize (5.1) and (5.2) to sto-
chastic processes A that have a two-dimensional canonical representation according 
to (2.9).

Proposition 5.1 Let Aij , i, j ∈ Z , be a real-valued function on [0,∞)2 that generates 
a finite signed measure. Then we almost surely have

Proof The assertion follows from Fubini’s theorem.   ◻

Proposition 5.2 Let Ai , i ∈ Z , be a real-valued function on [0,∞) that generates a 
finite signed measure, and let aikl , i, k, l ∈ Z , k ≠ l , be a measurable and bounded 
real-valued function on [0,∞)2 . Then we almost surely have

and

(5.1)

�

[
�

(s,T]

A(dt)
||||Gs

]
=
∑
i∈Z

�
(s,T]

Pi(t
−)Ai(dt) +

∑
i, j ∈ Z

i ≠ j

�
(s,T]

aij(t)Pi(t
−)Λij(dt)

(5.2)
�

[
�
[0,s]

A(dt)
||||Gs

]
=
∑
i∈Z

�
[0,s]

Pi(t
−)Ai(dt) +

∑
i, j ∈ Z

i ≠ j

�
[0,s]

aij(t)Pj(t)Λij(dt)

�

[
∫

[0,T]2

Ii(u
−
1
)Ij(u

−
2
)Aij(du1, du2)

||||Gs

]
= ∫
[0,T]2

Pij(u
−
1
, u−

2
)Aij(du1, du2).

�

[
∫

[0,s]×[0,T]

Ii(u
−
1
)aikl(u1, u2)Ai(du1)Nkl(du2)

||||Gs

]

= Ii(s) ∫
[0,s]×[0,T]

aikl(u1, u2)Ai(du1)P̃kl(u
±
2
)Λkl(du2)

+
∑
j∈Z

∫
[0,s]

∫
[0,T]×[u1,s]

aikl(u1, u2)P̃klij(u
±
2
, u3)Λklij(du2, du3)Ai(du1)
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Proof From (2.3), (2.4) we get

for W(t) ∶= (s, t) in case of t > s and W(t) ∶= [t, s] in case of t ≤ s and 
N

[t,s]

ij
(t) ∶= Nji(t) and N(s,t)

ij
(t) ∶= Nij(t) . This equation and assumption (2.5) imply for 

D ∈ {[0, s], (s,T]} the equation

Now apply Fubini’s theorem and Campbell’s theorem in order to obtain

for Q[0,s]

klji
(t1, t2) = Qklij(t1, t2) and Q(s,T]

klji
(t1, t2) = Qklji(t1, t2) . Finally, use the equations

which follow from the definitions (3.1) and (3.2).   ◻

�

[
∫

(s,T]×[0,T]

Ii(u
−
1
)aikl(u1, u2)Ai(du1)Nkl(du2)

||||Gs

]

= Ii(s) ∫
(s,T]×[0,T]

aikl(u1, u2)Ai(du1)P̃kl(u
±
2
)Λkl(du2)

+
∑
j∈Z

∫
(s,T]

∫
[0,T]×(s,u1)

aikl(u1, u2)P̃klji(u
±
2
, u−

3
)Λklji(du2, du3)Ai(du1).

Ii(t
−) = Ii(s) + ∫

W(t)

∑
j∈Z

N
W(t)

ji
(du)

�

[
∫

D×[0,T]

Ii(u
−
1
)aikl(u1, u2)Ai(du1)Nkl(du2)

||||Gs

]

= �

[
∫

D×[0,T]

Ii(s)aikl(u1, u2)Ai(du1)Nkl(du2)
||||Gs

]

+
∑
j∈Z

�

[
∫
D

∫
[0,T]×W(u1)

aikl(u1, u2)Nkl(du2)N
W(u1)

ji
(du3)Ai(du1)

||||Gs

]
.

