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Abstract
We consider a simple long short-term memory (LSTM) neural network extension 
of the Poisson Lee-Carter model, with a particular focus on different procedures 
for how to use training data efficiently, combined with ensembling to stabilise the 
predictive performance. We compare the standard approach of withholding the last 
fraction of observations for validation, with two other approaches: sampling a frac-
tion of observations randomly in time; and splitting the population into two parts by 
sampling individual life histories. We provide empirical and theoretical support for 
using these alternative approaches. Furthermore, to improve the stability of long-
term predictions, we consider boosted versions of the Poisson Lee-Carter LSTM. 
In the numerical illustrations it is seen that even in situations where mortality rates 
are essentially log-linear as a function of calendar time, the boosted model does not 
perform significantly worse than a simple random walk with drift, and when non-
linearities are present the predictive performance is improved. Moreover, boosting 
allows us to obtain reasonable model calibrations based on as few data points as 
20 years.

Keywords  Sequential neural networks · Mortality forecasting · Ensemble models · 
Boosting · Lee-Carter model

1  Introduction

The perhaps most famous mortality forecasting model is the Lee-Carter model, see 
[21], which is a simple model for mortality rates. This model assumes that the age 
and calendar time effects follow a log-linear relationship, which makes parameter 
estimation very simple. That is, if we let �x,t denote the mortality rate for age x dur-
ing calendar year t, it is assumed that given estimates �̂x,t it holds that
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for x ∈ X  and t ∈ I  , where X  denotes observed ages, and I  denotes observed time 
points. When it comes to producing forecasts of future mortality the “trick” used is 
to model the estimated �t s as a univariate Gaussian process, often a random walk 
with drift, i.e.

where �t ∼ �(0, �2) and i.i.d. The Gaussian process used to describe the variation in 
the �t s is easy to forecast into the future, and given these forecasts it is straightfor-
ward to produce future values of �x,t.

The above outlined description of the Lee-Carter model is a model describing the 
evolution of mortality rates, whereas what we observe are death counts. [21] discuss 
ways of adjusting for this, but a more natural approach is the one underlying the Pois-
son Lee-Carter model from [6]: Let Dx,t denote the number of individuals dying being 
of age x during calendar year t, and let rx,t denote the central exposure-to-risk for indi-
viduals being x years old during calendar year t. It is then assumed that

where

which corresponds to a Poisson regression model with a log-link function, whose 
parameters can be estimated using standard maximum likelihood theory. Still, in 
order to be able to produce forecasts the estimated �t s are modelled as a one-dimen-
sional (Gaussian) process, e.g. following (1).

If one wants to avoid the inconsistency of using the above described two-step esti-
mation procedure, first estimating parameters, and second treating the estimated param-
eters as outcomes of a stochastic process, one can use state-space models, see e.g. [9, 
13] for the standard Lee-Carter model and extensions, and [1] for the Poisson Lee-
Carter model.

Apart from improving on the estimation procedure, another line of research con-
cerns using more flexible modelling approaches. From a constructive modelling per-
spective the Poisson distribution assumption is natural, see e.g. [1, 6], and one can 
hence consider the following generalisation concerning the modelling of the �̂ts:

Model (Generalised Lee-Carter) 

where � is a vector containing all parameters needed to fully parametrise f (⋅) , where 
�t ∼ �(0, �2) and i.i.d., and where Ft = �{�̂s;s ≤ t} and

log(�̂x,t) = �x + �x�t,

(1)�̂t+1 = � + �̂t + �t+1,

(2)Dx,t ∣ rx,t ∼ ��(rx,t�x,t(�)),

(3)�x,t(�) ∶= exp{�x,t} ∶= exp{�x + �x�t},

(4)�̂t+1 = f (Ft;�) + �t+1,

f (Ft;�) ∶= �[�̂t+1 ∣ Ft](�).



751

1 3

Efficient use of data for LSTM mortality forecasting﻿	

Note that we use the notation Ft in order to stress that the modelling below naturally 
allows for including other information than just historical �̂t s into the conditioning. 
The approach that will be taken in the present paper is to model f (Ft;�) as a long 
short-term memory (LSTM) neural network, see e.g. [15] for a general introduction 
to recurrent neural networks, e.g. [24, 26] for LSTM versions of [21] and [6], e.g. 
[16, 27, 29, 31] for other neural network models used for mortality forecasting, and 
e.g. [10, 22] for tree-based machine learning techniques. Hence, we do not investi-
gate the appropriateness of the model structure in (2) and (3) as compared to other 
model structures or the inconsistency of the two-step estimation procedure. Instead 
we see the model structure and the MLE of � as given, and focus on modelling the 
�̂t s. In this respect, the MLE of the �t s can be regarded as “data” when calibrating 
the neural network model.

Important aspects of using neural network models is to decide on (i) the architec-
ture of the model, and (ii) the number of epochs to be used for calibrating the model. 
In the present paper we will illustrate the performance for a number of architectures, 
not claiming to show the performance of the best possible architecture. We will 
instead focus considerably more on (ii) and, in particular, on the effect of using dif-
ferent amounts of data for calibration. The reason for this is that LSTM neural net-
work models tend to have a large number of parameters that needs to be calibrated. 
This implies that you need to have access to a rather large amount of data to be used 
for calibration. Moreover, neural network models (in general) are calibrated using 
iterative procedures and the question is for how long this iterative procedure should 
be carried out. The standard procedure of how to decide on the number of iterations 
to be used is based on so-called “early stopping” where you have one set of data 
for in-sample training and another set of data for validation (out-of-sample train-
ing), where you stop the iterative calibration procedure when the performance on the 
out-of-sample validation data starts to deteriorate. An obvious risk with using early 
stopping is that the optimisation method might have converged to a local minimum. 
One way of reducing this problem is to average over a number of different models, 
using random initialisation of the parameters. This is an example of an ensemble 
model.

Further, in the present paper the primary interest is on one-dimensional LSTM 
neural network models, where the only dimension is time. Based on the discussion 
in the previous paragraph, this implies that we would expect to need long time series 
in order to obtain reliable model calibrations. When it comes to data for entire coun-
tries this may be feasible, but for e.g. life insurers this may become problematic. 
Moreover, even if mortality data for longer time periods is available, using the full 
historical data set might not be appropriate when staying within the simple model 
structure in (2) and (3), since when increasing the length of the time series, one also 
increases the time period for which it should be reasonable to use constant �x s and 
�x s. Thus a compromise is needed between having enough data to improve the per-
formance of the LSTM model, and at the same time ensuring that the performance 
of the global model (2) and (3) does not degrade as a consequence of the time win-
dow being too long.

For the calibration we will consider the following three approaches for splitting 
the data into data used for in-sample training and out-of-sample validation: 
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	(LO)	 Calibration LO (“last observations”): The standard approach of withholding 
the last fraction of observations (chronologically in time) as validation data.

	(RT)	 Calibration RT (“random time”): Sampling the validation data randomly in 
time.

	(SP)	 Calibration SP (“split population”): Sampling individuals and randomly assign-
ing them to subsets of the underlying population, where one subset is used for 
in-sample training and another subset is used for out-of-sample validation, 
without splitting the time dimension.

The idea behind Calibration RT and SP is to make more efficient use of data, con-
sidering that the amount of available information might be restricted. The obvious 
drawback with Calibration LO is that if we have a small data set and split it into data 
for in-sample training and out-of-sample validation, the number of examples used 
for training will be reduced further. Furthermore, if the validation set is inherently 
different from the rest of training data or future data, then the model that minimises 
the error on the validation set might not generalise well. With Calibration RT, since 
we are sampling validation data randomly in time, this approach will also reduce the 
number of examples used for training, but here we have the ability to draw the vali-
dation set randomly several times, and train a number of different models on these 
different splits into training data and validation data. An ensemble model based on 
these individual model calibrations will as a whole be trained on the full data set 
and does, hence, not risk choosing one single validation set which is not representa-
tive of the time series. The idea of using cross-validation based on sampling data 
randomly in time for general autoregressive time series models is analysed in [3]. 
In the context of mortality modelling, [2] use this procedure for assessing predictive 
performance. In the present paper the procedure is instead used for the purpose of 
model building (including when available data is limited), and theoretical support 
for using this approach over Calibration LO is provided. Concerning Calibration SP, 
this approach allows us to use the whole time period for both in-sample training and 
out-of-sample validation by sampling i.i.d. individual life histories. That is, since 
both training and validation data are based on sampling i.i.d. individual life histo-
ries, the calibrated �̂t predictor from the training data set should capture the relevant 
time-dynamics in the validation data set as well. Calibration SP is novel to the pre-
sent paper. In Sects. 3.1–3.3 these three approaches are discussed in more detail.

