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Abstract
We consider a modification of the dividend maximization problem from ruin theory. 
Based on a classical risk process we maximize the difference of expected cumu-
lated discounted dividends and total expected discounted additional funding (subject 
to some proportional transaction costs). For modelling dividends we use the com-
mon approach whereas for the funding opportunity we use the jump times of another 
independent Poisson process at which we choose an appropriate funding height. In 
case of exponentially distributed claims we are able to determine an explicit solution 
to the problem and derive an optimal strategy whose nature heavily depends on the 
size of the transaction costs. Furthermore, the optimal strategy identifies unfavour-
able surplus positions prior to ruin at which refunding is highly recommended.

Keywords Ruin theory · Classical risk model · Dividends · Stochastic control

1  Introduction and some first considerations

1.1  Overview

In this article we deal with an extension of the classical dividend maximization prob-
lem for an underlying classical (compound Poisson) surplus process. Our proposed 
extension considers a random funding opportunity which is modelled by the follow-
ing procedure. The insurer actively searches for investors who are willing to provide 
additional funding for the insurance portfolio under consideration. If the search is 
successful, the insurer can choose the height of the funding, increase the surplus 
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and possibly pay out higher dividends in the future. We model the search procedure 
by means of an intensity � ≥ 0 , such that the insurer finds funding opportunities at 
the jump-times of an additional and independent Poisson process. Naturally, new 
funding is costly and possibly external investors want to participate in future divi-
dends. That is why we weight this additional capital with a factor � ≥ 1 which plays 
the role of a proportional transaction cost. The corresponding value function of our 
problem is the difference of expected cumulated discounted dividends and weighted 
expected cumulated discounted funding, both up to the time of ruin. In Remark 2 we 
will discuss the point of view of an external investor and her participation in some 
detail.

For the case � = 0 our approach just matches the classical dividend problem, i.e., 
no additional funding source can be found. Its treatment goes back to Gerber [6] 
and is analyzed in terms of optimal stochastic control by Azcue & Muler [2, 3] and 
Schmidli [11]. The opposite extremal case � → ∞ resembles the situation of a possi-
ble capital injection at any point in time, which is discussed in Sect. 4. This problem 
is by now well known under the keywords maximal dividends and capital injections 
and was firstly formulated and solved by Kulenko & Schmidli [9] with the subtle 
difference that the controlled surplus process is not allowed to get ruined and thus 
resulting in a different value function.

Certainly, the approach of interventions at the jump times of another process is 
related to the formulation of ruin theoretic problems under random observations. 
Such a model comprising dividends is introduced by Albrecher et al. [1] and gained 
some relevance in actuarial research over the last years. We need to emphasize that 
our present model is continuously monitored, i.e., dividend decisions can be made at 
any point in time and also the ruin event is immediately observed.

Another framework where dividend maximization problems for firm value deter-
minations play a crucial role is corporate finance. There the underlying process, typ-
ically given by a diffusion process, is interpreted as a cash reservoir of a company 
and the expected value of cumulated dividends reflects the value of this company. 
The present question is studied in a similar fashion in this financial diffusion frame-
work by Hugonnier et al. [7] in combination with an optimal stopping problem. As 
mentioned, the problem studied there is based on a continuous sample paths process 
and also the transaction cost parameter equals one, which results in a common single 
barrier type optimal strategy, both for dividends and fundings.

Interestingly, the recent paper by Zhang et  al. [13] study a compound Poisson 
risk model with a particular capital injection procedure, which is very similar to the 
optimal one derived in our contribution. In contrast to our considerations, the focus 
is put on the determination of discounted penalty functions and dividend decisions 
are not part of the setup.

The paper is organized as follows. We start with the mathematical formulation of the 
model and associated stochastic optimization problem. In a next step we establish some 
basic properties of the value function and study parameter constellations which lead to 
degenerate optimal strategies. Having understood the crucial dependence on the mag-
nitude of the transaction costs, we can subsequently determine the optimal strategy and 
corresponding value function. The key in this step is to prove the existence of a solution 
of a free-boundary value problem comprising two boundaries. We close the paper by 



609

1 3

On a dividend problem with random funding  

some numerical illustrations which focus on the optimal strategy as a function of the 
transaction cost parameter �.

1.2  Model setup

In the subsequent lines we introduce the model of interest and the underlying stochastic 
protagonists. First of all we set up the stochastic basis of our considered model. We 
suppose a given probability space (�, �, P) which carries the following underlying 
stochastic processes.

Let N = (Nt)t≥0 be a Poisson process with intensity 𝜆 > 0 and let {Yi}i∈ℕ be a 
sequence of independent and identically distributed random variables with distribu-
tion function denoted by FY with FY (0) = 0 , we set �(Y1) = � and assume N to be 
independent of {Yi}i∈ℕ . Then we consider the following compound Poisson process 
S = (St)t≥0,

which describes, as common in the classical risk model, the sum of all claims up to 
time t. Next we consider a jump process B = (Bt)t≥0 with constant intensity � , i.e. 
a Poisson process, with which we are able to describe the occurrence times of new 
investors. In particular investors occur at the jump-times of B. Again, independence 
between N, B, {Yi}i∈ℕ is assumed. Based on these ingredients we identify the filtra-
tion F = (Ft)t≥0 which models the available information at time t. Consequently, we 
have to set

where FN and FB are the filtrations generated by the respective processes and N  
denotes the sets of measure zero.

Assuming that the insurance company has an initial surplus x0 ≥ 0 and receives pre-
miums according to a rate c, we define the uncontrolled surplus or cash reserve process 
X = (Xt)t≥0 , by

The control processes for the state process X are on the one hand the dividend pro-
cess L = (Lt)t≥0 , an adapted and càglàd process, hence it is previsible, which is 
increasing and fulfills L0 ≡ 0 . It represents the cumulated dividends up to time t. 
On the other hand we consider the control process f = (ft)t≥0 , previsible as well, and 
P - almost surely non-negative, i.e. ft ≥ 0 P − a.s . The control f corresponds to the 
magnitude of the new funding at time t in case B jumps. According to that, the con-
trolled cash reserve process reads as follows

St =

Nt∑
i=1

Yi,

Ft = �
{
FN

t
,FB

t
, {Y1, Y2,… , YNt

}
}
∪N,

Xt = x0 + ct − St.

X
L,f
t = x0 + ct − St − Lt + ∫

t

0

fsdBs.
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In our setting it is not allowed that ruin is induced by dividend payments and there-
fore the relation

has to hold P − a.s.

Remark 1 Due to the independence assumptions we have that P − a.s. the two Pois-
son processes N and B do not jump at the same time. Since the paths of the dividend 
process L are left-continuous one needs to read �Lt = Lt+ − Lt.

