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Abstract
The Rough Fractional Stochastic Volatility (RFSV) model of Gatheral et al. (Quant 
Financ 18(6):933–949, 2014) is remarkably consistent with financial time series 
of past volatility data as well as with the observed implied volatility surface. Two 
tractable implementations are derived from the RFSV with the rBergomi model of 
Bayer et  al. (Quant Financ 16(6):887–904, 2016) and the rough Heston model of 
El Euch et al. (Risk 84–89, 2019). We now show practically how to expand these 
two rough volatility models at larger time scales, we analyze their implications for 
the pricing of long-term life insurance contracts and we explain why they provide a 
more accurate fair value of such long-term contacts. In particular, we highlight and 
study the long-term properties of these two rough volatility models and compare 
them with standard stochastic volatility models such as the Heston and Bates mod-
els. For the rough Heston, we manage to build a highly consistent calibration and 
pricing methodology based on a stable regime for the volatility at large maturity. 
This ensures a reasonable behavior of the model in the long run. Concerning the 
rBergomi, we show that this model does not exhibit a realistic long-term volatility 
with extremely large swings at large time scales. We also show that this rBergomi 
is not fast enough for calibration purposes, unlike the rough Heston which is highly 
tractable. Compared to standard stochastic volatility models, the rough Heston hence 
provides efficiently a more accurate fair value of long-term life insurance contracts 
embedding path-dependent options while being highly consistent with historical and 
risk-neutral data.
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1 Introduction

Standard stochastic volatility (SV) models such as the well-known Heston or 
Bates models have been introduced long ago to address the shortcomings of the 
celebrated model of Black & Scholes. However, such models are still limited and 
cannot reproduce some important empirical facts of the historical volatility and 
of the observed implied volatility surface.

In their seminal paper, Gatheral et  al. [26] propose a model called “Rough 
Fractional Stochastic Volatility” (RFSV) where the log-volatility process is 
modeled in terms of a fractional Brownian motion. More precisely, a fractional 
Ornstein-Uhlenbeck process is used with H < 1∕2 , in contrast with the “Frac-
tional Stochastic Volatility” model (FSV) previously introduced by Comte and 
Renault [15], where the Hurst index is assumed to satisfy H > 1∕2 . Gatheral et al. 
[26] find a highly consistent model with empirical estimates of the volatility time 
series. Moreover, the RFSV volatility process is stationary, which ensures rea-
sonableness of the model in the long run. However, due to the need of Monte-
Carlo simulations, this RFSV model does not provide rapidly option prices, nor 
an effective calibration procedure. More tractable pricing models such as the 
rBergomi from Bayer et al. [4] or the rough Heston from El Euch et al. [19] were 
then derived from the RFSV model to improve the efficiency of model calibra-
tion and option pricing. These two models appear to be extremely good at fitting 
the implied volatility surface while still reproducing the empirical properties of 
the historical volatility due to their rough sample paths. This paper shows how to 
expand these two rough-type models at larger time scales in order to price long-
term life insurance contracts and explains why they provide a more accurate value 
of such contracts.

First, we will see that the stationary property of the volatility in the RFSV 
model will be lost when considering the rBergomi and rough Heston models. 
Despite this non-stationary property, we will manage to build for the rough Hes-
ton model a stable regime for the volatility in the long-run so as to price consist-
ently long-term life insurance claims. On the contrary, for the rBergomi model, 
we will show that the generated volatility at large time scales will not be realis-
tic and will tend to exhibit extremely large swings. Moreover, since these long-
term properties of the rough Heston and rBergomi models depend heavily on 
the forward variance curve, we will show how to extrapolate the values of this 
curve beyond the observed maturities. In particular, we will derive a methodol-
ogy based on a SSVI parametrization of the volatility surface which allows the 
forward variance curve to be consistent with the absence of static arbitrage and 
to be stable for large maturities. We will then verify practically these long-term 
properties by valuating an equity-linked endowment embedding a cliquet option 
(using four different models: Heston, Bates, rBergomi and rough Heston). This 
will allow to highlight the added-value of using rough-volatility models (and 
especially the rough Heston) for pricing such long-term life insurance contracts.

The main contribution of this paper is therefore to propose a calibration and a 
pricing methodology for long-term life insurance contracts using rough volatility 
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models. We also contribute with this work to highlight and study the divergent 
long-term properties between rough volatility models and standard SV models. 
This way, we will be able to explain why these rough volatility models provide a 
more consistent and accurate fair value of such long-term claims. We will indeed 
find a significantly different fair value of our equity-linked endowment with mod-
els incorporating rough volatility, especially at long time scales with the rough 
Heston model. In fact, we will see that this rough Heston model exhibits the 
best long-term properties while being highly tractable. This paper also aims to 
compare these models in terms of fit of the observed European option prices and 
implied volatility surface, which will confirm the high robustness of rough vola-
tility models (and especially of the rough Heston model).

2  Life insurance contract

Our aim is thus to price the following equity-linked endowment using rough vola-
tility models and compare them with standard SV models, such as the Heston and 
Bates models. We thus consider an insurance contract that provides a lump sum 
payment at maturity T in case of survival, or a payment at the time of death if it 
occurs before T. We first denote by �0 the random residual lifetime of the policy-
holder at time t = 0 . We suppose an equity-linked case, where payment amounts 
depend on the market value of a reference fund F(t) and where an amount F(0) 
is invested in it at t = 0 . We then introduce a yearly minimal guarantee �g for the 
policyholder and a maximal yearly return �m that this policyholder can earn on 
the fund. The survival benefit is then given by FT 1�0≥T and the death benefit by 
F𝜏0

1𝜏0<T
 , where Ft is given by a series of guarantees (known as a cliquet option) 

for t ∈ [0, T]:

In the equation above, St is the price process of each fund unit defined on a filtra-
tion (Ft)t≥0 . The cliquet above implicitly assumes yearly resettlements. Moreover, 
the rate � identifies the portion of yearly return recognized to the policyholder with 
� ∈ (0, 1].

In this life insurance claim, we will model mortality using the following assump-
tions. We first introduce the non-homogeneous Poisson process Nt ∶= 1𝜏0<t

 defined 
on a filtration (Gt)t≥0 , which is equal to zero as long as the individual is alive and 
jumps to one at death. We then assume independence between the mortality process 
Nt and the price process St . The intensity of Nt is given by the deterministic Make-
ham force of mortality �x(t) = c + abx+t for a policyholder aged x at time t = 0 . 
Hence, her survival probability at time T, being alive at t = 0 , is equal to

(1)
Ft = F0

⌊t⌋�

u=1

min

�
e�m ; max

�
1 + �

�
Su

Su−1
− 1

�
; e�g

��

×min

�
e�m(t−⌊t⌋) ; max

�
1 + �

�
St

S⌊t⌋
− 1

�
; e�g(t−⌊t⌋)

��
.
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We now introduce the main characteristics of the RFSV model from Gatheral et al. 
[26] and then derive two tractable models from it, the rBergomi and the rough Hes-
ton models, that will help us to give a more consistent and accurate market value to 
this insurance contract.

3  Key features of the RFSV model

Gatheral et  al. in [26] build the Rough Fractional Stochastic Volatility model 
(RFSV) with the following SDE under the real-world measure ℙ:

where � is a drift term, Wt a standard Brownian motion and BH
t

 is a fractional 
Brownian motion (fBm) with Hurst exponent H. Wt and BH

t
 are in general correlated 

through the constant correlation � between Wt and the Brownian motion driving the 
Mandelbrot & Van Ness representation [32] of BH

t
 . Recall that the sample paths of 

BH
t

 are Hölder-continuous of order � for any 𝛽 < H . Similarly, sample paths of BH
t

 
are almost surely nowhere Hölder-continuous of order � for any 𝛽 > H . Therefore, 
the larger the Hurst exponent H, the smoother the sample paths and the lower the H, 
the rougher they are. More precisely, when H < 1∕2 , the sample paths of the fBm 
are called rough. Since log(�t) is driven in Eq. (3) by such fBm, the sample paths 
of log(�t) are also Hölder-continuous of order � for any 𝛽 < H and exhibit the same 
regularity behavior as BH

t
.

Given that Eq. (3) models the log-volatility as a fractional Ornstein-Uhlenbeck 
(fOU) process, we refer to Cheridito et al. [14] for the derivation of its stationary 
solution. One important property of the RFSV is that the volatility process �t itself 
generated by this model is again stationary, which ensures reasonableness of the 
model at large time scales when pricing long-term claims on the underlying. The 
cornerstone of [26] is to impose the Hurst exponent H of the fBm BH

t
 to be in 

(
0,

1

2

)
 

and a very long reversion time scale with 𝜆 ≪ 1∕T  . Such conditions aim to generate 
rough sample paths and to introduce short-range dependence for the volatility pro-
cess as explained by Gatheral et al. in [26]. Their findings are extremely consistent 
at any time scales with empirical statistical properties of the observed volatility time 
series as confirmed in Bennedsen et al. [7]. Firstly, Gatheral et al. show, for 𝜆 ≪ 1∕T  
and 0 < H < 1 , that the log-volatility process log �t behaves locally as a fBm. 
Indeed, as � → 0 , they prove that the log-volatility is close to the fBm BH

t
 under the 

RFSV model (3). Therefore, this model approximately reproduces the well-known 
scaling property of the fBm (cfr Karatzas and Shreve [30]). This scaling property is 
clearly verified empirically for the discrete historical log-volatility process and 

Tpx = P(NT = 0 |G0) = exp

(
−∫

T

0

�x(u) du

)
.

(2)dSt = � St dt + �t St dWt ,

(3)d log(�t) = �(� − log(�t))dt + � dBH
t
,
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allows us to estimate the Hurst index H of the observed volatility process. Many 
studies (as in [7]) consistently find H ≈ 0.1 , which confirms the rough property of 
the historical volatility, i. e. a Hurst exponent H < 1∕2 . Secondly, neither the auto-
covariance function cov(�t+Δ, �t) of the volatility process in the RFSV model nor the 
empirical counterpart of cov(�t+Δ, �t) decay as a power law (cfr Figure 12 on p. 941 
in [26] with Δ > 0 ). Therefore, these authors claim that historical volatility data are 
in accordance with the RFSV model, on the contrary to long memory models such 
as the FSV model of Comte and Renault [15].

