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Abstract
Let g = (gi j ) be a complete Riemmanian metric onR2 with finite total area and let Ig
be the infimum of the quotient of the length of any closed simple curve γ in R

2 and
the sum of the reciprocal of the areas of the regions inside and outside γ respectively
with respect to the metric g. Under some mild growth conditions on g we prove the
existence of a minimizer for Ig . As a corollary we obtain a proof for the existence of
a minimizer for Ig(t) for any 0 < t < T when the metric g(t) = gi j (·, t) = uδi j is
the maximal solution of the Ricci flow equation ∂gi j/∂t = −2Ri j on R

2 × (0, T )

(Daskalopoulos and Hamilton in Commun Anal Geom 12(1):143–164, 2004) where
T > 0 is the extinction time of the solution. This existence of minimizer result is
assumed and used without proof by Daskalopoulos and Hamilton (2004).

Keywords Existence of minimizer · Isoperimetric ratio · Complete Riemannian
metric on R

2 · Finite total area

Mathematics Subject Classification Primary 58E99 · 49Q99; Secondary 58C99

1 Introduction

Isoperimetric inequalities arises inmany problems in analysis and geometry such as the
study of partial differential equations and Sobolev inequality [1,17]. In [8,11], Gage
and Hamilton studied isoperimetric inequalities arising from the curve shortening
flow. In [2] Daskalopoulos and Hamilton assumed the existence of a minimizer for
an isoperimetric inequality corresponding to the maximal solution of the finite mass

Communicated by Neil Trudinger.

B Shu-Yu Hsu
shuyu.sy@gmail.com

1 Department of Mathematics, National Chung Cheng University, 168 University Road, Min-Hsiung,
Chia-Yi 621, Taiwan, ROC

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13373-018-0131-3&domain=pdf


604 S.-Y. Hsu

2-dimensional Ricci flow on R
2 and studied various properties of this isoperimetric

inequality. However there is no proof of the existence of this minimizer in [2] and
there is also no proof of this important existence result in other papers. In [3,4,6],
Daskalopoulos, Hamilton, Del Pino and Sesum used these properties to study the
behaviour of ancient solution of Ricci flow and the extinction behavior of finite mass
maximal solution of Ricci flow, which is an important tool in the classification of
manifolds [14–16,18].

Since the existence of such minimizer is crucial to the proof of various theorems in
[2,3,5,6], in this paper I will give a rigorous proof of this important existence result. In
fact my existence result holds for any metrics that satisfies some structural conditions
which include the maximal finite mass solution of the 2-dimensional Ricci flow as a
special case.

Let g = (gi j ) be a complete Riemannian metric on R
2 with finite total area A =∫

R2 dVg satisfying

λ1(|x |)δi j ≤ gi j (x) ≤ λ2(|x |)δi j ∀|x | ≥ r0 (1.1)

for some constant r0 > 1 and positive monotone decreasing functions λ1(r), λ2(r),
on [r0,∞) that satisfy

∫ c0r

r

√
λ1(ρ) dρ ≥ πr

√
λ2(r) ∀r ≥ r0, (1.2)

r
√

λ1(c0r) ≥ b1

∫ ∞

r
ρλ2(ρ) dρ ∀r ≥ r0, (1.3)

∫ r2

r

√
λ1(ρ) dρ ≥ b2 ∀r ≥ r0, (1.4)

and

λ1(c0r) ≥ δλ2(r) ∀r ≥ r0 (1.5)

for some constants c0 > 1, b1 > 0, b2 > 0, δ > 0, where |x | is the distance of x from
the origin with respect to the Euclidean metric. For any closed simple curve γ in R

2,
let (cf. [2])

I (γ ) = L(γ )

(
1

Ain(γ )
+ 1

Aout (γ )

)

, (1.6)

where L(γ ) is the length of the curve γ , Ain(γ ) and Aout (γ ) are the areas of the
regions inside and outside γ respectively, with respect to the metric g. Let

I = Ig = inf
γ

I (γ ) (1.7)

where the infimum is over all closed simple curves γ in R
2. In this paper we will

prove that there exists a constant b0 > 0 such that if Ig < b0, then there exists a
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closed simple curve γ satisfying Ig = I (γ ). As a corollary we obtain a proof for the
existence of a minimizer for the isoperimetric ratio Ig(t) for any 0 < t < T when the
metric g(t) = gi j (·, t) = uδi j is the maximal solution of the Ricci flow [2]