Furthermore, it is worth noting that the methods contain different implicit views 
on the (trend-)stationarity of data. Calibration RT and SP essentially treat all obser-
vations in the time dimension as equally relevant, which aligns with the underlying 
model assumptions in (2) and (3). Calibration LO instead views the last observations 
as more relevant for the future, since the parameters chosen are the ones that give 
the best performance on the validation set only consisting of the last observations. 
Depending on the data, this might be an appropriate assumption to make. However, 
such an assumption also indicates that the underlying model defined by (2) and (3) is 
not suitable for the task at hand.

Finally, in order to try to keep the amount of information necessary for cali-
bration at a minimum, we will combine the above three approaches with LSTM 
boosting of the standard Poisson Lee-Carter model from [6]. This means that we 
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will use the estimated mean-function for the �̂t process from the standard Pois-
son Lee-Carter model from [6] as an intercept in the LSTM model. Given that 
the mean-function from the Poisson Lee-Carter model is reasonably representa-
tive for the observed data, the LSTM model only needs to improve on this base-
line model. This should be considerably more stable than trying to learn all data 
dynamics from start when only having access to a limited amount of data. Moreo-
ver, other potential benefits of using boosting is that this procedure likely will 
make the data fed into the LSTM model approximately trend adjusted. This in 
turn may prove beneficial when making long-term predictions. The boosted ver-
sion of the model is described in more detail in Sect. 3.7.

The approach of modelling f (Ft;�) in (4) as an LSTM neural network is the 
same as in [24, 26]. There are, however, some important differences in both 
implementation and methodology. First, we ensure that there is a clear distinc-
tion between the out-of-sample validation set, used when training the model, and 
the test set representing future data used for evaluating the model performance. 
This is important in order to ensure that the model evaluation is not biased by the 
model having seen the test data during training. Secondly, we construct an LSTM 
model with lag order larger than one, to be able to see if any improvement is due 
to using a recurrent neural network model, or if it is only the effect of allowing 
for non-linearities. As discussed in Sect. 2, an LSTM model where sequences are 
of length 1 is essentially no different from a feedforward neural network model. 
Thirdly, we also evaluate the model performance based on the log-likelihood of 
the full model, not only the MSE of the �̂t s, since the goal is to predict mortality 
rates. In particular, in our numerical illustrations in Sect.  5 examples are given 
where the MSE based on the �̂t s contradict the log-likelihood for the observed 
deaths.

Main contributions. We focus on alternative procedures for calibration, which 
combined with ensembling enables more efficient use of data, when the number of 
observations in available data is limited. Sampling validation data randomly in time 
for the purpose of model building (Calibration RT) has to the best of our knowl-
edge not been systematically treated in the mortality literature previously. Creating 
validation data by sampling individuals and randomly assigning them to subpopula-
tions (Calibration SP) is novel in itself, since it enables the split into training and 
validation data without splitting data in the time dimension. We provide empirical 
support for the two alternative calibration approaches over the standard approach 
of withholding the last fraction of observations for validation (Calibration LO), and 
can also partly motivate the advantage of the alternative approaches theoretically. In 
particular there are situations where Calibration RT and SP perform well when the 
performance of Calibration LO is very poor, while it is typically the case that when 
Calibration LO performs better than Calibration RT and SP, these latter approaches 
still perform well. Furthermore, we show that using untransformed data when train-
ing the neural network can be problematic, leading to unreasonable long-term pre-
dictions. Instead, we suggest a boosted version of the model, which stabilises long-
term predictions, and still retains improved short-term performance for populations 
where non-linearities are present.
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The remainder of the paper is organised as follows: Sect. 2 provides a brief back-
ground to LSTM neural network models, Sect. 3 introduces the different calibration 
procedures, model aggregation (ensembling), and boosting, followed by a short section 
on likelihood considerations and performance measures in Sect. 4. The effects of using 
the different calibration techniques are illustrated on Swedish, Italian and US mortal-
ity data from [19], which is done in Sect. 5. For more technical details on the calibra-
tion procedures, implementation, detailed numerical analyses and additional compari-
sons, see the Supplementary Materials [23]. The paper ends with a number of closing 
remarks in Sect. 6.

2 � LSTM neural network models

The long short-term memory (LSTM) neural network model belongs to a specific 
type of recurrent neural networks (RNNs) called gated RNNs. RNNs are a form of 
feedforward neural networks that are specialised at processing sequential data. This 
means that the output of an RNN is determined based on previous elements of the 
sequence, while the output of a standard feedforward neural network only depend 
on the current input. For an introduction to RNNs, see e.g. [15, Ch. 10]. However, 
in standard RNNs the same function is composed with itself many times, leading 
to the so-called vanishing gradient problem, which makes it difficult for standard 
RNNs to learn long-term dependencies. As a solution to this problem [18] devel-
oped the LSTM model, which was later extended in [14] where the so-called forget 
gate was introduced. Thus the LSTM model is a natural model class to consider 
for time series modelling. Since the original LSTM model was introduced, many 
different variants have been suggested. For an overview of different types of gated 
RNNs, see [15, Ch. 10.10] and references therein. In the present paper, we focus on 
the original LSTM model defined below, and restrict our analysis to a shallow model 
with one hidden LSTM layer.

Let xt ∈ ℝ
c be the input vector, and ht ∈ ℝ

d the hidden layer vector, where c is 
the number of features in the input data, and d is the number of neurons in the hid-
den layer. Following a similar notation as [15, Ch. 10.10], an LSTM cell is described 
by:

where ⊙ denotes the Hadamard product, f t is the forget gate, gt is the input gate, qt 
is the output gate, �(⋅) is the logistic sigmoid function, �(⋅) is the activation function, 
bf  , bg , bq , and b denote the biases ( ∈ ℝ

d ), Uf  , Ug , Uq , and U denote the input weights 

(5)

f t = 𝜎
(
bf + Uf xt +Wfht−1

)

gt = 𝜎
(
bg + Ugxt +Wght−1

)

qt = 𝜎
(
bq + Uqxt +Wqht−1

)

st = f t ⊙ st−1 + gt ⊙ 𝜙
(
b + Uxt +Wht−1

)

ht = 𝜙(st)⊙ qt,
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( ∈ ℝ
d×c ), and Wf  , Wg , Wq , and W denote the recurrent weights ( ∈ ℝ

d×d ). The initial 
values are h0 = 0 and s0 = 0 . Since the three gates are all defined in terms of the 
logistic sigmoid activation function, they take values in (0, 1)d . Hence the gates con-
trol to what degree information flows through the memory cell. st is the cell state, 
hence the forget gate controls to what degree the previous cell state st−1 is passed 
forward to the current state, while the input gate controls to what degree the input 
at time t and the hidden layer vector at time t − 1 adjusts the cell state. Finally, the 
output gate controls to what degree the current cell state is passed forward to the 
current hidden layer output ht.

Due to the gates in an LSTM cell, each with its own biases, input weights and 
recurrent weights, an LSTM model tends to have a large number of parameters. To 
be precise, for each LSTM layer, the number of parameters is 4((c + 1)d + d2) . As 
an example, in a shallow LSTM model with 5 neurons and 1-dimensional sequences, 
the LSTM layer would contribute with 140 parameters.

Remark 1 

(a)	 In the original LSTM model, two different activation functions were used for 
updating st and ht . In the description of an LSTM cell in (5), we have chosen the 
same activation function �(⋅) , since this is consistent with the implementation 
in the R package keras, see [8], used for the numerical illustrations in Sect. 5.

(b)	 As in the original LSTM model, we use the logistic sigmoid function for the gate 
activation, implemented in the R package keras as “recurrent_activa-
tion”. In several recent papers using LSTM models for forecasting of mortality 
rates, see e.g. [24, 29], the gate activation has been set to the hyperbolic tangent 
function. With this choice of gate activation the intuitive interpretation of the 
gates in the LSTM model does not hold, since they will now take values in 
(−1, 1) instead of (0, 1).

(c)	 Note that the time step index t in the forward propagation equations in (5) cor-
responds to the position in the input sequence (xt)

p

t=1
 , and not the time step index 

of the original time series. When the lag order p is set to 1, the output will sim-
ply be a non-linear transformation of the input x1 , since the initial value of the 
hidden layer vector and the cell state is zero. Hence for this case similar results 
should be achievable with a standard feedforward neural network. It is for p > 1 
that one can start taking advantage of the properties of an LSTM model.