1.3  Optimization problem and value function

The stated aim in our setting is to find the optimal combined dividend and funding 
strategy which maximizes the expected cumulated discounted future dividends deduct-
ing at least the received total additional funding. The deduction depends on a propor-
tional funding or transaction cost parameter denoted by � ≥ 1 . Concerning transaction 
costs in the classical capital injection problem one could think of implementation costs 
as common in mathematical finance. On the other hand if we think of external funding 
as considered in our model we could interpret transaction costs as some kind of com-
mission or costs for intermediation. Hence the value function is defined by

here �L,f  denotes the first time when the controlled cash reserve process becomes 
negative, namely 𝜏L,f = inf{t ≥ 0|XL,f

t < 0} and � is the set containing those admis-
sible processes (L, f) such that

Remark 2 (Injection versus Funding) In the initial contribution by Kulenko & 
Schmidli [9] new capital for the insurance company is provided by shareholders 
with the ultimate goal to prevent ruin. In this context the arising problem is consid-
ered to be the classical injection problem. In our contribution we have chosen the 
term funding for additional capital on purpose to point out that ruin is still possible 
in our model set up. This is in contrast to the classical motivation of capital injec-
tions. The way of incorporating additional capital was also mentioned in Hugonnier 
et al. [7] in the context of corporate finance, especially it is discussed in detail in the 
Supplementary Appendix [8]. In this case the additional capital is supposed to be 
provided by external investors and not initial shareholders as suggested in injection 
problems. Consequently, one needs to discuss the share of old and new investors on 
the firm value’s gain due to new investments. Such questions of allocating a com-
monly generated surplus are heavily studied under the name bargaining problems 

X
L,f
t+ = X

L,f
t − �Lt ≥ 0,

(1)V(x) = sup
(L,f )∈�

�x

[
∫

�L,f

0

e−�tdLt − �∫
�L,f

0

e−�tftdBt

]
,

�x

[
∫

𝜏L,f

0

e−𝛿t(dLt + 𝜙ftdBt)

]
< ∞.
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which are part of game theory. An overview of such problems and optimal alloca-
tion rules is Binmore et al. [5] for instance. In our problem, as also used in [8], we 
have that the gain of an injection f, measured by future expected dividends, is

Now, as stated in [5] an agreeable split of the gain is the subject of negotiations 
between the two investors. The results from [5] show that an equilibrium split of 
gain is achieved by identifying the new investors part C∗ from

The power � ∈ (0, 1) is typically interpreted as bargaining power, see [5, Section 4]. 
Its size can be linked to the magnitude of the arrival intensity of new investors � . 
For example � can be a decreasing function of � , i.e., very frequent arrivals of new 
investors decrease their bargaining power. One can derive that the maximal share in 
our model is given by C∗

f
= �Gf V(x) . Therefore, if we assume the additional capital 

to be externally provided, we need to alter the value function of the initial investors. 
From their perspective the dividends need to be reduced by funding f and the new 
investors share C∗

f
 . This leads to an implicitly defined value function VI which is 

given by

At this point we can follow the arguments as presented in [8, Section H]. Namely, 
it can be shown by martingale arguments that if we have identified V from (1) and 
optimal controls L∗, f ∗ for a modified arrival intensity of �(1 − �) of B and other-
wise unchanged parameters (referring to a new measure P̃ ) one has a solution to (2) 
under jump intensity � of B (under the original measure P).

If we assume that the controls are constant and the dividend control suffices 
dLt = ldt for some l ∈ ℝ

+ , we face a Markov process whose infinitesimal generator is

Naturally, the function g above has to be in the domain of the generator D(Al,f ) , 
which contains absolutely continuous functions h satisfying an integrability condi-
tion �[| h(Xl,f

t ) |] < ∞ , see Rolski et al. [10, Th. 11.2.2]. Using this expression we 
can state the Hamilton-Jacobi-Bellman equation of this problem

Gf V(x) ∶= V(x + f ) − �f − V(x).

C�(Gf V(x) − C)1−� ↦ max
C≥0 .

(2)
VI(x) = sup

(L,f )∈�

�x

[
∫

�L,f

0

e−�tdLt − ∫
�L,f

0

e−�t
(
�ft + �Gft

VI(X
L,f
t− )

)
dBt

]
.

Al,f g(x) = cg�(x) − lg�(x) + �[g(x + f ) − g(x)] + �∫
∞

0

[g(x − y) − g(x)]dFY (y).

(3)

max

{
cg�(x) − (� + �)g(x) + ��

x

0

g(x − y)dFY (y)

+ � sup
f≥0

{g(x + f ) − g(x) − �f }, 1 − g�(x)

}
= 0.
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From the shape of the HJB-equation we can immediately derive some properties of 
its solutions.

Lemma 1 Let g be a continuously differentiable solution to the HJB-equation (3), 
then g is strictly monotone increasing ( g′ ≥ 1 ) and bounded from below by c

𝜆+𝛿
> 0.

Proof From the equation we directly obtain that g′ ≥ 1 and if we consider the limit 
x ↘ 0 we get g(0+) ≥ c

𝛿+𝜆
> 0 . Since g is monotone increasing and continuous the 

assertion follows.   ◻

Furthermore, we can bound the value function from below similarly as done by 
Azcue & Muller [2] or by Schmidli [11, p. 80 Lemma 2.37].

Lemma 2 In the present model setup the value function fulfills

Proof For the special choice (L, f ) ≡ (L, 0) we face an admissible dividend strategy 
for the original dividend maximization problem. The bound follows from the above 
cited (by now classical) results.   ◻

2  Solution of the optimization problem

In the following we assume that the claim size distribution coincides with an expo-
nential distribution with parameter � . We try to identify an optimal strategy and 
determine an explicit solution to the problem. In case of an arbitrary claim size dis-
tribution one can expect a strategy of band type to be optimal. One needs to mention 
that the presence of the financing control complicates the situation in comparison to 
other modifications of the dividend problem with exponentially distributed claims in 
the literature.

We start with identifying parameter sets which lead to somehow degenerate opti-
mal strategies.

2.1  Optimality of keeping the reserve at zero

For a special parameter configuration we obtain that the optimal strategy is to pay-
out the initial reserve immediately and keep on paying dividends such that the cur-
rent reserve remains zero, which means that the dividend rate is c and the first claim 
causes ruin. Compare to classical results as presented in [11, p. 93].

Lemma 3 The optimal strategy is to payout immediately the initial reserve and then 
payout dividends at the premium rate c if (� + �)2 ≥ c�� . Consequently, the value 
function has the following form

V(x) ≥ x +
c

� + �
.
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Proof Using V(x) = x +
c

�+�
 the proof is analogous to the one given in [11, p. 93]. 

Just note that in the present problem with capital supply the additional part of the 
HJB-equation corresponding to f is zero,

since � ≥ 1 .   ◻

From the latter result we see that we need to focus on (𝛿 + 𝜆)2 < c𝛼𝜆 , which in 
turn implies that c𝛼 > 𝛿 + 𝜆 , since we assume that all parameters are positive.

2.2  An embedded problem

At the outset of tackling the problem we try as first conjectures some common types 
of controls such as barrier and simple band strategies. It turned out that they can not 
be optimal in general. Therefore, in order to get an idea of the shape of the optimal 
strategy we exploit a numerical approach.

At first fix n ∈ ℕ and allow for at most n capital injections (at the jump times 
Z1,… , Zn of B), the corresponding family of value functions is defined by

One may notice that V0 is the value function of the classical dividend maximiza-
tion problem and in the situation of exponentially distributed claims is explicitly 
known. However, the method below does not need to assume exponential claims 
but is focused on barrier type dividend strategies, such a strategy at level b says 
that every excess of b is immediately distributed as dividends. Certainly, this can be 
generalized.

