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Abstract
In this work, we consider rule-based investment strategies for managing a defined 
contribution pension savings scheme, under the Dutch pension fund testing model. 
We find that dynamic, rule-based investment strategies can outperform traditional 
static strategies, by which we mean that the investor may achieve the target retire-
ment income with a higher probability or limit the shortfall when the target is not 
met. In comparison with dynamic programming-based strategies, the rule-based 
strategies have more stable asset allocations throughout time and avoid excessive 
transactions that may be hard to explain to an investor. We also study a combined 
strategy of a rule-based target with dynamic programming. A key feature of our set-
ting is that there is no risk-free asset, instead, a matching portfolio is introduced for 
the investor to avoid unnecessary risk.

Keywords  Life cycle investing · Pensions · Defined contribution · Rule-based 
strategies · Dynamic programming

1  Introduction

Nowadays, many people invest their retirement savings in a defined contribu-
tion pension scheme. In such a scheme, the contributions are agreed upon and 
are, e.g., a percentage of one’s salary. The pension, however, is uncertain as it 
depends on the returns on investment. At retirement, the accumulated wealth is 
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converted to a pension income that intends to replace a proportion of the inves-
tor’s income, typically about 70%, which is referred to as the replacement ratio. 
In this paper, we propose a dynamic strategy that optimally steers the investor 
towards a replacement ratio target.

Our dynamic strategy will reduce risk after several years of good returns on 
investment. It presumes that upward potential concurs with downside risk. Our 
pension investor is only interested in reaching her replacement ratio target, i.e., 
not making the target is considered downside risk and she feels indifferent about 
any two values above the target. We will show that, in this sense, the designed 
dynamic strategy outperforms static life cycle strategies. By decreasing risk after 
several good years, our dynamic strategy prevents unnecessary risk taking.

A well-known static life cycle strategy is known as Bogle’s rule [5], which 
prescribes to invest a percentage of 100 minus one’s age in risky assets. Decreas-
ing risk in the course of the life cycle in such a way is called a glide path. When 
the glide path is known in advance up to retirement, the strategy is static and does 
not adjust as events unfold. Therefore, static strategies may take unnecessary risk 
when returns on investment are better than anticipated, see [1, 12] for a discus-
sion of drawbacks of static life cycle strategies. The strategy we propose is also 
rule-based, but it is dynamic as the prescribed rule depends on events that still 
have to unfold.

In the literature, dynamic strategies are often studied in the context of dynamic 
programming [3]. Dynamic programming optimizes the investment strategy back-
wards in time by optimizing decisions for the coming period given that consecutive 
decisions are already taken optimally. Merton [17] was the first to apply dynamic 
programming to an asset allocation problem with two assets, a risky and a risk-free 
asset, also allowing for consumption during the investment period. Optimal deci-
sions were based on the constant relative risk aversion utility function. He showed in 
[17] that the optimal strategy continuously rebalances, i.e., the optimal allocation is 
constant.

The literature on optimal asset allocation is rich, and we cite here some contribu-
tions that influenced our work. Li and Ng [14] introduced mean-variance strategies 
with respect to a wealth target. The wealth target then allows the investor to iden-
tify a surplus: wealth up to the target may be invested in stocks, any remainder is 
invested in the risk-free rate. Zhang et al. [20] solved a similar problem, although 
utility-based, and combined dynamic programming with the least squares Monte 
Carlo method. Upper and lower bounds for the wealth were prescribed in that paper, 
showing that upward potential comes with downside risk. Terminal wealth is steered 
towards a desired range by investing the difference between a risk-free-discounted 
upper bound value and the current wealth in the risk-free asset. Forsyth and Vet-
zal [11] also applied dynamic programming and used a PDE solver to solve a so-
called time-consistent mean-variance problem, meaning that similar mean-variance 
problems were solved at future times. In addition to mean-variance that balances the 
mean and variance of returns, they studied a problem with a fixed wealth target. To 
reduce risk, both [11] and [20] proposed to invest excess wealth in a risk-free asset. 
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Similarly, the rule-based strategies introduced in this paper will invest excess wealth 
into a so-called matching portfolio. Compared with static strategies, distributions of 
outcomes are more centered around the target value and the area below the target 
value will become smaller.

Besides many positive aspects, dynamic programming and its resulting strate-
gies have several drawbacks including the following. Firstly, dynamic programming 
is computationally rather intensive. Secondly, the corresponding investment deci-
sions can be sensitive to small changes in parameters and underlying assumptions. 
Because of this, the allocation may fluctuate over time resulting in large turnovers, 
of which, from a practical perspective, it is hard to explain why they are required. 
Intuitively defined rules, typically, do not suffer from these drawbacks. Finally, it 
is not straightforward to apply dynamic programming to the pension settings as an 
investor’s replacement ratio target often depends on inflation influencing the future, 
which in turn also influences the future contributions.

Rule-based dynamic strategies fall in between the static and dynamic program-
ming paradigms, when well constructed they aim for the best of both worlds. As 
shown by Basu et. al. [2], even simple rule-based strategies that reduce risk half way 
in the life cycle can outperform static life cycle strategies. Compared with the work 
in [2], our rule-based strategies can reduce risk annually, and consider the market 
price of future pension payments instead of a wealth target. In addition to the rule-
based strategies, we will study an integrated approach in which we combine a rule-
based strategy with dynamic programming.