3 � Model calibration, aggregation, and boosting

The general problem that we want to address is how to make efficient use of data 
for model calibration by analysing three different model calibration procedures. In 
particular, we are interested in if it is possible to obtain a procedure that produces 
reasonable model calibrations even when only having access to a limited amount of 
data. This becomes even more demanding when we want to use early stopping dur-
ing the calibration of the LSTM model in order to prevent overfitting. When using 
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early stopping, the training data needs to be split into two sets, one which is used for 
in-sample training, and one which is used for validation (out-of sample training). It 
is the performance on the out-of-sample validation data that determines when the 
iterative calibration procedure should be stopped. For time series data, the standard 
procedure is to withhold the last fraction of observations (chronologically in time) 
for validation, e.g. according to a 80/20 split. However, when the total number of 
observations is small, splitting the training data in this way further reduces the num-
ber of observations the model can be trained on, which might worsen the perfor-
mance of the model. Furthermore, there might be important information contained 
in the withheld observations which the model is never trained on. The smaller the 
calibration data set, the more likely that there is important information contained in 
the validation set that is not contained in the data used as input for training, hence 
the model is never given the opportunity to learn this information.

For a neural network specialised at dealing with sequential data, the lag order 
p of the model is a hyperparameter. If training data consists of the one-dimen-
sional time series (�̂t)nt=1 , then xt = (�𝜅t−p,… , �𝜅t−1)

⊤ are the covariates for �̂t , where 
t = p + 1,… , n . Hence training data consist of n − p observations. For autoregres-
sive data with lag order p, the standard way to structure data is according to

The matrix K contains the training data for the neural network model, with the first 
p columns corresponding to the input sequences and the last column corresponding 
to the output that should be predicted by the model.

We use three different methods for splitting the training data into data used for 
in-sample training and out-of-sample validation; (i) the aforementioned method of 
withholding the last fraction of rows of K for validation; (ii) randomly sampling 
observations in the form of rows of K for validation; and (iii) splitting the underly-
ing population into subpopulations, using one subpopulation for in-sample training 
and one for out-of-sample validation.

3.1 � Calibration LO—withholding the last fraction of observations

When validation data consist of the last 100� %, � ∈ (0, 1) , of observations, 
this means that the last [�(n − p)] rows of K will be kept aside as valida-
tion data, and the first n − p − [�(n − p)] rows are used as input when train-
ing the model, where [x] denotes the integer closest to x. Let I  denote the set of 
row indices of the matrix K , i.e. I ∶= {t ∶ 1 ≤ t ≤ n − p} . Let V denote the set 
of row indices of K corresponding to the out-of-sample validation data. Then 
V ∶= {t ∶ n − p − [�(n − p)] + 1 ≤ t ≤ n − p} , and the in-sample training data has 
index set T ∶= I ⧵ V . Let (x∗

t
, �̂∗

t
)t∈V denote the validation data. Calibration LO can 

then be described according to:

(6)K =

⎡⎢⎢⎢⎣

�̂1 �̂2 … �̂p �̂p+1
�̂2 �̂3 … �̂p+1 �̂p+2
⋮ ⋮ ⋱ ⋮ ⋮

�̂n−p �̂n−p+1 … �̂n−1 �̂n

⎤⎥⎥⎥⎦
.
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Model calibration

	 (i)	 Let �̂(i) denote the estimate of � from f (xt;�), t ∈ T  , of model (4) in the ith 
calibration epoch.

	 (ii)	 Calculate the prediction error 

 and continue the updating procedure of �̂(i) as long as (s(i))2 is decreasing.

3.2 � Calibration RT—sampling randomly in time

An alternative way of choosing the validation set is to sample [�(n − p)] rows of 
K randomly. This method enables us to draw the validation data several times and 
averaging over the models calibrated to each split into training data and validation 
data, thus allowing us to utilise data better. An ensemble model formed in such a 
way will be trained on the whole training set, given that each observation in the 
training set is contained in the training examples used as input for the calibration of 
at least one individual model, see further Sect. 3.5.

This somewhat unorthodox procedure means that the validation set and the train-
ing set will be dependent, since one row of K drawn to be included in the validation 
set will likely contain observations that are also in the training set. As shown in 
[3] this type of procedure can still work well in the context of cross-validation for 
general autoregressive models. The motivation is that �̂t = �̂t − f (xt;�̂) are uncorre-
lated, provided that f (xt;�) is estimated appropriately. That using this procedure for 
creating an ensemble model also tends to work well within our setting is supported 
empirically by the results in Sect. 5.

The calibration procedure for one calibration follows steps (i)–(ii) in the previous 
section, with V consisting of the set of row indices of matrix K that were sampled 
randomly.

3.3 � Calibration SP—Splitting the population by sampling individuals randomly

Compared with many other time series data situations, such as e.g. stock indices, 
mortality data is based on an underlying population of individuals, which may be 
split into subpopulations. That is, by uniformly at random assigning individuals into, 
e.g. either of two cohorts at birth, the resulting subpopulations should consist of 
i.i.d. samples from the same underlying distribution. When it comes to mortality 
data this means that entire individual life-histories are assigned to different groups.

Consequently, instead of splitting data in the time dimension, using one part of 
the data for training and the other part for validation, we can split the population 
in two parts. In the latter split the entire observed time interval is used for train-
ing and validation, but based on different sets of individuals. This approach is par-
ticularly interesting in the situation where we have a sufficiently large underlying 

(7)(s(i))2 =
1

|V|
∑
t∈V

(�̂∗
t
− f (x∗

t
;�̂

(i)
))2
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population, but where the observed time interval is short, which is a situation that is 
relevant for e.g. larger insurance companies. Furthermore, it enables us to construct 
bootstrapped samples of the original population, which makes it possible to form an 
ensemble model using bagging, see e.g. [4, 17, Ch. 8.7], something that is in gen-
eral not possible for time series data, since we would normally only have access to 
one realisation from the underlying stochastic process. This is discussed further in 
Sect. 3.5.

For model (4) the calibrating procedure based on a single split is focused on the 
�̂ts:

Creating calibration data

	 (i)	 Split the total population into two subpopulations producing the two data sets 
(Dx,t, rx,t) and (D∗

x,t
, r∗

x,t
), x ∈ X, t ∈ I.

	 (ii)	 Calculate �̂ = (�̂, �̂, �̂) based on (Dx,t, rx,t) , and calculate �̂
∗
 based on (D∗

x,t
, r∗

x,t
).

Model calibration
	 (iii)	 Let �̂(i) denote the estimate of � from f (xt;�), t ∈ I  , of model (4) in the ith 

calibration epoch.
	 (iv)	 Calculate the prediction error 

 where x∗
t
= (�𝜅∗

t−p
,… , �𝜅∗

t−1
)⊤ , V = I  , and continue the updating procedure of 

�̂
(i) as long as (s(i))2 is decreasing.

Remark 2 

(a)	 Note that for this calibration procedure the full parameter vector � = (�, �,�) 
will be re-estimated for the two populations. Since �̂ and �̂

∗
 are estimated based 

on two independent subpopulations for the whole training period I  , �̂(i) will be 
independent of �̂∗ , and thus (x∗

t
, �̂∗

t
) for t ∈ I .

(b)	 If one has access to individual level mortality data, the calibration procedure 
outlined above is straightforward. However, it is common to only have access to 
aggregate data, in which case only the aggregate number of deaths and a meas-
ure of the size of the population for each age and calendar year is available. In 
this situation, if we assume that all individuals are i.i.d. following the observed 
1-year mortality probabilities per age, gender, and calendar year, this means 
that the aggregate observed dynamics of deaths and survivors are described by 
conditional binomial distributions. Thus, by conditioning on the overall number 
of deaths in a specific age-gender-calendar time cohort, a split into two subpopu-
lations corresponds to hypergeometric sampling. This procedure is described 
in detail in Algorithm 1(ii) in the Supplementary Materials [23], see also [23, 
Remark 1] for additional comments. Using this procedure means that we are 
not able to capture any heterogeneities that exist in actual subpopulations of the 

(8)(s(i))2 =
1

|V|
∑
t∈V

(�̂∗
t
− f (x∗

t
;�̂

(i)
))2
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aggregate population. However, the purpose of splitting the population in this 
way is not to analyse actual subpopulations. In fact, if individual level data was 
available, one would not want to split this population into subpopulations based 
on e.g. region or socioeconomic factors. As mentioned above, one would instead 
randomly assign individuals to different subpopulations, since we want both 
the training set and the validation set to follow the same empirical distribution. 
Hence, we believe that creating synthetic subpopulations in this way provides a 
useful approximation for the current purpose. This is strengthened by the results 
in the numerical illustration in Sect. 5, where we rely on aggregate data from the 
HMD [19], and use this procedure for splitting the population.