∂

∂t
gi j = −2Ri j on R

2 × (0, T ),

where T > 0 is the extinction time of the solution and u is a solution of

ut = � log u on R2 × (0, T ). (1.8)

Wewill adapt andmodify the techniques in [11,12] to prove the result. Since the domain
under consideration in [11,12], is either the sphere S2 ([12]) or a bounded domain,
the minimizing sequences for the infimum of the isoperimetric ratios considered in
those cases stay in a compact set. On the other hand since the isoperimetric ratio (1.6)
is for any curve γ in R

2, the minimizing sequence of curves for the infimum of the
isoperimetric ratio (1.7) may not stay in a compact subset of R2 and may not have
a limit at all. The technique for compact manifold [12] is not sufficient to prove this
result. New technique and ideas are used in this paper to prove the result. We will
show that there exists a constant such that this is impossible when Ig is less than this
constant. After this we will use the curve shortening flow technique of [12] to modify
the minimizing sequence of curves and show that they will converge to a minimizer
of (1.7).

For any x0 ∈ R
2 and r > 0 let Br (x0) = {x ∈ R

2 : |x − x0| < r} and Br = Br (0).
The main results of the paper are as follows.

Theorem 1.1 Suppose g satisfies (1.1) for some constant r0 > 1 where λ1(r), λ2(r),
are positive monotone decreasing functions on [r0,∞) that satisfy (1.2), (1.3), (1.4)
and (1.5) for some constants c0 > 1, b1 > 0, b2 > 0 and δ > 0. Then there exists a
constant b0 > 0 depending on b1, b2 and A such that the following holds:

If

Ig < b0, (1.9)

then there exists a closed simple curve γ in R2 such that Ig = I (γ ). Hence Ig > 0.

Proposition 1.2 Suppose g = (gi j ) satisfies

C1

r2(log r)2
δi j ≤ gi j ≤ C2

r2(log r)2
δi j ∀r ≥ r1

for some constants C2 ≥ C1 > 0, r1 > 1. Then there exist constants c0 > 1, δ > 0,
b1 > 0, b2 > 0, and r0 ≥ r1 such that (1.2), (1.3), (1.4) and (1.5) hold.

Corollary 1.3 Let gi j (x, t) = u(x, t)δi j where u is the maximal solution of (1.8) with
initial value 0 ≤ u0 ∈ L p(R2) ∩ L1(R2), u0 �≡ 0, for some p > 1 satisfying

u0(x) ≤ C

|x |2(log |x |)2 ∀|x | > 1 (1.10)
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given by [4,13] where T = (1/4π)
∫
R2 u0 dx. Then for any 0 < t1 < T there exists a

constant b0 > 0 such that the following holds:
For any t1 ≤ t < T , if Ig(t) < b0, then there exists a closed simple curve γ that

satisfies Ig(t) = I (γ ).

By an argument similar to the proof of Proposition 1.2 we also have the following
result.

Remark 1.4 Suppose g = (gi j ) satisfies

C1

r2(log r)2(1 + log r)2
δi j ≤ gi j ≤ C2

r2(log r)2(1 + log r)2
δi j ∀r ≥ r1

for some constants C2 ≥ C1 > 0, r1 > 1. Then there exist constants c0 > 1, δ > 0,
b1 > 0, b2 > 0, and r0 ≥ r1 such that (1.2), (1.3), (1.4) and (1.5) hold. The growth
condition for g here is different from that of Proposition 1.2. Hence Theorem 1.1 is
more general than the minimizer result used by Daskalopoulos and Hamilton [2].

2 The proof of themain results

Proof of Proposition 1.2 Let λi (r) = Ci (r log r)−2, i = 1, 2,

c0 = 2eπ
√
C2/C1 , (2.1)

and δ = C1/(2c20C2). We choose r2 ≥ r1 such that

log r

log(c0r)
≥ 1√

2
∀r ≥ r2. (2.2)

Then by (2.1) and (2.2),

λ1(c0r)

λ2(r)
= C1

c20C2

(
log r

log(c0r)

)2

≥ C1

2c20C2
= δ ∀r ≥ r2. (2.3)

We next note that

lim
r→∞

(

(log r) log

(
log(c0r)

log r

))