2 � The optimal asset allocation problem

2.1 � The Dutch pension system

To demonstrate the rule-based strategy’s practical value, we consider a Dutch pen-
sion investor, and use typical retirement data from the Netherlands. In the Nether-
lands, the pension system can roughly be described as follows. The system consists 
of three pillars. The first pillar is formed by government allowances for old age 
equal to about 70% of minimum wage. It is funded out of current payroll taxes. Peo-
ple earning more than a so-called franchise, roughly equal to minimum wage and 
amounting to 13,123 Euro ultimo 2016, can take part in the second or third pillar. 
The second pillar consists of participation in collective pension schemes. Contribu-
tions are equal to a percentage of one’s pensionable salary, i.e., the salary above the 
franchise, and employers typically pay part of the contributions which makes opting 
out highly unfavourable. The third pillar consists of private pension products. At 
retirement, pension benefits and savings are converted to a period income, e.g. facili-
tated through the collective pension scheme, a life insurance product of an insurance 
company, or through periodic withdrawals from an investment account. The overall 
aim is to replace about 70% of one’s income by a pension. In the second and third 
pillars, Dutch pension law facilitates tax free contributions to work towards this aim.
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2.2 � Model setting

In this paper, the Dutch pension investor doesn’t take part in a collective pension 
scheme, but is assumed to have full control over her pension savings, either by tak-
ing part in an individually defined contribution pension scheme in the second pillar, 
or by means of an appropriate private pension product in the third pillar. At t = 0 , 
the 26 year old investor will start saving annually the maximum allowed tax free 
amount (according to Dutch pension law) up to retirement at time t = T  , coincid-
ing here with a retirement age of 67 years. She intends to replace 70% of her sal-
ary by her pension (including government allowances for old age). As the govern-
ment allowance for old age roughly equals 70% of the franchise, her pension savings 
intend to replace 70% of her pensionable salary, i.e., her salary in excess of the fran-
chise. Although, in practice, an investor might be interested in insuring longevity 
risk or be interested in employing advanced withdrawal strategies, Blanchett et. al. 
[4] illustrates that simple withdrawal strategies can perform well, e.g., based on an 
annuity with a maturity roughly equal to an investor’s life expectancy. Therefore, as 
we focus on accumulating wealth before retirement, we simply assume the investor 
buys an annuity that indexes with the expected inflation, i.e., a bond which, apart 
from indexation for expected inflation, equals annual payoffs, for a period of N, say 
20, years after retirement. Whichever withdrawal strategy an investor might follow, 
the assumption here is that this annuity gives a good estimate of, at least, the inves-
tor’s income in her first year after retirement, and, thereby, to what extend she can 
replace her pensionable salary for 70% with a pension.

The investor can invest her wealth Wt in a risky, equity-like, asset, which is called 
the return portfolio, or in a safe, bond-like, asset with annual payoffs during retire-
ment, the matching portfolio. In our setting, the strategy will use the matching port-
folio to protect the current gains, and it grows with inflation. Therefore, the match-
ing portfolio also carries risk. Put differently, we assume the investor doesn’t hedge 
inflation risk with inflation protected securities as the market for inflation products is 
illiquid and strategies that hedge against inflation are not straightforward to follow in 
practice [16]. Finally, we assume there is no risk-free rate to invest money in.

The investor annually manages her portfolio, i.e., decisions, contributions and 
pension payments are made in discrete time, which runs up to retirement, from t = 0 
to t = T  . The pension payments start at t = T  and run up to t = T + N − 1 . At time 
t ≤ T  before retirement, she invests a fraction �t of her wealth Wt in the return port-
folio. The investor is not allowed to short-sell assets or borrow money, so that

In the dynamic programming literature, �t is referred to as the control (as decisions 
intend to give the investor control over the outcome). A strategy maps information Zt 
available at time t, e.g., past returns and current wealth Wt , to the desired allocation:

Here Zt is adapted to a filtration Ft , governing the underlying stochastic processes. 
Before time t, the information Zt is not yet available, and �t is thus a stochastic 

(1)0 ≤ �t ≤ 1.

(2)�t ∶ ℝ
K ∋ Zt ↦ �t(Zt) ∈ [0, 1].
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quantity. In a static strategy, such as Bogle’s rule, �t only depends on time and is 
known, i.e., not stochastic, even when the information Zt is not yet available. In prac-
tice, risk is reduced towards retirement, meaning that �t typically decreases over 
time.

Just before rebalancing, the investor makes a contribution ct to the portfolio equal 
to the maximum allowed tax free amount under Dutch pension law. These contri-
butions resemble an age-dependent percentage pt , see Table  3, of the investor’s 
pensionable salary st which she earned in the period t − 1 up to t. We assume that 
the investor’s salary follows a deterministic career path, i.e., it increases with age. 
The investor’s salary also increases stochastically with the wage inflation wt . Alto-
gether, Table 4 shows the expectation and standard deviation of the annual contribu-
tion to the portfolio for our investor, see also Appendix A. Note that the contribu-
tions merely depend on career path assumptions and inflation, and do not depend on 
investment decisions neither on return on investment.

The investor’s objective is to achieve a 70% replacement ratio target at retirement 
without incurring too much downside risk. The replacement ratio for the pension-
able salary at retirement, RRT , is given by

Here, the second term divides by the investor’s average wage in nominal amounts 
indexed with inflation �t to retirement at t = T  , and Mt is the market value factor. 
The market value factor Mt converts a nominal amount at time t, that is supposed to 
have similar purchasing power to the pension payments, to N pension payments at 
times � ≥ T  after retirement by indexing with currently expected inflation, and then 
discounting those pension payments back to time t ≤ T:

where �t is the expectation, conditional on Ft (i.e., the information available at time 
t), and r�−t

t
 represents the market rates that discount payments from � − t years into 

the future back to the present time. Put differently, dividing current wealth by the 
market value factor gives an amount that currently has similar purchasing power as 
the future pension. Using the market value factor MT at retirement, the first term in 
(3) converts the accumulated wealth WT into N annual income payments indexed for 
expected future inflation.

To measure whether a strategy achieves the investor’s objective, we use a utility 
function, U, which, whenever decisions are to be taken, intends to maximize the fol-
lowing expression in expectation:

where Ft again represents current market information, �t is as in (2) and ZT is a vec-
tor with outcomes including the terminal replacement ratio. Although other choices 

(3)RRT =
WT

MT

⋅

T + 1∑T

t=0
st
∏T

�=t+1
(1 + ��)

.