We have that Vn after using one intervention restarts with Vn−1 , which can be used 
when maximizing with respect to f. The deduced numerical procedure is as follows:

1. Compute V0 without additional capital ( f = 0 ), by solving 

 for 0 ≤ x ≤ b and g�(x) = 1 for x > b . If the optimal b is not known one can do 
this for different values of b. Choosing the maximizing b, we obtain an approxi-
mation to V0 with optimal barrier, say b∗

0
 . Then we can compute the optimal state 

dependent f0(x) by setting 

V(x) = x +
c

� + �
.

� sup
f≥0

{V(x + f ) − V(x) − �f } = � sup
f≥0

{(1 − �)f } = 0,

Vn(x) = sup
(L,f )∈�

�

[
∫

�L,f

0

e−�sdLs − �

B
�L,f

∧n∑
i=1

e−�Zi fZi

]
.

0 = cg�(x) − (� + �)g(x) + �∫
x

0

g(x − y)dFY (y),
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2. Compute V1 , where we allow for one financial injection, exactly f0 , at the first 
jump time of (Bt)t≥0 and solve for different values of b

 for 0 ≤ x ≤ b and g�(x) = 1 for x > b . The usage of the maximizing b results in 
an approximation of V1 . As next step replace V0 by V1 in the first step and go on 
with computing V2 , where f1 is obtained according to step 1. Consequently, at 
the first jump time of Bt we use f1 , then we switch to the problem with one fund-
ing for which the value is given by V1.

Of course we have to choose in every step the best value for the threshold b, which 
is additionally illustrated in the plot below. There V(0)(x) denotes the numerical solu-
tion of the usual dividend problem, further V(i)(x;b) denotes the solution of the itera-
tion, when i ∈ {1, 2,…} funding opportunities are allowed and the barrier is chosen 
to be b (Fig. 1).

This approach reveals a new type of possibly optimal strategy to us, which turns 
out to be the right conjecture.

2.3  Resulting new strategy

Using the results from the numerical approach, we are able to construct a new strat-
egy for our problem. The new strategy is of band type and specified by two param-
eters 0 ≤ a ≤ b < ∞ such that

– the dividend strategy is of barrier type at level b, 

f0 = argmax
f≥0

{V0(x + f ) − V0(x) − �f }.

0 = cg�(x) − (� + �)g(x) + �∫
x

0

g(x − y)dFY (y) + �[V0(x + f0) − V0(x) − �f0],

Fig. 1  Comparison of different iterative solutions
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– the financing strategy only applies at reserve levels x ∈ [0, a) . It is given by 
f (x) = (a − x)I{0≤x<a} , with the feature that only below level a we search for a 
funding source. If one appears, we choose the funding height to such an extent 
that the surplus jumps up to a and in general not to the barrier level b.

For initial surplus x ≥ 0 we denote the value, i.e., performance function, according 
to such a strategy by V(x; a, b). By construction it makes sense to write this function 
in the following form:

Whereby, using Dynkin-formula type arguments or classical arguments based 
on conditioning on the first claim occurence, the functions Vl(x) = Vl(x;a, b) and 
Vu(x) = Vu(x;a, b) have to fulfill the equations

We get immediately, using the above equations, that V(x; a, b) is continuously dif-
ferentiable in x. Furthermore, we obtain that continuity implies differentiabil-
ity, i.e. V �

l
(a) = V �

u
(a) if and only if Vl(a) = Vu(a) . This means that the condition 

Vl(a) = Vu(a) in (7) is equivalent to the condition V �
l
(a) = V �

u
(a).

We use the method of equating coefficients in order to solve the above equations 
(5), (6) and (7) explicitely. This yields functions

𝛥L0+ =(x − b)I{x>b}

dLt =c I{XL,f
t− =b}

dt, t > 0,

(4)V(x;a, b) =

⎧
⎪⎨⎪⎩

Vl(x;a, b), if 0 ≤ x ≤ a,

Vu(x;a, b), if a ≤ x ≤ b,

x − b + V(b;a, b), if x > b.

(5)
cV �

l
(x) − (� + �)Vl(x) + �∫

x

0

Vl(x − y)�e−�ydy

+ �(Vl(a) − Vl(x) − �(a − x)) = 0,

(6)
cV �

u
(x) − (� + �)Vu(x) + �∫

x−a

0

Vu(x − y)�e−�ydy

+ �∫
x

x−a

Vl(x − y)�e−�ydy = 0,

(7)Vl(a) = Vu(a) and V
�
u
(b) = 1.

(8)Vl(x;a, b) ∶= A1(a, b)e
R1x + A2(a, b)e

R2x + A3(a, b)x + A4(a, b),

(9)Vu(x;a, b) ∶= B1(a, b)e
S1x + B2(a, b)e

S2x,
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where S1 < 0 < S2 are solutions to cS − (� + �) +
��

�+S
= 0 . The exponents 

R1 < 0 < R2 solve cR − (� + � + �) +
��

�+R
= 0. Note that under our assumptions we 

have that S1 + S2 < 0 . The coefficients A1,… ,B2 are obtained by a system of six 
linear equations and do heavily depend on the parameters a, b.

We observe that numerical maximization of the function V(x; a, b) in a and b for 
fixed x results in levels a∗ and b∗ which are independent of x. These particular levels 
also coincide with the solutions of second order smooth fit conditions in a and b. Addi-
tionally, we need to fulfill these second order smooth fit conditions in order to get a 
function which is twice continuously differentiable. This seems to be superfluous, since 
the domain of the generator only asks for absolute continuity, but in combination with 
concavity it serves as a basis for a direct proof of the associated verification theorem. 
The conditions read as follows:

In Fig. 2 the green surface corresponds to �
2

�x2
Vu(x;a, b)|x=b , the orange surface corre-

sponds to �
2

�x2
Vl(x;a, b)|x=a − �2

�x2
Vu(x;a, b)|x=a and the blue plane highlights the zero 

level. The red curves mark the intersection of the two surfaces with the zero level.
Finally, we have to prove the existence of thresholds a∗ and b∗ such that the smooth 

fit conditions are fulfilled. In our treatment we are able to derive an interesting condi-
tion, which turns out to be equivalent to one of the conditions above.

(10)F(a, b) =

(
�2

�x2
Vu(x;a, b)

||x=b[
�2

�x2
Vl(x;a, b) −

�2

�x2
Vu(x;a, b)

]||x=a

)
!
=

(
0

0

)
.

Fig. 2  Illustration of the problem of finding a solution (a∗, b∗) to (10)
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If we differentiate the two integro-differential equations (for x ∈ (0, a) and 
x ∈ (a, b) ), which characterize Vl and Vu , we obtain

and

If we now set x = a and calculate the difference of those two equations, we get using 
V �
l
(a) = V �

u
(a) and Vl(a) = Vu(a) that

Hence we have that V ��
l
(a) = V ��

u
(a) if and only if V �

l
(a) = �.

Remark 3 If we consider the following part of the HJB-equation:

we obtain for the function Vl(x) , if it is concave, that the term inside the supremum is 
maximal if V �

l
(x + f ) = � . This means that using an a such that a = f + x = V

�[−1]

l
(�) , 

yields that the corresponding term ( V �
l
(a) − � ) in the equation above is zero.