(c)	 Note that Algorithm 1(ii) in the Supplementary Materials [23] only describes one 
way of creating subpopulations. As an example, another alternative is to sample 
uniformly at random over a set of birth cohorts, in this way creating training 
and validation data that will have random weights w.r.t. the same birth cohort 
producing more diverse age structures per calendar year.

3.4 � Early stopping rule

If we consider an estimate of � , without stressing which epoch it is related to, 
and let

it follows that (7) and (8) can be expressed as

Further,

where

which gives us that

When using early stopping, training will be stopped after the number of epochs at 
which s2 is minimised. Hence using early stopping corresponds to finding the opti-
mal balance between the the prediction bias and the variance.

e
t
∶= �̂∗

t
− f (x∗

t
; �̂), t ∈ V

(9)s2 =
1

|V|
∑
t∈V

e2
t
.

�[e2
t
∣ x∗

t
] = �2 + Bias2

t
(�, �2;x∗

t
) + Vart(�, �

2;x∗
t
)

Bias2
t
(�, �2;x∗

t
) = �[(f (x∗

t
;�) − �[f (x∗

t
;�̂)])2 ∣ x∗

t
],

Vart(�, �
2;x∗

t
) = �[(�[f (x∗

t
;�̂)] − f (x∗
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;�̂))2 ∣ x∗
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],

�[s2] = �2 +
1

|V|
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t∈V

�[Bias2
t
(�, �2; x∗
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)] +

1

|V|
∑
t∈V

�[Var
t
(�, �2; x∗

t
)]

= �2 + Bias
2

(�, �2) + Var(�, �2).
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3.5 � Model aggregation

It has long been known that model aggregation, or ensembling, can improve the 
accuracy of predictions in both classification and regression problems, se e.g. [11, 
25, 28]. Hence, to get more stable predictions, we create an ensemble model, by 
aggregating over m model calibrations. If �̂(j)

0
 is the optimally stopped estimate of � 

in model calibration j, the aggregated predictor is defined as

For a single time point t, the prediction error of the ensemble model will always be 
less than or equal to the average of the prediction errors of the individual models. 
Let (�̃t)

l
t=1

 denote observations from the test data (future data), and let 
�xt = (�𝜅t−1,… , �𝜅t−p)

⊤ . Define 𝜅̄t ∶= f̄
(
�xt;(��

(j)

0
)m
j=1

)
 . Then, for a single time point t,

Furthermore, as shown in [28], if the error terms e(i)t  and e(j)t  are uncorrelated for 
i ≠ j , then

i.e. the prediction error is reduced by a factor 1/m when ensembling as compared to 
the average of the prediction errors of the individual models. If the error terms of the 
individual models are perfectly correlated and have the same variance, then there is 
no gain from ensembling, since then

Hence, when constructing an ensemble model, we would like the individual models 
to be diverse, in the sense that the correlations between the error terms of the mod-
els are low. There are several different methods for constructing ensembles, see e.g. 
[11]. We focus on the methods of injecting randomness and manipulating training 
examples, and our choice will depend on the calibration method used, since manipu-
lating training examples is not straightforward for all calibration methods.

Calibration LO – using the last fraction of observations as validation data. We 
construct the ensemble by injecting randomness into the learning algorithm. When 

(10)f̄
(
xt; (��
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0
)m
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+ �[(�𝜅t − 𝜅̄t)
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using neural network regression models, each time the model is calibrated we will 
get a slightly different prediction due to the random initialisation of the calibration, 
and due to using stochastic gradient descent. However, each individual model will 
use the same training and validation data. Hence, for this case each parameter esti-
mate �̂(j)

0
 in the aggregated predictor in (10) has been determined according to steps 

(i)–(ii) in Sect. 3.1, over the same sets T  and V . In [30] this is what is called the nag-
ging predictor, from combining networks and aggregating, as opposed to bagging, 
combined bootstrapping and aggregation.

Calibration RT—sampling the validation data randomly in time. We will com-
bine the method of injecting randomness through the random initialisation of the 
calibration, and using stochastic gradient descent, with manipulating training exam-
ples. In each run this is done by drawing a new sample for the validation data. 
Hence, for each model calibration, the set V(j) consists of a random sample of row 
indices of matrix K , and �̂(j)

0
 , the optimally stopped estimate of � for model calibra-

tion j, will depend both on the random initialisation of the calibration, and the ran-
dom split of the row indices of matrix K into V(j) and T(j) ∶= I ⧵ V(j) . By both inject-
ing randomness and manipulating training examples, we make the individual models 
more diverse. Furthermore, by randomly drawing a different validation set for each 
model we can utilise data better in the sense that the ensemble model will have used 
most observations both for training and validation.

Calibration SP—creating validation data by splitting the population by sam-
pling individuals. We again combine injecting randomness via random initialisa-
tion with manipulating training examples, but in a slightly different way as com-
pared to the second calibration method. Since we here sample individuals randomly, 
we are able to manipulate training examples through bootstrapping, which is not 
straightforward for the other two calibration methods where the training data is split 
in the time dimension. Hence our ensemble model in this case will be a combination 
of injecting randomness via random initialisation and population bagging, see [4]. 
Thus, instead of splitting the total population into two subpopulations, we sample 
individuals at random with replacement of the same population size as the original 
population, and then split this bootstrapped population into two subpopulations. This 
can also be combined with subsampling, where the sampled number of individuals 
is less than the original population size. This strategy can be used to prevent overfit-
ting for the case when the total population is very large, thus essentially leading to 
�̂ and �̂∗ being equal if using the original population (or a bootstrapped population 
of the same size) as a starting point when making the population split. Furthermore, 
subsampling also has the benefit of creating more diverse models, since the training 
sets used for each individual model will be less similar when using subsampling for 
large populations. The parametric bootstrapping procedure used in the present paper 
is described by Algorithm 1 in the Supplementary Materials [23] and examples of 
subsampling are given in Sect. 3.8 in the Supplementary Materials [23].

Variance parameter estimation and simulation of ensemble models. For repeated one-
step simulations of future data, assuming we have an estimate of the variance parameter, 
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the simulated future outcome from the ensemble model at time step t − 1 is used as an 
observation when predicting the value at time t. Hence, for the jth trajectory and t > n,

where �t ∼ �(0, �2
ens
) and i.i.d., and

and �x(j)
t
= (�𝜅

(j)

t−1
,… , �𝜅

(j)

t−p)
⊤ for t > n + p . Finally, the prediction of the ensemble 

model at time step t over N simulated trajectories is given by the median of (
f̄
(
(�x(j)

t
);(��

(i)

0
)m
i=1

))N
j=1

 , and in a similar manner prediction intervals can be con-
structed. Note that since the estimated predictor f̂  in general will be highly non-lin-
ear, it is important not to make predictions by directly inserting x̂t corresponding to 
expected values into f.

Concerning the estimation of �2
ens

 , the natural estimator is to use the in-sample vari-
ance s̄2:

Similarly to the ensemble prediction error above, let ̂̄f (xt) ∶= f̄
(
xt;(��
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0
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) , and it 
follows that

hence

where (s(j))2 is the in-sample variance for model calibration j:
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Moreover, similarly to Sect.  3.4, although defined in-sample, one can note that 
�[(s̄)2] is equal to �2 , here referring to the �2 from (4), plus a (reducible) error part.

3.6 � Relating calibration RT to calibration LO

When creating validation data by withholding the last fraction of observations (Calibra-
tion LO), we will have the same in-sample training data and out-of-sample validation 
data for each of the individual models that make up the ensemble model. If we disre-
gard any differences of the models due to the random initialisation of the calibration, 
each model will give the same estimate �̂LO

0
 of � , where LO , as above, refers to Calibra-

tion LO. Hence, the ensemble model in (10) using this calibration method becomes

When we create validation data by sampling observations randomly in time (Cali-
bration RT), we get the estimates �̂(j)

0
 , j = 1,… ,m of � , and the ensemble model is 

given by (10),

If �[(�𝜅t − �̄f LO(�xt))
2 ∣ �xt] ≥ �[(�𝜅t − f (�xt;��

(j)

0
))2 ∣ �xt] for j = 1,… ,m , where (�̃t, x̃t)lt=1 

is unseen future data, then

Conversely, if �[(�𝜅t − �̄f LO(�xt))
2 ∣ �xt] ≤ �[(�𝜅t − f (�xt;��

(j)

0
))2 ∣ �xt] for j = 1,… ,m , then

Hence, if �̄f LO(⋅) is the worst individual model, in the sense that this model achieves 
the largest out-of-sample error, then �̄f RT(⋅) will be better. If, on the other hand, 
�̄f LO(⋅) is the best individual model, i.e. achieves the smallest out-of-sample error, 
it is still not guaranteed to be better than the ensemble model �̄f RT(⋅) , since this will 
depend on how much better it is compared to the individual models that make up 
the ensemble model �̄f RT(⋅) , as well as how large the correlation is between the error 
terms of the individual models. To conclude, unless there is reason to believe that 
�̄f LO(⋅) will produce a substantially better model than the models based on sampling 
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validation data randomly in time, essentially “putting all eggs in one basket”, a more 
agnostic alternative is to use the ensemble model �̄f RT(⋅).

