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Abstract
We consider a two-dimensional optimal dividend problem in the context of two 
branches of an insurance company with compound Poisson surplus processes divid-
ing claims and premiums in some specified proportions. We solve the stochastic 
control problem of maximizing expected cumulative discounted dividend payments 
(among all admissible dividend strategies) until ruin of at least one branch. We 
prove that the value function is the smallest viscosity supersolution of the respective 
Hamilton–Jacobi–Bellman equation and we describe the optimal strategy. We ana-
lyze some numerical examples.

1  Introduction

In collective risk theory the surplus process X of an insurance company is modeled 
as

where x > 0 denotes the initial surplus,

is a compound Poisson. We assume that Ui, (i = 1, 2,…) are i.i.d. distributed claims 
(with the distribution function G).The arrival process is a homogeneous Poisson 

(1)X(t) = x + ct − S(t),

(2)S(t) =

Nt∑
i=1

Ui
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process Nt with intensity � . The premium income is modeled by a constant premium 
density c and often assumed net profit condition c > 𝜆E[U1] gives the unrealistic 
property that process X(t) converges to infinity. In answer to this objection De Finetti 
[21] introduced the dividend barrier model for one-dimensional model (1), in which 
all surpluses above a given level are transferred to a beneficiary. Further, usually the 
payment of dividends should be made in such a way as to maximize the expected 
discounted sum of dividends paid up to ruin time. In 1969, Gerber [23] showed that 
if the free surplus of an insurance portfolio is modelled by a compound Poisson risk 
model, it is always optimal to pay dividends according to a so-called band strategy, 
which collapses to a barrier strategy for exponentially distributed claim amounts. 
Later, lots of works in the mathematical finance and actuarial literature concern the 
dividend barrier models and the problem of finding an optimal policy for paying out 
dividends. Gerber and Shiu [22], Grandits et  al. [26] and Jeanblanc and Shiryaev 
[30] considered the optimal dividend problem in a Brownian setting. Irbäck [28] 
and Zhou [41], Zajic [40], Avram et al. [4], Kyprianou and Palmowski [31], Loeffen 
[32] studied the constant barrier model for a classical and spectrally negative Lévy 
risk process. Azcue and Muler [8] follow a viscosity approach to investigate optimal 
reinsurance and dividend policies in the Cramér–Lundberg model. The most general 
criteria currently available for barrier strategies to be optimal can be found in Loef-
fen and Renaud [33].

A detailed overviews on this subject from different perspectives are given in 
Azcue and Muler [10], Schmidli [36], Albrecher and Thonhauser [2] and Avanzi [5].

All these control problems have been formulated and studied in the one-dimen-
sional framework. However, in recent years there has been an increased interest 
in risk theory in considering the multidimensional surplus model where X(t), x, c 
and S(t) are vectors, with possible dependence between the components. Indeed, 
the assumption of independence of risks may easily fail, for example in the case of 
reinsurance, when incoming claims have an impact on both insuring companies at 
the same time. In general, one can also consider situations where each claim event 
might induce more than one type of claim in an umbrella policy (see Sundt [39]). 
For some recent papers considering dependent risks, see Dhaene and Goovaerts [19, 
20], Goovaerts and Dhaene [25], Müller [34, 35], Denuit et al. [17], Ambagaspitiya 
[3], Dhaene and Denuit [18], Hu and Wu [27] and Chan et al. [14]. Ruin probabil-
ity expressions for a two-dimensional risk process were also studied in Avram et al. 
[6, 7] for simultaneous claim arrivals and proportional claim sizes and recently in 
Badila et al. [13] and Ivanovs and Boxma [29] in a more general framework.

In this paper we analyze the dividend problem for the two-dimensional risk model 
in which two branches of a company with initial capiotals x1 and x2 split the amount 
they pay out of each claim in fixed proportions b1 and b2 ( b1 + b2 = 1 ), and receive 
premiums at rates c1 and c2 , respectively. Moreover, these two branches have the 
same shareholders and the objective is to maximize the total dividends received by 
these shareholders. That is, the main goal of this paper is identification of the value 
function maximizing the weighted sum of expected discounted dividend payments 
until ruin of at least one branch. This will lead to a fully two-dimensional stochastic 
control problem and we answer the question what the analogues of the optimal uni-
variate barrier strategies are in two dimensions.
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In Azcue and Muler [9], the problem of optimally transferring capital between 
two portfolios in the presence of transaction costs was considered, see also Bad-
escu et al. [12]. Albrecher et al. [1] considered the problem of optimizing divi-
dends for two collaborating insurance companies whose surpluses are modelled 
with independent compound Poisson processes.

Czarna and Palmowski [16] studied the same dividend problem as in this paper 
but for a very particular dividend strategy of reflecting two-dimensional risk pro-
cess from the line. Solving certain partial differential equations they managed to 
identify the value function for the exponential claim sizes. We will show in this 
paper though that this strategy is not optimal.

In this paper we prove that the value function is a viscosity solution of the 
respective Hamilton–Jacobi–Bellman equation (abbreviated lately by HJB) and it 
can be characterized as the smallest viscosity supersolution. Using this result we 
manage to identify the optimal strategy. In particular, under assumption that the 
second branch receives less premium per amount paid out, for initial surpluses 
(x1, x2) satisfying x1∕b1 > x2∕b2 the best strategy is to pay 

(
x1 −

(
b1∕b2

)
x2
)
 by the 

first branch immediately as dividends.
For the symmetric case c2∕c1 = b2∕b1 and for x1∕b1 ≤ x2∕b2 , by transferring 

the optimization problem into one-dimensional optimization problem, we man-
aged to describe the optimal strategy explicitly. For x1∕b1 < x2∕b2 the optimal 
strategy is that the second branch immediately pays x2 −

(
b2∕b1

)
x1 as dividends 

and afterwards the controlled process remains in the half line  in �2
+
 that con-

tains the origin with slope b2∕b1 until ruin time. In  , either both branches pay 
the incoming premium as dividends until next claim, or the second branch pays 
a positive amount m of money and the first branch pays 

(
b1∕b2

)
m, where m is the 

minimal amount that brings the surplus process back to the previous case, or, 
finally, both branches pay no dividends.

For general, non-symmetric case c2∕c1 < b2∕b1 we use a convergent numeri-
cal scheme to find the optimal strategy for initial surpluses (x1, x2) satisfy-
ing x1∕b1 ≤ x2∕b2 . More formally, given any 𝛿 > 0 , we denote Δx1 = c1� and 
Δx2 = c2� and define the grid domain � in �2

+
 as � ∶=

{
(nΔx1,mΔx2) ∶ n,m ≥ 0

}
. 

We look, at each point of the grid � , for the best local strategy among the ones 
suggested by the operators of the HJB equation. These possible local strategies 
are: the first branch pays a lump sum as dividends, the second one pays a lump 
sum as dividends, or none of the branches pay dividends. These local strategies 
are modified in such a way that the controlled surplus after applying these local 
strategies lies in the grid. We believe that this techniques used in this paper could 
be applicable to other risk-sharing mechanisms.