Finally, the RFSV model is not only consistent with empirical statistical proper-
ties of the volatility time series but also with the observed implied volatility surface. 
Indeed, standard stochastic volatility models such as the Hull and White and Heston 
models do not provide a good fit of the volatility surface (especially for short expira-
tions). Particularly, these models generate a term structure of at-the-money (ATM) 
volatility skew1 under a risk-neutral measure ℙ∗ that does not match the observed 
one for small time to maturity � = T − t . Instead, empirical studies show that this 
observed term structure of ATM skew is well approximated by power-law functions 
of the form �(�) ∼ �H−1∕2 with 0 < H < 1∕2 , which can be generated by stochastic 
volatility models where the log-volatility is driven by fBm with values of the Hurst 
exponent in (0, 1/2). The explosion of the volatility skew as � → 0 can therefore be 
modeled using fBm without introducing jumps in our model, as we will confirm in 
Sect. 5.

Although empirically and theoretically grounded, the RFSV does not allow to 
price rapidly option prices and therefore to calibrate effectively a pricing model. 
Indeed, we need Monte-Carlo simulations which are fairly slow, especially for cali-
bration. Therefore, we now show how to adapt the RFSV to obtain more tractable 
models that can be used to price long-term claims on the underlying. We first ana-
lyze in more detail a simple case of the RFSV model when � = 0 , called the rBer-
gomi model, built upon a forward variance curve. Secondly, we study an extension 
of the classical Heston model incorporating a rough fractional volatility process. 
This rough Heston model has the nice property of generating a realistic long-term 
behavior for the volatility process and of having a characteristic function of the log-
stock price in quasi-closed form.

3.1  rBergomi model

First, let denote vu = �2
u
 the instantaneous variance at time u and the forward vari-

ance curve (also called variance swap curve) �t(u) = �[vu|Ft], u ≥ t . We can easily 
recover vt from �t(u) as vt = limu→t �t(u) . Following Bergomi and Guyon [9], for-
ward variance models are models that can be written as a function of this curve �t(u).

1 Recall that the term structure of ATM volatility skew is defined by 𝜓(𝜏) ∶= | 𝜕

𝜕k
�̂�
imp

t (k, 𝜏)|k=0 where k is 
the log strike k ∶= log St∕K and where � = T − t.
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From Bayer et  al. [4], the rBergomi model is obtained from the RFSV model by 
setting � = 0 in the log-volatility dynamic (3). Under this assumption and from the 
Mandelbrot & Van Ness representation [32] of the fBm, these authors show that the 
variance process vu in the rBergomi model can be rewritten under the physical measure 
ℙ as

where W̃t(u) ∶=
√
2H ∫ u

t
(u − s)H−1∕2 dŴs is a square-integrable continuous martin-

gale with Ŵt a standard Brownian motion under ℙ . We also define the stochastic 
exponential E ∶= exp

(
Φ − 1∕2�[|Φ|2]

)
 with Φ a zero-mean Gaussian process. 

Finally, we define � ∶= 2 � CH∕
√
2H where CH ∶=

√
2H Γ(3∕2−H)

Γ(H+1∕2) Γ(2−2H)
.

Under an equivalent risk-neutral measure ℙ∗ (with a deterministic change of 
measure), the authors in [4] finally find for variance process in the rBergomi model

where W∗
t
 is a standard Brownian motion under ℙ∗ and where 𝔼ℙ

∗

[vu|Ft] is the for-
ward variance curve �t(u) observed on the market. In Eq. (4), it is important to note 
the presence at t = 0 of a Riemann-Liouville fBm ∫ u

0
CH (u − s)H−1∕2 dW∗

s
 as defined 

in [13], with a Hurst index H that induces the rough behavior of the variance process 
vu . In particular, its paths are (H − �)-Hölder continuous, as classical fBm. Moreo-
ver, since 𝔼ℙ

∗

[vu|Ft] ≠ 𝔼
ℙ
∗

[vu|vt] , this model is non-Markovian. Nevertheless, given 
the state vector �t(u) , which can in principle be computed from observed option 
prices (cfr section 4.3), the dynamics of the model are well-determined. Finally, the 
pricing model to be simulated under ℙ∗ is

where W∗,S
t = �W∗

t
+
√
1 − �2 W

� ∗

t
 and W � ∗

t
 a Brownian motion under ℙ∗ , independ-

ent from W∗
t
 . We can hence model the leverage effect in the rBergomi model with 

𝜌 < 0 . It is important to note that the assumption � = 0 prevents us from having a 
stationary model for the volatility and the variance processes. Long-term behavior 
of the rBergomi model will be discussed more thoroughly in Sect. 3.3.

3.2  Rough Heston

A reminder of the standard Heston model is given in [24] for interested readers. Ber-
gomi and Guyon in [9] show that this Heston model can be written in terms of the 
forward variance curve �t(u) (cfr Appendix) by

vu = 𝔼
ℙ(vu|Ft) exp

(
𝜂 W̃t(u) −

1

2
𝔼
ℙ

[
|𝜂W̃t(u)|2

])
= 𝔼

ℙ(vu|Ft) E
(
𝜂W̃t(u)

)
,

(4)vu = 𝔼
ℙ
∗

[vu�Ft] exp
�
�
√
2H ∫

u

t

1

(u − s)1∕2−H
dW∗

s
−

�2

2
(u − t)2H

�
,

(5)
ST = S0 e

rT E

�

∫
T

0

√
vu dW

∗,S
u

�
,

vt = 𝜉0(t) E
�
𝜂 W̃∗

t

�
= 𝔼

ℙ
∗

[vt�F0] E
�
𝜂 W̃∗

t

�
,

(6)d𝜉t(u) = 𝜈e−𝜆(u−t)
√
vt dŴ

∗
t
.
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Furthermore, from the classical Mandelbrot-van Ness [32] representation of the 
fBm, we clearly see that the kernel (u − s)H−1∕2 plays a central role in the rough 
dynamic of the fBm with H < 1∕2 . Indeed, as said above, one can show that the 
Riemann-Liouville fBm ∫ u

0
CH (u − s)H−1∕2 dŴ∗

s
 has Hölder regularity H − � for any 

𝜖 > 0 . Therefore, in order to allow for a rough behavior of the variance process in 
a Heston-type model, El Euch and Rosenbaum [21] naturally introduce the kernel 
(u − s)H−1∕2 in the risk-neutral stochastic differential equation of the Heston model 
with CH ∶= 1∕Γ(H + 1∕2) as follows

where �t(.) is assumed to be continuous, Ft-measurable and represents a time-
dependent mean reversion level. When H = 1∕2 , one can verify that we indeed 
recover the classical Heston model. It can also be shown that the trajectories of the 
volatility itself are almost surely Hölder-continuous of order H − � , for any 𝜀 > 0.

Moreover, El Euch et  al. show in [20] and [19] that ��t(.) can be directly 
inferred from the forward variance curve observed at time t on the market �t(u) . 
By doing so, they can rewrite the model (7) in the asymptotic setting � → 0 by

Since the forward variance curve �0(u) at time t = 0 is observed (or at least can be 
retrieved) from the market, we only have three parameters left to estimate: H, � and 
� . Reduction of parameters for the rough Heston is of utmost importance for improv-
ing the efficiency of the calibration methodology. Moreover, the fact that we con-
sider � = 0 implies that the average long-term behavior of the variance process in 
the rough Heston will be ruled by the forward variance curve �0(t) and not by the 
mean-reversion parameters � and �0(⋅) anymore (see Sect. 3.3 for more details). We 
also note that the limit u → t of the rough Heston makes no sense. This reflects the 
fact that this model (as the rBergomi) is not Markovian with respect to the current 
variance state vt . However, it is directly visible from equation (8) that the rough Hes-
ton is Markovian in the forward variance curve �t(u) . Finally, the rough Heston can 
also be expressed in the forward variance form as

which is highly similar to (6), with the presence of a Riemann-Liouville kernel in 
addition.

Furthermore, from Gatheral and Keller-Ressel [27], we have that the Heston 
and rough Heston forward variance models are said to be affine. In both cases, 
they show that the characteristic function of the log-asset price XT = log ST at 
time t can be written as

(7)

vu = vt +
𝜆

Γ(H + 1∕2) ∫
u

t

𝜃t(s) − vs

(u − s)1∕2−H
ds +

𝜈

Γ(H + 1∕2) ∫
u

t

√
vs

(u − s)1∕2−H
dŴ∗

s
,

(8)vu = 𝜉t(u) +
1

Γ(H + 1∕2) ∫
u

t

(u − s)H−1∕2𝜈
√
vs dŴ

∗
s
.

d𝜉t(u) =
𝜈

Γ(H + 1∕2)
(u − t)H−1∕2

√
vt dŴ

∗
t
,
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where g(⋅, a) ∶ ℝ+ → ℝ− is the unique global continuous solution of a convolution 
Riccati equation (cfr [27]). In the classical Heston model, they find that

where h(⋅, a) ∶ ℝ+ → ℝ− is the unique C1-function solving the Riccati ODE

In the rough Heston model with � = 0 , we have this time that h(⋅, a) is the unique 
continuous solution of the following fractional Riccati equation

with D� the Rieman-Liouville fractional derivative of order � = H + 1∕2 and I1−� 
the Rieman-Liouville fractional integral of order 1 − � (cfr [19]). This equation is 
exactly the same as in the classical Heston model (with zero-mean reversion) but 
with the time derivative replaced by a fractional derivative that makes the model 
rough.

We thus have a quasi-closed formula for the characteristic function in the rough 
Heston model since it is given by the simple expression (9). Contrary to the classical 
Heston case, the drawback is that there is no explicit solution to (11). However, this 
fractional Riccati equation can be solved numerically quasi instantaneously using 
the method described in Gatheral & Radoičić [28], built upon the combination of 
a short-time and an asymptotic expansion of the solution h(t, a). As shown in [28], 
this method is particularly fast, simple and accurate to compute the approximate 
solution of the fractional Riccati equation (11). We refer to Section 5 of [28] for a 
more thorough discussion on the quality and convergence of their approximation for 
h(a, t). Then, European option prices may be obtained efficiently from the character-
istic function (9) using standard Fourier techniques such as the Carr-Madan formula 
[12]. Finally, this fractional Riccati ODE also allows to study portfolio insurance 
strategies, as developed in [18].