3.7 � LSTM boosting

Regardless of how data is split and used for model calibration / assessment, once the 
amount of data being used is reduced, it becomes even more important to have good 
starting values for the �̂t-process. The idea with boosting is as follows: 

	 (i)	 Decide on a reference time series model for the �̂t s, thinking of this as a 
“standard” time series model, e.g. an ARIMA model. Let h(Ft−1;�) denote 
the mean-function of the reference model, i.e. 

 where �̃t ∼ �(0,�2) and i.i.d.
	 (ii)	 Obtain an estimate �̂ of �.
	 (iii)	 Given �̂ , introduce the version of the LSTM neural network model (4) defined 

by 

 where �t ∼ �(0, �2) and i.i.d., and where h(Ft;�̂) acts like an Ft-measurable 
(non-trainable) intercept function in the LSTM model.

The above boosting procedure is exemplified for model (4), but the steps hold verbatim 
for generalisations of this model as well.

4 � Likelihoods and performance measures

As discussed in the introduction, the starting point for the modelling is the Poisson Lee-
Carter model from [6], see (2) and (3), whose log-likehood (up to an additive constant) 
is given by

which gives us the MLE of � . Since the parameters of the model are estimated by 
maximum likelihood based on observed death counts, it is natural to evaluate the 
model performance based on future death counts and the corresponding out-of-sam-
ple likelihood. But, as is the case in the present paper, if the �̂t s are treated as out-
comes of a stochastic process, whose parameters are contained in � together with the 
relevant filtration given by the Ft s, we arrive at the complete data likelihood given 
by

�̂t+1 ∶= h(Ft;�) + �̃t+1,

(11)�̂
t+1 = h(F

t
; �̂) + f (F

t
; �) + �

t+1,

(12)l(�) =
∑
x,t

(−rx,t exp{�x + �x�t} + dx,t(�x + �x�t)),

(13)L(�, �, �) =
∏
x,t

p(dx,t ∣ rx,t; �x, �x, �̂t)q(�̂t; Ft−1, �),
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where p(⋅) corresponds to the probability mass function of the Poisson distribu-
tion and where q(⋅) corresponds to Gaussian densities. Here one can note that (13) 
defines a state-space model or a hidden Markov model, see e.g. [12] and [7].

The corresponding incomplete data likelihood, when we only observe death 
counts, is given by

where ��[⋅] corresponds to the expectation taken over the joint distribution of the 
�̂t s. Thus, by simulating �̂t s from q(⋅;Ft−1, �̂) it is possible to estimate L∗(�, �) , 
which, after taking the logarithm, is comparable with (12).

However, when computing (14) in practice, using the average over all trajec-
tories will often turn out to be numerically unstable. The reason for this is that 
by sampling �̂t trajectories without conditioning on the observed death counts, 
only a small fraction of trajectories will be in reasonable agreement with the 
deaths actually observed. For more on these issues, see e.g. [12, Ch. 11.3] or 
[20]. Because of this we instead evaluate different models in Sect. 5 based on the 
median of incomplete likelihoods per trajectory given by

which will indicate the typical performance of the �t-models. Moreover, note that 
(15) is 

	 (i)	 computable for any �̂t-model, and that it is possible to compute both in-sample 
and out-of-sample, given the rx,ts,

	 (ii)	 smaller or equal to the corresponding likelihood consistent with (12), with 
equality if and only if the �̂t process is degenerate putting all probability mass 
in the points corresponding to the �̂t s from the MLE of �.

In Sect.  5, when likelihoods are discussed, it is (15) computed out-of-sample 
that will be used to evaluate model performance. Note, however, that the model 
parameters � defining the �̂t-model are calibrated based on the inner Gaussian 
(validation) MSE. This is in line with e.g. [26]. Due to this it is not necessarily 
the best �̂t-model chosen w.r.t. the minimal (validation) MSE that will maximise 
the incomplete data likelihood (15). In Sect. 5 we give an example of when this 
occurs.

Remark 3 

(a)	 To better understand the models’ performance, we will compare the approximate 
log-likelihood with the log-likelihood of the saturated model, which we define 
as the model with estimates of �t corresponding to the �̂t s from the MLE of � . 

(14)L∗(�, �) = ��

[∏
x,t

p(dx,t ∣ rx,t;�x, �x, �̂t)

]
,

(15)L̃∗(�, �) = median�

[∏
x,t

p(dx,t ∣ rx,t; �x, �x, �̂t)

]
,
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This is since the �̂t s correspond to the best fit we can achieve based on observed 
death count data, given the model structure and the estimates (�̂, �̂) . For the 
prediction period we define the saturated model as the one with estimates of 
�t corresponding to the MLE of �t based on mortality data for the prediction 
period, given (�̂, �̂) estimated for the in-sample period. Hence, we maximise 
the log-likelihood in (12) over � for the prediction period, using the previous 
estimates of (�, �) . Thus, if we could look into the future, but were restricted by 
our model choice and the previous estimates of (�, �) , these estimates of the �t s 
give the best possible fit to data.

(b)	 In Sect. 5 we also plot the incomplete data log-likelihood per age x. For age x 
we define 

 and plot logL∗
x
(�x, �x) as a function of x. However, since 

 this should only be seen as an indication of which ages the fit is better or worse 
for each model and does not completely align with the log-likelihood defined 
by (14). Due to this it is not possible to ascertain that the incomplete log-likeli-
hood marginalised w.r.t. age should be lower than the corresponding saturated 
log-likelihood. This is also the case when changing from (14) to (15). However, 
when comparing the log-likelihood defined by (14) for each model, this will 
never exceed the log-likelihood for the saturated model.

5 � Numerical illustrations

We will now illustrate the methods for calibration based on data from [19] for Italy, 
Sweden, and the USA. As mentioned early on, the ambition in the current section is 
not to obtain optimal model architectures, but rather to find architectures that work 
reasonably well for all populations. Moreover, the numerical illustrations are only 
used to highlight certain observations and artefacts of the methods used, but more 
details can be found in the Supplementary Materials [23] (available online).

Concerning estimation, the first step is to estimate all (�x, �x)x and �t s using the 
Poisson Lee-Carter model defined by (2) and (3) using the R package StMoMo, see 
[32]. Given these initial estimates, the �̂t s are in a second step modelled as a univari-
ate Gaussian LSTM model defined by (4) using the R package keras, see [8].

The structure of the numerical illustrations is as follows:

Base case. The base case is to use death count data from 1950–1999 for training 
and to use 2000–2016 for out-of-sample testing. That is, the data from 1950–1999 
will be split into in-sample training and validation sets in different ways depending 

L∗
x
(�x, �x) = ��

[∏
t

p(dx,t ∣ rx,t;�x, �x, �̂t)

]
,

∑
x

log L∗
x
(�x, �x) ≠ logL∗(�, �),
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on the different calibration procedures (i.e. LO, RT, or SP). The reason for not using 
data older than 1950 is in order to avoid the influence of WWII. Moreover, the 
assumption of having (�x, �x)x s independent of time will provide a poor model fit 
when using longer time periods. This is due to structural breaks in data.

Long-term predictions. After having analysed the base case, which focus on short 
to medium range predictions, we move on to analysing the influence of the calibra-
tions on long-term predictions. In this situation the focus is on the predictions them-
selves, since we lack suitable test data.

Calibration using a limited amount of data. The last part focus on the situation 
when having small amounts of data to be used for calibration. The data periods used 
are 1970–1989 for training together with 1990–2006 for testing, and 1980–1999 for 
training together with 2000–2016 for testing.

All model parameters used are summarised in Appendix A. For a detailed discus-
sion of model parameters and other considerations necessary for the LSTM imple-
mentation and the calibration procedures, see the Supplementary Materials [23].