(4)Mt =

T+N−1∑
�=T

(1 + r�−t
t

)t−� �t

[
�∏

��=t+1

(1 + ��� )

]
,

(5)max
�t ,…,�T−1

�
[
U(ZT )|Ft

]
,
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are possible, we choose U(.) to be the shortfall below the investor’s target replace-
ment ratio of 70%:

where there is no shortfall in replacement ratio if it ends above 70% . Note that this 
measure is not conditional on the shortfall. So, additionally, we will also evaluate a 
strategy’s performance using the 10% conditional value at risk CVaR0.1(RRT ) of the 
replacement ratio, i.e., the expectation of the 10% worst case outcomes as defined by

where F−1
RRT

(�) is the inverse cumulative distribution function of the terminal 
replacement ratio RRT and represents the �-th quantile below which are the worst 
case outcomes.

2.3 � Governing stochastic model

For general applicability, we require the designed strategies are not defined in terms of 
the governing stochastic model parameters. That is, the strategies can be applied when 
different governing stochastic models would be used. We merely assume that the gov-
erning stochastic model can be simulated by means of a Monte Carlo simulation. To 
make this explicit, we choose to use a standard model developed to make risk analyses 
comparable between Dutch pension funds, see [13]. The model and its calibration are 
well documented [10]. Calibration to recent market data and a Monte Carlo simulation 
of the model are publicly available at the website of the Dutch Central Bank [9]. In this 
paper, we use the data set of 2017 (quarter 1), which is calibrated to data up to ultimo 
2016 and start simulating from there.

In discrete time, the model is a VAR(1) model with normally distributed increments, 
see [18] for a short summary of the model specification. In the calibration, some struc-
ture is imposed to achieve realistic market dynamics. Based on the model, sample paths 
are generated for the following variables:

–	 Equity returns xt , which are used for the return portfolio;
–	 Inflation �t;
–	 Wage inflation wt , which equals inflation �t plus 0.5%;
–	 A yield curve with interest rates rm

t
 containing rates for each maturity m.

The matching portfolio is tailored to the investor’s retirement age. Its returns mt equal 
the rate of change in the market value factor:

where Mt is defined in (4). Note that the matching portfolio protects the investor 
against expected future inflation. To determine the expected future inflation, we use 
the least squares Monte Carlo technique, as presented in Sect. B.3.

(6)U(ZT ) = min(RRT − 70%, 0),

(7)CVaR� (RRT ) = �

[
RRT

|||RRT ≤ F−1
RRT

(�)
]
,

(8)mt =
Mt

Mt−1

− 1,
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Table  1 gives the annual return statistics of the variables. Due to the fluctuat-
ing market price of future pension payments, the standard deviation of the matching 
returns is very similar to the one of the equity returns. Although the matching port-
folio follows these fluctuations, it is considered less risky, in terms of the investor’s 
goals. By investing in the matching portfolio, the pensioner will receive the corre-
sponding amount from the annuity, no matter the future market prices.

3 � Rule‑based strategies

In this section, we define three rule-based strategies: a cumulative target strategy 
that decreases risk once it reaches a cumulative target for the contributions paid so 
far, an individual target strategy that tracks the investments of the contributions sep-
arately and decreases risk once it reaches the target for that contribution, and a com-
bination strategy that combines the two with dynamic programming. The strategies 
all intend to steer towards a replacement ratio of 70%, and decrease risk when return 
on investment develops well. The strategies differ in their views on when return on 
investment has been developing well enough to decrease risk.

3.1 � Cumulative target strategy

The cumulative target strategy that we consider here has similarities with the strat-
egies studied in [20] and [11]: risk is reduced once wealth exceeds a pre-defined 
wealth target. Contrary to [20] and [11], however, our investor saves for retirement 
and we relate the wealth target to the price of a bond with payoff equal to the desired 
pension.

Given a density forecast for the matching and return portfolios, see Sect. 2.3, the 
strategy depends on two parameters: a required real rate of return r (before retirement) 
and a discount rate � (after retirement) to discount pension payments after retirement to 
the retirement date. At time t before retirement, i.e., t = 0,… , T , the investor contrib-
utes ct to her pension savings, see Tables 3 and 4. The contributions c� up to time t, i.e., 
� = 0,… , t , are supposed to grow with inflation �� , plus the real rate of return r, to a 
target wealth c� �t[F�] at retirement, where F� is given by

Table 1   Annual statistics of the 
underlying stochastic model 
calculated on a sample that 
combines all sample paths

x
t

m
t r

10

t
�
t

w
t

Mean 6.1% 3.4% 2.5% 1.6% 2.1%
Standard deviation 18.3% 18.5% 2.4% 1.5% 1.5%
Correlations

   Equity return ( x
t
) 1.00

 Matching return ( m
t
) − 0.06 1.00

 10 year interest ( r10
t

) 0.17 − 0.17 1.00
 Inflation ( �

t
 ) 0.11 − 0.04 0.82 1.00

 Wage inflation ( w
t
) 0.11 − 0.04 0.82 1.00 1.00
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and the conditional expectation, �t , enforces that the realized inflation is used before 
time t and the expected inflation is used beyond time t. The wealth targets at retire-
ment for all contributions c� up to time t are combined and converted into a target 
pension using a discount factor M̃T with discount rate �:

Note that, contrary to the market value factor Mt as defined in (4), M̃T is merely an 
annuity with rate � used to approximate the first pension given wealth at retirement. 
Using the market value factor Mt , this gives us the following current target wealth W̃t

:

where the summation represents the combined wealth targets at retirement for all 
contributions c� up to time t. In short, (11) can be interpreted as follows: the summa-
tion converts contributions c� up to time t into a target wealth at retirement, M̃T uses 
an annuity with rate � to approximate the first pension, and, finally, the market value 
factor Mt indexes the first pension with expected inflation and discounts all future 
pensions back to time t. Altogether, this gives the current target wealth W̃t.

