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Abstract
In this paper Geronimus transformations for matrix orthogonal polynomials in the
real line are studied. The orthogonality is understood in a broad sense, and is given in
terms of a nondegenerate continuous sesquilinear form, which in turn is determined
by a quasidefinite matrix of bivariate generalized functions with a well defined sup-
port. The discussion of the orthogonality for such a sesquilinear form includes, among
others, matrix Hankel cases with linear functionals, general matrix Sobolev orthog-
onality and discrete orthogonal polynomials with an infinite support. The results are
mainly concerned with the derivation of Christoffel type formulas, which allow to
express the perturbed matrix biorthogonal polynomials and its norms in terms of the
original ones. The basic tool is the Gauss–Borel factorization of the Gram matrix, and
particular attention is paid to the non-associative character, in general, of the product
of semi-infinite matrices. The Geronimus transformation, in where a right multipli-
cation by the inverse of a matrix polynomial and an addition of adequate masses is
performed, is considered. The resolvent matrix and connection formulas are given.
Two different methods are developed. A spectral one, based on the spectral properties
of the perturbing polynomial, and constructed in terms of the second kind functions.
This approach requires the perturbing matrix polynomial to have a nonsingular lead-
ing term. Then, using spectral techniques and spectral jets, Christoffel–Geronimus
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formulas for the transformed polynomials and norms are presented. For this type of
transformations, the paper also proposes an alternativemethod, which does not require
of spectral techniques, that is valid also for singular leading coefficients. When the
leading term is nonsingular a comparative of between both methods is presented. The
nonspectral method is applied to unimodular Christoffel perturbations, and a simple
example for a degree one massless Geronimus perturbation is given.
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1 Introduction

Perturbations of a linear functional u in the linear space of polynomials with real coef-
ficients have been extensively studied in the theory of orthogonal polynomials on the
real line (scalar OPRL). In particular, when you deal with the positive definite case, and
linear functionals associated with probability measures supported in an infinite subset
of the real line are considered, such perturbations provide interesting information in
the framework of Gaussian quadrature rules taking into account the perturbation yields
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new nodes andChristoffel numbers, see [25,26]. Three perturbations have attracted the
interest of the researchers. Christoffel perturbations, that appear when you consider a
new functional û = p(x)u, where p(x) is a polynomial, were studied in 1858 by the
German mathematician Christoffel in [13], in the framework of Gaussian quadrature
rules. He found explicit formulas relating the corresponding sequences of orthogonal
polynomials with respect to two measures, the Lebesgue measure dμ supported in
the interval (−1, 1) and dμ̂(x) = p(x)dμ(x), with p(x) = (x − q1) · · · (x − qN ) a
signed polynomial in the support of dμ, as well as the distribution of their zeros as
nodes in such quadrature rules. Nowadays, these are called Christoffel formulas, and
can be considered a classical result in the theory of orthogonal polynomials which
can be found in a number of textbooks, see for example [12,26,71]. Explicit relations
between the corresponding sequences of orthogonal polynomials have been exten-
sively studied, see [25], as well as the connection between the corresponding monic
Jacobi matrices in the framework of the so-called Darboux transformations based on
the LU factorization of such matrices [9]. In the theory of orthogonal polynomials,
connection formulas between two families of orthogonal polynomials allow to express
any polynomial of a given degree n as a linear combination of all polynomials of degree
less than or equal to n in the second family. A noteworthy fact regarding the Christoffel
finding is that in some cases the number of terms does not grow with the degree n but
remarkably, and on the contrary, remain constant, equal to the degree of the perturbing
polynomial. See [25,26] for more on the Christoffel type formulas as well as [10],
where Darboux transformations for measures supported on the unit circle are deeply
studied.