= lim
z→0

log((log c0)z + 1)

z
= log c0. (2.4)

By (2.1) and (2.4) there exists r0 ≥ r2 such that

(log r) log

(
log(c0r)

log r

)

> π
√
C2/C1 ∀r ≥ r0. (2.5)

By (2.3) and (2.5), we get (1.2) and (1.5). By (2.2) and a direct computation (1.3) and
(1.4) holds with b1 = √

C1/(
√
2c0C2), b2 = √

C1 log 2, and the proposition follows.
�
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Proof of Corollary 1.3 By (1.10) and the results of [7] there exists a constant C2 > 0
such that

u(x, t) ≤ C2

|x |2(log |x |)2 ∀|x | > 1, 0 < t < T (2.6)

and for any t0 ∈ (0, T ) there exists a constant r1 > 1 such that

u(x, t) ≥ (3/2)t

|x |2(log |x |)2 ∀|x | ≥ r1, 0 < t ≤ t0. (2.7)

By (2.6), (2.7), Theorem 1.1 and Proposition 1.2, the corollary follows. �

Henceforth wewill assume that g is ametric onR2 with finite total area that satisfies

(1.1), (1.2), (1.3), (1.4) and (1.5) for some constants r0 > 1, c0 > 1, b1 > 0, b2 > 0,
δ > 0 where λ1(r), λ2(r), are positive monotone decreasing functions on [r0,∞).
Let b0 = min(b1, 4b2/A). Suppose (1.9) holds. Let {γk}∞k=1 be a sequence of closed
simple curves on R

2 such that

I (γk) → I as k → ∞ and I (γk) < b0 ∀k ∈ Z
+. (2.8)

We will show that the sequence {γk}∞k=1 is contained in some compact set of R2. Let
	k be the region inside γk and rk = minx∈γk |x |. Let Le(γk) be the length of γk and
|	k | be the area of 	k with respect to the Euclidean metric. We choose r ′

0 > r0 such
that

Volg
(
R
2\Br ′

0

)
≤ A

4
∀k ∈ Z

+. (2.9)

Lemma 2.1 The sequence rk is uniformly bounded.

Proof Suppose the lemma is not true. Then there exists a subsequence of rk which we
may assume without loss of generality to be the sequence itself such that

rk > r ′
0 ∀k ∈ Z

+ (2.10)

and rk → ∞ as k → ∞. Let γ̃k = ∂Brk . We choose a point xk ∈ γk ∩ ∂Brk and
let γk : [0, 2π ] → R

2 be a parametrization of the curve γk such that xk = γk(0) =
γk(2π). Since for any k ∈ Z

+ either 0 ∈ 	k or 0 ∈ R
2\	k holds, thus either

0 ∈ 	k for infinitely many k (2.11)

or

0 ∈ R
2\	k for infinitely many k (2.12)

holds. We need the following result for the proof of the lemma.
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608 S.-Y. Hsu

Claim 1 There exists only finitely many k such that γk ∩ (R2\Bc0rk ) �= ∅.
Proof of Claim 1 Suppose claim 1 is false. Then there exists infinitely many k such that
γk ∩ (R2\Bc0rk ) �= ∅. Without loss of generality we may assume that

γk ∩
(
R
2\Bc0rk

)
�= ∅ ∀k ∈ Z

+. (2.13)

By (2.13) there exists φ0 ∈ (0, 2π) such that

|γk(φ0)| > c0rk .

Hence there exists 0 < φ1 < φ0 < φ2 < 2π such that

γk(φ1) = γk(φ2) = c0rk

and

rk ≤ |γk(φ)| ≤ c0rk ∀φ ∈ (0, φ1) ∪ (φ2, 2π).

Then by (1.1),

L(γk) =
∫ 2π

0

(
gi j

.
γ
i
k

.
γ

j
k

) 1
2
dφ

≥
(∫ φ1

0
+

∫ 2π

φ2

) (
gi j

.
γ
i
k

.
γ

j
k

) 1
2
dφ

≥
(∫ φ1

0
+

∫ 2π

φ2

) √
λ1(r)

√(
dr

dφ

)2

+ r2
(
dθ

dφ

)2

dφ

≥2
∫ c0rk

rk

√
λ1(r) dr (2.14)

and

2πrk
√

λ1(rk) ≤ L(γ̃k) =
∫ 2π

0

(

gi j
.