3.3  Long‑term behavior of rBergomi and rough Heston models

The Riemann-Liouville fBm in Eq. (5) for the rBergomi and in Eq. (8) for the rough 
Heston is a non-stationary process with non-stationary increments (cfr [13]), which 
thus also makes the variance process of both models non-stationary. Hence, we need 
to verify whether the variance process exhibits a reasonable long-term behavior in 
the rBergomi and rough Heston models since we do not have this stationary prop-
erty anymore as we have in the RFSV model with � ≠ 0 (which ensures reasonable 
and stable properties on the long-run for the RFSV variance process, cfr [26]). More 

(9)

Φt(a, T) = �
[
eiaXT |Ft

]
= exp

(
ia
(
Xt + r(T − t)

)
+ ∫

T

t

�t(s) g(T − s, a) ds

)
,

g(t, a) = �t h(t, a) + � h(t, a) ,

(10)�t h(t, a) = −
1

2
a(a + i) − (� − i a � � )h(t, a) +

1

2
�2 h(t, a)2, h(0, a) = 0 .

(11)
g(t, a) = D�h(t, a) = −

1

2
a(a + i) + i a � � h(t, a) +

1

2
�2 h(t, a)2, I1−�h(0, a) = 0 ,
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precisely, we have to make sure that this variance process (and particularly its two 
first conditional moments) do not explode for large maturities.

First, as shown in [16] and in [2], the Riemann-Liouville fBm can be represented 
as an infinite superposition of Ornstein-Uhlenbeck processes with different mean 
reversion speeds. Hence, even if � = 0 , authors in [1] show that there is an inherent 
mean reversion feature around the forward variance curve in rough volatility mod-
els coming from the Riemann-Liouville fBm. This mean-reversion property com-
bined with an appropriate behavior of the long-end of the forward variance curve 
may thus allow for a sufficiently well behaved variance process at large maturity in 
rough volatility models, as we will see. For both the rough Heston and the rBergomi 
models, the fact that we consider � = 0 implies that the average long-term behavior 
of the variance process will be ruled by the forward variance curve �0(t) and not 
anymore by the mean-reversion parameters � and �t(⋅) of Eq. (7) for the rough Hes-
ton, nor by the parameters � and � of Eq. (3) for the rBergomi. Indeed, this simply 
comes from the fact that the conditional mean of the variance process is now given 
by 𝔼ℙ

∗

[vu|Ft] = �t(u) . Hence, we will discuss in Sect. 4.3 how to build such forward 
variance curves with non-exploding long-term behavior. However, long-term behav-
ior of the variance process in both models is not solely driven by the form of this 
forward variance curve (since this curve only controls the average value of the vari-
ance process). The non-stationary Riemann-Liouville fBm has also a strong impact 
on the conditional variance of the variance process given by 𝕍

ℙ∗ [vu|Ft] , as explained 
in Appendix. Indeed, this quantity 𝕍

ℙ∗ [vu|Ft] increases exponentially with u in the 
rBergomi model and hence tends to exhibit extreme values for large maturities (see 
Fig. 15). For the rough Heston model, the rate of increase of this quantity is much 
slower and hence, we do not observe this exponential growth of 𝕍

ℙ∗ [vu|Ft] for the 
considered maturities, as again depicted on Fig. 15. The generated variance sample 
paths at large time scales are thus more reasonable and less volatile in the rough 
Heston while they exhibit extremely large swings for the rBergomi. This behavior 
will have an impact on the price of long-term life insurance claims as we will see in 
the last section of this paper.

4  Calibration

In this section, we will show how to build a consistent calibration methodology. 
We will then compare four models (Heston, Bates, rBergomi and rough Heston) in 
terms of fit of the observed European option prices and implied volatility surface for 
the CAC 40 index. We will mainly focus on the long-term behavior of such models 
and we will then use these calibrated models to price our equity-linked endowment 
embedding the cliquet option (1).

As in [26], we first provide a statistical estimation of the RFSV parameters based 
on historical data for the CAC 40 index from January 2004 to July 2020 (obtained 
from the Oxford-Man Institute). Using the scaling property of [26] to estimate the 
smoothness of the volatility process for the CAC 40, we find an estimated value 
Ĥ = 0.13 . The historical estimate of � is also derived from this scaling property and 
is equal to �̂� = 0.31.
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The aim of the calibration method is to find, for each model, the model parame-
ters that match derivative model prices as best as possible with the observed market 
prices of vanilla derivatives in the market. It then boils down to an optimization 
problem where we have to find the minimum distance between model prices/model-
based implied volatility and market prices/market implied volatility. In this paper, 
we choose to minimize the distance between model-based implied volatility �̂ imp

j
 

and market implied volatility �imp

j
 since it leads to more stable results. Finally, we 

introduce the weighted Root Mean Square Error as the loss function, which is 
defined as

where wj =
1

Askj−Bidj
 , i. e. the weight is the inverse of the bid-ask spread, expressed 

in terms of implied volatility. This way, we give more importance to observations 
with small bid-ask spread. Indeed, if an option is liquid, then its bid-ask spread is 
supposed to be small and its price/implied volatility is more accurate. Mathemati-
cally, it boils down to find the optimal set Θ∗ ∈ ℝ

p of the p model parameters such 
that

where L is the RMSE loss function. Finally, we highlight the fact that the results 
of the optimization methodology can be highly dependent on the initial parameters. 
Even for the Heston model, there is no consensus among researchers on whether the 
objective function for the calibration is convex or not, as explained in [17]. In any 
case, to overcome this problem of guessing the initial parameters, we use a global 
optimizer2 combined with a local optimizer (the standard nlminb function in R). 
Indeed, global optimizers can find a solution on their own even without any ini-
tial guess while local optimizer need a suitable starting point. Therefore, we use the 
approach described in [35] which takes the final parameters provided by the global 
optimizer as initial values for the local optimization. This combination of global and 
local optimizers allows to refine the final parameters of the calibration and minimize 
the loss function, as explained and shown in [35]. However, even with this tech-
nique, we will see that the rBergomi model still appears to be highly unstable due to 
the need of Monte-Carlo simulations for this model.

4.1  Market data

We first choose as starting date t = 0 , the 6th of July 2020. The maturity of vanilla 
options as well as the risk-free term structure will be defined with respect to this 
date.

(12)RMSE =

√√√√
N∑

j=1

wj

N

(
�
imp

j
− �̂

imp

j

)2

,

Θ∗ = argmin
Θ

L
(
�imp, �̂ imp(Θ)

)
,

2 More precisely here, the Simulated Annealing (SA) algorithm of [37] with the package GenSA in R.
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Firstly, the risk-free rates used for pricing purposes are derived from the observed 
swap term structure. The technique for constructing this swap term structure divides 
the curve into two term buckets. The short end of the swap term structure is built 
using interbank deposit rates. We will here consider EURIBOR rates from one day 
to 12 months. The long end of the risk-free interest rate curve (maturity above 1 
year) will be based on the European swap term structure available from the EIOPA 
for the month of July3. Table 12 in Appendix provides a summary of the risk-free 
rates used between 0 and 20 years. The dividend yield is chosen to be 1% but this 
assumption does not have a significant impact on the results and conclusions of this 
paper.

Secondly, we have that the price S0 at time 0 of the CAC40 index is equal to 
5028.56 €. As mentioned above, we also need market prices of European options 
on the CAC40 in order to calibrate later our model since these are the most traded 
financial instrument in the equity world. Indeed, there are no liquid long-term prod-
ucts traded on the market on which we can calibrate our models for large maturities. 
The best we can hope so as to be the most-market consistent is therefore to repro-
duce as best as possible the observed implied volatility surface (and hence prices of 
European options) and then extrapolate the obtained trend for large maturities. In 
particular, we will see two methods below for obtaining the values of the forward 
variance curve beyond the available maturities. From Bloomberg, we thus gather 
a database that includes 366 European options with the option bid price and the 
option ask price for different strikes and maturities. The true market price is here 
considered as the mid value between the bid price and the ask price, which is a 
common assumption. Using the one-to-one relationship between market prices and 
implied volatility from the Black and Scholes formula, we can build a database with 
the bid, ask and mid implied volatility for each strike and maturity. We then apply 
the following common filters as in Moyaert and Petitjean [34] and select the follow-
ing options:

– Out-of-the-money options: Since out-of-the-money options are more actively 
traded than in-the-money options (as a protection), the quotes on out-of-the-
money options are usually more reliable.

– The bid-ask spread (on the option prices) is less than 5%. Otherwise, we con-
sider that there is no sufficient liquidity to take the option into account.

– Maturity:  We reject options with maturity equal to 0.9 year due to data quality 
issue for this particular maturity.

We have a final database of 145 OTM options for which we can observe the strike, 
the maturity, the bid, ask and mid implied volatility. We now turn to the specific 
calibration method for each model. Indeed, even if the general methodology is the 
same, the way we price our European options will vary depending on the model.

3 Further information on risk-free rates computation can be found at: https:// www. eiopa. europa. eu/ tools- 
and- data/ risk- free- inter est- rate- term- struc tures_ en.

https://www.eiopa.europa.eu/tools-and-data/risk-free-interest-rate-term-structures_en
https://www.eiopa.europa.eu/tools-and-data/risk-free-interest-rate-term-structures_en
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4.2  Heston and Bates models

We have at disposal for these two models a closed-form expression for their char-
acteristic function, as reviewed in [24]. Then, for a given maturity, the Carr-Madan 
formula [12] generates prices of European options for a whole range of strikes in 
one run very fast using Fourier inversion. By calling many times this pricing algo-
rithm on the available maturities in the data, we can thus find the optimal parameters 
of each model.

• Heston 

A reminder of the standard Heston model is given in [24]. The set of initial param-
eters obtained from the Simulated Annealing algorithm is given by (0.2898, 2.9176, 
0.0966, 1.4703, −0.7010). Using the local optimizer nlminb in R, we then find a 
minimal RMSE of 0.11694 with the following final parameter values Θ∗ : 

�∗
0

�∗ �∗ �∗ �∗

0.28992 2.91760 0.09664 1.47027 -0.7010

We see that we have a high speed of mean reversion �∗ and a high level of the 
vol-of-var parameter �∗ which implies large swings in the variance process. We also 
obtain a large negative correlation between the stock process and the variance pro-
cess, which is consistent with the leverage effect. Finally, the mean reversion level �∗ 
towards which the variance will converge is 9.66% (which represents a volatility of 
31,09%). It is no wonder to obtain this high level of volatility as well as vol-of-var 

Fig. 1  Comparison of Heston option prices in red crosses vs. market option prices in black dots (CAC 
40)
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parameter given the state of the economy due to the COVID-19 outbreak in July 
2020. Finally, the Heston model with the parameters obtained above leads to Fig. 1 
when compared to market prices of European options on the CAC 40 index.

The calibration of the forward-variance specification of the Heston model, as 
described in [9] and [10], is provided in Appendix. This appendix will allow to com-
pare more thoroughly the Heston model with rough volatility models which are also 
based on this forward variance curve.