The rest of the paper is organized as follows. In Sect 2 we present the model 
we deal with and state formally the problem that we want to solve. In Sect. 3 we 
prove that the value function is a viscosity solution of HJB. Using this result we 
describe the optimal strategy in some cases in Sect.  4, in Sect.  5 we describe 
a numerical scheme to approximate the optimal value function and the optimal 
strategy and in Sect.  6 we present some numerical examples. We conclude the 
paper with the number of comments in Sect. 7.
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2 � Model

In this paper we consider two branches of a company that receive premiums at different 
rates and then split the amount they pay in fixed proportions for each claim. This model 
corresponds to proportional reinsurance dependence. The total amount of claims up to 
time t is modeled as a compound Poisson process. We can write this two-dimensional 
risk model as

Above x1 and x2 are the corresponding initial surplus levels and c1 and c2 are the cor-
responding premium rates. The sizes of the claims Uiare non-negative i.i.d. random 
variables with absolutely continuous distribution G. The claims arrival process Nt is 
a Poisson processes with intensity � . Finally, the constants b1 and b2 are the pro-
portions of the claim that each branch pays, so b1 + b2 = 1 , b1 > 0 and b2 > 0 . We 
assume here that the process Nt and the random variables Ui are independent of each 
other. Without loss of generality, we can assume that the second branch receives less 
premium per amount paid out, that is

We denote by {t}{t≥0} the right-continuous natural filtration of X(t) satisfying usual 
conditions. Throughout this paper all stopping times and martingales are taken with 
respect of this filtration.

Both branches use part of their surpluses to pay dividends. The dividend payment 
strategy L(t) =

(
L1(t),L2(t)

)
 is the total amount of dividends paid by the two branches 

up to time t. We define the associated controlled process with initial surplus (x1, x2) as

The dividend payment strategy L =
(
L1(t),L2(t)

)
t≤� is called admissible if it is 

non-decreasing, càglàd (left continuous with right limits), predictable with respect 
to the filtration generated by the bivariate process X(t) and satisfies L1(t) ≤ X1(t) , 
L2(t) ≤ X2(t) . The first time when the two-dimensional risk process first leaves the 
positive quadrant will be our ruin time:

That is, the ruin time is the first time at which at least one branch get ruined. We 
denote by �+ = [0,∞) and by �2

+
= (0,∞)2 the first quadrant. Let Πx

1
,x2

 be the set of 

admissible dividend strategies with the initial surplus x = (x1, x2) ∈ �
2
+
 . Given an 

(3)X(t) = (X1(t),X2(t)) = (x1 + c1t −

Nt∑
i=1

b1Ui, x2 + c2t −

Nt∑
i=1

b2Ui).

(4)c1∕b1 ≥ c2∕b2.

(5)X
L
(t) = X(t) − L(t).

�𝜏 = inf
{
t ∶ X1(t) < 0 or X2(t) < 0

}
.
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admissible dividend strategy L ∈ Πx
1
,x2
, the expected discounted dividends paid by 

the two branches until �̂  is

where q > 0 is a constant discount factor.
The main goal of this paper is identification of the optimal value function defined 

by:

for x ∈ �
2
+
.

In the next section, we will see that V is well defined. Another crucial problem that 
we treated in this paper is the existence of an optimal strategy defined as follows. Given 
a family of admissible strategies

we define the value function V� ∶ �
2
+
→ �+ as V�(x) = V

Lx
(x) . We say that �∗ is the 

optimal strategy if V�∗ = V .

Remark 1  We can also consider the possibility that the two branches of the company 
can merge with a merger cost m (see e.g. Gerber and Shiu [24]). The merged com-
pany has initial surplus x1 + x2 − m, receives the premium rate c1 + c2 and pays the 
whole claims Ui. The new company uses part of the surplus to pay dividends to the 
shareholders up to the time in which the joined surplus becomes negative. In this 
case, the uncontrolled surplus process is given by

and the controlled surplus process is given by XL
M
(t) = XM(t) − L(t),where the divi-

dend payment strategy L(t) is non-decreasing, càglàd (left continuous with right 
limits), predictable with respect to the filtration generated by the process XM(t) 
and satisfies L(t) ≤ XM(t) . We consider the ruin time of the merged company 
𝜏L
M
= inf

{
t ∶ XL

M
(t) < 0

}
 and we define the merger optimal value function as

V
L
(x) = Ex

(
∫

�̂

0

e−qsdL1(s) + ∫
�̂

0

e−qsdL2(s)

)
,

(6)V(x) = sup
L∈Πx

V
L
(x)

� =
{
Lx ∈ Πx for each x ∈ �

2
+

}

XM(t) = x1 + x2 − m + (c1 + c2)t −

Nt∑
i=1

Ui,
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for x1 + x2 ≥ m. The function VM is the optimal value function of the one-dimen-
sional De Finetti’s problem corresponding to the compound Poisson process XM.

Let us assume that m = 0, then given any x ∈ R2
+
 and any admissible strategy 

L(t) =
(
L1(t),L2(t)

)
∈ Πx

1
,x2

 , we consider the one-dimensional payment strategy 

L(t) = L1(t) + L2(t) for the merged company. Since �L
M
≥ �̂  we conclude that 

VM(x1 + x2) ≥ V(x) . Note that this is not longer true as m > 0.

3 � Properties of the optimal value function

In this section we first state some basic results concerning regularity and growth at 
infinity of the optimal value function V defined in (6). We then deduce the Hamil-
ton–Jacobi–Bellman equation associated to this optimization problem and see that V 
is a viscosity solution of the HJB equation. Moreover, we can characterize V as the 
smallest viscosity supersolution of this equation with a suitable growth condition. 
Finally, we obtain a verification result: any viscosity supersolution which is a value 
function of a family of admissible strategies is the optimal value function.

The following two lemmas are the two-dimensional counterparts of Lemmas 2.1 
and 2.2 of [8].

Lemma 3.1  For all (x1, x2) ∈ �
2
+
 the optimal value function is well defined and 

satisfies

Proof  Taking strategy that pays at the beginning the whole surpluses x1 + x2 and 
then paying incoming premium as dividends up to the first claim arrival �1 gives the 
lower bound since

Similarly, observation that Li(s) ≤ xi + cis ( i = 1, 2 ) produces the upper bound. 	�  □

Lemma 3.2  The optimal value function V is increasing, locally Lipschitz and 
satisfies 

VM(x1 + x2 − m) = sup
L

Ex

(
∫

�L
M

0

e−qsdL(s)

)
.

x1 + x2 +
c1 + c2

q + �
≤ V(x1, x2) ≤ x1 + x2 +

c1 + c2

q
.

V(x1, x2) ≥ x1 + x2 + (c1 + c2)E �
�1

0

e−qtdt = x1 + x2 +
c1 + c2

q + �
.
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and

for any (x1, x2) ∈ �
2
+
 and any h > 0.

Proof  To prove the lower inequality in the first series of inequalities, it suffices to 
consider the strategy that pays h as dividends from the surplus of the first branch and 
then follows the strategy �� such that V��

(x1, x2) ≥ V(x1, x2) − � for general 𝜖 > 0 . To 
prove the upper inequality, it suffices to consider the strategy that pays no dividends 
up the first passage time of x1 + h by the first surplus process X1(t) and the follows 
strategy �� such that V��

(x1 + h, x2) ≥ V(x1 + h, x2) − � for general 𝜖 > 0 . The sec-
ond line of inequalities could be proved in a similar way. The proof of the fact that V 
is increasing and locally Lipschitz follows now classical arguments. 	�  □

In order to obtain the Hamilton–Jacobi–Bellman (HJB) equation associated to 
the optimization problem (6), we need to state the so-called Dynamic Programming 
Principle (DPP). Since X(t) is a Markov process the proof follows the same argu-
ments as the ones given in Lemma 1.2 of Azcue and Muler [10]. They use only the 
fact that V is increasing and continuous in �2

+
 . Obviously we need also to extend the 

definition of V to �2 defining V as zero outside the first quadrant.