2.3.1  Extremal behaviour of the optimal strategy

First of all we want to know, whether the optimal strategy uses the additional 
funding or not, which means that we have to determine the reasons for the choice 
a∗ = 0 . For that purpose we consider the solution of the usual dividend problem, 
which is well-known in the literature, see [11],

Here

where S1 and S2 are the same exponents as before and the optimal barrier ensuring 
twice continuous differentiability of the value function has the following form

cV ��
l
(x) − (� + � + �)V �

l
(x) + ��e−�xVl(0) + �∫

x

0

V �
l
(x − y)�e−�ydy + �� = 0

cV ��
u
(x) − (� + �)V �

u
(x) + ��e−�(x−a)Vu(a) − ��e−�(x−a)Vl(a)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0

+ �∫
x−a

0

V �
u
(x − y)�e−�ydy + ��e−�xVl(0) + �∫

x

x−a

V �
l
(x − y)�e−�ydy = 0.

c(V ��
l
(a) − V ��

u
(a)) = �(V �

l
(a) − �).

sup
f≥0

{Vl(x + f ) − Vl(x) − �f },

Ṽ(x;b) =

{
h(x)

h�(b)
, if 0 ≤ x ≤ b,

x − b + Ṽ(b;b), if x > b.

h(x) = eS1x(S1 + �) − eS2x(S2 + �),
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In this case we have to assume that

in order to make sure that b̃ > 0 holds. This yields that in the usual dividend prob-
lem Ṽ(x;b̃) is the value function. We have that Ṽ(x;b) = V(x;0, b).

Remark 4 At first one notices that

A second thought concerns the behaviour of a possibly optimal level a with respect 
to the parameter � . The following is more a heuristic intuition than a rigorous treat-
ment. But if we consider a = x + f ∗ = g�[−1](�) , where f ∗ is the maximizing argu-
ment of the supremum part of the HJB-equation

as mentioned in the previous remark, we get (considering a as a function of � , i.e. 
a(�) = g�[−1](�) ) that

if we assume that g is concave, which will be true if g is the value function. This 
means that the lower threshold a is decreasing in �.

Proposition 1 Let (𝛿 + 𝜆)2 < c𝛼𝜆 , such that the optimal barrier in the classical divi-
dend problem b̃ is positive. For the optimal levels 0 ≤ a∗ ≤ b∗ in the dividend prob-
lem with random funding we obtain that a∗ = 0 and b∗ = b̃ if and only if 𝜙 ≥ Ṽ �(0;b̃).

This means that for 𝜙 ≥ Ṽ �(0;b̃) and (𝛿 + 𝜆)2 < c𝛼𝜆 the simple barrier strategy is 
optimal, and the solution of the classical dividend problem coincides with the solu-
tion of the extended problem.

Proof We assume that 𝜙 ≥ Ṽ �(0;b̃) and have to show that a∗ = 0 and b∗ = b̃ are the 
optimal thresholds so that V(x;0, b̃) = Ṽ(x;b̃) solves the HJB-equation, is concave 
and C2—the ingredients we later need in the verification theorem.

b̃ = ln

(
S2
2
(S2 + 𝛼)

S2
1
(S1 + 𝛼)

)
1

S1 − S2
.

(𝛿 + 𝜆)2 < c𝛼𝜆,

Ṽ �(0;b̃) =
(S1 − S2)(𝛼 + S1 + S2)

S1(𝛼 + S1)
(

S2
2
(𝛼+S2)

S2
1
(𝛼+S1)

) S1

S1−S2
− S2(𝛼 + S2)

(
S2
2
(𝛼+S2)

S2
1
(𝛼+S1)

) S2

S1−S2

≥ 1.

sup
f≥0

{g(x + f ) − g(x) − �f }

a�(𝜙) = (g�[−1])�(𝜙) =
1

g��(g�[−1](𝜙))
< 0,
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We know that this candidate function is concave, C2 and solves the HJB-equation 
of the classical dividend problem with � = 0 . Using this, we obtain for 0 ≤ x < b̃ 
that

For the first part of the HJB-equation it remains to show that

If we choose f = 0 the term inside the supremum is zero. Otherwise, if f > 0 we 
obtain that

This holds true because if we use Ṽ ��(x;b̃) < 0 we get

and from 𝜙 ≥ Ṽ �(0;b̃) , the above inequality follows. For the values x ≥ b̃ we know 
that Ṽ �(x;b̃) = 1 , and that the first part of the HJB-equation (which coincides with the 
first part of the classical HJB-equation) is negative. So it remains to check whether

holds. But this is true since if we plug in the linear function for x > b̃ we get that 
� supf≥0{(1 − �)f } ≤ 0 , since � ≥ 1 . The special case x = b̃ is analogue to the situ-
ation x < b̃.

For the other direction, if a∗ = 0 and b∗ = b̃ are optimal, we have to show 
𝜙 ≥ Ṽ �(0;b̃) . For that purpose we assume the opposite, namely that 𝜙 < Ṽ �(0;b̃) . But 
in this case we can exploit the fact that Ṽ �(b̃;b̃) = 1 and Ṽ ��(x;b̃) < 0 ∀x ∈ (0, b̃) , in 
addition to the above assumption Ṽ �(0;b̃) > 𝜙 ≥ 1 . Putting this together yields by the 
intermediate value theorem that ∃!x̄ ∈ (0, b̃) ∶ Ṽ �(x̄;b̃) = 𝜙 . We want to show that

Differentiating the inner term and setting it equal to zero yields that

so we obtain that f ∗ = x̄ − x which is positive, if x ∈ (0, x̄) . Applying Taylor’s for-
mula gives for some 𝜃 ∈ (x, x̄) the following

1 − Ṽ �(x;b̃) < 0.

𝛽 sup
f≥0

{Ṽ(x + f ;b̃) − Ṽ(x;b̃) − 𝜙f } = 0.

Ṽ(x + f ;b̃) − Ṽ(x;b̃) − 𝜙f < 0.

Ṽ(x + f ;b̃) − Ṽ(x;b̃)

(x + f ) − x
≤ Ṽ �(x;b̃) < Ṽ �(0;b̃)

𝛽 sup
f≥0

{Ṽ(x + f ;b̃) − Ṽ(x;b̃) − 𝜙f } ≤ 0

𝛽 sup
f≥0

{Ṽ(x + f ;b̃) − Ṽ(x;b̃) − 𝜙f } > 0.

Ṽ �(x + f ;b̃)
!
=𝜙,



620 J. A. Strini, S. Thonhauser 

1 3

Finally we obtain that this function does not solve the HJB-equation and a∗ = 0 
being optimal cannot work out, which is a contradiction.   ◻

The above proposition gives us the optimal strategy in the case 𝜙 ≥ Ṽ �(0, b̃) . 
Furthermore, only in that case the usual dividend barrier strategy is optimal. In 
the next step we consider the lowest bound for the parameter � where a non-triv-
ial strategy appears, namely � = 1.

Lemma 4 Let (𝛿 + 𝜆)2 < c𝛼𝜆 . For the optimal levels a∗ ≤ b∗ for the dividend prob-
lem with random funding we obtain that a∗ = b∗ if � = 1.