Geronimus transformation appearswhen you are dealingwith perturbed functionals
v defined by p(x)v = u, where p(x) is a polynomial. Such a kind of transformations
were used by the Russian mathematician Geronimus, see [35], in order to have a nice
proof of a result by Hahn [46] concerning the characterization of classical orthogonal
polynomials (Hermite, Laguerre, Jacobi, and Bessel) as those orthogonal polynomials
whose first derivatives are also orthogonal polynomials, for an English account of
Geronimus’ paper [35] see [40]. Again, as happened for the Christoffel transformation,
within the Geronimus transformation one can find Christoffel type formulas, now in
terms of the second kind functions, relating the corresponding sequences of orthogonal
polynomials, see for example the work of Maroni [55] for a perturbation of the type
p(x) = x − a.

Was Krein in [48] the first to discuss matrix orthogonal polynomials, for a review
on the subject see [15]. The great activity in this scientific field has produced a vast
bibliography, treating among other things subjects like inner products defined on the
linear space of polynomials with matrix coefficients or aspects as the existence of the
corresponding sequences of matrix orthogonal polynomials in the real line, see [18,19,
56,63,70]) and their applications in Gaussian quadrature for matrix-valued functions
[69], scattering theory [5,34] and system theory [24]. The seminal paper [20] gave the
key for further studies in this subject and, subsequently, some relevant advances have
been achieved in the study of families of matrix orthogonal polynomials associated
to second order linear differential operators as eigenfunctions and their structural
properties [18,21,41,42]. In [11] sequences of orthogonal polynomials satisfying a first
order linear matrix differential equation were found, which is a remarkable difference
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with the scalar scenario, where such a situation does not appear. The spectral problem
for second order linear difference operators with polynomial coefficients has been
considered in [4]. Therein four families of matrix orthogonal polynomials (as matrix
relatives of Charlier, Meixner, Krawtchouk scalar polynomials and another one that
seems not have any scalar relative) are obtained as illustrative examples of the method
described therein.

We continue this introduction with two introductory subsections. One is focused
on the spectral theory of matrix polynomials, we follow [39]. The other is a basic
background on matrix orthogonal polynomials, see [15]. In the second section we
extend the Geronimus transformations to the matrix realm, and find connection for-
mulas for the biorthogonal polynomials and the Christoffel–Darboux kernels. These
developments allow for the finding of the Christoffel–Geronimus formula for matrix
perturbations of Geronimus type. As we said we present two different schemes. In
the first one, which can be applied when the perturbing polynomial has a nonsingu-
lar leading coefficient, we express the perturbed objects in terms of spectral jets of
the primitive second kind functions and Christoffel–Darboux kernels. We present a
second approach, applicable even when the leading coefficient is singular. For each
method we consider two different situations, the less interesting case of biorthogonal
polynomials of degree less than the degree of the perturbing polynomial, and the much
more interesting situation whence the degrees of the families of biorthogonal poly-
nomials are greater than or equal to the degree of the perturbing polynomial. To end
the section, we compare spectral versus nonspectral methods and present a number of
applications. In particular, we deal with unimodular polynomial matrix perturbations
and degree onematrixGeronimus transformations. Notice that in [6] we have extended
these results to the matrix linear spectral case, i.e. to Uvarov–Geronimus–Christoffel
formulas for certain matrix rational perturbations. Finally, an appendix with the defi-
nitions of Schur complements and quasideterminants is also included in order to have
a perspective of these basic tools in the theory of matrix orthogonal polynomials.

1.1 On spectral theory of matrix polynomials

Here we give some background material regarding the spectral theory of matrix poly-
nomials [39,52].

Definition 1 Let A0, A1 . . . , AN ∈ C
p×p be square matrices of size p × p with

complex entries and AN �= 0p. Then

W (x) = AN x N + AN−1x N−1 + · · · + A1x + A0 (1)

is said to be amatrix polynomial of degree N , deg(W (x)) = N . Thematrix polynomial
is said to be monic when AN = Ip, where Ip ∈ C

p×p denotes the identity matrix.
The linear space—a bimodule for the ring of matrices C

p×p—of matrix polynomials
with coefficients in C

p×p will be denoted by C
p×p[x].

Definition 2 (Eigenvalues) The spectrum, or the set of eigenvalues, σ(W (x)) of a
matrix polynomial W is the zero set of det W (x), i.e.
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σ(W (x)) := {x ∈ C : det W (x) = 0}.