The cumulative target strategy starts by investing new contributions ct in the risky 
asset. If the current wealth Wt , including the current contribution ct , exceeds the tar-
get wealth W̃t , risk is reduced and Wt is transferred to the matching portfolio. For the 
matching portfolio, the investor follows a buy and hold strategy. New contributions 
invested in the risky asset, will also be transferred to the matching portfolio if the cur-
rent wealth Wt , which consists of the current contribution ct , the value of the matching 
portfolio and the value of the return portfolio, exceeds the target wealth W̃t . In other 
words, at t = 0 , the control �0 is given by

and, for t = 1…T  , the control �t is given by

(9)F� =

T∏
��=�+1

(1 + r + ��� ),

(10)M̃T =

T+N−1∑
𝜏=T

1

(1 + 𝛿)𝜏−T
.

(11)W̃t =
Mt

M̃T

t∑
𝜏=0

c𝜏 �t[F𝜏],

𝛼0 =

{
0 if W0 ≥ W̃0, (12a)

1 otherwise, (12b)

𝛼t =

{
0 if Wt ≥ W̃t, (13a)

𝛼t−1(1+xt)

𝛼t−1(1+xt)+(1−𝛼t−1)(1+mt)
otherwise. (13b)
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3.2 � Individual target strategy

Contrary to the cumulative target strategy, the individual target strategy, which is 
the second strategy we will analyze here, defines a wealth target per contribution 
and invests each contribution separately, i.e., the wealth Wt is seen a sum of the indi-
vidual wealth components resulting from investing the contributions separately:

where Wt,� is the wealth component from investing the contribution c� . As in (11), a 
wealth target W̃t,𝜏 , at time t for a contribution invested at time � ≤ t , is given by

Apart from this, the strategy works similarly: the individual contributions are 
invested in the risky asset until the invested amount exceeds the wealth target for 
that contribution, in which case they are transferred to the matching portfolio until 
retirement. Thus, the control �t,� for investing contribution ct,� is given by

At the aggregated level, the control �t is now given by

Conceptually, the difference between the cumulative target strategy and the indi-
vidual target strategy is what triggers the risk reduction. Contrary to the individual 
target strategy, in the cumulative target strategy new investments have to make up 
for insufficient past returns before a transfer to the matching portfolio can take place. 
On the other hand, in the cumulative target strategy good past returns may cause 
new contributions to be transferred immediately to the matching portfolio. With 
the individual target strategy, each contribution has to generate sufficient return on 
investment before such a transfer takes place.

3.3 � Combination strategy

Both the cumulative and the individual target strategy either reduce risk by switch-
ing completely to the matching portfolio or don’t reduce risk at all. Instead of com-
pletely switching or not switching at all, the combination strategy, which is the third 
strategy considered, combines the individual target strategy with dynamic program-
ming to dynamically steer the wealth Wt,� resulting from the contribution c� above its 
wealth target W̃t,𝜏 . For this, we define the following wealth to target ratio,

(14)Wt =

t∑
�=0

Wt,� ,

(15)W̃t,𝜏 =
Mt

M̃T

c𝜏 �t[F𝜏].

𝛼t,𝜏 =

{
0 if for any 𝜏� = 𝜏… t we have W𝜏�,t ≥ W̃𝜏�,𝜏 , (16a)

1 otherwise. (16b)

(17)�t =
1

Wt

t∑
�=0

Wt,��t,� .
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and solve

where Ǔ is a utility function, V(z, t, �) is the value function in the dynamic program-
ming problem and the control At,� consists of the future investment decisions:

Using the dynamic programming principle, it follows that the optimal control, A∗

t,�
 , 

satisfies

which allows us to solve for the optimal control problem for A∗

t,�
 , backwards in time.

In this context, we choose a utility function that steers the ratio ZT ,� in between 
the bounds z∗

min
 and z∗

max
 . This is in line with the investor’s goal of minimizing 

downside risk, and with our assumption that upward potential comes with down-
side risk. The utility function should be positive concave and takes here the fol-
lowing functional form:

where

see Fig.  1; note that this utility function differs from U(⋅) as given by (6). Utility 
function Ǔ(⋅) is clearly concave and continuous on the domain ℝ>0 . We set z∗

min
= 1 

and z∗
max

= 3 , as this choice fits well with the investor’s replacement ratio target and, 
as we will show in Sect. 4.1, is sufficient to demonstrate the strategy’s added value.

Now, we will show that the ratio Zt,� , between the current wealth Wt,� and its 
target W̃t,𝜏 , evolves in time by making returns on investment in the nominator and 
updating the inflation expectation in the denominator. Since this time evolution is 
independent of � , we can show that the optimal control �∗

t,�
 is independent of � , 

i.e., once the optimal control is found, it can be applied to all contributions.

Lemma 1  If the optimal control �∗
t,�

 of dynamic programming problem (19) exists 
and is unique, then it is independent of the contribution c� and the time � at which 
the contribution is made.

(18)Zt,𝜏 ∶=
Wt,𝜏

W̃t,𝜏

,

(19)V(z, t, 𝜏) = sup
At,𝜏

�
[
Ǔ(ZT ,𝜏)|Zt,𝜏 = z

]
,

(20)At,� = {�t,� ,… , �T ,�}.