Lemma 3.3  For any initial surplus x in �2
+
 and any stopping time � , we have

We now deduce the HJB equation assuming some regularity on V.
For any continuously differentiable function u defined in �2

+
 , we define the infini-

tesimal generator ̃  of the controlled process X
L
(t ∧ 𝜏) by

see [10, Sec. 1.4] for details.
We will consider now the admissible strategy L in which both branches pay divi-

dends with constant rates l1 ≥ 0 and l2 ≥ 0 respectively until ruin time 𝜏 . Then using 
[10, Rem. 1.8] we have

h ≤ V(x1 + h, x2) − V(x1, x2) ≤ (e(q+�)h∕c1 − 1)V(x1, x2)

h ≤ V(x1, x2 + h) − V(x1, x2) ≤ (e(q+�)h∕c2 − 1)V(x1, x2)

V(x) = sup
L∈Πx

Ex

⎛⎜⎜⎜⎝

�∧�̂

∫
0

e−qsdL1(s) +

�∧�̂

∫
0

e−qsdL2(s) + e−q(�∧�̂)V(XL
1

�
� ∧ �̂

�
,XL

2

�
� ∧ �̂

�
)

⎞⎟⎟⎟⎠
.

(7)�u(x) ∶= lim
t→0

Ex(e
−q tu(X

L
(t ∧ 𝜏)) − u(x))

t
;

(8)
̃u(x) =(c1 − l1

)
ux1 (x) +

(
c2 − l2

)
ux2 (x)

− (q + �)u(x) + (u)(x),
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where

and �1 denotes the first claim arrival.
Assume now that V is continuously differentiable. Note that from Lemma 3.3 

we have:

Thus by (8) dividing above inequality by t and taking t ↓ 0 give:

where

Taking l1 = l2 = 0 , l1 → ∞ with l2 = 0 ; and l2 → ∞ with l1 = 0 , we obtain

We now associate to our problem the following HJB equation:

Since the optimal value function could be not differentiable, we have to use the 
notion of viscosity solution and see that V is a viscosity solution of the associated 
HJB equation. Let us define this notion (see for instance Crandall and Lions [15] and 
Soner [37]).

Definition 3.4  A locally Lipschitz function u ∶ �
2
+
→ � is a viscosity supersolu-

tion of (12) at x ∈ �
2
+
 if any continuously differentiable function � ∶ �

2
+
→ �with 

�(x) = u(x) such that u − � reaches the minimum at x satisfies

A function u ∶ �2
+
→ � is a viscosity subsolution of (12) at x ∈ �

2
+
 if any continu-

ously differentiable function � ∶ �
2
+
→ �with �(x) = u(x) such that u − � reaches 

the maximum at x satisfies

(9)(u)(x) = ��
(x1∕b1)∧(x2∕b2)

0

u(x1 − b1�, x2 − b2�)dG(�)

V
(
x
) ≥ (l1 + l2)Ex �

�1

0

e−qtdt + Exe
−q(t∧�1)V

(
X
L
(t ∧ �1)

)
.

(V)(x) + l1
(
1 − Vx1

(x)
)
+ l2

(
1 − Vx2

(x)
) ≤ 0,

(10)(V)(x) ∶= c1Vx1
(x) + c2Vx2

(x) − (q + �)V(x) + (V)(x).

(11)max
{(V)(x), 1 − Vx1

(x), 1 − Vx2
(x)

} ≤ 0.

(12)max
{(V), 1 − Vx1

, 1 − Vx2

}
= 0.

max
{(�)(x), 1 − �x(x), 1 − �x2

(x)
} ≤ 0.

max
{(�)(x), 1 − �x1

(x), 1 − �x2
(x)

} ≥ 0.



249

1 3

Optimal dividend payments for a two-dimensional insurance…

A function u ∶ �
2
+
→ � which is both a supersolution and subsolution at x ∈ �

2
+
 is 

called a viscosity solution of (12) at x ∈ �
2
+
.

Theorem 3.5  V is a viscosity solution of the HJB equation (12) at any x ∈ �
2
+
.

Proof  The proof that V is a viscosity supersolution is similar to the one in Proposition 
3.1 in [10]. We underline only crucial adjustments that should be made in the proof.

The proof that V is a viscosity supersolution follows the same arguments as the 
ones used to derive (11).

The proof of the fact that V is a viscosity subsolution is done by contradiction. 
We will use the following convention. For any vectors a = (a1, a2) and b = (b1, b2) 
we denote [a, b] ∶= [a1, b1] × [a2, b2] with [−∞, b] ∶= [−∞, b1] × [−∞, b2] and for 
any h > 0 we will write a ± h ∶= (a1 ± h, a2 ± h) . We assume that for some fixed 
x0 = (x01, x02) there exist 𝜖 > 0 and h ∈ (0,

1

2
x01 ∧ x02) and test function � such that:

for x ∈ [0, x0 + h],

for x ∈ [x0 − h, x0 + h],

for x ∈ [−∞, x0 − h∕2] ∪ {x0 + h} . Now the proof will go along the lines of Propo-
sition 3.1 in [10] by taking (x1 − x01)

2(x2 − x02)
2 and x2

01
x2
02

 instead of (x − x0)
2 and 

x2
0
 , respectively. One needs to modify also the definitions � and � into the following 

ones:

and

In the last step (see inequality (3.21) in [10]) we use the following zero expectation 
martingale

1 − �xi
(x) ≤ 0, i = 1, 2

(�)(x) ≤ −2q�

V(x) ≤ �(x) − 2�

� = inf{t ≥ 0 ∶ X1(t) ≥ x01 + h or X2(t) ≥ x02 + h}

� = inf{t ≥ 0 ∶ X1(t) ≤ x01 − h or X2(t) ≤ x02 − h}.

(13)

M̃� (t) =
∑

X1(s
−) ≠ X1(s)

s ≤ t

(
�(X(s)) − �(X(s−)

)
e−qs

− �

t

�
0

e−qs

X1(s
−)

b1
∧

X2(s
−)

b2

�
0

(
�(X(s−) − �(b1, b2)) − �(X(s−)

)
)dG(�)ds,
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that could be defined properly by Dynkin’s formula for any test function for viscos-
ity subsolution � ; see also [10, Prop. 2.13]. At the end after some manipulations we 
derive that

which is a contradiction with the assumption that V(x0) = �(x0) . This completes the 
proof. 	�  □

Remark 2  The functions U(x1, x2) = x1 + x2 + K are viscosity solutions of the HJB 
equation (12) for K > (c1 + c2)∕q because

Thus there are infinitely many viscosity solutions of the HJB equation (12).

We now show that the optimal value function V can be characterized as the small-
est viscosity supersolution of (12) with a suitable growth condition. We say that the 
function u ∶ �

2
+
→ � satisfies the growth condition, if there exists K > 0 such that

We have the following result.

Proposition 3.6  Let L ∈ Πx be any admissible strategy and let u be any viscosity 
supersolution of (12) satisfying growth condition (G), we have that V

L
(x) ≤ u(x).

The proof of this proposition is a straightforward extension to the two-dimen-
sional case of the corresponding proof of Proposition 4.4 in [10], taking again the 
zero-expectation martingale defined in (13) and using Lemmas 3.1 and 3.2.

From the last proposition and Theorem 3.5, we conclude the following corollary.

Corollary 3.7  The optimal value function V is the smallest viscosity supersolution of 
(12) satisfying growth condition (G).

Remark 3  From Proposition 3.6 we can deduce the usual viscosity verification result: 
If the value function V� for some strategy � or a limit of value functions limn→∞ V�n

 
for some strategies �n is a viscosity supersolution of (12), then it is the optimal value 
function (6). Note that by definition V is a limit of value functions. However, we 
expect V to be a value function of a family of admissible strategies with some par-
ticular structure. This problem will be analyzed in next sections.

V(x0) ≤ �(x0) − �

(U)(x) =c1 + c2 − (q + �)
(
x1 + x2 + K

)
+ ��

(x1∕b1)∧(x2∕b2)

0

(x1 + x2 − � + K)dG(�)

≤c1 + c2 − (q + �)
(
x1 + x2 + K

)
+ �(x1 + x2 + K)G(

(
x1∕b1

)
∧
(
x2∕b2

)
)

≤c1 + c2 − qK.