Proposition 1 A monic matrix polynomial W (x), deg(W (x)) = N, has N p (counting
multiplicities) eigenvalues or zeros, i.e., we can write

det W (x) =
q∏

a=1

(x − xa)αa ,

with N p = α1 + · · · + αq .

Proposition 2 Any nonsingular matrix polynomial W (x) ∈ C
p×p[x], det W (x) �= 0,

can be represented

W (x) = Ex0(x) diag((x − x0)
κ1, . . . , (x − x0)

κm )Fx0(x)

at x = x0 ∈ C, where Ex0(x) and Fx0(x) are nonsingular matrices and κ1 ≤ · · · ≤ κm

are nonnegative integers. Moreover, {κ1, . . . , κm} are uniquely determined by W (x)

and they are known as partial multiplicities of W (x) at x0.

Definition 3 For an eigenvalue x0 of a monic matrix polynomial W (x) ∈ C
p×p[x],

then:

(i) A non-zero vector r0 ∈ C
p is said to be a right eigenvector, with eigenvalue

x0 ∈ σ(W (x)), whenever W (x0)r0 = 0, i.e., r0 ∈ Ker W (x0) �= {0}.
(ii) A non-zero covector l0 ∈ (

C
p
)∗ is said to be an left eigenvector, with eigen-

value x0 ∈ σ(W (x)), whenever l0W (x0) = 0,
(
l0

)� ∈ (
Ker(W (x0))

)⊥ =
Ker

(
(W (x0))�

) �= {0}.
(iii) A sequence of vectors {r0, r1, . . . , rm−1} is said to be a right Jordan chain of

length m corresponding to the eigenvalue x0 ∈ σ(W (x)), if r0 is an right eigen-
vector of W (x0) and

j∑

s=0

1

s!
ds W

d xs

∣∣∣
x=x0

r j−s = 0, j ∈ {0, . . . , m − 1}.

(iv) A sequence of covectors {l0, l1 . . . , lm−1} is said to be a left Jordan chain of
length m, corresponding to x0 ∈ σ(W �), if {(l0)�, (l1)�, . . . , (lm−1)

�} is a
right Jordan chain of length m for the matrix polynomial

(
W (x)

)�.
(v) A right root polynomial at x0 is a non-zero vector polynomial r(x) ∈ C

p[x]
such that W (x)r(x) has a zero of certain order at x = x0, the order of this zero
is called the order of the root polynomial. Analogously, a left root polynomial
is a non-zero covector polynomial l(x) ∈ (Cp)∗[x] such that l(x0)W (x0) = 0.

(vi) The maximal lengths, either of right or left Jordan chains corresponding to the
eigenvalue x0, are called the multiplicity of the eigenvector r0 or l0 and are
denoted by m(r0) or m(l0), respectively.
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Proposition 3 Given an eigenvalue x0 ∈ σ(W (x)) of a monic matrix polynomial
W (x), multiplicities of right and left eigenvectors coincide and they are equal to the
corresponding partial multiplicities κi .

The above definition generalizes the concept of Jordan chain for degree one matrix
polynomials.

Proposition 4 The Taylor expansion of a right root polynomial r(x), respectively of
a left root polynomial l(x), at a given eigenvalue x0 ∈ σ(W (x)) of a monic matrix
polynomial W (x),

r(x) =
κ−1∑

j=0

r j (x − x0)
j , respectively l(x) =

κ−1∑

j=0

l j (x − x0)
j ,

provides us with right Jordan chain

{r0, r1, . . . , rκ−1}, respectively, left Jordan chain {l0, l1, . . . , lκ−1}.