γ̃ i
k

.

γ̃
j
k

) 1
2

dφ ≤ 2πrk
√

λ2(rk). (2.15)

By (1.2), (2.14) and (2.15),

L(γ̃k) ≤ L(γk). (2.16)

Suppose (2.11) holds. Without loss of generality we may assume that 0 ∈ 	k for all
k ∈ Z

+. Then Brk ⊂ 	k for all k ∈ Z
+. Hence by (2.9), (2.10),

Aout (γk) ≤ Volg
(
R
2\Brk

)
≤ A

4
∀k ∈ Z

+ (2.17)
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and

3A

4
≤ Volg

(
Brk

) ≤ Ain(γk) ≤ A ∀k ∈ Z
+. (2.18)

We will now show that the circle γ̃k = ∂Brk satisfies

I (γ̃k) ≤ I (γk). (2.19)

Let ε = Aout (γ̃k) − Aout (γk). Then ε = Ain(γk) − Ain(γ̃k). Since γ̃k ⊂ 	k and the
region between γk and γ̃k is contained in R2\Brk , by (2.17),

0 ≤ ε ≤ A

4
. (2.20)

Hence by (2.17) and (2.20),

1

Ain(γ̃k)
+ 1

Aout (γ̃k)
= A

Ain(γ̃k)Aout (γ̃k)
= A

(Ain(γk) − ε)(Aout (γk) + ε)

≤ A

Ain(γk)Aout (γk)
= 1

Ain(γk)
+ 1

Aout (γk)
. (2.21)

By (2.16) and (2.21) we get (2.19). Now by (1.1),

Aout (γ̃k) =
∫

R2\Brk

√
detgi j dx ≤ 2π

∫ ∞

rk
ρλ2(ρ) dρ. (2.22)

By (1.3), (2.15), (2.19) and (2.22),

I (γk) ≥ L(γ̃k)

Aout (γ̃k)
+ L(γ̃k)

Ain(γ̃k)
≥ b1. (2.23)

Letting k → ∞ in (2.23),

I ≥ b1. (2.24)

This contradicts (1.9) and the definition of b0. Hence (2.11) does not hold.
Suppose (2.12) holds. Without loss of generality we may assume that 0 ∈ R

2\	k

for all k ∈ Z
+. Then by (2.10) 0 ∈ R

2\	k and Brk ⊂ R
2\	k for any k ∈ Z

+. By
an argument similar to the proof of (2.17) and (2.18) but with the role of Ain(γk) and
Aout (γk) being interchanged in the proof we get

⎧
⎪⎨

⎪⎩

Ain(γk) ≤ Volg
(
R
2\Brk

)
≤ A

4
∀k ∈ Z

+

3A

4
≤ Aout (γk) ≤ A ∀k ∈ Z

+.

(2.25)
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610 S.-Y. Hsu

Similarly by interchanging the role of Ain(γk) and Aout (γk) and replacing ε by ε′ =
Aout (γ̃k) − Ain(γk) = Aout (γk) − Ain(γ̃k) in the proof of (2.19)–(2.23) above, we
get that 0 ≤ ε′ ≤ A/4 and (2.19), (2.23), still holds. Letting k → ∞ in (2.23), we get
(2.24). This again contradicts (1.9) and the definition of b0. Thus (2.12) does not hold
and Claim 1 follows. �


Wewill now continue with the proof of the lemma. By Claim 1 there exists k0 ∈ Z
+

such that

γk ∩
(
R
2\Bc0rk

)
= ∅ ∀k ≥ k0

⇒ γk ⊂ Bc0rk\Brk ∀k ≥ k0. (2.26)

Note that either (2.11) or (2.12) holds. Suppose (2.11) holds.Without loss of generality
we may assume that 0 ∈ 	k for all k ≥ k0. Then Brk ⊂ 	k for all k ≥ k0. Hence by
(1.1) and (2.26),

L(γk) =
∫ 2π

0

(
gi j

.
γ
i
k

.
γ

j
k

) 1
2
dφ

≥√
λ1(c0rk)

∫ 2π

0

((
dr

dφ

)2

+ r2
(
dθ

dφ

)2
) 1

2

dφ

≥2πrk
√

λ1(c0rk) ∀k ≥ k0 (2.27)

and

Aout (γk) ≤
∫

R2\Brk

√
detgi j dx ≤ 2π

∫ ∞

rk
ρλ2(ρ) dρ ∀k ≥ k0. (2.28)