• Bates

For a reminder of the Bates (or SVJ) model, we refer to [24]. The set of initial 
parameters obtained from the SA global optimizer is given by (0.27, 0.62, 0.12, 
1.24, −0.66, −0.10, 0.11, 0.82). Using our local optimizer, we then find a minimal 
RMSE of 0.08465 with the following final parameter values Θ∗ : 

�∗
0

�∗ �∗ �∗ �∗ �∗
j

�∗
j

�∗
j

0.2589 0.1555 0.2709 1.1593 -0.6640 -0.1004 0.1072 0.9080

Firstly, the RMSE is substantially lower than the one obtained with the Hes-
ton model, which means that the Bates model provides a better fit of the observed 
European option prices. The mean-reversion speed �∗ and the volatility of variance 
parameters �∗ are also lower, which implies that the swings in the variance process 
are less pronounced than in the Heston model. Moreover, we now observe jumps in 
the price process that are on average negative since e𝜇j+𝜎

2
j
∕2
− 1 < 0 . The annual fre-

quency of these jumps is equal to 90.8%. Finally, we observe that the long-run vari-
ance �∗ is higher than in the Heston model. This Bates models leads to Fig. 2 when 
compared to the observed market prices. The fit is clearly better than in the Heston 
model as said above. More precisely, we see that this improvement comes from the 

Fig. 2  Comparison of Bates option prices in red crosses vs. market option prices in black dots (CAC 40)
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better fit of OTM call options with large maturities when using the Bates model. 
However, we also observe on Fig. 2 that option prices with the third largest maturity 
( T = 0.45 ) are still significantly out-of-market.

Note that the presence of jumps makes the calibration of the forward-variance 
specification of the Bates model really difficult and time-consuming. Indeed, the 
characteristic function of the Bates model cannot be written as an integral of the for-
ward variance curve as in the Heston and rough Heston case with equation (9) since 
the Bates model is not an affine forward variance model due to its jump term (cfr 
[27]). We will therefore not consider this specification in this paper.

4.3  Rough Heston calibration

As explained above, we have a quasi-closed form for the characteristic function of 
the log-price Xt under the rough Heston model (8). We can then apply exactly the 
same calibration technique as for the Heston and Bates models described in the pre-
vious section. However, recall that the rough Heston is not Markovian in the current 
variance state vt but Markovian in the (forward) variance swap curve �t(u) . Hence, 
the rough Heston’s characteristic function depends on this variance swap curve. In 
practice however, the variance swap curve �0(u) at time t = 0 is not obtained directly 
from the financial markets. Indeed, it is hard to obtain high-quality variance swap 
data since variance swaps are OTC contracts as explained in [4]. We thus choose 
to proxy the value of a variance swap of maturity T by the value of a log-contract 
(also of maturity T), as described for example in Chapter 11 of Gatheral [24]. There-
fore, even if variance swaps are OTC contracts, we can obtain variance swap prices 
directly from the observed European options which are heavily traded on the market. 
This way, we can consider in this context that variance swap quotes derived from 
our European options are also reliable. The first method to obtain the initial vari-
ance swap curve is therefore to calibrate it based on our dataset of observed option 

Fig. 3  Initial market forward variance curve �mkt
0

(t) between 0 and 1.2 years
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prices for the CAC 40. We hence obtain in Fig.  3 the following market variance 
swap curve, denoted �mkt

0
(t) , between 0 and 1.2 years when interpolated between 

observed maturities.
However, we only have European options with observed maturities until 1.2 

years. In order to price long-term claims on the underlying, we need to extrapo-
late the values of �mkt

0
(t) beyond 1.2 years and hence, we need to consider a term-

structure parametrization of �mkt
0

(t) . Since the forward variance curve is estimated 
from the data and is not an output of the model, the average long-time behavior 
of the variance process is embedded in this forward variance curve parametrization 
(cfr Sect. 3.3). Indeed, recall that the forward variance curve controls the average 
value of the variance process vt since �0(t) ∶= 𝔼

ℙ
∗

[vt|F0] . The long-end of this curve 
will thus have a strong impact on the behavior of the model for large maturities and 
we hence need to avoid parametrizations generating explosive or unrealistic forward 
variance curves. Otherwise, the variance process (and hence also the price process) 
will tend to explode when the maturity increases. The easiest way to achieve this is 
to impose a constant long-term value for the initial forward variance curve �mkt

0
(t) . 

Therefore, it is reasonable to choose a parametrization with asymptotic line such 
that

This assumption allows the variance process of the rough Heston to be in a sta-
ble regime for large maturities. A classical choice for such parametrization is the 
Gompertz function

where z1 is the asymptote, z2 sets the displacement along the x-axis (here, the time to 
maturity) and z3 sets the growth rate. Fitting the Gompertz function to the observed 
forward variance curve, we find:

Therefore, the asymptotic level of the volatility is given by 
√
0.03954 = 19.88% . 

Finally, combining the curve obtained in Fig. 3 with the Gompertz fit for 𝜏 > 1.2 , 
we obtain the initial market forward variance curve �mkt

0
(t) in Fig. 4. We can observe 

that we enter a stable regime as of the 6 th year.
Yet, we are aware that calibrating such Gompertz function based on only 6 

different maturity points can seem dubious. Indeed, estimating an asymptotic 
value for the forward variance from the information carried out by short-matu-
rity option data does not provide a lot of confidence in our results. Moreover, 
this way of building and extrapolating the forward variance curve does not ensure 
to avoid static arbitrage. Therefore, we now show how to tackle both of these 
issues. A better alternative to estimate the forward variance curve is to fit the 
SSVI parametrization [25] of the observed implied volatility surface and compute 
the forward variance curve associated with this parametrization. A brief reminder 
of such arbitrage-free SSVI parametrization is given in Appendix. The advantage 

lim
t→∞

�mkt
0

(t) = cst .

(13)�mkt
0

(t) = z1e
−z2 e

−z3 t

,

z1 = 0.03954 z2 = −0.7992 z3 = 0.5672
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of this procedure is to ensure that the estimated forward variance curve is consist-
ent with the absence of calendar spread and butterfly arbitrages. Furthermore, the 
extrapolation of the forward variance curve does not require to specify a particu-
lar function for this curve anymore since its extrapolation beyond 1.2 years in the 
SSVI parametrization only relies on an arbitrage-free argument, as explained in 
Appendix. We therefore do not need anymore to determine a long-term value of 
�0(t) based solely on short-term maturity data. We obtain this way the following 
SSVI forward variance curve �SSVI

0
(t) depicted on Fig. 5.

Fig. 4  Initial market forward variance curve �mkt
0

(t) until t = 20 years

Fig. 5  Initial SSVI forward variance curve �SSVI
0

(t) until t = 80 years. Black circles are the variance swap 
values for the available maturities
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We see that this forward variance curve �SSVI
0

(t) tends to approximately exhibit the 
same shape as the market forward variance curve between 0 and 80 years. Moreover, 
the SSVI forward variance curve appears to be stable and does not explode for large 
maturities, which also ensures a stable regime and a reasonable average behavior of 
the rough Heston model on the long-term.

The last alternative we will consider is to use a constant forward variance curve 
denoted �cst

0
(t) . We decide arbitrarily to fix �cst

0
(t) = �mkt

0
(0) = 0.0925 , ∀t . Note that 

this constant level is very close to the long-term mean �∗ obtained in the Heston cal-
ibration ( = 0.0966 ). This parametrization for the forward variance curve will hence 
allow to compare more thoroughly rough volatility models with the latter. Results 
for calibration and pricing with �cst

0
(t) are given in Appendix.

The SSVI forward variance curve being arbitrage-free, more reliable and more 
consistent, we now perform the calibration of the rough Heston model based on 
�SSVI
0

(t) . Results for the market and the constant forward variance curves are given in 
Appendix. Using the Carr-Madan formula [12] and the numerical approximation of 
Gatheral & Radoičić [28] for the fractional Riccati equation (11), we obtain in a first 
step the following set of initial parameters from the SA global optimizer: (0.1702, 
0.6241, −0.6724). Using our local optimizer, we then find a minimal RMSE of 
0.08457 with the following (same) final parameter values Θ∗ : 

H∗ �∗ �∗

0.1703 0.6241 -0.6725

Based on the RMSE, we then have a slightly better fit than with the Bates 
model. It is impressive knowing that the rough Heston model in the asymptotic set-
ting � → 0 has only 3 effective parameters to estimate while the Bates model has 8 
parameters ! We will also analyze in the next section which of the models best fits 
the behavior of the implied volatility surface (and particularly the term structure of 
ATM skews). Moreover, it is important to note that the Hurst index H∗ obtained via 
the risk-neutral calibration method is consistent with the Hurst index obtained via 
statistical estimation (under the real-world measure) equal to 0.13. Yet, we have a 
higher �∗ than the one estimated based on the historical time series ( = 0.31) due to 
the market price of risk included in the risk-neutral valuation. Finally, we obtain a 
leverage effect of the same order as in the Heston and Bates models. Figure 6 depicts 
the fit of the rough Heston options prices compared with the observed market prices 
of European options.

4.4  rBergomi Calibration

The calibration of this model departs significantly from the three models described 
above. Indeed, no characteristic function is available in (quasi-)closed form. We then 
rely on Monte-Carlo simulations with the Hybrid scheme of [8], as applied in [33], 
to calibrate the parameters �, � and H of the rBergomi model under ℙ∗ . More pre-
cisely, since the Riemann-Liouville fBm is a special case of Brownian Semistation-
ary (BSS) processes, we follow the papers of Bennedsen et al. [8] and of McCrickerd 
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et al. [33] in order to improve the efficiency of simulations in the rBergomi model. 
Note that the initial forward variance curve is exactly the same as the one derived in 
the calibration of the rough Heston model. Hence, we will again use �SSSI

0
(t) in this 

section.
We find a RMSE of 0.08631 with the initial set of parameters equal to (0.15, 

1.67, −0.92). This leads to the following final values Θ∗ : 

H∗ �∗ �∗

0.1515 1.6803 -0.9275

First, the RMSE is slightly higher compared with the rough Heston and Bates 
models but lower than the Heston model. We see that the calibrated Hurst exponent 
H∗ is lower than the one found in the rough Heston model and closer to the histori-
cal estimate ( = 0.13 ). Based on a �∗ = 1.6803 , we find the corresponding �∗ equal to 
�∗
√
2H∗∕(2CH) = 0.9969 . Therefore, the volatility of variance parameter �∗ clearly 

needs to be much higher than the historical �̂� to better fit the European option data 
(again due to the volatility of variance risk premium). The anti-correlation between 
the stock process and the variance process is stronger than the �∗ derived from the 
rough Heston. Moreover, it is important to add that these results are quite unsta-
ble from simulation to simulation. The hybrid scheme is indeed not yet fast enough 
to provide a reliable calibration method, at least in our implementation. We used 
m = 1, 000, 000 and Δt = tk − tk−1 = T∕n with n = 400 and the optimization was 
done in more than 5 h with these parameters. We need to increase m and decrease 
Δt to obtain more precise and stable results but it then requires far more computing 
time and memory, which is not suitable and tractable in practice. We then obtain 
Fig. 7 where we can see that the OTM puts are substantially off-market with this 
model.