5.1 � Base case

We start by considering the ReLu activation function when using un-scaled data 
(no pre-processing), see further Section 3.2 in the Supplementary Materials [23]. 
Further, since lag 5 is being used, the effective training data consists of the time 
period 1955–1999. In Table  1 the total MSE for the �̂t ensemble models used 
with Calibration LO, SP, and RT are shown, with the MSE for the best perform-
ing model of the three marked in bold for each population. As a point of refer-
ence a standard Gaussian random walk with drift model (RWD) for the �̂t pro-
cess is used. The MSE for the RWD is underlined for the populations where the 
RWD outperforms the LSTM models. From Table  1 it is seen that Calibration 
SP in general outperforms the RWD in the test set. The only exceptions being 
Swedish females, where the trend is very close to linear, and for USA males and 
females, where the performance of the RWD is good by chance. That is, the �̂t 
processes for USA females and males exhibit structural breaks that are un-rea-
sonable to capture based on the training data, see Fig.  1. Concerning Calibra-
tion RT it is seen that it overall performs well. When turning to Calibration LO, 

Table 1   Out-of-sample MSE 
(2000–2016) for LSTM 
ensembles trained on “raw 
data” (no pre-processing) with 
activation function ReLu. Full 
set of parameters are given in 
Appendix A

RWD LO RT SP

ITA male 489.55 25.37 49.00 37.99
ITA female 35.65 19.07 30.60 23.48
SWE male 459.02 5 008.94 75.99 119.04
SWE female 3.31 17.62 21.86 5.85
USA male 32.11 104.36 110.37 47.19
USA female 10.37 146.86 127.88 168.08
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this calibration produces the best test MSE for Italian females and males, but the 
closeness to the RWD for females indicates a quite linear evolution of the �̂t pro-
cess, whereas the dynamics for males is less linear. Still, the performance of the 
LO calibration in these cases is comparable with those from Calibration RT and 
SP. On the other hand, it is clear that Calibration LO is considerably worse for 
Swedish males, indicating that the last observations are not too representative for 
the future evolution of the �̂t process, see Fig.  2. The goal with the predictive 
modelling is of course to forecast mortality rates. One way of doing this is to take 
into account not only the variation in the �̂t process in (3), but also the Poisson 
variation in the number of deaths in (2). This is discussed in [1, Eq. (16)] where 
a two-step procedure is used. In the first step the �̂t process is simulated and �x,t 
from (3) is calculated for each trajectory, denoted �∗

x,t
 , and in the second step the 

number of deaths D∗
x,t

 are simulated, given �∗
x,t

 according to (2). Combining this, 
the predicted simulated mortality rates are calculated according to
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Fig. 1   USA females: �
t
 in-sample and out-of-sample. Left: Calibration LO. Middle: Calibration RT. 

Right: Calibration SP. Bold solid black line shows raw (“observed”) estimates. Thin solid black lines 
correspond to median, 2.5 and 97.5 percentiles for the LSTM ensembles trained on “raw data” (no pre-
processing) with activation function ReLu. Thin dashed red lines correspond to median and percentiles 
for the RWD. Data to the right of the last vertical dashed line correspond to test data. For calibration LO, 
the area between the vertical dashed lines show in-sample validation data
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Fig. 2   Swedish males: �
t
 in-sample and out-of-sample. Left: Calibration LO. Middle: Calibration RT. 

Right: Calibration SP. Bold solid black line shows raw (“observed”) estimates. Thin solid black lines 
correspond to median, 2.5 and 97.5 percentiles for the LSTM ensembles trained on “raw data” (no pre-
processing) with activation function ReLu. Thin dashed red lines correspond to median and percentiles 
for the RWD. Data to the right of the last vertical dashed line correspond to test data. For calibration LO, 
the area between the vertical dashed lines show in-sample validation data
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Figure 3 shows the predicted simulated mortality rates for age 55 and 85 calculated 
according to (16), for calibration approach LO and RT. Clearly the predicted mortal-
ity rates for Calibration LO are far too low, while Calibration RT works fairly well.

Further, as discussed in Sect.  4, the MSE does not provide the full picture. In 
Table 2 the total log-likelihood based on (15) for test data is summarised together 
with the saturated model based on the raw estimates of (�x, �x)x and (�t)t . From 
Table 2 it is seen that the general ordering of the predictive performance of using 
the different calibrations remain essentially the same. Note, however, that for Swed-
ish females all three LSTM models are better than the Poisson Lee-Carter, whereas 
the RWD outperformed the LSTM models in terms of MSE in Table 1. This illus-
trates the importance of assessing the global performance of the model in terms of 
deaths (or mortality rates), not only focusing on the inner �̂t process. The reason for 
that Calibration SP has a higher log-likelihood than the Poisson Lee-Carter model 

(16)�̂∗
x,t

=
D∗

x,t

rx,t
.
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Fig. 3   Swedish males: Observed mortality rates 1950–2016, and predicted simulated mortality rates cal-
culated according to (16). Top: Age 55. Bottom: Age 85. Left: Calibration LO. Right: Calibration RT. 
Bold solid black line shows observed mortality rates. Thin solid black lines correspond to median, 2.5 
and 97.5 percentiles for the LSTM ensembles trained on “raw data” (no pre-processing) with activation 
function ReLu. Thin dashed red lines correspond to median and percentiles for the Poisson Lee-Carter 
model
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is explained by that it captures the dynamics in older ages better. This is illustrated 
for Calibration SP and RT compared to the Poisson Lee-Carter model in Fig. 4. See 
also the simulated predicted mortality rates for Swedish females for age 55 and 85 
in Fig. 5.

Table 2   Log-likelihood calculated according to (15) out-of-sample (2000–2016) for the Poisson Lee-
Carter model and for the LSTM ensembles trained on “raw data” (1950–1999) with activation function 
ReLu

Saturated Po-LC LO RT SP

ITA male − 57 996 − 105 612 − 60 624 − 62 480 − 61 696
ITA female − 13 284 − 23 112 − 16 243 − 17 294 − 16 102
SWE male − 10 462 − 16 183 − 57 265 − 11 387 − 11 915
SWE female − 7 116 − 8 019 − 7 641 − 7 762 − 7 341
USA male − 189 392 − 224 054 − 290 696 − 297 490 − 236 226
USA female − 60 155 − 78 182 − 185 238 − 168 599 − 202 655
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Fig. 4   Top: Swedish females, Calibration SP. Bottom: Italian females, Calibration RT. Left: �
t
 in-sample 

and out-of-sample. Bold solid black line shows raw (“observed”) estimates. Thin solid black lines cor-
respond to median, 2.5 and 97.5 percentiles for the LSTM ensembles trained on “raw data” (no pre-pro-
cessing) with activation function ReLu. Thin dashed red lines correspond to median and percentiles for 
the RWD. Data to the right of the last vertical dashed line correspond to test data. Right: log-likelihood 
per age, calculated in agreement with (15), out-of-sample. The solid black line corresponds to the LSTM 
ensemble, the dashed red line corresponds to the Poisson Lee-Carter model, and the dash-dotted blue 
line corresponds to the saturated model
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To conclude this far, Calibration RT and SP tend to perform best, and rarely con-
siderably worse than Calibration LO. For Calibration LO we have seen examples 
where its predictive performance deteriorates, when at the same time Calibration RT 
and SP produce reasonable predictions.

5.2 � Long‑term predictions

Compared with standard time-series models it is not obvious whether an LSTM 
model calibration will produce predictions that are “non-explosive”, i.e. not tending 
to ±∞ . In Sect. 5.1 it was seen that the LSTM model may be calibrated successfully 
in order to produce short to medium-term predictions that out-performed an RWD, 
when only looking at the �̂t process, or the Poisson Lee-Carter model when consid-
ering actual death counts or mortality rates. As an example, all calibrations, LO, RT, 
and SP, produced reasonable predictions for Italian males in the short to medium-
term. This is, however, not the case when pushing the predictions further into the 
future, see Fig. 6, where all calibrations decrease super linearly producing mortal-
ity rates that are practically zero—including extremely narrow prediction intervals. 
This indicates that even though we have used early stopping based on validation data 
when calibrating the LSTM model, all calibrations seem to have overfitted to non-
linearities in the training data.
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Fig. 5   Swedish females: Observed mortality rates 1950–2016, and predicted simulated mortality rates 
calculated according to (16). Top: age 55. Bottom: age 85. Left: Calibration LO. Middle: Calibration 
RT. Right: Calibration SP. Bold solid black line shows observed mortality rates. Thin solid black lines 
correspond to median, 2.5 and 97.5 percentiles for the LSTM ensembles trained on “raw data” (no pre-
processing) with activation function ReLu. Thin dashed red lines correspond to median and percentiles 
for the Poisson Lee-Carter model
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This dramatic deterioration of the long-term predictions can, at least partly, be 
diminished by using boosting, as discussed in Sect. 3.7, and scaling. That is, we first 
fit an RWD to the original �t estimates, and only feed the resulting residuals, scaled 
to lie between [−1, 1] using the min-max-scaler, to the LSTM. This boosted LSTM 
model turns out to work best with tanh as activation function, instead of the previ-
ously used ReLu activation. The performance of boosted SP calibrations for Italian 
and Swedish males are given in Fig. 7, where it is clearly seen that the boosted mod-
els provide a reasonable compromise between the (possibly very) non-linear pure 
LSTM model and the linear RWD model. Here one can note that when the RWD 
and pure LSTM are in conflict, the prediction intervals will be wider, see the analy-
sis for USA females in the Supplementary Materials [23]. Similarly, when the RWD 
and the pure LSTM are aligned, the prediction intervals may still be narrow, see the 
analysis for Swedish females in the Supplementary Materials [23].