In this case we are in the following situation: if an investor occurs we gener-
ate external funding to such an extent that we arrive with the surplus process 
at the dividend barrier, which triggers dividend payments. Hence, there is no 
gap between the dividend barrier and the funding level. In contrast to the set-
ting by Kulenko & Schmidli [9] where for � = 1 it is optimal on the one hand to 
consume the initial capital and all premiums as dividends and on the other hand 
injections can be chosen to compensate all claims, we get the extremal solution 
a∗ = b∗ > 0 . This is due to the presence of the ruin event in our setting, whereas 
in [9] injections need to be used to “repair” possible ruin events. The feature 
a∗ = b∗ for � = 1 shows that “cheap” funding is exploited in full extent to speed 
up dividend payments.

Proof Solving the above equations for a = b , we get the function Vl(x;a, a) . It 
remains to prove the existence of a∗ = b∗ , resulting in Vl(x;a

∗, b∗) , such that the 
assumptions of the verification theorem are fulfilled. At this point we know that 
V �
l
(a;a, a) = 1 and we have to find a such that the smooth fit condition is fulfilled: 

M(a) ∶= V ��
l
(a;a, a)

!
=0 . Evaluating this function at a = 0 yields M(0) =

(�+�)2−c��

c(�+�)
, 

which is negative according to our assumptions. Otherwise, we would have a value 
function of the form V(x) = x +

c

�+�
 as treated in the corresponding lemma above. 

Furthermore, if M(0) = 0 we obtain that a∗ = b∗ = 0 . This is also in line with the 
just mentioned case of a linear value function.

On the other hand we know that

Ṽ(x;b̃) =Ṽ(x̄;b̃) + Ṽ �(x̄;b̃)(x − x̄) +
1

2
Ṽ ��(𝜃;b̃)(x − x̄)2

=Ṽ(x̄;b̃) − 𝜙(x̄ − x) +
1

2
Ṽ ��(𝜃;b̃)(x − x̄)2

<Ṽ(x̄;b̃) − 𝜙(x̄ − x).

M(a) = V ��
l
(a;a, a) = A1(a, a)e

R1a + A2(a, a)e
R2a,
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is continuous and lim
a→∞

M(a) = R2
�

�+�
 is strictly positive. This yields that there exists 

an a∗ such that M(a∗) = 0 . If there would be more than one point, such that the 
smooth fit conditions are fulfilled, we decide to choose the smallest one. At this 
a∗ > 0 we are able to exploit the equations V �

l
(a∗;a∗, a∗) = 1 and V ��

l
(a∗;a∗, a∗) = 0 to 

get that A1(a
∗, a∗) < 0 and A2(a

∗, a∗) > 0 . This yields that V ���
l
(x;a∗, a∗) > 0 for all 

x ≥ 0 , moreover together with V ��
l
(a∗;a∗, a∗) = 0 we obtain that V ��

l
(x;a∗, a∗) < 0 for 

0 ≤ x < a∗ . Which in turn implies that V �
l
(x;a∗, a∗) > 1 for 0 ≤ x < a∗ . So the 

obtained function

is twice continuously differentiable and concave, in addition to that it fulfills the 
HJB-equation with � = 1 . Altogether, this enables us to apply the verification theo-
rem.   ◻

2.3.2  The case of moderate �

Up to now we have investigated the following cases and obtained in each case the 
optimal combined strategy:

• 𝜙 ≥ Ṽ �(0;b̃) ⇒ a∗ = 0 and b∗ = b̃,
• � = 1 ⇒ a∗ = b∗.

In this section we fill the missing gaps in order to have an optimal solution for every 
admissible value of � ≥ 1.

Theorem  1 For 1 < 𝜙 < Ṽ �(0;b̃) and (𝛿 + 𝜆)2 < c𝛼𝜆 , we have that there exist 
0 < a∗ < b∗ such that the smooth fit conditions (12) and (13) are satisfied. The 
resulting function V(x;a∗, b∗) from (4) is a twice differentiable and concave solution 
to the HJB-equation (3).

Proof Obviously, we have to solve the equations related to our band strategy for 
1 < 𝜙 < Ṽ �(0, b̃) . This leads to a solution heavily depending on a ≤ b as in the previ-
ous case and it remains to choose the values a and b such that the equivalent smooth 
fit conditions are fulfilled, which are restated here

Anyway, the coefficients B1(a, b) and B2(a, b) are fixed such that

(11)V(x) = V(x;a∗, a∗) =

{
Vl(x;a

∗, a∗), if 0 ≤ x ≤ a∗,

x − a∗ + V(a∗;a∗, a∗), if x > a∗.

(12)V �
u
(a) = B1(a, b)S1e

S1a + B2(a, b)S2e
S2a

!
=�,

(13)V ��
u
(b) = B1(a, b)S

2
1
eS1b + B2(a, b)S

2
2
eS2b

!
=0.
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holds true. Transforming this equation twice, leads to

Now we insert this expression into the equations (12) and (13) and obtain

Note that according to our assumptions we have S1 ≠ S2 . Combining those equations 
and rearranging terms results in

For h ≥ 0 define H(h) ∶= �(S2 − S1) + S1e
−S2h − S2e

−S1h , then we have that 
H(0) = (𝜙 − 1)(S2 − S1) > 0 , since 𝜙 > 1 , lim

h→∞
H(h) = −∞ and H�(h) < 0 for h > 0 , 

which means that there exists a unique h̄ > 0 such that the equation is fulfilled.
Further it holds that if 1 < 𝜙 < Ṽ �(0, b̃) then 0 < h̄ < b̃ . Namely if there would 

exist an h ≥ b̃ > 0 such that H(h) = 0 then we would have

since the term on the left hand side of the inequality is strictly monotonically 
increasing in h for all h > 0 . But this is a contradiction to the assumption for � . 
On top of this note that if � = 1 or 𝜙 = Ṽ �(0, b̃) then we obtain that h̄ = 0 or h̄ = b̃ 
respectively, which is in line with the former investigations.

Finally, it remains to prove that for this given h̄ there exists an a such that

For this purpose we plug 𝜙 =
S2e

−S1 h̄−S1e
−S2 h̄

(S2−S1)
 into this equation in order to work with 

the correct value for h. We obtain that

(14)V �
u
(b) = B1(a, b)S1e

S1b + B2(a, b)S2e
S2b = 1,

B1(a, b)S
2
1
eS1b =S1(1 − B2(a, b)S2e

S2b),

B1(a, b)S1e
S1a =(1 − B2(a, b)S2e

S2b)eS1(a−b).

B2(a, b)S2(e
S2a − eS2b+S1(a−b))

!
=� − eS1(a−b),

B2(a, b)S2(e
S2a − eS2b+S1(a−b))

!
=
(eS2a − eS2b+S1(a−b))S1

eS2b(S1 − S2)
.

(15)0
!
=�(S2 − S1) + S1e

S2(a−b) − S2e
S1(a−b).