�

[
∫

D×[0,T]

Ii(u
−
1
)aikl(u1, u2)Ai(du1)Nkl(du2)

|||Gs

]

= ∫
D×[0,T]

Ii(s)aikl(u1, u2)Ai(du1)Qkl(du2)

+ ∫
D

∫
[0,T]×W(u1)

aikl(u1, u2)Q
W(u1)

klji
(du2, du3)Ai(du1),

Qkl(du2) = P̃kl(u
±
2
)Λkl(du2),

Qklij(du2, du3) = P̃klij(u
±
2
, u±

3
)Λklij(du2, du3),
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Proposition 5.3 Let aijkl , i, j, k, l ∈ Z , i ≠ j , k ≠ l , be a measurable and bounded 
real-valued function on [0,∞)2 . Then we almost surely have

Proof The result follows directly from Campbell’s theorem and (3.2).   ◻

Corollary 5.4 Suppose that A is a stochastic process that has a two-dimensional 
canonical representation according to (2.9). Then we almost surely have

From formula 5.3 we can immediately obtain general expressions for the 
expected values of discounted future liabilities as well as the pure expected val-
ues. The discounting needs to be included in the functions Aij , Ai , aikl , and aijkl.

In insurance practice, formula 5.3 may be used as follows: For given one-
dimensional and two-dimensional transition rates, calculate the corresponding 
one-dimensional and two-dimensional state occupation probabilities by solving 

�

[
∫

[0,T]2

aijkl(u1, u2)Nij(du1)Nkl(du2)
||||Gs

]

= ∫
[0,T]2

aijkl(u1, u2)P̃ijkl(u
±
1
, u±

2
)Λijkl(du1, du2).

(5.3)

�

[
�

[0,T]2

A(du1, du2)
||||Gs

]

=
∑
i,j∈Z

�
[0,T]2

Pij(u
−
1
, u−

2
)Aij(du1, du2)

+
∑
i, k, l

k ≠ l

Ii(s) �
[0,T]2

aikl(u1, u2)Ai(du1)P̃kl(u
±
2
)Λkl(du2)

+
∑

i, j, k, l

k ≠ l

�
[0,s]

�
[0,T]×[u1,s]

aikl(u1, u2)P̃klij(u
±
2
, u3)Λklij(du2, du3)Ai(du1)

+
∑

i, j, k, l

k ≠ l

�
(s,T]

�
[0,T]×(s,u1)

aikl(u1, u2)P̃klji(u
±
2
, u−

3
)Λklji(du2, du3)Ai(du1)

+
∑

i, j, k, l

i ≠ j, k ≠ l

�
[0,T]2

aijkl(u1, u2)P̃ijkl(u
±
1
, u±

2
)Λijkl(du1, du2).
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(3.4) and (3.6). Then solve the integrals in (5.3) in order to obtain the desired 
conditional expectation.

6  Conditional variance of the future liabilities

We still think of s as an arbitrary but fixed parameter and omit this parameter in the 
notation. The discounted accumulated future payments Y+ according to definition 
(2.6) are usually not measurable with respect to Gs , so actuaries use the so-called 
prospective reserve at time s

as a proxy for Y+ . In order to quantify the dispersion of the approximation error 
Y+ − V+ , the actuary is also interested in the conditional variance

This section discusses the calculation of V+ and

from which we can then get the conditional variance as

Our results here are limited to insurance cash-flows B that have a one-dimensional 
canonical representation,

From (2.6) and (5.1) we almost surely obtain

This formula and equation (3.4) allow us to calculate V+ from given one-dimen-
sional transition rates (Λij(t))t>s , i, j ∈ Z.

We now turn to the calculation of S+ . Analogously to (2.10), one can show that

(6.1)V+ ∶= �[Y+|Gs]

(6.2)Var[Y+|Gs] ∶ = �[(Y+)2|Gs] − (�[Y+|Gs])
2.

(6.3)S+ ∶= �[(Y+)2|Gs],

Var[Y+|Gs] = S+ − (V+)2.

(6.4)B(t) =
∑
i

�
[0,t]

Ii(u
−)Bi(du) +

∑
i,j∶j≠i �

[0,t]

bij(u)Nij(du), t ≥ 0.

V+ =
∑
i∈Z

�
(s,T]

�(s)

�(t)
Pi(t

−)Bi(dt) +
∑

i, j ∈ Z

i ≠ j

�
(s,T]

�(s)

�(t)
bij(t)Pi(t

−)Λij(dt).
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By using definition (6.3), interchanging ∫
(s,T]2

 and ∫
[0,T]2

1(s,T]2 , and applying Corol-
lary 5.4, we obtain that

almost surely. This formula and the equations (3.4) and (3.6) allow us to calculate S+ 
from given transition rates (Λij(t))t∈(s,T] and (Λijkl(t))t∈(s,T]2 , i, j, k, l ∈ Z.