Proposition 5 Given an eigenvalue x0 ∈ σ(W (x)) of a monic matrix polynomial
W (x), with multiplicity s = dimKer W (x0), we can construct s right root polynomials,
respectively left root polynomials, for i ∈ {1, . . . , s},

ri (x) =
κi −1∑

j=0

ri, j (x − x0)
j , respectively li (x) =

κi −1∑

j=0

li, j (x − x0)
j ,

where ri (x) are right root polynomials (respectively li (x) are left root polynomials)
with the largest order κi among all right root polynomials, whose right eigenvector
does not belong to C{r0,1, . . . , r0,i−1} (respectively left root polynomials whose left
eigenvector does not belong to C{l0,1, . . . , l0,i−1}).
Definition 4 (Canonical Jordan chains) A canonical set of right Jordan chains (respec-
tively left Jordan chains) of the monic matrix polynomial W (x) corresponding to the
eigenvalue x0 ∈ σ(W (x)) is, in terms of the right root polynomials (respectively left
root polynomials) described in Proposition 5, the following sets of vectors

{r1,0 . . . , r1,κ1−1, . . . , rs,0 . . . , rs,κs−1},
respectively, covectors {l1,0 . . . , l1,κ1−1, . . . , ls,0 . . . , ls,κs−1}.

Proposition 6 For a monic matrix polynomial W (x) the lengths {κ1, . . . , κs} of the
Jordan chains in a canonical set of Jordan chains of W (x) corresponding to the
eigenvalue x0, see Definition 4, are the nonzero partial multiplicities of W (x) at
x = x0 described in Proposition 2.

Definition 5 (Canonical Jordan chains and root polynomials) For each eigenvalue
xa ∈ σ(W (x)) of a monic matrix polynomial W (x), with multiplicity αa and sa =
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dimKer W (xa), a ∈ {1, . . . , q}, we choose a canonical set of right Jordan chains,
respectively left Jordan chains,

{
r (a)

j,0, . . . , r (a)

j,κ(a)
j −1

}sa

j=1
, respectively

{
l(a)

j,0, . . . , l(a)

j,κ(a)
j −1

}sa

j=1
,

and, consequently, with partial multiplicities satisfying
∑sa

j=1 κ
(a)
j = αa . Thus, we

can consider the following right root polynomials

r (a)
j (x) =

κ
(a)
j −1∑

l=0

r (a)
j,l (x − xa)l ,

respectively left root polynomials l(a)
j (x) =

κ
(a)
j −1∑

l=0

l(a)
j,l (x − xa)l . (2)

Definition 6 (Canonical Jordan pairs) We also define the corresponding canonical
Jordan pair (Xa, Ja) with Xa the matrix

Xa :=
[
r (a)
1,0 , . . . , r (a)

1,κ(a)
1 −1

, . . . , r (a)
sa ,0, . . . , r (a)

sa ,κ
(a)
sa −1

]
∈ C

p×αa ,

and Ja the matrix

Ja := diag(Ja,1, . . . , Ja,sa ) ∈ C
αa×αa ,

where Ja, j ∈ C
κ

(a)
j ×κ

(a)
j are the Jordan blocks of the eigenvalue xa ∈ σ(W (x)). Then,

we say that (X , J ) with

X := [
X1, . . . , Xq

] ∈ C
p×N p, J := diag(J1, . . . , Jq) ∈ C

N p×N p,

is a canonical Jordan pair for W (x).

We have the important result, see [39],

Proposition 7 The Jordan pairs of a monic matrix polynomial W (x) satisfy

A0Xa + A1Xa Ja + · · · + AN−1Xa(Ja)N−1 + Xa(Ja)N = 0p×αa ,

A0X + A1X J + · · · + AN−1X J N−1 + X J N = 0p×N p.

A key property, see Theorem 1.20 of [39], is

Proposition 8 For any Jordan pair (X , J ) of a monic matrix polynomial W (x) =
Ipx N + AN−1x N−1 + · · · + A0 the matrix
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⎡

⎢⎢⎣

X
X J
...

X J N−1

⎤

⎥⎥⎦ ∈ C
N p×N p

is nonsingular.

Definition 7 (Jordan triple) Given

Y =
⎡

⎣
Y1
...

Yq

⎤

⎦ ∈ C
N p×p,

with Ya ∈ C
αa×p , we say that (X , J , Y ) is a Jordan triple whenever

⎡

⎢⎢⎣

X
X J
...