(21)A∗

t,�
= {�∗

t,�
,A∗

t+1,�
},

(22)Ǔ(z) =
−(z − 𝛽)2 −

(
z − z∗

min

)2
z

,

� =

√
2
(
z∗
max

)2
−
(
z∗
min

)2
,
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Proof  The portfolio wealth Wt,� , accumulated by investing contribution c� , increases 
with the return on investment and, therefore, satisfies

From (15), (9) and (8), it follows that the wealth target, W̃t,𝜏 , satisfies

Substitution of (23) and (24) in (19) yields that the optimal controls �∗
t,�

 solve

As the argument of Ǔ merely depends on the control ��′,� , future returns on equity 
x��+1 , and future returns of the matching portfolio m��+1 , all optimal controls �∗

t,�
 

solve, as a function of the state z, the same sequence of optimization problems, 
backwards in time. Consequently, both the value function V(z, t, �) and the optimal 
control �∗

t,�
 are independent of � . A similar argument shows the independence of the 

size of the contribution c� . 	�  ◻

Lemma 1 implies that, theoretically, the dynamic programming problem has 
to be solved only once, i.e., the optimal control (as a function of the state) is the 
same for all contributions. Therefore, the optimal control of the first contribution 
c0 can be used for all other contributions.

For the practical implementation for the dynamic programming algorithm, 
readers may refer to Appendix B.

(23)Wt,� =
[
(1 + xt)�t−1,� + (1 + mt)(1 − �t−1,� )

]
Wt−1,� .

(24)W̃t,𝜏 =
�t[Ft−1]

�t−1[Ft−1]
(1 + mt)W̃t−1,𝜏 .

(25)sup
At,𝜏

�

⎡⎢⎢⎢⎣
Ǔ

⎛⎜⎜⎜⎝
z

T�
𝜏�=t+1

(1 + x𝜏�+1)𝛼𝜏�,𝜏 + (1 + m𝜏�+1)(1 − 𝛼𝜏�,𝜏)

�𝜏�+1[F𝜏� ]

�𝜏� [F𝜏� ]
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3.4 � Expected and target replacement ratio

The variable r, used in the construction of the wealth targets by means of Eq. (9), can 
be interpreted in several ways. First, it serves as a discount rate, which is used to com-
pute the present value of contributions that are made in the future. It can also be inter-
preted as an annual return requirement: each contribution is required to have an average 
annual return of r. And third, it can be interpreted as a future expected annual return.

The third interpretation allows us to measure approximately a strategy’s progress 
towards the expected replacement ratio �t[RRT ] by the quantity Rt:

where �t[WT ] is approximated using:

Note that in the definition of Rt , the expectation of the denominator and nominator 
are, contrary to how �t[RRT ] is defined, taken separately for computational reasons. 
Altogether, the computation of Rt requires four different estimators. The discount 
rate r is used as an estimator for the future expected annual return. The estimator 
for the annualized future inflation IT ,t , has to be estimated by regression between the 
future and the past cumulative inflation, as shown in Eq.  (29). Future salaries are 
based on the information from Table 3. Lastly, the estimator for the market value 
factor at the end of the investment horizon, �t[MT ] , is based on regression between 
Mt and MT , with � = {1, x} . See Appendix B.3 for details of the regression method 
used.

Alternatively, one could use these approximations to try to steer towards a replace-
ment ratio target R∗

t
 directly. Using (26) and (27), the replacement ratio target can be 

converted into a current wealth target:

We found, however, that steering towards this approximate target in a dynamic 
programming framework didn’t yield satisfactory results. Therefore, we postpone 
exploring such a direction deeper to future research.

4 � Numerical evaluation

In this section, we apply the rule-based strategies described in Sect. 3 to the pension 
investor introduced in Sect. 2.2, using the governing stochastic model described in 
Sect. 2.3.

(26)Rt ∶=
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�
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4.1 � Rule‑based strategies

To illustrate the dynamics of the rule-based strategies, Fig.  2 shows one of the 
2000 sample paths for the investor’s portfolio dynamics. In particular, the top left 
figure shows the investor’s wealth Wt when following the cumulative target strat-
egy (orange) and when the investor’s wealth exceeds the target W̃t (yellow). Note 
that when this occurs, the investments are transferred to the matching portfolio 
(orange line, bottom right figure). The individual target strategy (in green) works 
similarly, but, as discussed, uses a target per contribution, so that, typically, only 
part of the wealth is transferred to the matching portfolio (green line, bottom right 
figure). The bottom left figure illustrates that, in this sample path, the rule-based 
strategies outperform the optimal static strategy in terms of expected replacement 
ratio—although only in the first 10 years of the investment the rule-based strategies 
take substantially more risk, i.e., have a substantially higher allocation to the return 
portfolio. Therefore, in this particular sample path, one could argue that the better 
performance comes from the rule-based strategies and not from increased exposure 
to risk.
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The combination strategy is best illustrated by means of the resulting investment 
decisions, i.e., the optimal control �t,� as defined by Eq. (25). Figure 3 illustrates the 
optimal allocation to the matching portfolio, 1 − �t,0 , for the first contribution c0 as a 
function of time t and the wealth to target ratio, as defined by Eq. (18). In this exam-
ple, allocations are restricted to multiples of 20% . Note that, contrary to the rule-
based strategies, in the combination strategy, risk can be increased and investments 
can be transferred from the matching to the return portfolio. All together, this makes 
the combination strategy more refined than the rule-based strategies, which follow a 
“risk on” or “risk off” approach, in terms of their allocations.

Figure 4 compares the distribution of the terminal replacement ratio RRT for the 
following best performing strategies in terms of the expected shortfall below the 
investor’s 70% replacement ratio target: two rule-based strategies, a combination 
strategy and a static strategy. The figure illustrates that, as intended, the dynamic 
strategies reduce downward risk at the expense of upward potential, i.e., the dynamic 
strategies are centered more around the target replacement ratio of 70%.