By (1.3), (2.27) and (2.28),

I (γk) ≥ L(γk)

Aout (γk)
≥ rk

√
λ1(c0rk)∫ ∞

rk
ρλ2(ρ) dρ

≥ b1 ∀k ≥ k0. (2.29)

Letting k → ∞ in (2.29),weget (2.24). Since (2.24) contradicts (1.9) and the definition
of b0, (2.11) does not hold. Hence (2.12) holds. By (2.10) and (2.12) we may assume
without loss of generality that 0 ∈ R

2\	k for all k ≥ k0. Then Brk ⊂ R
2\	k for all

k ≥ k0. Hence 	k is contractible to a point in Bc0rk\Brk for all k ≥ k0. By (1.1),

L(γk) =
∫ 2π

0

(
gi j

.
γ
i
k

.
γ

j
k

) 1
2
dφ ≥ √

λ1(c0rk)Le(γk) ∀k ≥ k0. (2.30)

By the isoperimetric inequality,

4π |	k | ≤ Le(γk)
2. (2.31)
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Then by (2.30) and (2.31),

L(γk) ≥ 2(πλ1(c0rk)|	k |) 1
2 ∀k ≥ k0. (2.32)

Now

Ain(γk) =
∫

	k

√
detgi j dx ≤ λ2(rk)|	k | ∀k ≥ k0. (2.33)

By (1.5), (2.32) and (2.33),

L(γk) ≥ 2π
1
2

(
λ1(c0rk)

λ2(rk)

) 1
2

Ain(γk)
1
2 ≥ 2(πδ)

1
2 Ain(γk)

1
2 ∀k ≥ k0

⇒ I (γk) ≥ L(γk)

Ain(γk)
≥ 2(πδ)

1
2 Ain(γk)

− 1
2 ∀k ≥ k0. (2.34)

Since 	k ⊂ R
2\Brk ,

Ain(γk) → 0 as k → ∞. (2.35)

Letting k → ∞ in (2.34) by (2.35) we get I = ∞. This contradicts (1.9). Hence
(2.12) does not hold and the lemma follows. �


By Lemma 2.1 there exists a constant a1 > r0 such that

rk ≤ a1 ∀k ∈ Z
+. (2.36)

Lemma 2.2 γk ∈ Ba21
∀k ∈ Z

+.

Proof Let ρk = maxγk |x |. Suppose the lemma does not hold. Then there exists a
subsequence of ρk which wemay assume without loss of generality to be the sequence
itself such that

ρk > a21 ∀k ∈ Z
+. (2.37)

By (1.1), (1.4), (2.36), (2.37) and an argument similar to the proof of (2.14),

L(γk) ≥
∫ a21

a1

√
λ1(ρ) dρ ≥ b2 ∀k ∈ Z

+. (2.38)

Hence by (2.38),

I (γk) = AL(γk)

Ain(γk)Aout (γk)
≥ Ab2

(A/2)2
= 4b2

A
∀k ∈ Z

+

⇒ I ≥ 4b2
A

as k → ∞.
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612 S.-Y. Hsu

This contradicts (1.9) and the definition of b0. Hence the lemma follows. �

Let Lk = L(γk). Since Ba21

is compact, there exists constants c2 > c1 > 0 such
that

c1δi j ≤ gi j ≤ c2δi j on Ba21
. (2.39)

Lemma 2.3 There exists a constant δ1 > 0 such that Lk ≥ δ1 ∀k ∈ Z
+.

Proof By (2.39),

{
c
1
2
1 Le(γk) ≤ Lk ≤ c

1
2
2 Le(γk) ∀k ∈ Z

+

c1|	k | ≤ Ain(γk) ≤ c2|	k | ∀k ∈ Z
+.

(2.40)

By (2.8), (2.31) and (2.40),

b0 >
Lk

Ain(γk)
≥ c

1
2
1 Le(γk)

c2|	k | ≥ c
1
2
1

c2
· Le(γk)

(Le(γk)2/4π)
≥ 4πc

1
2
1

c2Le(γk)
∀k ∈ Z

+

⇒ Lk ≥ c
1
2
1 Le(γk) ≥ 4πc1

c2b0
∀k ∈ Z

+

and the lemma follows. �

By the proof of Lemma 2.3 we have the following corollary.