Fig. 6  Comparison of rough Heston option prices vs. market option prices (CAC 40)
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Finally, recall that the SSVI parametrization of the forward variance curve 
ensures that in the long term we have on average a stable and non-exploding vari-
ance process in the rBergomi and rough Heston models (cfr Fig. 5). Nevertheless, 
we said that the presence of the non-stationary Riemann-Liouville fBm in both 
models also impacts the long-term behavior of the variance process. More precisely, 
if we now compare the conditional variance of the variance process 𝕍

ℙ∗ [vu|Ft] , we 
obtain an increasing quantity in u with divergent properties between the two mod-
els as shown and explained with Fig. 15 in Appendix and with the corresponding 
equations 17 and 18. Clearly, the exponential growth of 𝕍

ℙ∗ [vu|Ft] in the rBergomi 
model does not allow for a reasonable behavior of the variance process in the long 
term with the calibrated parameters above. The same extreme behavior is obtained 
using the parameters of the rBergomi model found in the initial paper [4] and in [6]. 
On the contrary, the conditional variance 𝕍

ℙ∗ [vu|Ft] in the rough Heston exhibits an 
almost constant behavior for large times to maturity and is hence more appropriate 
for long-term pricing. This stable regime of the rough Heston model is also obtained 
using standard parameters such as in [19]. The impact of the quantity 𝕍

ℙ∗ [vu|Ft] on 
the price of life insurance claims for large maturities u will be analyzed more thor-
oughly in the last section.

5  Volatility surface fit

We now compare the Heston, Bates, rough Heston and rBergomi models in terms of 
implied volatility surface fit. More precisely, we will look at the fit of the term struc-
ture of ATM volatility skew �(�) and confirm that rough volatility models provide a 
better fit.

Fig. 7  Comparison of rBergomi option prices vs. market option prices (CAC 40)
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From our market option prices database, we can build the term structure of 
ATM volatility skew �(�) . First, recall that 𝜓(𝜏) ∶=

|||
𝜕

𝜕k
�̂�
imp

t (𝜏, k)
|||k=0 with k being 

the log-strike and � = T − t the time to maturity. We can approximate it by

for small enough � and for each available time to maturity � . We then obtain in Fig. 8 
the term structure of ATM volatility skew for our data at time t = 0.

The red dots are the estimated ATM skews for each of the available maturi-
ties. We clearly see that we obtain a term structure of ATM volatility skew which 
is consistent with the power-law function. Indeed, the blue line is the power-law 
fit to the data, obtained by the following linear regression:

We find �̂� = 0.4546 . From Sect. 3, we know that �(�) ∼ �H−1∕2 holds for the RFSV 
model. Hence, we have that ĤATM = 1∕2 − �̂� = 0.0452 , which is lower than the 
Hurst exponent estimated with historical data (but again rough !). However, we 
do not have a lot of different maturities in our option data set, which prevents us 
from having a consistent estimator ĤATM using this power-law fit. Therefore, we 
will mainly focus our analysis on the shape of the ATM skew term structure and on 
whether our different models are able to approximate this blue line rather than on 
the exact fit.

�𝜓(𝜏) =

||||||

�̂�
imp

0
(𝜏, k + 𝛿) − �̂�

imp

0
(𝜏, k − 𝛿)

2𝛿

||||||k=0
,

log�(�) = −� log � .

Fig. 8  Red dots are the ATM volatility skews �̂(�) estimated for the available maturities. The power-law 
fit is superimposed in blue
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5.1  Comparison of the fit

We now compare the empirical term structure of ATM volatility skew with the term 
structures derived from each model. We first analyze the fit of the standard Heston 
and Bates model thanks to Fig. 16 in Appendix. The blue line is again the power-
law fit of the observed ATM skews (with �̂� = 0.4546) . The green dots are the ATM 
skews �̂(�) derived from the different models for the available maturities. For the 
Heston model, we clearly observe that it does not allow to capture the high values of 
ATM skews for short maturities and hence, it cannot reproduce the power-law shape 
of �̂(�) . This was indeed one of the issues of this model that we rose in Sect.  3. 
For T > 0.20 , we can however note that the Heston fit approximates quite well the 
empirical blue line. Concerning the Bates model, the presence of jumps only pro-
vides a slightly better fit of the ATM skews �̂(�) compared with the Heston model. 
Indeed, the Bates model is still not able to capture the explosion of the ATM skews 
for very short time to maturity. This is due to the fact that the parameter �j control-
ling the frequency of jumps is only of 0.91 and that the average size of the jumps 
is also rather low. A higher value of �j or of |�j| would allow to better capture this 
explosion phenomenon for � → 0.

We now analyze the fit of the rough Heston and the rBergomi models since we 
said that rough volatility models should be able to better capture the high curvature 
of �̂(�) for small time to maturity thanks to the rough behavior of their volatility 
process. We obtain Fig. 17 in Appendix. We clearly see that the green dots of both 
figures (i. e. the rough Heston and rBergomi fit for available maturities) exhibit the 
same shape as the blue line and can therefore be fitted by a power-law function of 
the form �H−1∕2 . If we had at disposal even shorter maturities, the rough Heston 
and rBergomi models would likely better capture the explosion of �̂(�) for � → 0 . 
We can finally conclude that rough volatility models are more consistent with the 
observed term structure of ATM volatility skew than standard SV models.

6  Simulation and discretization methodology

In order to price the above equity-linked life insurance contract, we first need to 
explain how we can discretize and simulate sample paths of the price process and 
the variance process under our different models.

- Heston
Once the Heston model has been calibrated and the optimal parameters �0, �, �, � 

and � have been found, we can use a Monte Carlo approach to simulate the sample 
paths of the Heston model. We first simulate the stock price process and the variance 
process by generating correlated N(0, 1) random numbers �S and �v (with correlation 
� ). The relationship between �S and �v can be written as

�v,ti = � �S,ti +
√
1 − �2 ��

ti
,
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where �S,ti and �′
ti
 are independent N(0, 1) random variables. Using an Euler discre-

tization scheme for the price process and the variance process, we have

for i = 0, ..., n − 1 , with t0 = 0 and tn = T  , where n is the number of time steps and 
Δt = T∕n , for a given maturity T. We then simulate m sample paths of this stock 
price process and of this variance process. Now that we have the full path of 
(Sti)i=0,...,n for each m, we can price path-dependent options, such as the cliquet option 
(1). In practice, the variance can become negative under a simulation because of the 
discretization. We then use the full truncation scheme of Lord et. al [31] to tackle 
this problem since it overcomes other Euler fixes (absorption, relfection, etc.) and 
quasi-second order schemes (Milstein scheme, Ninomiya and Victoir scheme [36], 
etc.) in terms of positive bias. The full truncation scheme therefore better reproduces 
the true properties of the CIR process. This simulation methodology gives us the 
following Fig. 9, depicting one sample path of the variance process under the stand-
ard Heston model over 10 years. We can clearly see the effect of the high volatility 
of variance (vol-of-var) parameter � with large swings in the variance process.

- Bates
We again use the Euler scheme with a full truncation fix for the variance process 

as in the Heston model. However, the discretization scheme of the price process is 
replaced by

(14)Sti+1 = Sti

�
1 + rΔt +

√
vti

√
Δt �S,ti

�
,

(15)vti+1 = vti + �(� − vti )Δt + �
√
vti

√
Δt �v,ti ,

Fig. 9  One sample path of the variance process under the standard Heston model
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where Yi ∼ LogN(�j, �
2
j
) and ΔNti

∼ Poi(�Δt).

 Rough Heston
The discretized price process is exactly the same as in the Heston model with 

(14). However, due to the non-Markovian nature of the variance process under 
the rough Heston, an Euler discretization scheme for simulating vt is very slow 
and does not allow to use the full truncation fix in order to deal with negative 
variance. A more time-efficient simulation scheme for the rough Heston can be 
found instead in [1] with a lifted version of the Heston model. This lifted Hes-
ton model appears to be a multi-factor approximation of the rough Heston model 
built as an infinite superposition of square-root (CIR) processes with the same 
dynamic but mean reverting at different speeds (cfr Sect.  3.3). Such infinite-
dimensional Markovian representation of the limiting rough variance process is 
an appealing trade-off between flexibility and tractability, as explained in [1]. In 
practice, only few factors are sufficient which drastically speeds up the simulation 
procedure compared to an Euler discretization scheme. Moreover, this representa-
tion in terms of square-root processes allows to use the full truncation fix of [31] 
described above in order to avoid negative variance and to better reproduce the 
true properties of the variance process. For simulating our rough Heston model, 
we take the suggested values of the lifted Heston model defined in [1]: ñ = 20 
factors and r20 = 2.5 . The function gñ

0
(t) of this lifted Heston model is chosen so 

as to match the forward variance curve �0(t) and the speed of mean-reversion � is 
again set to 0 since mean reversions at different speeds are inherent in the lifted 
Heston model. This parametrization allows to recover the rough Heston model (8) 
with its 3 effective parameters.

(16)Sti+1 = Sti

�
1 + rΔt +

√
vti

√
Δt �S,ti + (Yi − 1) ΔNti

�
,

Fig. 10  One sample path of the variance process under the rough Heston model
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One sample path of the variance process over 10 years under our calibrated rough 
Heston model with SSVI forward variance curve is plotted in Fig. 10. We clearly 
see the rough behavior of the variance process compared to the sample paths of the 
Bates and Heston models. We also have that the vol-of-var parameter � is quite high, 
leading to large movements in the variance process.

 rBergomi
The price process is again given by (14). However, the variance process is now 

simply given by

where we use the SSVI forward variance curve for �0(ti) (= 𝔼
ℙ
∗

[vti ]) and the hybrid 
scheme of [33] and [8] for the simulation of W̃∗

ti
 , with i = 0, ..., n . The way the variance 

process is defined in (5) under the rBergomi model prevents us by definition from hav-
ing negative variance. You can also find in Fig. 11, one simulated sample path of the 
rBergomi variance process using this Hybrid scheme. Due to the huge vol-of-var 
parameter � , the variance paths tend to explode and exceed 100%. Generated sample 
paths with the rBergomi are therefore not realistic. Furthermore, if we compute the 
sample variance 𝕍

ℙ∗ [vt] , we would obtain the exact same shape as in Fig. 15, which 
confirms the extreme variability of the rBergomi variance process for large maturities. 
The roughness of the variance process is again clearly visible in Fig. 11.