For the conditional expectation and the conditional variance of Y− we can obtain 
a similar result. We leave these analogous calculations to the reader.

7  Prospective and retrospective reserve for a path‑dependent 
cash‑flow

This section continues with Example 2.4. Recall that (6.1) is the so-called prospec-
tive reserve at time s. The retrospective reserve at time s is defined as

for Y− defined by (2.7). Analogously to (2.13) one can show that

(Y+)2 =
∑
i,j∈Z

�
(s,T]2

2�(s)2

�(u1)�(u2)
Ii(u

−
1
)Ij(u

−
2
)Bi(du1)Bj(du2)

+
∑

i, j, k ∈ Z

j ≠ k

�
(s,T]2

2�(s)2

�(u1)�(u2)
Ii(u

−
1
)bjk(u2)Bi(du1)Njk(du2)

+
∑

i, j, k, l ∈ Z

i ≠ j, k ≠ l

�
(s,T]2

2�(s)2

�(u1)�(u2)
bij(u1)bkl(u2)Nij(du1)Nkl(du2).

S+ =
∑

i, j ∈ Z
�

(s,T]2

2�(s)2

�(u1)�(u2)
Pij(u

−
1
, u−

2
)Bi(du1)Bj(du2)

+
∑

i, k, l ∈ Z

k ≠ l

Ii(s) �
(s,T]2

2�(s)2

�(u1)�(u2)
bkl(u2)Pk(u

−
2
)Bi(du1)Λkl(du2)

+
∑

i, j, k, l ∈ Z

k ≠ l

�
(s,T]

�
(s,T]×(s,u1)

2�(s)2

�(u1)�(u2)
bkl(u2)Pkj(u

−
2
, u−

3
)Λklji(du2, du3)Bi(du1)

+
∑

i, j, k, l ∈ Z

i ≠ j, k ≠ l

�
(s,T]2

2�(s)2

�(u1)�(u2)
bij(u1)bkl(u2)Pik(u

−
1
, u−

2
)Λijkl(du1, du2)

(7.1)V− ∶= �[Y−|Gs]
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By using (5.1), interchanging ∫
[0,s]

 and ∫
[0,T]

1[0,s] , interchanging ∫
[0,s]2

 and 
∫
[0,T]2

1[0,s]2 , and applying Corollary 5.4, we can conclude that

almost surely. This formula and the equations (3.4) and (3.6) allow us to calculate 
V− from given transition rates (Λij(t))t≤s and (Λijkl(t))t≤s , i, j, k, l ∈ Z.

By arguing analogously to (2.13), one can moreover show that the discounted 
future liabilities Y+ have the representation

Y− =
∑
i∈S0

�
[0,s]

�(s)

�(u)
Ii(u

−)Ci(du) +
∑

k, l ∈ S0

k ≠ l

�
[0,s]

�(s)

�(u)
ckl(u)Nkl(du)

+
∑
k∈S0

∑
i,l∈S1

�
[0,s]2

�(s)

�(u1)
Ii(u

−
1
)�(u2, k, l)Ci(du1)Nkl(du2)

+
∑
k∈S0

∑
i, j, l ∈ S1

i ≠ j

�
[0,s]2

�(s)

�(u1)
�(u2, k, l)cij(u1)Nij(du1)Nkl(du2).

V− =
∑
i∈S0

�
[0,s]

�(s)

�(u)
Pi(u

−)Ci(du) +
∑

k, l ∈ S0

k ≠ l

�
[0,s]

�(s)

�(u)
ckl(u)Pl(u)Λkl(du)

+
∑
k∈S0

∑
l,i∈S1

Ii(s) �
[0,s]2

�(s)

�(u1)
�(u2, k, l)Pl(u2)Ci(du1)Λkl(du2)

+
∑
k∈S0

∑
l,i∈S1

∑
j∈Z

�
[0,s]

�
[0,s]×[u1,s]

�(s)

�(u1)
�(u2, k, l)Plj(u2, u3)Λklij(du2, du3)Ci(du1)

+
∑
k∈S0

∑
l, i, j ∈ S1

i ≠ j

�
[0,s]2

�(s)

�(u1)
�(u2, k, l)cij(u1)Pjl(u1, u2)Λijkl(du1, du2)