Corollary 2.4 For any constant C1 > 0 there exists a constant δ1 > 0 such that

L(γ ) > δ1

for any simple closed curve γ ⊂ Ba21
satisfying

I (γ ) < C1. (2.41)

By (1.6) and Corollary 2.4 we have the following corollary.

Corollary 2.5 For any constant C1 > 0 there exists a constant δ2 > 0 such that

Ain(γ ) > δ2 and Aout (γ ) > δ2

for any simple closed curve γ ⊂ Ba21
satisfying (2.41).

Lemma 2.6 There exists a constant C2 > 0 such that the following holds. Suppose
β ⊂ Ba21

is a closed simple curve. Then under the curve shrinking flow

∂β

∂τ
(s, τ ) = k �N (2.42)
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with β(s, 0) = β(s) where for each τ ≥ 0, k(·, τ ) is the curvature, �N is the unit inner
normal, and s is the arc length of the curve β(·, τ ) with respect to the metric g, there
exists τ0 ≥ 0 such that the curve βτ0 = β(·, τ0) ⊂ Ba21

satisfies I (βτ0) ≤ I (β) and

∫
k(s, τ0)

2 ds ≤ C2.

Proof Since the proof is similar to the proof of [2] and the Lemma on P.197 of [12],
we will only sketch the proof here. Let βτ = β(·, τ ) and write

L(τ ) = Lg(β(·, τ )), I (τ ) = I (βτ ) = Ig(β(·, τ )),

and the areas

Ain(τ ) = Ain(β(·, τ )), Aout (τ ) = Aout (β(·, τ )),

with respect to the metric g. Let T1 > 0 be the maximal existence time of the solution
of (2.42). Then

βτ ⊂ Ba21
∀0 ≤ τ < T1. (2.43)

Similar to the result on P.196 of [12] we have

∂Ain

∂τ
= −

∫
k ds,

∂Aout

∂τ
=

∫
k ds,

∂L

∂τ
= −

∫
k2 ds (2.44)

and
∫

k ds +
∫

	(τ)

KdVg = 2π (2.45)

by the Gauss-Bonnet theorem where K is the Gauss curvature with respect to g and
	(τ) ⊂ Ba21

is the region enclosed by the curve β(s, τ ). Let C1 = 2I (β). By conti-
nuity there exists a constant 0 < δ0 < T1 such that

I (τ ) < C1 ∀0 ≤ τ ≤ δ0. (2.46)

By (2.46), Corollary 2.4, and Corollary 2.5 there exist constants δ1 > 0, δ2 > 0, such
that

L(τ ) > δ1, Ain(τ ) > δ2, Aout (τ ) > δ2 ∀0 ≤ τ ≤ δ0. (2.47)

Now

∂

∂τ
(log I (τ )) = 1

L

∂L

∂τ
− 1

Ain

∂Ain

∂τ
− 1

Aout

∂Aout

∂τ
+ 1

A

∂A

∂τ
. (2.48)
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614 S.-Y. Hsu

By (2.43) and (2.45)
∫
k ds is uniformly bounded for all 0 ≤ τ < T1. Then by (2.44),

(2.45), (2.47), and (2.48), there exists a constant C2 > 0 independent of δ0 such that

∂

∂τ
(log I (τ )) < 0

for any τ ∈ (0, δ0] satisfying
∫

k(s, τ )2 ds > C2.

If

∫
k(s, 0)2 ds ≤ C2,

we set τ0 = 0 and we are done. If

∫
k(s, 0)2 ds > C2,

then either there exists τ0 ∈ (0, δ0] such that

∫
k(s, τ0)

2 ds = C2 and
∫

k(s, τ )2 ds > C2 ∀0 ≤ τ < τ0 (2.49)

or

∫
k(s, τ )2 ds > C2 ∀0 ≤ τ ≤ δ0. (2.50)

If (2.49) holds, since I (τ0) ≤ I (0) we are done. If (2.50) holds, since I (δ0) ≤ I (0)
we can repeat the above the argument a finite number of times. Then either
(a) there exists τ0 ∈ (0, T1) such that (2.49) holds
or
(b)

∫
k(s, τ )2 ds > C2 ∀0 ≤ τ < T1 (2.51)

holds.
If (b) holds, then similar to the proof of the Lemma on P.197 of [12] by (2.47)

we get a contradiction to the Grayson theorem ([9,10,12]) for curve shortening flow.
Hence (a) holds. Since I (τ0) ≤ I (0), the lemma follows. �


To complete the proof of Theorem 1.1 we also need the following technical lemma
(see [12]).
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Lemma 2.7 For any positive numbers α1, α2, A1, A2, A3 we have

(α1 + α2)

(
1

A2
+ 1

A1 + A3

)

≥ min

{

α1

(
1

A1
+ 1

A2 + A3

)

, α2

(
1

A3
+ 1

A1 + A2

)}

.