(G)u(x) ≤ K + x1 + x2 for all x ∈ �
2
+
.



251

1 3

Optimal dividend payments for a two-dimensional insurance…

4 � Optimal strategy

First in this section, we introduce some special families of admissible strategies 
which depends only on the current surplus levels.

Assuming that V is differentiable in �2
+
 , the Eq.  (12) suggests how the divi-

dends are paid depending on the current surplus x = (x1, x2) ∈ �
2
+
:

•	 If the current surplus is in the set 

 no dividends are paid.
•	 If the current surplus is in the set 

 both branches pay a lump sum as dividends.
•	 If the current surplus is in the set 

 the first branch pays a lump sum as dividends.
•	 If the current surplus is in the set 

 the second branch pays a lump sum as dividends.
•	 If the current surplus is in the set 

 both branches pay their incoming premiums as dividends.
•	 If we define ∗

1
 as the boundary between ∗

1
 and ∗ , we would have 

 If the current surplus is in the set ∗
1
 , the first branch could pay some part of its 

incoming premium as dividends.
•	 Analogously, if we define ∗

2
 as the boundary between ∗

2
 and ∗ , we would have 

 If the current surplus is in the set ∗
2
 , the second branch could pay some part of 

its incoming premium as dividends.

∗ =
{
x ∈ �

2
+
∶ (V)(x) = 0, 1 − Vx1

(x) < 0, 1 − Vx2
(x) < 0

}

∗
0
=
{
x ∈ �

2
+
∶ (V)(x) < 0, 1 − Vx1

(x) = 0, 1 − Vx2
(x) = 0

}

∗
1
=
{
x ∈ �

2
+
∶ (V)(x) < 0, 1 − Vx1

(x) = 0, 1 − Vx2
(x) < 0

}

∗
2
=
{
x ∈ �

2
+
∶ (V)(x) < 0, 1 − Vx1

(x) < 0, 1 − Vx2
(x) = 0

}

∗
0
=
{
x ∈ �

2
+
∶ (V)(x) = 0, 1 − Vx1

(x) = 0, 1 − Vx2
(x) = 0

}

∗
1
=
{
x ∈ �

2
+
∶ (V)(x) = 0, 1 − Vx1

(x) = 0, 1 − Vx2
(x) < 0

}
.

∗
2
=
{
x ∈ �

2
+
∶ (V)(x) = 0, 1 − Vx1

(x) < 0, 1 − Vx2
(x) = 0

}
.
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If V is not differentiable at some points, still these sets could be defined in a viscos-
ity sense.

Let us define  as the half line in �2
+
 that contains the origin with slope b2∕b1 . 

Note that, when the current surplus is outside  , there exists the possibility that the 
ruin occur leaving one branch with positive surplus; if the current surplus is in the 
set

then the first branch will be the one with eventual positive surplus at ruin time and 
conversely, if the current surplus is in the set

the same could happen with the second branch.

4.1 � Optimal strategy in D1

Given a initial surplus (x1, x2) ∈ �
2
+
, we define the set �Πx1,x2

⊂ Πx1,x2
 in the follow-

ing way. If (x1, x2) ∈ D2 ∪ then Π̂x1,x2
 is the set of all the admissible strategies in 

which the controlled process remains in the set D2 ∪ until ruin time; if (x1, x2) ∈ 
D1, then Π̂x1,x2

 is the set of all the admissible strategies in which the first branch pays 
immediately at least x1 −

(
b1∕b2

)
x2 as dividends and afterwards the controlled pro-

cess remains in the set D2 ∪ . From (5), we get

Proposition 4.1  We have that V(x1, x2) = sup
L∈Π̂x1,x2

V
L
(x1, x2).

Proof  Given any admissible L
0
= (L0

1
, L0

2
) ∈ Πx1,x2

 , let us define

We have that L
1
∈ Π̂x1,x2

 because L1
1
(t)and L1

2
(t) are predictable, positive and increas-

ing and also

Let us prove now that the ruin time �̂L
0

 corresponding to the admissible strategy L
0 is 

less than or equal to �̂L
1

 . By definition, we have that

D1 ∶=
{
x ∈ �

2
+
∶
(
b2∕b1

)
x1 > x2

}
,

D2 ∶=
{
x ∈ �

2
+
∶
(
b2∕b1

)
x1 < x2

}
,

(14)
Π̂x1,x2

=
{(

L1(t), L2(t)
)
∈ Πx1,x2

∶ L1(t) ≥ x1 −
b1

b2
x2 +

(
c1 −

b1

b2
c2

)
t +

b1

b2
L2(t) for t ≥ 0

}
.

(15)L
1
(t) =

(
max

{
x1 −

b1

b2
x2 +

(
c1 −

b1

b2
c2

)
t +

b1

b2
L0
2
(t), L0

1
(t)
}
, L0

2
(t)
)
.

L1
1
(t) ≥ x1 −

b1

b2
x2 +

(
c1 −

b1

b2
c2

)
t +

b1

b2
L1
2
(t).
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and

for any t ≤ �̂L
0

 . Thus XL
1

2
(t) = XL

0

2
(t) ≥ 0, and

for any t ≤ �̂L
0

.
From (15) we have that L1

1
(t) + L1

2
(t) ≥ L0

1
(t) + L0

2
(t) for 0 ≤ t < �̂L

1

 , so we obtain

and the result follows. 	�  □

Corollary 4.2  If (x1, x2) ∈ D1, then V(x1, x2) = x1 −
(
b1∕b2

)
x2 + V(

(
b1∕b2

)
x2, x2).

Proof  By (14), we have that L
0
=
(
L1(t), L2(t)

)
∈ Π̂x1,x2

 if and only if

Since we have that V
L
0(x1, x2) = x1 −

(
b1∕b2

)
x2 + V

L
1 (
(
b1∕b2

)
x2, x2), the result fol-

lows by Proposition 4.1. 	�  □

From the last Corollary we can deduce that if x ∈ D1 then the optimal value func-
tion is a limit of strategies in which the first branch immediately pays 

(
x1 −

(
b1∕b2

)
x2
)
 

as dividends, so the current surplus goes immediately to  in the horizontal direc-
tion, and afterwards the controlled process remains in D2 ∪ until ruin time. We 
can ask ourselves if an analogous result holds for x ∈ D2 , that is whether the optimal 

x1 + c1t −

Nt∑
i=1

b1Ui − L0
1
(t) ≥ 0

x2 + c2t −

Nt∑
i=1

b2Ui − L0
2
(t) ≥ 0

XL
1

1
(t) =x1 + c1t −

Nt�
i=1

b1Ui − L1
1
(t)

=

⎧⎪⎨⎪⎩

XL
0

1
(t) if x1 −

b1

b2
x2 +

�
c1 −

b1

b2
c2

�
t +

b1

b2
L0
2
(t) ≤ L0

1
(t)

b1

b2
XL

0

2
(t) if x1 −

b1

b2
x2 +

�
c1 −

b1

b2
c2

�
t +

b1

b2
L0
2
(t) > L0

1
(t)

≥0

V
L
0(x) ≤ V

L
1(x)

L
1
=
(
L1(t) − x1 −

(
b1∕b2

)
x2, L2(t)

)
∈ Π̂(b1∕b2)x2,x2 .
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value function is a limit of strategies in which the second branch immediately pays 
x2 −

(
b2∕b1

)
x1 as dividends—so the current surplus goes immediately to  in the 

vertical direction—and afterwards the controlled process remains in  until ruin time. 
We will see in the next section that in general this holds true only in the case in which 
c2∕c1 = b2∕b1.