In the Dutch pension system, maximum allowed tax free contributions are set 
by law, and few people deviate from this. Nevertheless, as a sensitivity analysis, 
we investigated that with 40% higher contributions all strategies achieve the 70% 
replacement ratio target with about 90% certainty, see Fig. 5. The figure illustrates 
that the designed strategies perform especially well when one tries to steer towards a 
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Fig. 3   Optimal allocation 1 − �
t,0 to the matching portfolio, as a function of wealth to target ratio Wt,0∕W̃

t,0 
(y-axis), as defined by Eq. (18), and time t (x-axis) for the first contribution of an investor following the 
combination strategy, discussed in Sect. 3.3, and using the stochastic model of Sect. 2.3. Allocations are 
restricted to multiples of 20%
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target that is challenging to achieve. Also, intuitively, for such a target, reducing risk 
after several years with better than anticipated return on investment makes sense, 
which is inherent in the design of the strategies. That being said, still the dynamic 
strategies reduce downward risk at the expense of upward potential.

A comparison of all strategies is best made by comparing the strategy successes, 
i.e., whether a strategy achieves the intended 70% replacement ratio target, versus 
its downside risk, and parametrize the strategies by the parameters that control 
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Fig. 4   Distribution of the replacement ratio RR
T
 for, respectively, the cumulative target strategy with 

r = 3.06% (orange), individual target strategy r = 2.99% (green), combination strategy with r = 1% (yel-
low) and a static strategy with 46.02% constant allocation to the return portfolio
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Fig. 5   Distribution of the replacement ratio RR
T
 with 40% higher contributions for, respectively, the 

cumulative target strategy with r = 3.06% (orange), individual target strategy r = 2.99% (green), com-
bination strategy with r = 1% (yellow) and a static strategy with 46.02% constant allocation to the return 
portfolio.
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the strategy’s risk appetite, see Fig.  6. From this figure, we conclude that all the 
dynamic strategies clearly outperform the traditional static strategies. Together with 
the intuitive rationale to reduce risk after several good years, we believe this suf-
ficiently demonstrates the added value of these dynamic strategies. We do, how-
ever, find these simulations insufficient to rank the dynamic strategies based on their 
effectiveness. It is well-known that the relative performance of dynamic strategies 
can be sensitive to the characteristics of the underlying stochastic model. As such, 
the characteristics are not completely objective, and we believe that use of the strate-
gies in practice is an appropriate way to test the strategies further (which lies beyond 
the scope of this research).

4.2 � Discussion

One of the intended advantages of a static life cycle strategy is the reduced risk close 
to the retirement, meaning that one can provide the investor with an accurate esti-
mate of her retirement income in the years before retirement. Table  2 provides a 
comparison of the dynamic strategies and traditional life cycle strategies. In par-
ticular, the table lists the standard deviations of the difference between the expected 
replacement ratio 5 years before retirement and the replacement ratio at retirement. 
We conclude that when following the rule-based strategies the investor can be pro-
vided with a similarly accurate estimate of the replacement ratio before retirement

Although the rule-based strategies outperform other strategies in our examples, 
we wish to point out that there are also disadvantages to the all-or-nothing approach, 
e.g, the portfolio remains 100% invested in the more risky return portfolio when 
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targets are not reached. Such truly worst case scenarios appear to have a minor influ-
ence, but are, e.g., illustrated in the far left lower tail in Fig. 4. The individual target 
strategy presented in Sect. 3.2 suffers less from the all-or-nothing disadvantages, as 
it defines a target per contribution. As a result, inferior past performance does not 
influence the required performance of current and future contributions.

Compared with the rule-based strategies, the combination strategy does not 
exploit the fact that the matching portfolio can grow an investment securely to its 
intended target (indexed by expected inflation) until retirement. As the rule-based 
strategies explicitly made use of this, the combination strategy could be further 
improved.

One advantage of the combination strategy in practical use is that the correspond-
ing asset allocation is much more smooth than for the rule-based strategies. The 
necessity of large turnovers is difficult to explain and investors might be uncomfort-
able to follow such a drastic strategy to the end.

5 � Conclusion

In this paper, we discussed several dynamic strategies, suitable for pension inves-
tors that aim to replace a proportion of their salary with a retirement income. 
The strategies reduce risk after several good years and steer the investor to her 
target. By having the allocation depend on return on investment, the approaches 
exploit a freedom which is typically not used by traditional static approaches. We 

Table 2   Statistics for different investment strategies. Values in this table were calculated using r = 3.06% 
for the cumulative strategy, r = 2.99% for the individual strategy, and r = 1% for the combination strat-
egy

Static mix Static life cycle Dynamic strategies

0% 100% 46.02% Def. Neut. Off. Cum. Indiv. Comb.

Averages (R)
  Mean 0.56 1.13 0.77 0.66 0.71 0.79 0.70 0.70 0.75
  10% CVaR 0.44 0.28 0.41 0.42 0.42 0.40 0.36 0.41 0.40
  5% CVaR 0.42 0.24 0.37 0.39 0.39 0.36 0.28 0.34 0.35

Percentiles (R)
  Median 0.56 0.83 0.72 0.64 0.67 0.72 0.72 0.73 0.75
  10% VaR 0.46 0.36 0.47 0.47 0.47 0.46 0.51 0.52 0.47
  5% VaR 0.44 0.29 0.41 0.43 0.44 0.41 0.37 0.44 0.41

Goal ( 70% R)
  Shortage 0.139 0.093 0.070 0.088 0.078 0.073 0.044 0.045 0.063
  Goal reached 6% 60% 53% 35% 44% 53% 65% 65% 57%

Estim. error (R)
  Mean 0.088 0.398 0.139 0.095 0.092 0.115 0.113 0.091 0.144
  Std dev. 0.06 0.57 0.12 0.06 0.06 0.10 0.09 0.07 0.12
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have shown that the dynamic approaches may outperform some traditional static 
approaches and prevent unnecessary risk taking.