7  Conclusion of the fit

From the analyses of the implied volatility surface, we can conclude that rough vol-
atility models with the rough Heston and the rBergomi clearly outperform stand-
ard SV models in terms of goodness of fit of the observed term structure of ATM 

vti = 𝜉0(ti) E
(
𝜂 W̃∗

ti

)
,

Fig. 11  One sample path of the variance process under the rBergomi model
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volatility skew. Therefore, with the lowest RMSE (0.0846) and a good fit of the 
implied volatility surface, we conclude that the rough Heston model is the best of 
the considered models at reproducing the observed risk-neutral data. Secondly, since 
the rough Heston exhibits a rough variance process (with a H close to the historical 
estimate), this model can also better reproduce at any time scales numerous statisti-
cal properties of the historical volatility process. Therefore, the fact that this model 
exhibits rough volatility and hence better reproduces the empirical properties of the 
historical volatility will lead to a better price of insurance contracts at large time 
scales. More precisely, the parameter H controlling the roughness/memory of the 
variance process has a direct impact on long-term life insurance contracts since the 
generated sample paths of the fund’s underlying price process St will strongly vary 
in function of this index H (as shown below in Sect. 8 and Appendix). In fact, the 
larger the maturity, the more important will be the effect of the roughness of the var-
iance process on the fair value of such contracts. Moreover, as shown in Sect. 4.3, 
we can build at large time scales a stable regime for the variance process in the 
rough Heston, which ensures a reasonable long-term behavior of the model. Com-
bined with the fact that the SSVI forward variance curve �SSVI

0
(t) is consistent with 

the absence of arbitrage at any time scales, we will obtain in the next section a very 
reliable and consistent fair value of long-term life insurance contracts. Finally, the 
rough Heston is also particularly tractable (only three parameters to calibrate and 
a characteristic function available in quasi-closed form) which is very important in 
practice for time-efficient calibration and option pricing.

Concerning the rBergomi model, even with calibrated parameters, it provides a 
slightly higher RMSE than the rough Heston model and hence a less good fit of 
the observed option prices (at least in our implementation with the SSVI forward 
variance curve). Secondly, the rBergomi does not provide realistic variance sam-
ple paths in the long run due to the huge level of the vol-of-var parameter and an 
exponentially increasing quantity 𝕍ℙ

∗

[vu|Ft] (leading to extreme values for large u). 
Furthermore, this model is fairly slow in terms of running time, which appears prob-
lematic for calibration and option pricing. To quote El Euch et al. [19]: “Even with 
the introduction of the efficient hybrid scheme [of Bennedsen et  al. [8]], practical 
implementation [of the rBergomi model] has proved to be difficult.” One solution to 
improve the stability and efficiency of this pricing model is to use asymptotics such 
as in Fukasawa [23], in Forde and Zhang [22] or in Bayer et al. [5]. Finally, Bayer 
et al. [6] propose a neural network approach to calibrate more accurately the rBer-
gomi and to approximate the implied volatility surface. We will however not deepen 
these methods in this paper.

8  Life insurance contract valuation

Although all models are well calibrated and hence vanilla options have approxi-
mately the same prices under all models, exotic option prices can differ dramatically. 
It is important to point out that vanilla options determine the marginal distribution 
(at maturity T of the option), not the process. Indeed, the underlying fine-grain prop-
erties of the process have an important impact on path-dependent option prices. We 
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now highlight the impact of exotic price ranges between our four calibrated mod-
els by valuating our endowment life insurance contract described in Sect.  2. This 
way, we also emphasize the impact of rough volatility models on long-term insur-
ance contracts and compare more thoroughly the rBergomi model (5) and the rough 
Heston model (8) in terms of long-term properties. For further reference on equity-
linked endowment valuation, we refer to Bacinello et al. [3].

8.1  Valuation

By the first fundamental theorem of asset pricing, the fair value at time t = 0 of the 
cash-flow Ft in (1) is given by its discounted expected value under a risk-neutral 
measure ℙ∗ . However, this cash flow also depends on the path of the Poisson process 
Nt which is not known at time t = 0 . Therefore, we take the following expectation 
conditionally to the filtration G0 to obtain the fair value of our equity-linked endow-
ment contract

The processes Nt and St being independent, we obtain that

We now want to price this insurance contract with the four models we calibrated 
above (Heston, Bates, rBergomi and rough Heston). We can then use a Monte-Carlo 
approach to simulate their price process St (and variance process vt ) and take the 
average of the paid benefit under each simulation j = 1, ...m in order to derive the 
expectation under ℙ∗ , i. e.:

where the underlying price process in Ft is defined by the risk-neutral pricing equa-
tion of each model. The discretization of their price process and variance process is 
given in the previous Sect. 6. Moreover, the use of a Poisson process above makes 
it easy to add the mortality effect in the simulations to compute FV0 . Indeed, for 
each simulation j ∈ m , we generate n = T∕Δt = 5∕0.001 = 5000 Poisson random 
variables ΔNti,j

 with parameter � = �x(ti) Δt for i = 0, ..., n . For the first i where 
ΔNti,j

= 1 , we compute a death benefit Fti,j
 and if ΔNti,j

= 0 for all i, we compute a 
survival benefit Ftn,j

.
We consider the following contracts:

– A female policyholder aged x = 50 or x = 65 at time t = 0.
– We use the Belgian regulatory life table FR for the Makeham force of mortality 

�x(t).

FV0 = 𝔼

[
(1 − NT ) e

−rT
𝔼
ℙ
∗

[FT |F0] + ∫
T

0

e−rt 𝔼ℙ
∗

[Ft |F0] dNt

|||||
G0

]
.

FV0 = Tpx e
−rT

𝔼
ℙ
∗

[FT ] + ∫
T

0

e−rt 𝔼ℙ
∗

[Ft] tpx �x(t) dt .

FV0 =
1

m

m∑

j=1

(
e−rtnFtn,j

1

{
n∑

i=0

ΔNti,j
= 0

}
+

n∑

i=0

e−rtiΔNti,j
Fti,j

1

{
i−1∑

k=0

ΔNtk ,j
= 0

})
,
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– The initial amount F0 invested in the fund equals 10 000 €.
– The policyholder pays a unique premium P at time t = 0 . Note that we could 

have imposed in the following that FV0 = P = F0 = 10 000 € so as to make the 
contract fair and then determine the corresponding �g , �m or � in (1) that veri-
fies this condition. However, since we aim to compare the contract’s value FV0 
between models, we prefer to fix arbitrary values for �g , �m and � and then derive 
the corresponding value of the contract.

– We then assume the parameters in Table 1 when valuating the contract.

We obtain in Table 2 the fair values of the endowments with our different mod-
els4 using Monte-Carlo simulations with m = 200 000 and working with the SSVI 
forward variance curve �SSVI

0
(t) for the rBergomi and rough Heston models:

Table 1  Parameters of the 
equity-linked endowments

N of contract Gender Initial age �g �m � Maturity T

1) Female 50 0.01 0.2 0.8 5
2) Female 50 0.01 0.2 0.8 10
3) Female 50 0.01 0.2 0.4 10
4) Female 50 0.01 0.4 0.8 10
5) Female 65 0.01 0.2 0.8 15

Table 2  Fair value of the endowment contracts with �SSVI
0

(t)

N of contract Heston Bates rBergomi Rough Heston

1) 14 017.18 € 13 442.93 € 12 365, 27 € 12 363.09 €
2) 19 353.14 € 17 649.19 € 14 893.48 € 14 130.58 €
3) 14 980.08 € 14 291.13 € 12 916.11 € 12 755.05 €
4) 20 853.01 € 19 079.05 € 15 412.74 € 15 070.89 €
5) 24 909.56 € 21 770.53 € 16 846.11 € 15 425.45 €

Table 3  Fair value of the endowment contracts with �cst
0
(t)

N of contract Heston Bates rBergomi Rough Heston

1) 14 017.18 € 13 442.93 € 12 527.35 € 12 836.3 €
2) 19 353.14 € 17 649.19 € 15 499.17 € 15 430.33 €
3) 14 980.08 € 14 291.13 € 13 261.24 € 13 386.86 €
4) 20 853.01 € 19 079.05 € 16 294.61 € 16 762.31 €
5) 24 909.56 € 21 770.53 € 17 925.66 € 17 513.7 €

4 Note that we consider here the standard version of the Heston model. Similar results are given in 
Appendix with the forward-variance specification of the Heston model.
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We can compare Table 2 with the following Table 3 computed using the constant 
forward variance curve �cst

0
(t) = 0.0925.

We first see that the Heston model leads to a higher price than the Bates model in 
both tables. Indeed, even if the long-term variance is higher in the Bates model, the 
negative average jumps combined with a lower initial variance v0 and a lower speed 
of mean reversion � lead to a lower price in the Bates model. Secondly, we have that 
rough-type models have a lower price than standard SV models. This can be partly 
explained in Table 2 by the long-term variance (equal on average in rough models to 
�SSVI
0

(t) ), which is lower than the long-term mean �∗ in the Heston and Bates model 
as depicted on Fig. 5. However, if we analyze Table 3, we still have lower prices for 
rough volatility models even if the average long-term variance is this time compara-
ble. This remaining difference can thus be explained by the very long reversion time 
scale in rough volatility models ( � → 0 ) and by the rough properties of the variance 
process (i.e. the parameter H). Moreover, we can see that the rBergomi model tends 
to have a higher fair value than the rough Heston due to its lower Hurst index H 
and the extreme values of 𝕍ℙ

∗

[vu|Ft] when u is large. This is especially true at long 
time scales and when the participation rate � is high. Finally, comparing the differ-
ent contracts, we clearly see that the larger the maturity, the higher is the difference 
between rough volatility models and standard SV models. This will be confirmed 
with Table 5 below. Moreover, when the participation rate � decreases, the fair value 
of the contract is logically lower since the policyholder earn a lower portion of the 
yearly returns. This lower � also lead to less pronounced differences between rough 
and standard SV models since their divergent sample paths properties play a lesser 
role. We observe the same effect when the maximal yearly return �m increases, with 
higher differences in fair value between rough and standard SV models due to their 
divergent sample paths.