𝜙 =
S2e

−S1h − S1e
−S2h

(S2 − S1)
≥ S2e

−S1b̃ − S1e
−S2b̃

(S2 − S1)
= Ṽ �(0, b̃),

V ��
u
(a + h̄;a, a + h̄) = B1(a, a + h̄)S2

1
eS1(a+h̄) + B2(a, a + h̄)S2

2
eS2(a+h̄)

!
=0.
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since h̄ < b̃ . On the other hand, if we let a tend to infinity we get that

This holds true since

where

If we interpret C as a function in h̄ and evaluate it in zero, we see that 
C(0) =

𝛿

𝛽+𝛿
R2 > 0 . Using this and the continuity of C(h̄) we obtain that ∃ 𝜖 > 0 such 

that C(𝜖) > 0 . On top of this it even holds that 𝜕

𝜕h̄
C(h̄) = 0 , which implies that 

C(h̄) > 0 for all h̄ ≥ 0 . Note that the denominator of C(h̄) is strictly positive.
Finally, since the limit is positive, there exists an a∗ such that V ��

u
(a∗ + h̄) = 0 , 

moreover note that a∗ > 0 since h̄ < b̃ , if h̄ = b̃ then a∗ = 0 . If there exists more than 
one a∗ such that this identity holds we decide to choose the smallest one, due to the 
shape of the function Vl . At this point, for 1 < 𝜙 < Ṽ �(0, b̃) , we know there exists 
a∗ > 0 and b∗ ∶= a∗ + h̄ > a∗ such that the second order smooth fit conditions are 
fulfilled. Hence, the function

is twice continuously differentiable.
As a next step we have to make sure that indeed our constructed function solves 

the HJB-equation and is concave.
First of all we obtain that for the coefficients of Vu(x;a

∗, b∗) it holds that 
B1(a

∗, b∗) < 0 and B2(a
∗, b∗) > 0 . This is valid, since if we plug the equation

V ��
u
(a + h̄;a, a + h̄)

|||a=0 =
S2
1
eh̄S1 (𝛼 + S1) − S2

2
eh̄S2(𝛼 + S2)

S1e
h̄S1 (𝛼 + S1) − S2e

h̄S2(𝛼 + S2)
< 0,

lim
a→∞

V ��
u
(a + h̄;a, a + h̄) ∶= C(h̄) > 0.

C(h̄) =
𝛼P(𝛽 + 𝛿) +WS1S

2
2
− eh̄(S1−S2)

(
𝛼Q(𝛽 + 𝛿) +WS2

1
S2
)

𝛼(𝛽 + 𝛿)
(

P

S2
− eh̄(S1−S2)

Q

S1

) ,

P ∶=S2
2
(� + S2)(��(R2 − S1)(� + R2 + S1) − �S1(� + R2)(� + S1)),

Q ∶=S2
1
(� + S1)(��(R2 − S2)(� + R2 + S2) − �S2(� + R2)(� + S2)),

W ∶=�(� + S1)(� + S2) ×

×
(
�2(� + �) − �cR2(� + R2) + R2

2
(� + �) + �R2(� + � + �)

)
.

(16)V(x;a∗, b∗) =

⎧⎪⎨⎪⎩

Vl(x;a
∗, b∗), if 0 ≤ x ≤ a∗,

Vu(x;a
∗, b∗), if a∗ ≤ x ≤ b∗,

x − b∗ + V(b∗;a∗, b∗), if x > b∗
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into the equation V ��
u
(b∗;a∗, b∗) = 0 and rearrange some terms, we obtain that 

B2(a
∗, b∗) > 0 , B1(a

∗, b∗) < 0 follows analogously. This directly implies that 
V ���
u
(x;a∗, b∗) > 0 for all x ≥ 0 , together with V ��

u
(b∗;a∗, b∗) = 0 we get that 

V ��
u
(x;a∗, b∗) < 0 for all x < b∗ , and this together with V �

u
(b∗;a∗, b∗) = 1 yields that 

V �
u
(x;a∗, b∗) > 1 for all a∗ ≤ x < b∗.
Furthermore, the first coefficient of Vl(x;a

∗, b∗) satisfies that A1(a
∗, b∗) < 0 , since 

we can use the identity

in order to derive from the inequality V ��
l
(a∗;a∗, b∗) = V ��

u
(a∗;a∗, b∗) < 0 that 

A1(a
∗, b∗) < 0 . Knowing that A3(a

∗, b∗) > 0 , we distinguish between the follow-
ing cases, namely if A2(a

∗, b∗) < 0 then V ��
l
(x;a∗, b∗) < 0 for all 0 ≤ x ≤ a∗ and this 

property together with V �
l
(a∗;a∗, b∗) = 𝜙 > 1 yields that V �

l
(x;a∗, b∗) ≥ 𝜙 > 1 for all 

0 ≤ x ≤ a∗.
If A2(a

∗, b∗) > 0 , then V ���
l
(x;a∗, b∗) > 0 for all 0 ≤ x ≤ a∗ , which implies that 

V ��
l
(x;a∗, b∗) < 0 for all 0 ≤ x ≤ a∗ , since V ��

l
(a∗;a∗, b∗) = V ��

u
(a∗;a∗, b∗) < 0 . Now 

the concavity together with V �
l
(a∗;a∗, b∗) = 𝜙 > 1 yields that V �

l
(x;a∗, b∗) ≥ 𝜙 > 1 for 

all 0 ≤ x ≤ a∗ . Additionally, we can deduce that V(x;a∗, b∗) > 𝜙c

𝛿+𝜆
> 0 . This can be 

shown as already done in Lemma 1, just by using the equation for Vl(x;a
∗, b∗) in 

x = 0 and exploiting that 𝛽(Vl(a
∗;a∗, b∗) − Vl(0;a

∗, b∗) − 𝜙a∗) > 0 , due to concavity 
and V �

l
(a∗;a∗, b∗) = �.

In the end, if we insert the function V(x;a∗, b∗) into the HJB-equation we obtain 
that for x ∈ [0, a∗] the first part of the HJB-equation is zero and the second part is 
less than zero. For x ∈ (a∗, b∗] the same holds true, since the supremum term in the 
first part is zero, because

holds true, for a � ∈ (x, x + f ) , provided that f > 0 , otherwise if f = 0 the supre-
mum part is also zero.

For x > b∗ we have to show that the second part of the HJB-equation is zero and 
the first part is less than zero. For that reason we consider the function

We have to show that q(x) < 0 for all x > b∗ . We already know that q(b∗) = 0 and 
that the supremum part in q(x) is zero, since V(x;a∗, b∗) is linear for x > b∗ and 
𝜙 > 1 . Furthermore, we use the properties of the coefficients of Vl(x;a

∗, b∗) and 

B1(a
∗, b∗)S2

1
eS1b

∗

= S1(1 − B2(a
∗, b∗)S2e

S2b
∗

)

A2(a
∗, b∗)R2

2
eR2a

∗

= R2(� − A1(a
∗, b∗)R1e

R1a
∗

− A3(a
∗, b∗)),

V(x + f ;a∗, b∗) = V(x;a∗, b∗) + V �(x;a∗, b∗)f + V ��(𝜃;a∗, b∗)
1

2
f 2

< V(x;a∗, b∗) + 𝜙f ,

q(x) ∶=cV �(x;a∗, b∗) − (𝜆 + 𝛿) + 𝜆

x

�
0

V(x − y;a∗, b∗)𝛼e−𝛼ydy

+ 𝛽 sup
f≥0

{V(x + f ;a∗, b∗) − V(x;a∗, b∗) − 𝜙f }, x > b∗.
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Vu(x;a
∗, b∗) . Together with the smooth fit conditions (12) and (13) we get, surpris-

ingly nice,

In addition to that, we use the identity for � given in (15) to obtain

Finally, this yields that q(x) < 0 for x > b∗ , which verifies that V(x;a∗, b∗) satisfies 
the first part of the HJB-equation for x > b∗ . Obviously, the function V(x;a∗, b∗) sat-
isfies 1 − V �(x;a∗, b∗) = 0 for x > b∗ and this shows that V(x;a∗, b∗) solves the sec-
ond part of the HJB-equation. Overall, this means that the function specified in (16) 
solves the HJB-eq. (3).   ◻

3  Verification Theorem

Here we state a verification theorem which fits to our constructed function V(x;a∗, b∗) 
in (11), (16) and Proposition 1.