4.2 � ‑strategies

Given an initial surplus (x1, x2) ∈ �
2
+
 , we define the set �Πx1,x2

⊂ �Πx1,x2
 ⊂ Πx1,x2

 as the 
set all the admissible strategies which pay immediately dividends in the following way: 
the first branch pays immediately x1 −

(
b1∕b2

)
x2 as dividends if (x1, x2) ∈ D1 ∪ or 

the second branch pays immediately x2 −
(
b2∕b1

)
x1 as dividends if (x1, x2) ∈ D2 ; after-

wards the controlled process remains in the set  until ruin time.
Let us define

Let us also define V  as the value function of the best strategy with initial surplus 
(
(
b1∕b2

)
x2, x2) ∈  whose controlled process remains in the set  until ruin time, 

that is

By definition, we have that

In order to find V  , let us consider the following auxiliary one-dimensional optimiza-
tion problem. Let Πx2

 be the set of admissible dividend payment strategy correspond-
ing to the one-dimensional compound Poisson process with initial surplus x2 ≥ 0 , 
slope c2 , claim arrivals given by the Poisson process Nt and claim-sizes b2Ui . Given 
any L2 ∈ Πx2

, we define

and

Note that, since any L = (L1, L2) ∈ Π̃(b1∕b2)x2,x2
 satisfies

(16)Ṽ(x1, x2) ∶= sup
L∈Π̃x1,x2

V
L
(x1, x2).

(17)V(x2) ∶= Ṽ(
b1

b2
x2, x2).

Ṽ(x1, x2) =
(
x1 −

b1

b2
x2 + V(x2)

)
ID1∪(x1, x2) +

(
x2 −

b2

b1
x1 + V

(
b2

b1
x1

))
ID2(x1, x2).

WL2
(x2) ∶= Ex2

(
∫

�̂

0

e−qs
(
c1 −

b1

b2
c2

)
ds +

(
1 +

b1

b2

)
∫

�̂

0

e−qsdL2
s

)
,

(18)W(x2) = sup
L2∈Πx2

WL2
(x2).
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then we have that

Thus V  and W coincide which is stated formally in next proposition.

Proposition 4.3  For any x2 ≥ 0 we have V(x2) = W(x2).

We study now the optimization problem (18). The function W  can be seen 
as the optimal value function (up to a constant) of the dividend problem with a 
reward for avoiding early ruin; see for instance Thonhauser and Albrecher [38]. 
In effect, we can write

where

From [38], we have that W has the following associated HJB equation,

where

We can state the following proposition for the optimal one-dimensional reward 
problem. The proof is similar to the one-dimensional optimization dividend problem 
without reward (see for instance Azcue and Muler [10], Propositions 3.1 and 4.4).

L1(t) =
b1

b2
L2(t) +

(
c1 −

b1

b2
c2

)
t,

V
L

(
b1

b2
x2, x2

)
= WL2

(x2).

W(x2)

1 +
b1

b2

= sup
L2∈Πx2

Ex2

(
∫

�

0

e−qs�ds + ∫
�

0

e−qsdL2
s

)
,

� =
c1 −

(
b1∕b2

)
c2

1 + b1∕b2
.

(19)max{1 +
b1

b2
−W

�
(x2),(W)(x2)} = 0,

(W)(x2) ∶= c2W
�
(x2) − (� + q)W(x2) + �

x2∕b2

�
0

W(x2 − b2�)dG(�) + c1 −
b1

b2
c2.
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Proposition 4.4  W is a locally Lipschitz viscosity solution of (19). Moreover, it is the 
smallest viscosity solution of this equation for all x2 > 0 satisfying the growth condi-
tion W(x2) ≤ K +

(
1 + b1∕b2

)
x2 for some K > 0.

From the previous proposition, we can deduce the following verification result: 
Given a family of admissible strategies � =

{
L
x2
2
∈ Πx2

for any x2 ≥ 0
}
 , we define the 

value function W� ∶ �+ → �+ as W�(x2) = WL
x2
2
(x2) . If the function W�(x2) is a vis-

cosity supersolution of (19) for each x2 > 0 , then W� coincides with W.
We also have the following result about the optimal dividend strategy of the problem 

(18), the proof is similar to the case without reward, see for instance Azcue and Muler 
[10], Sections 5.1 and 5.2.

Proposition 4.5  The dividend strategy that optimizes (18) is a band dividend strat-
egy depending on the sets  ,  and  , where

is closed and bounded,

is left-open,

is right-open, and there exists x̃2 such that (�x2,∞) ⊂  . We have the following cases:

•	 if the current surplus is in  the incoming premium c2 is paid as dividends;
•	 if the current surplus is in  a positive amount of money is paid as dividends in 

order to bring the surplus process back to ;
•	 if the surplus is in  , no dividends are paid.

Let us go back to problem (16) in  . Using that

 ∶ =

{
x2 ≥ 0 ∶

(
c1 + c2

)
− (� + q)W(x2) + ��

x2∕b2

0

W(x2 − b2�)dG(�) = 0

}

 ∶=

⎧⎪⎨⎪⎩
x2 ≥ 0 ∶ W

�
(x2) = 1 +

b1

b2
,
�
c1 + c2

�
− (𝜆 + q)W(x2) + 𝜆

x2∕b2

�
0

W(x2 − b2𝛼)dG(𝛼) < 0

⎫⎪⎬⎪⎭

 = �+ − ∪ 

Ṽ
(

b1

b2
x2, x2

)
= V(x2) = W(x2),
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we can split the half line  into three sets:

and

From Proposition 4.5 we conclude that the optimal dividend strategy for the auxil-
iary problem (16) with initial surplus in  is the following:

•	 if 
((
b1∕b2

)
x2, x2

)
∈  both branches pay the incoming premium as dividends 

until next claim,
•	 if 

((
b1∕b2

)
x2, x2

)
∈  , the second branch pays a positive amount m of money 

and the first branch pays 
(
b1∕b2

)
m, where m is the minimal amount that brings 

the surplus process back to ,
•	 and finally if 

((
b1∕b2

)
x2, x2

)
∈  , the second branch pays no dividends and the 

first branch pays (c1 −
(
b1∕b2

)
c2) as dividend rates.

Remark 4  If the optimal value function V coincides with the function Ṽdefined in 
(16), the optimal strategy would be given by

∗
0
=  , ∗

1
=  and ∗

2
= ∗ = ∅ . Moreover,

•	 in ∗
0
 both the incoming premiums are paid as dividends;

•	 in ∗
1
 the first branch pays dividends at rate c1 −

(
b1∕b2

)
c2 (and so the surplus 

process remains in );
•	 in D1 the first branch pays immediately 

(
x1 −

(
b1∕b2

)
x2
)
 , so the current surplus 

goes immediately to  in the horizontal direction;
•	 in D2 the second branch pays immediately 

(
x2 −

(
b2∕b1

)
x1
)
 , so the current sur-

plus goes immediately to  in the vertical direction.

In the particular case that c1 =
(
b1∕b2

)
c2 , the first branch does not need to pay divi-

dends in  to remain in  , so ∗ = ∗
1
= .

 ∶=
{(

b1

b2
x2, x2

)
∶ x2 ∈ }

,

 ∶=
{(

b1

b2
x2, x2

)
∶ x2 ∈ },

(20) ∶=
{(

b1

b2
x2, x2

)
∶ x2 ∈ }.

∗
1
=
{
x ∈ D1 ∶ x2 ∉ 

}
,∗

2
=
{
x ∈ D2 ∶

(
b2∕b1

)
x1 ∉ 

}
,

∗
0
=
(
D1 − ∗

1

)
∪  ∪

(
D2 − ∗

2

)
,
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4.3 � V  is the optimal value function in the case c
2
∕c

1
= b

2
∕b

1

In the next propositions we prove that the optimal value function V coincides with 
the function Ṽdefined in (16).