Two simple and intuitive rule-based strategies were introduced that secure 
investments in a cash flow matching portfolio once they yielded sufficient return. 
Although both rule-based strategies can straightforwardly be implemented in 
practice, we recommend to also investigate alternatives where the investor, e.g., 
switches between an aggressive traditional life cycle and a matching portfolio to 
rule out very aggressive portfolios close to retirement.

The rule-based strategies were further refined into a combination strategy 
based on dynamic programming. In the current setup, the combination strategy 
may not be superior and we even found that the rule-based strategies outper-
form the combination strategy in a numerical example. We certainly believe that 
dynamic strategies based on dynamic programming can be further improved, as 
also this research clearly demonstrates their added value to pension investors.

A most suitable dynamic strategy is hard to determine objectively as its perfor-
mance depends on the governing stochastic model. Also, such a dynamic strategy 
should fit well with practical requirements, such as whether an investor will fol-
low through on the strategy or will feel the need to combine such a strategy with 
her own judgement, and whether such strategies comply with regulations. This 
research, however, demonstrates the added value of dynamic strategies to pension 
investors. In summary, such strategies exploit freedom that is not used by tradi-
tional approaches, can steer a pension investor to her target and prevent unneces-
sary risk taking.

Appendix A: Career path and contribution rate

In our model, salary increases by age with a rate to reflect one’s career path. Max-
imum allowed (tax free) contributions under Dutch pension law also increase by 
age as closer to retirement there is less time to invest and, consequently, buying 
1 Euro of pension becomes more expensive. Accordingly, Table 3 shows at t = 0 , 
corresponding to ultimo 2016, the salaries and contributions by age. All is based 
on statistics reported for the Netherlands in 2016. The salary for a 25 year old is 
reported by Eurostat as the average Dutch salary under 30 years old in 2014 and 
is indexed with 2 years of wage inflation as reported by the Dutch Central Bureau 
of Statistics. The salary increases corresponding to a career path used in actu-
arial calculations of the Dutch government (available under document number 
blg-230018). Contribution percentages are as prescribed under Dutch law in 2016 
and are applied to the pensionable salary, i.e., the difference between the salary 
and a franchise of 13123 Euro. For t > 0 , nominal amounts are indexed with wage 
inflation and rates are kept fixed. Altogether, for a person 25 years of age in 2016 
following the career path in Table 3 and indexing with inflation annually, Table 4 
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Table 3   Salary and contribution 
in 2016 by age

Age Salary Contribution

Rate (%) Euro Rate (%) Euro

25 3 29,403 7.8 1270
26 3 30,285 7.8 1339
27 3 31,193 7.8 1409
28 3 32,129 7.8 1482
29 3 33,093 7.8 1558
30 3 34,086 9.0 1887
31 3 35,108 9.0 1979
32 3 36,162 9.0 2073
33 3 37,247 9.0 2171
34 3 38,364 9.0 2272
35 2 39,131 10.5 2731
36 2 39,914 10.5 2813
37 2 40,712 10.5 2897
38 2 41,526 10.5 2982
39 2 42,357 10.5 3070
40 2 43,204 12.2 3670
41 2 44,068 12.2 3775
42 2 44,950 12.2 3883
43 2 45,849 12.2 3993
44 2 46,765 12.2 4104
45 1 47,233 14.2 4844
46 1 47,705 14.2 4911
47 1 48,183 14.2 4978
48 1 48,664 14.2 5047
49 1 49,151 14.2 5116
50 1 49,642 16.5 6026
51 1 50,139 16.5 6108
52 1 50,640 16.5 6190
53 1 51,147 16.5 6274
54 1 51,658 16.5 6358
55 0 51,658 19.4 7476
56 0 51,658 19.4 7476
57 0 51,658 19.4 7476
58 0 51,658 19.4 7476
59 0 51,658 19.4 7476
60 0 51,658 23.0 8863
61 0 51,658 23.0 8863
62 0 51,658 23.0 8863
63 0 51,658 23.0 8863
64 0 51,658 23.0 8863
65 0 51,658 26.0 10,019
66 0 51,658 26.0 10,019
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Table 4   Salary and contribution 
per year indexed by inflation for 
a person 25 year old person in 
2016 (in Euro)

Year Expected infla-
tion (%)

Expected salary Contribution

Expected Stdev.

2016 29,403 1270
2017 0.7 30,816 1362 9
2018 0.8 32,168 1454 18
2019 0.9 33,610 1551 31
2020 1.0 35,147 1909 53
2021 1.1 36,784 2036 73
2022 1.2 38,527 2171 97
2023 1.2 40,380 2315 124
2024 1.3 42,351 2469 154
2025 1.3 44,446 3070 219
2026 1.4 46,218 3225 259
2027 1.4 48,087 3389 303
2028 1.5 50,058 3562 351
2029 1.5 52,133 3744 403
2030 1.6 54,319 4574 534
2031 1.6 56,621 4810 606
2032 1.6 59,043 5058 683
2033 1.7 61,585 5320 763
2034 1.7 64,261 5596 851
2035 1.7 67,078 6852 1104
2036 1.7 69,347 7111 1206
2037 1.8 71,716 7382 1316
2038 1.8 74,185 7665 1433
2039 1.8 76,754 7960 1555
2040 1.8 79,428 9607 1956
2041 1.8 82,213 9979 2113
2042 1.8 85,112 10,368 2280
2043 1.9 88,142 10,775 2464
2044 1.9 91,297 11,199 2658
2045 1.9 94,580 13,687 3366
2046 1.9 97,022 14,041 3572
2047 1.9 99,540 14,405 3784
2048 1.9 102,134 14,780 4003
2049 1.9 104,806 15,167 4230
2050 1.9 107,554 18,453 5288
2051 1.9 110,402 18,942 5588
2052 1.9 113,314 19,441 5881
2053 1.9 116,312 19,956 6186
2054 2.0 119,400 20,486 6503
2055 2.0 122,588 23,776 7732
2056 2.0 125,859 24,411 8116
2057 2.0 129,229 25,064 8515
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shows the annual salary and contribution to the pension plan. Note that future 
contributions are uncertain as inflation is stochastic in our model.