Theorem 2 Let g ∈ C2(0,∞) be a positive solution to the HJB-equation

where FY (x) = (1 − e−�x)I{x≥0}. We set g(x) = 0 , if x < 0 . Further let g be concave, 
then

where

B1(a
∗, b∗) =

S2 � eb
∗S2

S1S2e
a∗S1+b

∗S2 − S2
1
ea

∗S2+b
∗S1

,

B2(a
∗, b∗) =

S1 � eb
∗S1

S1S2e
a∗S2+b

∗S1 − S2
2
ea

∗S1+b
∗S2

.

(17)q�(x) = (e(b
∗−x)𝛼 − 1)𝛿 < 0, for all x > b∗.

max

{
cg�(x) − (� + �)g(x) + ��

x

0

g(x − y)dFY (y)

+ � sup
f≥0

{g(x + f ) − g(x) − �f }, 1 − g�(x)

}
= 0,

g(x) ≥ V(x),

V(x) = sup
(L,f )∈�

�x

[
∫

�L,f

0

e−�tdLt − �∫
�L,f

0

e−�tftdBt

]
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and 𝜏L,f = inf
{
t ≥ 0|XL,f

t < 0
}

.

Proof Let g ∈ C2(0,∞) and (L, f) be an admissible control strategy. In the following 
we will denote the state process XL,f

t  depending on (L, f) with Xt and �L,f  with � for 
the sake of clarity. Because we want to make use of important theorems from sto-
chastic calculus we have to switch to the right-continuous process, see also Shreve 
et al. [12, p.60–62]. We consider the process

where X̄t ∶= Xt+ . First of all we apply the integration by parts formula to the first 
part of Y and Itô ’s formula for X̄s . We get

Moreover, we can split up the above sum of the discontinuous parts such that we 
obtain

As in [4, p. 19 - 20] with g′ ≥ 1 , we obtain for the sum belonging to the jumps of the 
dividend process the estimate

For the sums comprising the other jumps we take expectations and use the compen-
sation formula to get

(18)Yt = e−𝛿(t∧𝜏)g(X̄t∧𝜏) + ∫
t∧𝜏

0

e−𝛿sdLs+ − 𝜙∫
t∧𝜏

0

e−𝛿sfsdBs,

e−𝛿(t∧𝜏)g(X̄𝜏
t
) =g(X0+) + �

t∧𝜏

0+

e−𝛿s[−𝛿g(X̄s−) + cg�(X̄s−)]ds

− �
t∧𝜏

0+

e−𝛿sg�(X̄s−)dL
c
s
+

∑
0<s≤t∧𝜏

e−𝛿s𝛥g(X̄s−).

∑
0<s≤t∧𝜏

e−𝛿s𝛥g(X̄s−) =
∑

0<s≤t∧𝜏, Ls+≠Ls
e−𝛿s

[
g(X̄s− − 𝛥Ls+) − g(X̄s−)

]

+
∑

0<s≤t∧𝜏, Ss≠Ss−
e−𝛿s

[
g(X̄s− − YNs

) − g(X̄s−)
]

+
∑

0<s≤t∧𝜏, Bs≠Bs−

e−𝛿s
[
g(X̄s− + fs) − g(X̄s−)

]
.

∑
0<s≤t∧𝜏, Ls+≠Ls

e−𝛿s
[
g(X̄s− − 𝛥Ls+) − g(X̄s−)

]

= −
∑

0<s≤t∧𝜏, Ls+≠Ls
e−𝛿s �

𝛥Ls+

0+

g�(X̄s− − u)du ≤ −
∑

0<s≤t∧𝜏, Ls+≠Ls
e−𝛿s𝛥Ls+.
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and

Now, we exploit the results from above to obtain

Next we use that g solves the HJB-equation

Adding on both sides �x[∫ t∧�

0
e−�sdLs+ − ∫ t∧�

0
e−�s��fsds] and using the concavity of 

g yields that

The last inequality shows that the process Y is a supermartingale. Now we use this 
property to obtain

�x

[ ∑
0<s≤t∧𝜏, Ss≠Ss−

e−𝛿s
[
g(X̄s− − YNs

) − g(X̄s−)
]]

= �x

[
�

t∧𝜏

0+

e−𝛿s

(
𝜆�

X̄s−

0

g(X̄s− − y)dFY (y) − 𝜆g(X̄s−)

)
ds

]

�x

[ ∑
0<s≤t∧𝜏, Bs≠Bs−

e−𝛿s
[
g(X̄s− + fs) − g(X̄s−)

]]

= �x

[
�

t∧𝜏

0+

e−𝛿s𝛽
[
g(X̄s− + fs) − g(X̄s−)

]
ds

]
.

�x

[
e−𝛿(t∧𝜏)g(X̄𝜏

t
)
] ≤ �x

[
g(X0+) + �

t∧𝜏

0+

e−𝛿s[−𝛿g(X̄s−) + cg�(X̄s−)]ds

+ �
t∧𝜏

0+

e−𝛿s

(
𝜆�

X̄s−

0

g(X̄s− − y)dFY (y) − 𝜆g(X̄s−)

)
ds

+ �
t∧𝜏

0+

e−𝛿s𝛽
[
g(X̄s− + fs) − g(X̄s−)

]
ds − �

t∧𝜏

0+

e−𝛿sdLs+

]
.

�x

[
e−𝛿(t∧𝜏)g(X̄𝜏

t
)
] ≤ �x

[
g(X0+) − �

t∧𝜏

0+

e−𝛿sdLs + �
t∧𝜏

0+

e−𝛿s𝛽𝜙fsds

]
.

�x

[
Yt
] ≤ �x

[
g(X0+) + �L0+

]
≤ g(x).
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where we exploited that g ≥ 0 . Considering the limit t → ∞ and using monotone 
convergence gives

Taking the supremum over all admissible strategies results in the desired relation:

  ◻

Since for all parameter constellations our constructed functions are linked 
to an admissible strategy, are twice differentiable and concave, we have that 
they dominate the value function. Furthermore, using the band type strat-
egy specified by (a∗, b∗) we have that the corresponding Y from (18) is a mar-
tingale. Instead of using dominated convergence in the limitation proce-
dure, one can even use bounded convergence, since f ∗

s
≤ a∗ and observe that 

limt→∞ �x

[
e−𝛿(t∧𝜏)V(X̄𝜏

t
;a∗, b∗)

]
= 0.

Corollary 1 If (𝛿 + 𝜆)2 < c𝛼𝜆 and � ≥ 1 , the function V(x;a∗, b∗) is the value func-
tion and the corresponding band type strategy is optimal.