Proposition 4.6  For any x2 ≥ 0 we have that V(
(
b1∕b2

)
x2, x2) = V(x2) = W(x2).

Proof  Given any admissible L
0
= (L0

1
, L0

2
) ∈ Π(b1∕b2)x2,x2 , let us define 

L
1
∈ Π(b1∕b2)x2,x2 as

Note that L1
1
(t) + L1

2
(t) = L0

1
(t) + L0

2
(t) and X

L
1

(t) ∈  for t < �̂L
1

 , so 
L
1
∈ Π̃(b1∕b2)x2,x2 . It is easy to check that the ruin time �̂L

0

 corresponding to the 

admissible strategy L
0 is less than or equal to �̂L

1

 . Therefore,

and thus the result follows. 	�  □

Proposition 4.7  The optimal value function V = Ṽ .

Proof  By Proposition 4.6 and (4.3) we have that V = Ṽ  in  . Then, by Proposition 
4.2 we obtain that V = Ṽ  in D1 . The result in D2follows by symmetry. 	�  □

As a consequence of the previous proposition, the optimal strategy is the one 
described in Remark 4. As an example, consider the claim-size distribution gamma

the parameters b1 = b2 = 0.5 , c1 = c2 = 21.4 , q = 0.1 and � = 10 . In Sec-
tion 6.2.1 of [10], it is shown that  = {0, 10.22} ,  = (0, 1.803] ∪ (10.22,∞) and 
 = (1.803, 10.22) , the optimal strategy is depicted in Fig. 1.

Remark 5  V is not differentiable in C because if it were differentiable at a point ((
b1∕b2

)
x2, x2

)
∈ C , then both Vx1

((
b1∕b2

)
x2, x2

)
 and Vx2

((
b1∕b2

)
x2, x2

)
 should 

be one; then

L
1
(t) =

(
L0
1
(t) + L0

2
(t)
)(
b1, b2

)

V
L
0 (

b1

b2
x2, x2) ≤ V

L
1(

b1

b2
x2, x2)

G(x) = 1 −
(
1 +

x

2

)
e
−

x

2 ,

W (́x2) = 1 +
b1

b2
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that implies x2 ∉  which is a contradiction.

4.4 � V  is not the optimal value function in the case c
2
∕c

1
< b

2
∕b

1

In the next proposition we show, that except in a very special case, the function Ṽ
defined in (16) is never the optimal value function of the optimization problem (6).

Proposition 4.8  In the case that  defined in (20) is not empty, the function Ṽ  is 
not a viscosity solution of (12) at all the points in the first quadrant.

Proof  Let us take any point 
(
x0
1
, x0

2

)
∈  with x0

2
=
(
b2∕b1

)
x0
1
 such that W is differ-

entiable at x0
2
 (since W is locally Lipschitz and  is right-open, the set of points in  

where W
′
 exists has full measure). By definition of ,

W
�
(x0

2
) − 1 −

b1

b2
> 0,

2 4 6 8 10 12
x1

2

4

6

8

10

12
x2

Fig. 1   Optimal strategy for the claim-size distribution gamma
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and

This implies that for any x2 > x0
2
 (and so 

(
x0
1
, x2

)
∈ D2 ) we have,

and so it is differentiable at all these points with

Then, since b1c2 < b2c1 and x2∕b2 > x0
2
∕b2 = x0

1
∕b1,

Hence, taking x2 close enough to x0
2
> 0 we get (�V)(x0

1
, x2) > 0 . So, Ṽ  is not a vis-

cosity solution of (12) at (x0
1
, x2) . 	�  □

Remark 6  In the case that C is empty, A = {(0, 0)} and B = M − {(0, 0)}, so 
W(x2) = (

b1

b2
+ 1)x2 +

c1+c2

�+q
 and Ṽ(x1, x2) = x1 + x2 +

c1+c2

�+q
.

This strategy is called “take the money and run”. Depending on the parameters, 
this strategy could be or not the optimal one.

The optimal value function V and the optimal strategy for surpluses in D2 ∪ , 
unlike the case c1∕b1 = c2∕b2 , cannot be obtained in terms of the one-dimensional 
auxiliary optimization problem as before. We do not have any theoretical result on the 

(W)(x0
2
) = c2W

�
(x0

2
) − (� + q)W(x0

2
) + �

x0
2
∕b2

�
0

W(x0
2
− b2�)dG(�) + c1 −

b1

b2
c2 = 0.

Ṽ
(
x0
1
, x2

)
= x2 − x0

2
+W(x0

2
) = x2 −

b2

b1
x0
1
+W

(
b2

b1
x0
1

)

�Vx1

(
x0
1
, x2

)
= −

b2

b1
+

b2

b1
W

�
(x0

2
) > 1 and �Vx2

(
x0
1
, x2

)
= 1.

(Ṽ)(x0
1
, x2) =c1

(
−

b2

b1
+

b2

b1
W

�
(x0

2
)
)
+ c2 − (q + �)(x2 − x0

2
+W(x0

2
))

+ ��
x0
2
∕b2

0

(x2 − x0
2
+W(x0

2
− b2�))dG(�)

=(W)(x0
2
) + (

c1b2

b1
− c2)

(
W

�
(x0

2
) − 1 −

b1

b2

)
− (x2 − x0

2
)(q + �)

+ �(x2 − x0
2
)G(x0

2
∕b2).



261

1 3

Optimal dividend payments for a two-dimensional insurance…

existence and structure of the optimal strategy in D2 ∪ . In Section 5 we will use a 
two-dimensional numerical scheme to approximate the optimal strategy instead.

5 � Numerical scheme in D2 ∪
In this section we present a convergent numerical scheme to approximate the opti-
mal value function for the case c1∕b1 > c2∕b2 in �2

+
 . In fact, by Corollary 4.2, we 

have that the value function satisfy

and so it is enough to approximate the optimal value function in D2 ∪ . This 
numerical scheme can be seen as a particular case of the one described in [11] for 
the case that the joint multivariate distribution function of the downward jumps is 
given by F(x, y) ∶= G(

(
x∕b1

)
∧
(
y∕b2

)
) and both the penalty and the switch-value 

functions are identically zero.
Given any 𝛿 > 0 , consider Δx1 = c1� and Δx2 = c2� , define the grid domain � 

in �2
+
 as

We look, at each point of the grid � , for the best local strategy among the ones sug-
gested by the operators of the HJB equation (12); these possible local strategies are: 
the first branch pays a lump sum as dividends, the second one pays a lump sum as 
dividends, or none of the branches pay dividends. These local strategies are modi-
fied in such a way that the controlled surplus after applying these local strategies lies 
in the grid. The possible control actions at any point of the grid � are defined as fol-
lows: let (nΔx1,mΔx2) ∈ � be the initial surplus and � and U be the time and size of 
the first claim respectively.

1.	 �1 : The first branch pays immediately Δx1 = c1� as dividends, so the controlled 
surplus becomes ((n − 1)Δx1,mΔx2) ∈ � . The control action �1 can only be 
applied for n > 0.

2.	 �2 : The second branch pays immediately Δx2 = c2� as dividends, so the controlled 
surplus becomes (nΔx1, (m − 1)Δx2) ∈ � . The control action �2 can only be 
applied for m > 0.

3.	 �0 : Pay no dividends up to the time � ∧ � . In the case that 𝛿 < 𝜏 , the uncontrolled 
surplus at time � is ((n + 1)Δx1, (m + 1)Δx2) ∈ � ; and if � ≥ � , the uncontrolled 
surplus at time � is (nΔx1 + c1� − b1U,mΔx2 + c2� − b2U) . If this vector is in the 
first quadrant, the branches pay immediately the minimum amount of dividends in 
such a way that the controlled surplus lies in a point of the grid; this end surplus 
can be written as 

V(x1, x2) = x1 −
(
b1∕b2

)
x2 + V(

(
b1∕b2

)
x2, x2)

� ∶=
{
(nΔx1,mΔx2) ∶ n,m ≥ 0

}
.