Y+ =
∑
i∈S0

�
(s,T]

�(s)

�(u)
Ii(u

−)Ci(du) +
∑

k, l ∈ S0

k ≠ l

�
(s,T]

�(s)

�(u)
ckl(u)Nkl(du)

+
∑
k∈S0

∑
i,l∈S1

�
(s,T]×[0,T]

�(s)

�(u1)
Ii(u

−
1
)�(u2, k, l)Ci(du1)Nkl(du2)

+
∑
k∈S0

∑
i, j, l ∈ S1

i ≠ j

�
(s,T]×[0,T]

�(s)

�(u1)
�(u2, k, l)cij(u1)Nij(du1)Nkl(du2).
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By applying (5.1), interchanging ∫
(s,T]

 and ∫
[0,T]

1(s,T] , interchanging ∫
(s,T]×[0,T]

 and 
∫
[0,T]2

1(s,T]×[0,T] , and applying Corollary 5.4, we almost surely get

This formula and the equations (3.4) and (3.6) allow us to calculate V− from given 
transition rates (Λij(t))t≤T and (Λijkl(t))t≤T , i, j, k, l ∈ Z.

8  Conclusion and outlook

So far, the non-Markov calculation technique of Christiansen [5] has been lim-
ited to the calculation of first-order moments. By introducing two-dimensional 
forward and backward transition rates, we make second-order moments accessi-
ble as well. The two-dimensional rates capture intertemporal dependency struc-
tures that the one-dimensional rates miss. In order to calculate also third-order 
or even higher-order moments, one may envision further extensions of the for-
ward and backward transition rate concept to three dimensions or even higher 
dimensions. Such extensions are beyond the scope of this paper and left for 
future research.

Intertemporal dependency structures play a major role when life insurance 
cash-flows are path-dependent. Such path dependencies occur for example upon 
contract modifications. We illustrated how two-dimensional forward and back-
ward transition rates are of help here for actuarial calculations by studying insur-
ance policies with free-policy option.

The non-Markov approach exchanges systematic model risk for unsystematic 
estimation risk. The latter risk has much nicer asymptotic properties. For the one-
dimensional case, the landmark Nelson-Aalen estimator of Putter and Spitoni [16] 
can be suitably adapted, see [5]. The idea is to use subsampling, so in order to 
achieve a small estimation error the information model Gs should be rather small. 
A positive example is the as-if-Markov model, which records only the current 
state of the insured. For the two-dimensional case, efficient generalizations of the 
landmark Nelson-Aalen estimator have yet to be explored.

V+ =
∑
i∈S0

�
(s,T]

𝜅(s)

𝜅(u)
Pi(u

−)Ci(du) +
∑

i, j ∈ S0

i ≠ j

�
(s,T]

𝜅(s)

𝜅(u)
cij(u)Pi(u

−)Λij(du)

+
∑
k∈S0

∑
l,i∈S1

Ii(s) �
(s,T]×[0,T]

𝜅(s)

𝜅(u1)
𝜌(u2, k, l)P̃kl(u

±
2
)Ci(du1)Λkl(du2)

+
∑
k∈S0

∑
l,i∈S1

∑
j∈Z

�
(s,T]

�
[0,T]×(s,u1)

𝜅(s)

𝜅(u1)
𝜌(u2, l, k)P̃klji(u

±
2
, u−

3
)Λklji(du2, du3)Ci(du1)

+
∑
k∈S0

∑
l, i, j ∈ S1

i ≠ j

�
(s,T]×[0,T]

𝜅(s)

𝜅(u1)
𝜌(u2, k, l)cij(u1)P̃ijkl(u

−
1
, u±

2
)Λijkl(du1, du2).
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A Appendix

Theorem A.1 (Campbell theorem) Let � be a point process on (ℝd,𝔹(ℝd)) with 
intensity measure � and let u ∶ ℝ

d
→ ℝ be a measurable function. Then

is a random variable and

whenever u ≥ 0 or ∫ |u(x)|𝜆(dx) < ∞.

For the proof see Sect. 2.2 in [11].

Proposition A.2 (integration by parts) Suppose that (F(t))t≥0 and (G(t))t≥0 are real-
valued càdlàg processes with paths of finite variation. Then

for (a, b] ⊂ (0,∞).

Proof For the proof see Corollary 2 following Theorem 22 in [15].   ◻
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