A summary of test log-likelihoods calculated according to (15) for all populations 
is given in Table 3, which compared with Table 2 show that the boosted models in 
general provide good predictive performance.

Before ending this section, it is worth stressing that you can, of course, use 
another model than a simple RWD as the basis for boosting such as more general 
ARIMA models. Another simple generalisation is to boost squared residuals, in this 
way creating an ARCH type LSTM model.

The conclusion in the current section is again that Calibration RT and SP tend to 
outperform the standard LO calibration.

5.3 � Calibration using a limited amount of data

As already discussed in Sect.  5.2, by using boosting the predictive performance 
becomes a compromise between a simpler model (here RWD) and a complex non-
linear model (here LSTM). This approach tends to stabilise long-term predictions, 
and if the two model types are in “conflict” the prediction intervals widen, whereas 
if they are “aligned” it is possible to still obtain reasonably narrow prediction 
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Fig. 6   Italian males: �
t
 long-term prediction. Left: Calibration LO. Middle: Calibration RT. Right: Cali-

bration SP. Bold solid black line shows raw (“observed”) estimates. Thin solid black lines correspond to 
median, 2.5 and 97.5 percentiles for the LSTM ensembles trained on “raw data” (no pre-processing) with 
activation function ReLu. Thin dashed red lines correspond to median and percentiles for the RWD. Data 
to the right of the last vertical dashed line correspond to test data. For calibration LO, the area between 
the vertical dashed lines show in-sample validation data
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intervals. Due to this, we only considered boosted models when reducing the amount 
of data used for calibration even more than previously. In the current section we will 
consider two different situations: training based on 1970–1989 together with test-
ing on 1990–2006, and training based on 1980–1999 together with testing based 
on 2000–2016. The results for the test log-likelihoods calculated according to (15) 
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Fig. 7   �
t
 long-term prediction with Calibration SP. Top: Italian males. Bottom: Swedish males. Left: 

LSTM ensemble trained on “raw data” (no pre-processing) with activation function ReLu. Right: LSTM 
ensemble trained on residual after boosting and scaling with activation function tanh. Bold solid black 
line shows raw (“observed”) estimates. Thin solid black lines correspond to median, 2.5 and 97.5 percen-
tiles for the LSTM ensemble. Thin dashed red lines correspond to median and percentiles for the RWD. 
Data to the right of the last vertical dashed line correspond to test data

Table 3   Log-likelihood calculated according to (15) out-of-sample (2000–2016) for the Poisson Lee-
Carter model and for the LSTM ensembles trained on residual after boosting and scaling (1950–1999) 
with activation function tanh

Saturated Po-LC LO RT SP

ITA male − 57 996 − 105 612 − 91 232 − 78 431 − 77 806
ITA female − 13 284 − 23 112 − 19 012 − 17 614 − 16 524
SWE male − 10 462 − 16 183 − 13 580 − 14 062 − 14 415
SWE female − 7 116 − 8 019 − 9 303 − 7 616 − 7 421
USA male − 189 392 − 224 054 − 218 720 − 220 277 − 223 078
USA female − 60 155 − 78 182 − 95 775 − 85 316 − 92 345
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for all calibrations are summarised in Tables 4 and 5. As in Sect. 5.2 it is seen that 
the boosted RT and SP calibrations generally outperform Calibration LO. Further, 
for many of these populations the �̂t processes are essentially linear, but the overall 
boosted model is similar to or only slightly worse than a standard RWD, see the 
analysis for e.g. Italian and Swedish females in the Supplementary Materials [23]. 
On the other hand, when there are non-linearities, the boosted models seem to cap-
ture these patterns reasonably well. Furthermore, by using boosted models the long-
term predictions are reasonable as well.

6 � Concluding remarks

In this paper, we focus on how to use data efficiently together with an LSTM neural 
network extension of the Poisson Lee-Carter model. We introduce alternative methods 
for calibration of the model, combined with ensembling, and illustrate that sampling 
validation data randomly in time (Calibration RT), and creating validation data by sam-
pling individuals and randomly assigning them to different subpopulations (Calibration 
SP), are viable alternatives to the standard approach of withholding the last fraction of 
observations as validation data (Calibration LO). This can at least partly be motivated 
theoretically, see Sect. 3.6. Further, as was seen in Sect. 5, Calibration LO may perform 
very poorly in situations where RT and SP perform well, while in situations where LO 

Table 4   Log-likelihood calculated according to (15) out-of-sample (1990–2006) for the Poisson Lee-
Carter model and for the LSTM ensembles trained on residual after boosting and scaling (1970–1989) 
with activation function tanh

Saturated Po-LC LO RT SP

ITA male − 46 210 − 56 707 − 49 449 − 60 846 − 51 826
ITA female − 16 514 − 24 465 − 24 760 − 20 969 − 18 570
SWE male − 8 967 − 12 122 − 17 843 − 10 007 − 9 336
SWE female − 7 362 − 8 634 − 8 015 − 9 009 − 8 589
USA male − 87 053 − 93 583 − 94 232 − 92 548 − 93 191
USA female − 53 194 − 145 147 − 80 830 − 85 327 − 64 719

Table 5   Log-likelihood calculated according to (15) out-of-sample (2000–2016) for the Poisson Lee-
Carter model and for the LSTM ensembles trained on residual after boosting and scaling (1980–1999) 
with activation function tanh

Saturated Po-LC LO RT SP

ITA male − 54 346 − 59 985 − 64 402 − 62 182 − 60 933
ITA female − 18 477 − 29 229 − 23 731 − 22 634 − 22 376
SWE male − 8 721 − 9 636 − 9 261 − 9 098 − 9 044
SWE female − 7 068 − 8 169 − 8 414 − 7 478 − 7 337
USA male − 193 619 − 201 830 − 199 872 − 203 877 − 217 696
USA female − 87 416 − 108 992 − 159 287 − 133 011 − 143 459
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is the best, the performance of RT and SP is still good. The general approach to cali-
bration, using LO, RT or SP, is of course not only applicable to LSTM neural network 
models, but can be used with other models as well, with obvious modifications. The 
need for using these alternative calibration procedures might be larger when the num-
ber of observations in available or relevant data is limited.

Furthermore, as seen in Sect.  5.2, when using boosting and applying the calibra-
tion methods to the residuals produced by first using a simpler model, as described in 
Sect. 3.7, we obtain more robust models that provide reasonable predictions for long-
term forecasting horizons, without degrading the performance too much in the short-
term. In our numerical illustrations these models consist of a compromise between a 
linear RWD model used for boosting, and a non-linear LSTM model. The resulting 
forecasts are close to the ones from a simple RWD when mortality rates are essen-
tially log-linear, but can still capture some of the non-linearity in data when sufficiently 
strong non-linearities are present, without producing unreasonable long-term pre-
dictions. Additionally, boosting combined with Calibration RT and SP enables us to 
produce reasonable forecasts based on training data consisting of as few as 20 obser-
vations, though perhaps one should still be careful when attempting to use highly com-
plex models when data is scarce.

Note that all figures in Sect.  5 only contain future evolutions of processes given 
point estimates. That is, we have not accounted for any estimation error in the predic-
tion intervals. One way of including this is to use the bootstrap procedure described for 
the Poisson Lee-Carter model in [5]. However, this procedure would become compu-
tationally heavy when applied to the ensemble models used in the present paper, which 
have been introduced to enhance the stability of the predictions.