([
nΔx1+c1�−b1U

Δx1

]
Δx1,

[
mΔx2+c2�−b2U

Δx2

]
Δx2

)
∈ �;
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 the amount paid as dividends for the first and second branch at time � is equal to 

 In the case that the end surplus (nΔx1 + c1� − b1U,mΔx2 + c2� − b2U) is not in 
the first quadrant, � is the ruin time.

For technical reasons, an extra control action �s is considered, under this con-
trol action no more dividends are paid. The set of control actions is denoted by 
 = {�1,�2,�0,�s}.

Define Π𝛿
nΔx1,mΔx2

⊂ ΠnΔx1,mΔx2
 as the set of all the admissible dividend strategies 

with initial surplus (nΔx1,mΔx2) ∈ � which can be obtained by a sequence (finite or 
infinite) of control actions in  at each point of the grid. The �-optimal function V� is 
defined at each point (nΔx1,mΔx2) ∈ � as the supremum of the value functions of 
admissible strategies which are combination of the control actions in  , that is

Note that the extra control action �s corresponds in the numerical scheme described 
in [11] to switch immediately to a switch-value function identically 0 (which is 
always smaller than V), so it is never optimal to use this control; however -as we will 
see later on- it is used to find a simple admissible dividends strategy in Π�

nΔx1,mΔx2
 to 

start a recursive construction in Π�
nΔx1,mΔx2

 which will converge to V�.

Define v�(n,m) ∶= V�(nΔx1,mΔx2) . It is proved in [11], that the function v� is a 
solution of the following discrete version of the HJB equation

at (n,m) ∈ �
2
0
 . Here the operators T0, T1 and T2 are defined as

and

where

ΔL(�) =
(
nΔx1 + c1� − b1U −

[
nΔx1+c1�−b1U

Δx1

]
Δx1,mΔx2 + c2� − b2U

)

−
[
mΔx2+c2�−b2U

Δx2

]
Δx2).

(21)V�(nΔx1,mΔx2) = sup�∈Π�
nΔx1,mΔx2

V�(nΔx1,mΔx2).

(22)max{T0(W) −W, T1(W) −W, T2(W) −W} = 0

(23)
T1(W)(n,m) ∶= W(n − 1,m) + Δx1,

T2(W)(n,m) ∶= W(n,m − 1) + Δx2,

(24)T0(W)(n,m) ∶= W(n + 1,m + 1)e−(q+�)� + �(W)(n,m);
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Remark 7  Analogously to the Remark 2 for the HJB equation (12), there are infi-
nitely many solutions of the discrete HJB equation; in fact all the functions 
u(n,m) = nΔx1 + mΔx2 + K are solutions of (22) for K large enough. Indeed,

Consider the operator T defined as

Using the results in [11], we have that:

•	 v� can be characterized as the smallest solution of the discrete HJB equation (22). 
Also, if a family of strategies �̃ =

(
�(n,m)

)
(n,m)∈�2

0

 with �(n,m) ∈ Π�
nΔx1,mΔx2

 satisfy 

that the function u(n,m) ∶= V�(n,m)
(nΔx1,mΔx2) is a solution of the discrete HJB 

equation (22) for all (n,m) ∈ �
2
0
 then u = v� and so 

V�(nΔx1,mΔx2) = V�(n,m)
(nΔx1,mΔx2) for (n,m) ∈ �

2
0
.

•	 There exists an optimal admissible strategy for the problem (21) at any point 
of the grid. This strategy, called the �-optimal strategy, is stationary in the 
sense that the control actions depend only on which point of the grid the 
current surplus lies. In the case that T1(v�)(n,m) − v�(n,m) = 0 , the opti-
mal control action at the point (nΔx1,mΔx2) ∈ � is �1 ; in the case that 

(25)

�(W)(n,m)

=

�

�
0

⎛
⎜⎜⎜⎜⎝

nΔx1+c1 t

b1
∧

mΔx2+c2 t

b2

�
0

e−qtW

��
nΔx1 + c1t − b1�

Δx1

�
,

�
mΔx2 + c2t − b2�

Δx2

��
dG(�)

⎞
⎟⎟⎟⎟⎠
�e−�tdt

+

�

�
0

⎛
⎜⎜⎜⎜⎝

nΔx1+c1 t

b1
∧

mΔx2+c2 t

b2

�
0

e−qt
��

c1 + c2
�
t − � + nΔx1 −

�
nΔx1 + c1t − b1�

Δx1

�
Δx1

�
dG(�)

⎞
⎟⎟⎟⎟⎠
�e−�tdt

+

�

�
0

⎛
⎜⎜⎜⎜⎝

nΔx1+c1 t

b1
∧

mΔx2+c2 t

b2

�
0

e−qt
�
mΔx2 −

�
mΔx2 + c2t − b2�

Δx2

�
Δx2

�
dG(�)

⎞
⎟⎟⎟⎟⎠
�e−�tdt.

(T0(W) −W)(n,m) ≤(c1 + c2
)
(�e−(q+�)� +

�

(� + q)2

(
1 − e−(�+q)�

)
− K(1 − e−(�+q)�)

q

� + q
.

(26)T ∶= max{T0, T1, T2}.
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T2(v
�)(n,m) − v�(n,m) = 0, the optimal control action is �2 ; and finally in the 

case that T0(v�)(n,m) − v�(n,m) = 0 , the optimal control action is �0.
•	 The function v� can be obtained recursively. The operator T defined in (26) is 

increasing and v� is a fixed point of this operator. However, by Remark 7, this 
operator has infinitely many fixed points. Since T is not a contraction operator, v� 
can not be obtained numerically as a fixed point; so we construct value functions 
v�
l
(n,m) ∶= V�l

(n,m)
(nΔx1,mΔx2) of strategies �l

(n,m)
∈ Π�

nΔx1,mΔx2
 which can be cal-

culated explicitly such that v�
l
 ↗ v� as l → ∞ . In order to do that, let us define 

iteratively families of strategies �̃l =
(
�l
(n,m)

)
(n,m)∈�2

0

 for each l ≥ 1 in the follow-

ing way;

1.	 Star t with the family of strategies �̃1 =
(
�1
(n,m)

)
(n,m)∈�2

0

 where 

�1
(n,m)

∈ Π�
nΔx1,mΔx2

 corresponds to the local control �s (not more dividends are 

paid); the value function of this strategy is v�
1
(n,m) ∶= V�1

(n,m)
(nΔx1,mΔx2) = 0

.
2.	 G i v e n  �̃l =

(
�l
(n,m)

)
(n,m)∈�2

0

 w i t h  �l
(n,m)

∈ Π�
nΔx1,mΔx2

 ,  d e f i n e 

�̃l+1 =
(
�l+1
(n,m)

)
(n,m)∈�2

0

 as follows, for any (n,m) ∈ �
2
0
 , the best strategy 

�l+1
(n,m)

∈ Π�
nΔx1,mΔx2

 is chosen among the ones which initially follows one of 

the control actions in the set  and then continues with the strategy in the 
family �̃l at the end point of the best control action. The value function of 
�l+1
(n,m)

 is given by 

 Finally, since T is increasing, we have that v�
l+1

≥ v�
l
 for any l ≥ 1 and so 

there exists v = liml→∞ v�
l
 . The function v is a solution of the discrete HJB 

equation (22) and it is constructed as a value function of a combination of 
local controls in  , then v = v�.