Since we said that the rough Heston model is the most consistent with risk-neu-
tral data while enjoying the best long-term properties, we retain the fourth column 
of Table 2 as being the contracts’ prices which are the most market-consistent. We 
confirm these effects with the two following tables, displaying the fair value FV0 in 
function of the minimum yearly guaranteed rate kg and the maturity of the contract 
T. These two tables are computed using the SSVI forward variance curve but similar 
tables derived from �cst

0
(t) and from �mkt

0
(t) can be found in Appendix with Tables 6 

and 7 and 8 and 9, respectively. These tables in Appendix are also consistent with 
the following analyses.

We observe the highest differences between rough and standard SV models when 
kg tends to be small. Indeed, in this case, the minimum yearly guarantee is exercised 
less often and therefore the yearly returns, which are highly influenced by the sam-
ple paths, play a more important role. This thus leads to stronger differences in fair 
value between models with divergent sample path properties.

The differences in fair value between models are also the most exacerbated when 
the maturity of the contract is large. The impact of the sample paths properties of 
each model is indeed stronger at longer time scales. In particular, the differences 
in long-term behavior of the variance process are exacerbated when the maturity 
is large, as explained in the previous sections and in Appendix. Combined with the 
fact that rough volatility models better reproduce the statistical properties of the 
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historical volatility thanks to their memory properties, this confirms the importance 
and the added value of using rough volatility models at large time scales (and espe-
cially the rough Heston). Particularly, the importance of the Hurst index (control-
ling the roughness and memory of the variance process) is emphasized in Appendix 
when comparing the fair values obtained with the different forward variance curves 
and with the forward-variance specification of the Heston model. We indeed show 
that this Hurst index has a huge impact on the contracts’ fair values, especially for 
large maturities. We finally want to highlight that the numbers given in the tables 
above can slightly change for each run of simulations but are quite stable with our 
chosen m, equal to 200 000.

9  Conclusion

Rough fractional stochastic volatility models are excellent candidates for reproduc-
ing important stylized facts of the past volatility time series and for providing a con-
sistent implied volatility surface with the observed one. In this paper, we explore 
more closely two tractable implementations of the RFSV model, the rBergomi and 
the rough Heston models. We show how to expand these two rough volatility models 
at larger time scales, we analyze their implications for the pricing of long-term life 
insurance claims and we explain why they provide a more accurate fair value of such 
long-term contracts. In particular, we study the long-term properties of these two 
rough volatility models and compare them with two standard SV models (the Heston 
and Bates models).

Among these four models, we conclude that the rough Heston is the most consist-
ent with historical and risk-neutral data while enjoying the best long-term proper-
ties. Indeed, this rough Heston model with H ≈ 0.15 tends to outperform standard 
SV models in terms of calibration with a better fit of the implied volatility surface 
and allows to better reproduce the statistical properties of the observed historical 
volatility, especially at long time scales. We also retain the rough Heston model as 
a highly tractable implementation of rough volatility models with only three param-
eters to estimate and a characteristic function available in quasi-closed form, which 
is not the case of the rBergomi model. Combined with the Carr-Madan formula, the 
calibration and pricing of European options with the rough Heston model is hence 
extremely fast and accurate. Moreover, we manage to build at large time scales a 
stable regime for the variance process in the rough Heston based on a SSVI para-
metrization of the forward variance curve. This way, we obtain a model with a rea-
sonable long-term behavior for its variance process while being consistent with the 
absence of static arbitrage. This rough Heston is thus able to overcome the extreme 
and exponentially increasing variability of the rBergomi variance process. Using the 
pricing methodology introduced in this paper, a more accurate fair value of long-
term equity-linked life insurance contracts is then obtained in comparison with the 
rBergomi and standard SV models. This is especially true at large maturity where 
the good properties of the rough Heston model have a stronger impact. More pre-
cisely, we obtain with the rough Heston model a fair value significantly lower than 
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in standard SV models due to the long-reversion time scale and the rough property 
of volatility. This highlights the added-value of using this rough Heston model when 
pricing long-term life insurance contracts.

As future work, we should re-calibrate all the models considered in this paper on 
other market data of European options. Choosing an other index/stock with a larger 
set of available maturities and at another point in time should help us to confirm and 
validate the results derived with our methodology. Moreover, more advanced mor-
tality models could be considered such as in [29] or in [11].

Appendix

SSVI forward variance curve

The surface SVI (SSVI) introduced in [25] provides a tractable arbitrage-free para-
metrization of the implied volatility surface. SSVI is based on a simple closed-form 
representation of this volatility surface, which allows an extremely efficient calibra-
tion of this parametrization to observed implied volatility data. For a more detailed 
survey on such surface SVI, we refer to [25]. We simply recall here that SSVI para-
metrizes the total implied variance (usually denoted w(k, �t) ) in terms of the log-
strike k, of the ATM total variance �t (which is assumed to be read on the market), of 
a constant leverage parameter � and of a curvature function �(�t) . We will consider 
the widely-used power-law curve for �,

since it allows a SSVI volatility surface completely free of static arbitrage (no cal-
endar spread and butterfly arbitrages) provided that � ∈ (0, 1∕2] and �(1 + |�|) ≤ 2 . 
This function also allows to be consistent with the power-law shape of the observed 
term structure of ATM volatility skew (cfr Sect. 5).

We then used the algorithm described in Section 5.2 of [25] with our power-law 
SSVI in order to calibrate the parameters ( �, �, �) to implied volatility data while 
avoiding static arbitrage. The optimal parameters �∗, �∗ and �∗ are equal respectively 
to ( −0.6842, 1.1536, 0.3410) in such a way that the non-arbitrage conditions above 
are verified. With these parameters, we obtain Fig. 12 below depicting the excellent 
fit of the power-law SSVI parametrization to observed implied volatility data.

We observe that the fit quality is almost perfect. There is only a slight deviation 
from the data for the shortest maturity T = 0.027 . The associated forward variance 
curve to this SSVI parametrization is then given by Fig. 13 and is again obtained as 
in [24] by approximating the value of a variance swap by the value of a log-contract 
of the same maturity, built this time upon the SSVI parametrization of the vola-
tility surface. Note that this SSVI forward variance curve is interpolated between 
observed maturities such as to ensure the absence of arbitrage in the interpolated 
volatility surface, following the methodology described in Section 5.3 of [25].

�(�t) =
�

�
�
t

(
1 + �t

)1−� ,
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The objective now is to extrapolate in an arbitrage-free way the SVI surface 
beyond the last available maturity T = 1.2 . As explained again in Section  5.3 
of [25], we first need a monotonic increasing extrapolation of �t which is asymp-
totically linear in time. Based on Fig.  14 below depicting the values of �t for the 
observed maturities, we clearly see that a simple linear regression appears to provide 
the best fit (while being of course asymptotically linear in time).

Let tn be the last available maturity in the data. According to [25], the total 
implied variance for t > tn can now be extrapolated by

while remaining free of static arbitrage (cfr Theorem 4.3 [25]). Finally, the forward 
variance curve is again retrieved from the extrapolated values w(k, �t ) by valuating 
log-contracts. The extrapolated forward variance curve based on this power-law 
SSVI parametrization is depicted in Sect. 4.3 on Fig. 5.

Calibration and valuation based on other forward variance curves

Constant forward variance curve

Rough Heston

Using the constant forward variance curve �cst
0
(t) = 0.0925 , we obtain in a first 

step the following set of initial parameters from the SA global optimizer: (0.1235, 
0.6383, −0.6415). Using our local optimizer, we then find a minimal RMSE of 
0.11097 with the following (same) final parameter values Θ∗ : 

H∗ �∗ �∗

0.1235 0.6383 − 0.6415

The fit is thus poorer than with the initial SSVI forward variance curve �SSVI
0

(t) . 
The vol-of-var parameter �∗ and the anti-correlation �∗ are close to values obtained 
previously with �SSVI

0
(t) but the Hurst index H∗ is now lower and closer to the histori-

cal estimate ( = 0.13).
rBergomi
Using �cst

0
(t) = 0.0925 , we find a RMSE of 0.0851 with the initial set of param-

eters (0.12, 1.55, −0.90). This leads to the following final parameter values Θ∗ : 

H∗ �∗ �∗

0.1231 1.8636 − 0.8951

Hence, we obtain a slightly better fit than with the rBergomi based on the SSVI 
forward variance curve (and almost as good as the SSVI Rough Heston). However, 
we have an even higher vol-of-var parameter compared with the SSVI forward vari-
ance curve

w(k, �t) = w(k, �tn ) + �t − �tn ,
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This huge level �∗ again leads to unrealistic sample paths. We also obtain a lower 
Hurst index H∗ . Moreover, we still have a stability issue when calibrating this rBer-
gomi model with a high variability of the results in function of the chosen number of 
paths and steps (here, m = 1 000 000 and n = 300 for the calibration).

�∗ = �∗
√
2H∗∕(2CH) = 1.137

Table 4  Fair value FV0 for 
various kg with maturity T = 10 
and with �SSVI

0
(t)

T = 10 Heston Bates rBergomi Rough Heston

kg = 0.5% 18 931.16 € 17 255.14 € 14 494.43 € 13 696.86 €
kg = 1% 19 353.14 € 17 649.19 € 14 893.48 € 14 130.58 €
kg = 2% 20 262.77 € 18 498.54 € 15 795.31 € 15 130.80 €
kg = 5% 23 644.91 € 21 649.22 € 19 418.47 € 19 072.87 €

Table 5  Fair value FV0 for 
various maturities T with 
kg = 1% and with �SSVI

0
(t)

kg = 1% Heston Bates rBergomi Rough Heston

T = 5 14 017.18 € 13 442.93 € 12 365.27 € 12 363.09 €
T = 10 19 353.14 € 17 649.19 € 14 893.48 € 14 130.58 €
T = 20 35 618.91 € 29 613.34 € 20 126.21 € 17 677.04 €

Fig. 12  Blue dots are the observed mid implied volatilities, the orange solid line is the power-law SSVI 
fit
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Furthermore, the two Tables 6 and 7 display the fair value FV0 in function of the 
minimum yearly guaranteed rate kg and the maturity of the contract T.