4  Extremal case: ˇ → ∞

A problem interesting in its own right arises if we let � tend to infinity. This means that 
investors/injections are in principle available at every point in time. Consequently, the 
problem turns into a fully singular control problem with value function given by

and

where Ft has to be càglàd and corresponds to the total funding up to time t. Note that 
the considered objects such as �∞ and �L,F are analogously defined as in the case 

g(x) = Y0 ≥ �x(Yt) ≥ �x

�
�

t∧�

0

e−�s(dLs − �fsdBs)

�

≥ �x

�
�

⌊t⌋∧�

0

e−�sdLs

�
− �x

�
�

(⌊t⌋+1)∧�

0

e−�s�fsdBs

�
,

g(x) ≥ �x

[
�

�

0

e−�s(dLs − �fsdBs)

]
.

g(x) ≥ V(x).

V∞(x) = sup
(L,F)∈�∞

�x

[
∫

�L,F

0

e−�tdLt − �∫
�L,F

0

e−�tdFt

]

XL,F
t

= Xt − Lt + Ft,
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with finite � . The literature tells us that the associated HJB-equation has the follow-
ing form

see also [9], with the subtle difference that in our model the insurance company 
can face ruin, whereas in the reference shareholders are forced to compensate for 
negative surplus values. Since numerical examples using our explicit solution for 
large but finite values of � , indicate that the strategy stays of the same type with 
a∗ > 0, b∗ > a∗ , we can try to solve (19) explicitly using this type of strategy as a 
good guess. The optimal strategy is now to keep the process within [a∗, b∗] , which 
corresponds to a reflection at both thresholds. Notice that although investors are 
available at any point in time ruin can be caused by claims larger than a∗ . The pro-
posed value function has the form:

Again, the coefficients C∞,B∞
1
(a, b) and B∞

2
(a, b) for given a and b can be calculated 

solving a linear system of equations. Furthermore, one can construct a∗, b∗ such that 
�

�x
V∞(x;a∗, b∗)||x=a∗ = � and �2

�x2
V∞(x;a∗, b∗)||x=b∗ = 0 . The proof of existence goes 

along the lines of arguments as presented in Sect. 2. This leads to a concave solution 
V∞(x;a∗, b∗) . Hence, similar verification arguments apply, which indeed verify that 
V∞(x;a∗, b∗) is optimal.

(19)

max

{
cg�(x) − (� + �)g(x) + �∫

x

0

g(x − y)dFY (y), 1 − g�(x), g�(x) − �

}
= 0,

V∞(x;a, b) =

⎧
⎪⎨⎪⎩

C∞ + 𝜙x, if 0 ≤ x ≤ a,

B∞
1
(a, b)eS1x + B∞

2
(a, b)eS2x, if a ≤ x ≤ b,

x − b + V∞(b;a, b), if x > b.

Fig. 3  Value functions
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5  Numerical illustration

In this section we present a numerical example which nicely illustrates the 
dependence of the optimal strategy on the parameter � ≥ 1 . For this purpose we 
have chosen the parameters as follows. Concerning the reserve process we take 
c = 1.5 for the premium rate, � = 1 for the intensity of the Poisson process associ-
ated with the claim occurrence and � = 1.5 as the parameter of the exponential 
distribution of the claim size. Furthermore, for the jump process B we take � = 2 , 
which corresponds to the expected arrivals of investors per time unit. In terms of 

Fig. 4  Strategies as functions of �

Fig. 5  1st order smooth fit
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the interest rate we choose � = 0.02 and in order to illustrate the value function 
and the smooth fit conditions we fix � = 1.5 temporarily.

In Fig.  3 we depict the difference between the value function of the usual 
dividend problem and the value function of the model with random capital sup-
ply with a∗ = 3.1746, b∗ = 6.8526 . Figure  4 illustrates how the transaction cost 
parameter � affects the nature of the optimal strategy in terms of (a∗, b∗) . As 
proved above, we observe that for the case � = 1 the two thresholds a∗ and b∗ 
coincide. Further, if � increases, the area where we search for additional fund-
ing shrinks exactly up to the certain point where it disappears. This exactly hap-
pens at 𝜙 = Ṽ �(0;b̃) . Simultaneously, the dividend threshold b∗ is increasing in 
� and reaches its maximum level at the point where a∗ becomes zero, namely, 
again if 𝜙 = Ṽ �(0;b̃) . We observe that the maximum level for b∗ is the dividend 
barrier level b̃ of the usual dividend problem. On top of this we even see (and 
indeed proved) that for values of � larger than Ṽ �(0;b̃) the optimal strategy does 
not change anymore.

In the Figs. 5 and 6 we illustrate the first and second order smooth fit property. 
In Fig.  5 we plotted the first derivative of the value function to point out that 
at the lower optimal threshold a∗ we have V �(a∗;a∗, b∗) = � , which is, according 
to our theoretical treatment, equivalent to the second order smooth fit condition. 
Further, at the upper optimal threshold b∗ we have that V �(b∗;a∗, b∗) = 1 . Finally, 
Fig.  6 shows the second derivative of the functions Vl(x;a

∗, b∗) and Vu(x;a
∗, b∗) 

and illustrates their behaviour in the respective domain of interest.

6  Conclusion and practical aspects

In our contribution we introduce additional funding opportunities at random times into 
the classical risk model with dividends. In addition to solving the associated optimi-
zation problem, we present arguments which link the traditional injection procedure 

Fig. 6  2nd order smooth fit
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by initial investors to the situation of funding by external investors. Since such exter-
nal funding problems are heavily discussed in corporate finance, this establishes a fur-
ther link between company valuations and the optimal dividend problem in insurance. 
Clearly, the proposed modification leads to an increase of the value of an insurance 
portfolio (measured by future dividends) over the classical dividend situation. This fact 
is illustrated in Fig. 3. Hence, the firm value can be raised through the acceptance of 
capital provided by outside investors. In the case of disproportionate large transaction 
costs the externally appropriated funding is too costly and therefore the management 
will not take advantage of this possibility. Thus, the optimal strategy heavily depends 
on the transaction cost parameter � as exemplified in Fig. 4.

The presence of the funding level a∗ ≥ 0 stands in contrast to the optimal strategy 
obtained by Kulenko and Schmidli [9], where the reflection needs to take place at the 
zero level to prevent ruin. Since in our model the insurance company is still exposed to 
the risk of possible ruin, the funding level a∗ serves as the lower bound of a - one may 
call it - stable zone [a∗, b∗) , where the optimal strategy tries to keep the surplus process 
to stay in this area. The region of surplus values larger than b∗ can be seen as comfort 
zone or zone of preference where the insurance company can afford to pay dividends 
despite the existing risk of ruin. On the contrary if the current reserve is below a∗ we 
are in a hazard zone and there is need for action. Hence, the management of the insur-
ance company makes use of every possible funding in order to arrive again at the stable 
zone. Of course, since our reserve process is bounded from above by b∗ , the ruin event 
is certain, due to that there exists another region, the ruin zone. In this way the obtained 
optimal strategy leads to a partition of the state space. In the extremal case � → ∞ this 
implies that certain claims, those which do not cause ruin but take the surplus to [0, a∗) , 
are immediately partly refunded such that the surplus is pushed back to the stable zone. 
The determination of the current zone of an insurance portfolio can be a possible guid-
ance for the evaluation of the status quo to help the actuary to stick to the principle of 
prudence.
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