•	 Let us extend the definition of V� from � to all the points in the first quadrant as 

 Then, V�(x1, x2) is the value function of the admissible strategy in Πx1,x2
 in which 

the first and second branch pay immediately x1 −
[
x1∕Δx1

]
Δx1 and 

v�
l+1

(n,m) ∶= V�l+1
(n,m)

(nΔx1,mΔx2) = T(v�
l
)(n,m) = T (l)(v�

1
)(n,m) for (n,m) ∈ �

2
0
.

V�(x1, x2) = V�

([
x1

Δx1

]
Δx1,

[
x2

Δx2

]
Δx2

)
+ x1 −

[
x1

Δx1

]
Δx1 + x2 −

[
x2

Δx2

]
Δx2.
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x2 −
[
x2∕Δx2

]
Δx2 respectively as dividends and then follow 

�(n,m) ∈ Π�

[x1∕Δx1]Δx1,[x2∕Δx2]Δx2
. For any 𝛿 > 0 , it holds that V�∕2k ↗ V  locally uni-

formly in the first quadrant as k goes to infinity. The grids �∕2k are taken in order 
to have 𝛿∕2k

⊂ �∕2k+1 and so V�∕2k ≤ V�∕2k+1 .

6 � Numerical examples

We show three numerical examples with parameters b1 = b2 = 0.5 , c1 = 2 , 
c2 = 1, q = 0.05 and � = 1 and different claim-size distributions G. We use the 
numerical scheme introduced in Section 5 and obtain the numerical approximation 
V� of the optimal value function V and the corresponding �-optimal strategy. We can 
see in general that, as we proved in Subsection 4.4, the optimal strategy for initial 
surplus in D1 consists in the first branch paying dividends immediately so the sur-
plus moves to D2 ∪ . It was proved in Proposition 4.8 that it is not optimal for 
some initial surplus in  (unlike the case c2∕c1 = b2∕b1 ) to pay dividends so the 
controlled process remains in the set  until ruin time. We will see in Figs. 2, 6 and 
8 that for some initial surpluses in  the best local strategy is to get out of  with 
the first branch paying dividends immediately.

1 2 3 4 5 6 7
x1

2

4

6

8

x2

Fig. 2   �-optimal strategy with δ = 0.03
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6.1 � Example 1

We show here a numerical example assuming an exponential claim-size distribu-
tion G(x) = 1 − e−dx with d = 0.6 . In Fig. 2 we show the �-optimal strategy with 
� = 0.03 . Note that there is a non-action region ∗ ⊂ D2 . This figure suggests that, 
as � → 0 , the optimal local control in the boundary ∗

1
 should be that the first 

branch pay some part of the incoming premium as dividends while the second 
branch pay no dividends, so the bivariate control surplus stays in ∗

1
 and moves 

rightward to the point (5.4, 6.36) ∈ ∗
0
 . By contrast, the optimal strategy in the 

Fig. 3   V� reduced by (x1 + x2)

Fig. 4   Comparison V� with the value of the merger optimal value function without merger cost
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boundary ∗
2
 is that none of the two branches pay dividends so the bivariate con-

trol surplus moves inside ∗ because the slope of the boundary ∗
2
 is larger than 

c2∕c1 = 1∕2.

Fig. 5   Comparison V�  with the value of the merger optimal value function with merger cost m = 3

1 2 3 4 5 6
x1

1

2

3

4

5

6

x2

Fig. 6   �-optimal strategy for δ = 0.025
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In Fig. 3 we show V� reduced by (x1 + x2) . As it was noted in Remark 1, the 
merger optimal value function without merger cost is greater than V. However, 
this could not be the case when merger costs are considered: we compare V� with 
the value of the merger optimal value function without merger cost in Fig. 4, and 
with the merger optimal value function with merger cost m = 3 in Fig. 5. In all 
the cases the value functions are reduced by (x1 + x2) . We see in Fig. 5 that the 
value function of the merger case with cost only outperforms V� when the differ-
ence of the surpluses of the two branches is large.

6.2 � Example 2

We consider here a gamma claim-size distribution

We show in Figs.  6 and  7 the �-optimal strategy and V� reduced by (x1 + x2) 
respectively for � = 0.025 . Note that, unlike the previous example, the sets 
∗

0
= {(0, 0), (4.00, 4.75)} and ∗

0
 have two connected components. The graph sug-

gest that V� is not differentiable at the lower boundary between ∗
1
 and ∗

0
 but it 

is differentiable at the upper one (this mirrors the smooth fitting property in the 
one-dimensional case); a similar observation could be made about the boundaries 
between ∗

2
 and ∗

0
.

As in the first example, Fig. 6 suggests that the optimal local control in the bound-
ary ∗

1
 should be that the first branch pay some part of the incoming premium as 

dividends while the second branch pay no dividends, so the bivariate control surplus 
stays in ∗

1
 and moves rightward to the point (4.00, 4.75) ∈ ∗

0
 . Again, the optimal 

strategy in the boundary ∗
2
 is that none of the two branches pay dividends so the 

G(x) = 1 −
(
1 +

6

7
x
)
e
−

6

7
x.

Fig. 7   V� reduced by (x1 + x2) for δ = 0.025
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1 2 3 4
x1

1

2

3

4

x2

Fig. 8   �-optimal strategy for δ = 0.02

Fig. 9   V� reduced by (x1 + x2)   for δ = 0.02
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bivariate control surplus moves inside ∗ because the slope of the boundary ∗
2
 is 

larger than c2∕c1 = 1∕2.

6.3 � Example 3

Finally, we consider claims with constant size �0 = 29∕12. Figs. 8 and 9 show the 
�-optimal strategy and V� reduced by (x1 + x2) respectively for � = 0.02 . As in the 
previous example, the sets ∗

0
= {(0, 0), (3.56, 3.62)} and ∗

0
 have two connected 

components.
Note that there is a relation between the shape of ∗

1
 and ∗

2
 , the constant size 

of the claims U = 29∕12 and the rate of growth c2∕c1 = 1∕2 of the uncontrolled 
bivariate surplus in the event of no claims: ∗

1
 and ∗

2
 contain segments with slope 

c2∕c1 and Δx1 = b1U . As in the previous examples, the optimal control strategy 
in ∗

2
 is that none of the two branches pay dividends, and also the optimal strat-

egy in the boundary ∗
1
 consists on the second branch paying no dividends and 

the first branch paying some part of the incoming premium as dividends in such a 
way that the bivariate control surplus stays in ∗

1
 and moves rightward to the point 

(3.56, 3.62) ∈ ∗
0
 . In the segments of ∗

1
 with slope c2∕c1 , the first branch does not 

need to pay dividends in order to remain in ∗
1
.

7 � Conclusions

In this paper we have studied the two-dimensional optimal dividend problem in the 
context of two branches of an insurance company with compound Poisson surplus 
processes dividing claims and premiums in some specified proportions. We proved 
that the value function is the smallest viscosity supersolution of the respective Ham-
ilton–Jacobi–Bellman equation and we identified the optimal strategy. In particular, 
for symmetric case we managed to describe the best strategy explicitly solving some 
auxiliary equivalent optimization problem. For general case we propose the con-
vergent numerical scheme to find the optimal strategy. Using it, we analyzed some 
numerical examples.

We believe that this kind of study is still at its first step and several further exten-
sion can be done. First of all, one can consider more branches of one company. 
Moreover, one can think of more general claim arrival process, for example renewal 
one, with phase-type inter-arrival times. Finally, the analysis may be conducted for 
the two-dimensional classical risk process perturbed by bivariate correlated Brown-
ian motion. It would be also interesting to consider impulse control and pay-out 
function related with Gerber-Shiu penalty functions. All of these problems are quite 
complex and left for future research.
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