Fig. 13  Initial SSVI forward variance curve �SSVI
0

(t) between 0 and 1.2 years. The black dots are the val-
ues of �SSVI

0
(t) for the observed maturities

Fig. 14  Red dots are values of �
t
 for the available maturities, the red line is the linear fit

Table 6  FV0 for various kg with 
maturity T = 10 and �cst

0
(t)

T = 10 rBergomi Rough Heston

kg = 0.5% 15 086.55 € 15 041.99 €
kg = 1% 15 492.96 € 15 430.33 €
kg = 2% 16 403.19 € 16 334.91 €
kg = 5% 20 015.25 € 20 048.91 €
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If we compare these two tables with Tables 4 and 5 derived from the SSVI for-
ward variance curve, we see that the obtained fair values are significantly higher 
when using the constant forward variance curve �cst

0
(t) . For the rough Heston, we 

said above that the main difference in terms of calibration is the lower Hurst index 
when considering �cst

0
(t) . Therefore, the comparison of these two forward variance 

curves shows the impact of the roughness and memory properties of the variance 
process on the contracts’ prices. A lower Hurst index leads to a higher fair value. 
Moreover, we observe that the differences in fair values when considering the two 
forward variance curves are the most exacerbated at large time scales. This compari-
son hence emphasizes the importance of taking the roughness/memory property of 
the variance process into account, especially for large maturities.

Market forward variance curve

Rough Heston
Using the market forward variance curve �mkt

0
(t) , we obtain in a first step the fol-

lowing set of initial parameters from the SA global optimizer: (0.1206, 0.4131, −
0.8015). We then obtain with our local optimizer a minimal RMSE of 0.09235 with 
the following (same) final parameter values Θ∗ : 

H∗ �∗ �∗

0.1206 0.4131 − 0.8015

The fit is thus poorer compared with the fit derived from the SSVI forward vari-
ance curve but better than when using �cst

0
(t) . The Hurst index is again lower and 

very close to the historical estimate. We also observe that the volatility of variance 
parameter �∗ is lower compared to the SSVI parametrization and we obtain this time 
a stronger anti-correlation �∗.

rBergomi
We find a RMSE of 0.1479 with the initial set of parameters equal to (0.1, 1.45, −

0.99). This leads to the following final values Θ∗ : 

H∗ �∗ �∗

0.1357 1.4614 − 0.9967

The quality of the fit is clearly poorer compared with �SSVI
0

(t) and �cst
0
(t) . The 

vol of var parameter is this time lower and more reasonable. We indeed have 

Table 7  FV0 for various 
maturities T with kg = 1% and 
�cst
0
(t)

kg = 1% rBergomi Rough Heston

T = 5 12 527.35 € 12 836.30 €
T = 10 15 492.96 € 15 430.33 €
T = 20 22 079.51 € 21 124.48 €
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�∗ = �∗
√
2H∗∕(2CH) = 0.8804 . We again obtain a lower Hurst index compared 

with the SSVI forward variance curve.
Since the market forward variance curve lies below the SSVI forward variance 

curve for the considered maturities, we would expect a lower fair value of our 
contract using �mkt

0
(t) instead of �SSVI

0
(t) . However, for both the Rough Heston and 

the rBergomi, the lower Hurst index H and the lower parameter � both lead to an 
increase of the contract’s prices and hence, they compensate for the lower average 
values of vt . This is why we observe very similar fair values when using the two 
forward variance curves (cfr Tables 8 and 9 vs. Tables 4 and 5). For large maturities 
or small values of �g , we see that we even obtain a higher fair value when using the 
market forward variance curve �mkt

0
(t) . Again, this comes from the fact that the sam-

ple paths properties are exacerbated when the maturity is large or when the minimal 
guarantee �g is low. This comparison also shows that the Hurst index H (and hence 
the roughness/memory property of the variance process) has a strong impact on the 
fair value of insurance contracts, especially at large time scales. This emphasizes 
once again the importance of using rough volatility models.

Forward Heston model

In order to provide a better comparison with rough volatility models, we finally 
introduce the forward-variance specification of the Heston model. From Gatheral 
and Keller-Ressel [27], we have that the Heston model is an affine forward vari-
ance model, as explained in Sect. 3.2. Hence, the characteristic function of the log-
asset price Xt = log St at time 0 under the Heston model can be written as previ-
ously by (9) where we use the SSVI forward variance curve �SSVI

0
(t) and where we 

need to solve the Riccati ODE (10). Using well-known numerical methods to solve 
this Riccati ODE and applying the Carr-Madan formula with the characteristic func-
tion above, it is quite simple to calibrate and find the optimal parameters (�∗, �∗, �∗) 

Table 8  Fair value FV0 for 
various kg with maturity T = 10 
and �mkt

0
(t)

T = 10 rBergomi Rough Heston

kg = 0.5% 14 518.48 € 13 817.37 €
kg = 1% 14 909.54 € 14 228.54 €
kg = 2% 15 785.42 € 15 196.15 €
kg = 5% 19 301.23 € 19 075.75 €

Table 9  Fair value FV0 for 
various maturities T with 
kg = 1% and �mkt

0
(t)

kg = 1% s rBergomi Rough Heston

T = 5 12 291.17 € 12 371, 10 €
T = 10 14 909.54 € 14 228.54 €
T = 20 20 639.81 € 18 293.85 €
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based on the observed European options and based on the SSVI forward variance 
cure �SSVI

0
(t) . We find a RMSE of 0.1182 with the following optimal parameters: 

�∗ �∗ �∗

3.02522 1.42928 − 0.71762

The RMSE and the final parameters of this forward-variance specification of the 
Heston model are highly similar to the ones derived above in Section 4.2 for the clas-
sical Heston model. However, for pricing our life-insurance contract, we still need 
to calibrate the mean-reversion level � and the initial variance level v0 . The constant 
parameter � is not flexible enough to deal with the observed forward variance curve and 
we therefore need to consider an extension of the Heston model where we allow the 
mean-reversion level �(t) to be time-dependent. In order to fit the market and recover 
the SSVI forward variance curve, the authors in [10] show that we must set

This indeed allows to have 𝔼ℙ
∗

[vt|F0] = �SSVI
0

(t) in this model. We then obtain the 
following Tables 10 and 11 giving the fair value FV0 of the contracts above under 
the forward-variance specification of the Heston model.

We clearly see that the forward-variance specification of the Heston model pro-
vides lower fair values compared with the standard Heston model due to the lower 
mean-reversion level. The mean-reversion function �(t) indeed lies below the value 
�∗ = 0.0967 of the standard Heston model at any time scales. We again see that 
this forward-variance Heston model provides a higher fair value than rough volatil-
ity models even if their average long-term variance is this time comparable since 
𝔼
ℙ
∗

[vt|F0] = �SSVI
0

(t) in each model. This once again emphasizes that the rough 
property of the variance process induced by the index H∗ has a strong impact on the 
obtained fair values of long-term life insurance contracts.

�(t) =

�

�t
�SSVI
0

(t)

�
+ �SSVI

0
(t) and v0 = �SSVI

0
(0) .

Table 10  FV0 for various kg with 
maturity T = 10 and �SSVI

0
(t)

T = 10 Heston fwd Heston rBergomi Rough Heston

kg = 0.5% 18 931.16 € 17 370.17 € 14 494.43 € 13 696.86 €
kg = 1% 19 353.14 € 17 750.09 € 14 893.48 € 14 130.58 €
kg = 2% 20 262.77 € 18 581.37 € 15 795.31 € 15 130.80 €
kg = 5% 23 644.91 € 21 790.04 € 19 418.47 € 19 072.87 €

Table 11  FV0 for various 
maturities T with kg = 1% and 
�SSVI
0

(t)

kg = 1% Heston fwd Heston rBergomi Rough Heston

T = 5 14 017.18 € 13 442.93 € 12 365.27 € 12 363.09 €
T = 10 19 353.14 € 17 750.09 € 14 893.48 € 14 130.58 €
T = 20 35 618.91 € 28 928.57 € 20 126.21 € 17 677.04 €
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Figures

Risk‑free rates

Conditional variance process

The rBergomi variance process is conditionally log-normal and we can prove that

Hence, this quantity increases exponentially with u, leading to extreme swings 
and variability in the rBergomi variance process for large maturities. We see that 
𝕍
ℙ∗ [vu|Ft] also depends on the forward variance curve, but since this curve is stable 

for large maturity (cfr Fig. 5 and 4), it does not contribute to the exponential growth 
of 𝕍

ℙ∗ [vu|Ft].
For the rough Heston, using Ito isometry and conditional log-normality, we find

Since the forward variance curve is almost constant for large maturities, we make 
the assumption that this curve is fixed to a constant K so as to obtain the following 
approximation at t = 0:

(17)𝕍
ℙ∗ [vu|Ft] = �t(u)

2
(
exp

(
�2(u − t)2H

)
− 1

)
.

(18)𝕍
ℙ∗ [vu|Ft] =

�2

[Γ(H + 1∕2)]2 ∫
u

t

(u − s)2H−1 �t(s) ds .

Table 12  European risk-free 
interest rates between 0 and 20 
years

Maturity Rate Maturity Rate

Overnight −0.55486 % 8 years −0.26535 %
7 days −0.52686 % 9 years −0.23026 %
1 month −0.494 % 10 years −0.19118 %
2 months −0.44157 % 11 years −0.15312 %
3 months −0.43514 % 12 years −0.11707 %
6 months −0.35386 % 13 years −0.08303 %
1 year −0.36767 % 14 years −0.07203 %
2 years −0.38775 % 15 years −0.02600 %
3 years −0.39076 % 16 years −0.00200 %
4 years −0.37771 % 17 years 0.00099 %
5 years −0.35563 % 18 years 0.0020 %
6 years −0.33054 % 19 years 0.01100 %
7 years −0.29945 % 20 years 0.03599 %
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Fig. 15  Comparison of 𝕍
ℙ∗ [vu|F0] in function of u between the rough Heston and the rBergomi models

Fig. 16  Empirical fit (blue) vs. Heston and Bates fit (green) of �(�) , CAC 40

This approximation allows to see that the rate of increase of the quantity 𝕍
ℙ∗ [vu|F0] 

is approximately u2H , which leads to a slowly increasing behavior as confirmed on 
Fig.  15. Using the SSVI forward variance curve �SSVI

0
(u) in (17) with � = 1.6803 

and H = 0.1515 and using again �SSVI
0

(u) with � = 0.6241 and H = 0.1703 in equa-
tion 18, we obtain the following figure Fig. 15 at t = 0.

ATM volatility skew term structure

𝕍
ℙ∗ [vu|F0] ≈

K �2
[
Γ(H + 1∕2)

]2
2H

u2H .
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