Finally, the analysis in the present paper is based on that the simple model structure 
(3) and (2) is good enough to capture the dynamics in mortality data. Hence, the model 
used is rather inflexible when it comes to structural changes over time, since the esti-
mates (�x, �x) will be fixed over the whole time period. It is thus too much to hope that 
this model will be able to produce reasonable results when trained on data over long 
time periods, giving part of the motivation behind trying to fit the model to limited 
data, even for cases where data for longer time horizons might be available. This prob-
lem can be seen for e.g. simulated in-sample mortality rates for USA females during 
1950–1999, even though the corresponding �t process behaviour is reasonable, see the 
Supplementary Materials [23].

The focus in the present paper has been on one-dimensional models in a Poisson set-
ting. A natural continuation would be to consider higher-dimensional versions of this 
type of Poisson Lee-Carter models. This might in itself lead to richer data, increasing 
the possibility of obtaining reliable model calibrations without having to increase the 
length of the time series in the time dimension.
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Appendix A. Parameters and listings

For all calibrations and time periods, the following parameters were used: lag 5, 
recurrent activation function sigmoid, 1 hidden layer, batch size 1, 20 model calibra-
tions in each ensemble, patience 50 for the early stopping callback, and maximum 
10,000 epochs.

The code listings below illustrate the different parameter values used in the dif-
ferent calibrations, depending on the length of the time period used for training, and 
whether boosting and scaling is used or not.

Listing 1. 1950–1999, “raw data”
1 model _lstm = keras _model _sequential () %>%
2 layer _lstm (units = 50, input _shape = c(5, 1),
3 activation = "relu ", recurrent _activation = "sigmoid ") %>%
4 layer _dense (units = 1, activation = "linear")

Listing 2. 1950–1999, boosting & scaling
1 model _lstm = keras _model _sequential () %>%
2 layer _lstm (units = 50, input _shape = c(5, 1),
3 activation = "tanh ", recurrent _activation = "sigmoid ") %>%
4 layer _dense (units = 1, activation = "linear")

Listing 3. 1970–1989 and 1980–1999, boosting & scaling
1 model _lstm = keras _model _sequential () %>%
2 layer _lstm (units = 20, input _shape = c(5, 1),
3 activation = "tanh ", recurrent _activation = "sigmoid ") %>%
4 layer _dense (units = 1, activation = "linear")

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s13385-​022-​00307-3.

Acknowledgements  We would like to thank Pietro Millossovich and two anonymous referees for valu-
able comments on an earlier draft of the paper.

Funding  Open access funding provided by Stockholm University.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

https://doi.org/10.1007/s13385-022-00307-3
https://doi.org/10.1007/s13385-022-00307-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


777

1 3

Efficient use of data for LSTM mortality forecasting﻿	

References

	 1.	 Andersson P, Lindholm M (2020) Mortality forecasting using a Lexis-based state-space model. Ann Actu-
arial Sci, pages 1–30

	 2.	 Atance D, Debón A, Navarro E (2020) A comparison of forecasting mortality models using resampling 
methods. Mathematics 8(9):1550

	 3.	 Bergmeir C, Hyndman RJ, Koo B (2018) A note on the validity of cross-validation for evaluating autore-
gressive time series prediction. Comput Stati Data Anal 120:70–83

	 4.	 Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140
	 5.	 Brouhns N, Denuit M, Van Keilegom I (2005) Bootstrapping the Poisson log-bilinear model for mortality 

forecasting. Scandinavian Actuarial J 2005(3):212–224
	 6.	 Brouhns N, Denuit M, Vermunt JK (2002) A Poisson log-bilinear regression approach to the construction 

of projected lifetables. Insurance 31(3):373–393
	 7.	 Cappé O, Moulines E, Rydén T (2006) Inference in Hidden Markov Models. Springer Series in Statistics. 

Springer, New York
	 8.	 Chollet F, Allaire JJ et al. (2017) R interface to keras. https://​github.​com/​rstud​io/​keras
	 9.	 De Jong P, Tickle L (2006) Extending Lee-Carter mortality forecasting. Math Population Stud 13(1):1–18
	10.	 Deprez P, Shevchenko PV, Wüthrich MV (2017) Machine learning techniques for mortality modeling. 

Euro Actuarial J 7(2):337–352
	11.	 Dietterich TG (2000) Ensemble methods in machine learning. Int Workshop on Multiple Classifier 

Syst, pages 1–15. Springer
	12.	 Durbin J, Koopman SJ (2012) Time series analysis by state space methods. Number 38. Oxford Univer-

sity Pres,
	13.	 Fung MC, Peters GW, Shevchenko PV (2017) A unified approach to mortality modelling using 

state-space framework: characterisation, identification, estimation and forecasting. Ann Actuarial Sci 
11(2):343–389

	14.	 Gers FA, Schmidhuber J, Cummins F (2000) Learning to forget: Continual prediction with LSTM. 
Neural Comput 12(10):2451–2471

	15.	 Goodfellow I, Bengio Y, Courville A (2016) Deep learning, vol 1. MIT press Cambridge
	16.	 Hainaut D (2018) A neural-network analyzer for mortality forecast. ASTIN Bull 48(2):481–508
	17.	 Hastie T, Tibshirani R, Friedman JH (2008) The elements of statistical learning, 2nd edition. Springer 

series in statistics New York
	18.	 Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780
	19.	 Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for 

Demographic Research (Germany). Available at http://​www.​morta​lity.​org or http://​www.​human​morta​
lity.​de (data downloaded on 2020-09-08), 2020

	20.	 Kantas N, Doucet A, Singh SS, Maciejowski J, Chopin N (2015) On particle methods for parameter 
estimation in state-space models. Stat Sci 30(3):328–351

	21.	 Lee RD, Carter LR (1992) Modeling and forecasting US mortality. J Am Stat Assoc 87(419):659–671
	22.	 Levantesi S, Pizzorusso V (2019) Application of machine learning to mortality modeling and forecast-

ing. Risks 7(1):26
	23.	 Lindholm M, Palmborg L (2021) Supplement to Efficient use of data for LSTM mortality forecasting. 

Available at https://​doi.​org/​10.​1007/​s13385-​022-​00307-3
	24.	 Marino M, Levantesi S (2020) Measuring longevity risk through a neural network Lee-Carter model. 

Available at SSRN 3599821
	25.	 Mendes-Moreira J, Soares C, Jorge AM, De Sousa JF (2012) Ensemble approaches for regression: A 

survey. Acm Comput Surv (csur) 45(1):1–40
	26.	 Nigri A, Levantesi S, Marino M, Scognamiglio S, Perla F (2019) A deep learning integrated Lee-Carter 

model. Risks 7(1):33
	27.	 Perla F, Richman R, Scognamiglio S, Wüthrich MV (2021) Time-series forecasting of mortality rates 

using deep learning. Scand Actuarial J 7:572–598
	28.	 Perrone MP, Cooper LN (1993) When networks disagree: Ensemble method for neural networks. In 

R. J. Mammone, editor, Neural networks for speech and image processing. Chapman & Hall, New York
	29.	 Richman R, Wüthrich MV (2019) Lee and Carter go machine learning: recurrent neural networks. 

Available at SSRN 3441030
	30.	 Richman R, Wüthrich MV (2020) Nagging predictors. Risks 8(3):83

https://github.com/rstudio/keras
http://www.mortality.org
http://www.humanmortality.de
http://www.humanmortality.de
https://doi.org/10.1007/s13385-022-00307-3


778	 M. Lindholm, L. Palmborg 

1 3

	31.	 Richman R, Wüthrich MV (2019) A neural network extension of the Lee-Carter model to multiple 
populations. Ann Actuarial Sci 2019:1–21

	32.	 Villegas AM, Kaishev VK, Millossovich P (2018) StMoMo: An R package for stochastic mortality 
modeling. J Stat Softw 84(1):1–38

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	Efficient use of data for LSTM mortality forecasting
	Abstract
	1 Introduction
	2 LSTM neural network models
	3 Model calibration, aggregation, and boosting
	3.1 Calibration LO—withholding the last fraction of observations
	3.2 Calibration RT—sampling randomly in time
	3.3 Calibration SP—Splitting the population by sampling individuals randomly
	3.4 Early stopping rule
	3.5 Model aggregation
	3.6 Relating calibration RT to calibration LO
	3.7 LSTM boosting

	4 Likelihoods and performance measures
	5 Numerical illustrations
	5.1 Base case
	5.2 Long-term predictions
	5.3 Calibration using a limited amount of data

	6 Concluding remarks
	Acknowledgements 
	References