(2.52)

Proof Suppose (2.52) does not hold. Then

(α1 + α2)

(
1

A2
+ 1

A1 + A3

)

≤ α1

(
1

A1
+ 1

A2 + A3

)

⇒ A1(A2 + A3)

A2(A1 + A3)
≤ α1

α1 + α2
(2.53)

and

(α1 + α2)

(
1

A2
+ 1

A1 + A3

)

≤ α2

(
1

A3
+ 1

A1 + A2

)

⇒ A3(A1 + A2)

A2(A1 + A3)
≤ α2

α1 + α2
. (2.54)

Summing (2.53) and (2.54),

2A1A3

A2(A1 + A3)
≤ 0 ⇒ A1 = 0 or A3 = 0.

Contradiction arises. Hence (2.52) holds and the lemma follows. �

We are now ready for the proof of Theorem 1.1.

Proof of Theorem 1.1 Since the proof is similar to the proof of [11,12] we will only
sketch the argument here. Let C2 > 0 be given by Lemma 2.6 and δ1 > 0 be given by
Corollary 2.4 with C1 = b0. By Lemma 2.2, Lemma 2.3, Corollary 2.4, Lemma 2.6
and an argument similar to the proof of [12] for each j ∈ Z

+ there exists a closed
simple curve γ j ⊂ Ba21

satisfying

I (γ j ) ≤ I (γ j ) and L(γ j ) ≥ δ1 ∀ j ∈ Z
+

and
∫

γ j

k2 ds ≤ C2, (2.55)

where k is the curvature of γ j . By (2.55) and the same argument as that on P. 197-199

of [12] γ j are locally uniformly bounded in L1
2 and C1+ 1

2 . Hence γ j has a sequence
whichwemay assumewithout loss of generality to be the sequence itself that converges
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uniformly in L1
p for any 1 < p < 2 and in C1+α for any 0 < α < 1/2 as j → ∞ to

some closed immersed curve γ ⊂ Ba21
. Moreover γ satisfies

I = I (γ ) and L(γ ) ≥ δ1.

Since γ is the limit of embedded curves, γ cannot cross itself and at worst it will be self
tangent. Suppose γ is self tangent. Without loss of generality we may assume that γ is
only self tangent at one point. Then γ = β1∪β2 withβ1∩β2 being a single point where
β1, β2, are simple closed curves. Then Ain(γ ) = Ain(β1) + Ain(β2), Aout (β1) =
Aout (γ )+ Ain(β2), Aout (β2) = Aout (γ )+ Ain(β1), and L(γ ) = L(β1)+ L(β2). Let
L1 = L(β1) and L2 = L(β2). By Lemma 2.7,

(L1 + L2)

(
1

Aout (γ )
+ 1

Ain(β1) + Ain(β2)

)

≥ min

{

L1

(
1

Ain(β1)
+ 1

Aout (γ ) + Ain(β2)

)

, L2

(
1

Ain(β2)
+ 1

Aout (γ ) + Ain(β1)

)}

.

Hence

L(γ )

(
1

Aout (γ )
+ 1

Ain(γ )

)

≥ min

{

L1

(
1

Ain(β1)
+ 1

Aout (β1)

)

, L2

(
1

Ain(β2)
+ 1

Aout (β2)

)}

⇒ I (γ ) ≥ min(I (β1), I (β2))

⇒ I (γ ) = min(I (β1), I (β2)).

Without loss of generality we may assume that I (γ ) = I (β1). Then by Corollary 2.4
β1 is a simple closed curve which attains the minimum. Similar to the proof of [12],
by a variation argument β1 has constant curvature

k = L

(
1

Ain
− 1

Aout

)

.

Hence β1 is smooth and the theorem follows. �
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