Appendix B: Dynamic programming implementation

In this section, we give a brief description of various computational insights from 
our implementation. The algorithm for the combination strategy includes the 
dynamic programming design, the selection of the state variable and the use local 
regression. The local regression technique in this section is also used by the rule-
based strategies.

B.1 Dynamic programming algorithm

Asset allocations for a dynamic programming strategy follow from Algorithm  1. 
The algorithm runs backward in time, similar to the algorithms in [8] and [19]. The 
problem’s solution space is discretized to efficiently solve the dynamic program-
ming problem:

This means the investor can choose between at most k asset allocations at each time 
t.

Algorithm 1 solves the optimal control problem backward in time by calculating 
the expected utility, �t[Ǔ(ZT )] , with the state variable Zt (see Sect. B.2) by the local 
regression technique (see Sect. B.3). The use of local regression is similar to the use 
of bundling in [8]: neighborhood points are used in the local regressions for each 
step of the algorithm.

Solving the sub-problem at time t changes the future states Zt+1,… , ZT . These 
states have previously been used in the local regressions to find the optimal solution 
for the sub-problems at times t + 1,… , T  . Thus, the optimal solutions for sub-prob-
lems at t + 1,… , T  may be different after solving the sub-problem at time t. This is 
why Algorithm 1 follows a snake-like pattern through time: after the sub-problem at 
time t is solved, future sub-problems are first updated in a forward fashion in time. 
Sub-problems are subsequently updated backwards in time at the next step until the 
sub-problem at time t − 1 is solved for the first time.

Once all sub-problems have been solved, the solution can be further improved by 
repeating the procedure. Algorithm 1 restarts at the beginning of the snake-like pat-
tern through time. Each iteration of Algorithm 1 follows the snake-like pattern from 
T to t0 once.

�t ∈
{
aj ∈ [0, 1]| j = 1,… , k

}
.
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B.2 State variable

Individual wealth targets are not constant over the time horizon. They are defined 
using the expected inflation and the market value factor at time t (see also Sect. 3.4). 
The individual wealth targets are also not constant between the different scenarios, 
as they are dependent on the contributions. The dynamic programming approach 
requires, however, a fixed wealth target in order to evaluate the expected utility. This 
issue is resolved by using the ratio between the portfolio wealth and the wealth tar-
get Zt , defined in Eq. (18), as the state variable of the dynamic programming algo-
rithm. The target state is now constant in time: Z∗

t
= 1.

An advantage of choosing this state variable is that, theoretically, the dynamic 
programming solution only has to be computed once. The investment decisions for 
the first contribution of the investor can be used for all other contributions. Dynamic 
programming results for the first contribution span the time horizon 0,… , T  . At 
each rebalancing time, the optimal investment decision, depending on state Zt , has 
already been computed. Because a ratio is used, these investment decisions can also 
be used for the contributions in later years, see Lemma 1.
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This is, however, not the case in practice. Algorithm 1 does not fully converge 
due to the limited sample size and due to sets of observations changing multiple 
times per iteration. Running Algorithm  1 separately for each contribution will 
give better decision rules. Separate runs of the algorithm will provide a better 
approximation of the optimal solution on average.

B.3 Least squares Monte Carlo method

At each optimization step in Algorithm  1, a least squares Monte Carlo method 
is used to avoid nested simulations (and the, related, exploding computation 
times). The least squares Monte Carlo method was introduced by Longstaff and 
Schwartz [15] as a simple method for pricing American options by simulation. 
The conditional expectation of the pay-off under the assumption of not exercising 
the option is estimated by using cross-sectional information already available in 
the simulation. Realized pay-offs from continuation (or, in the pension investment 
setting, from final utility Ǔ(ZT ) ) are regressed on functions of the state variables. 
The fitted value provides an estimate of the conditional expectation.

The regression employed is based on a so-called regress-now strategy, and 
specifically on a local regression version. Regress-now estimates the expectation 
�
[
Yt+1|Xt

]
 , Xt ∈ Ft by using a set of basis functions, � , with index set J :

with cj coefficients found by using least squares regression and �j ∈ � . Substitution 
gives

Local regression, introduced by Cleveland [6], estimates a linear or quadratic poly-
nomial fit at x by using a weighted least squares regression. Weights for an observa-
tion (xi, yi) are dependent on the distance between xi and x [7]. The smoothness of 
the fit is dependent on the percentage of observations that are taken into account 
when evaluating at x.

Let n be the number of observations and let 0 < d ≤ 1 be a neighborhood 
parameter, i.e., the share of observations used for the weighted least squares 
regression at the evaluation point. Furthermore, let k = d ⋅ n , rounded up to an 
integer value, �i(x) be the Euclidean distance of x to xi , and �(i)(x) be the values of 
these distances, ordered from smallest to largest.

The weight �t for an observation (xi, yi) is then equal to

Yt+1 ≈
∑
j∈J

cj�j(Xt),

�
[
Yt+1|Xt

]
≈ �

[∑
j∈J

cj�j(Xt)

||||||
Xt

]

=
∑
j∈J

cj�J(Xt) .
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with

also known as the tri-cube weight function.
Not only is the regress-now strategy used to approximate the expected util-

ity, this strategy is also used to estimate the expected annual inflation �t�� , with 
� = {1, x} . The future cumulative inflation, Yt+1 , is regressed on the past cumula-
tive inflation, Xt , to estimate the future annual inflation at time t:

for each j in the scenario set. Using a linear regression function of the form �1x + �2 
leads to:

which can approximately be annualized to

so that we obtain an approximate future annual inflation rate.
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