X J N−1

⎤

⎥⎥⎦ Y =

⎡

⎢⎢⎣

0p
...

0p

Ip

⎤

⎥⎥⎦ .

Moreover, Theorem 1.23 of [39], gives the following characterization

Proposition 9 Two matrices X ∈ C
p×N p and J ∈ C

N p×N p constitute a Jordan pair
of a monic matrix polynomial W (x) = Ipx N + AN−1x N−1 + · · · + A0 if and only if
the two following properties hold

(i) The matrix

⎡

⎢⎢⎣

X
X J
...

X J N−1

⎤

⎥⎥⎦

is nonsingular.
(ii)

A0X + A1X J + · · · + AN−1X J N−1 + X J N = 0p×N p.

Proposition 10 Given a monic matrix polynomial W (x) the adapted root polynomials
given in Definition 5 satisfy

(
W (x)r (a)

j (x)
)(m)

xa
=,

(
l(a)

j (x)W (x)
)(m)

xa
= 0, m ∈ {0, . . . , κ(a)

j − 1}, j ∈ {1 . . . , sa}.
(3)

Here, given a function f (x) we use the following notation for its derivatives evaluated
at an eigenvalue xa ∈ σ(W (x))

( f )(m)
xa

:= lim
x→xa

dm f

d xm
.
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In this paper we assume that the partial multiplicities are ordered in an increasing
way, i.e., κ(a)

1 ≤ κ
(a)
2 ≤ · · · ≤ κ

(a)
sa .

Proposition 11 If r (a)
i and l(a)

j are right and left root polynomials corresponding to
the eigenvalue xa ∈ σ(W (x)), then a polynomial

w
(a)
i, j (x) =

d(a)
i, j∑

m=0

w
(a)
i, j;m xm ∈ C[x], d(a)

i, j := κ
(a)
min(i, j) + N − 2,

exists such that

l(a)
i (x)W (x)r (a)

j (x) = (x − xa)
κ

(a)
max(i, j)w

(a)
i, j (x). (4)

Definition 8 (Spectral jets) Given a matrix function f (x) smooth in region � ⊂ C

with xa ∈ �, a point in the closure of � we consider its matrix spectral jets

J (i)
f (xa) := lim

x→xa

[

f (x), . . . ,
f (κ

(a)
i −1)(x)

(κ
(a)
i − 1)!

]
∈ C

p×pκ
(a)
i ,

J f (xa) :=
[
J (1)

f (xa), . . . ,J (sa)
f (xa)

]
∈ C

p×pαa ,

J f := [
J f (x1), . . . ,J f (xq)

] ∈ C
p×N p2 ,

and given a Jordan pair the root spectral jet vectors

J (i)
f (xa) := lim

x→xa

⎡

⎣ f (xa)r (a)
i (xa), . . . ,

( f (x)r (a)
i (x))

(κ
(a)
i −1)

xa

(κ
(a)
i − 1)!

⎤

⎦ ∈ C
p×κ

(a)
i

J f (xa) :=
[
J (1)

f (xa), . . . ,J (sa)
f (xa)

]
∈ C

p×αa ,

J f := [J f (x1), . . . ,J f (xq)
] ∈ C

p×N p.

Definition 9 We consider the following jet matrices

Q(a)
n;i := J (i)

Ip xn (xa) =
[
(xa)nr (a)

i (xa),
(
xnr (a)

i (x)
)(1)

xa
, . . . ,

(
xnr (a)

i (x)
)(κ

(a)
i −1)

xa

(κ
(a)
i − 1)!

]
∈ C

p×κ
(a)
i ,

Q(a)
n := J Ip xn (xa) =

[
Q(a)

n;1, . . . ,Q(a)
n;sa

]
∈ C

p×αa ,

Qn := J Ip xn =
[
Q(1)

n , . . . ,Q(q)
n

]
∈ C

p×N p,

Q := J χ[N ] =
⎡

⎢⎣
Q0
...

QN−1

⎤

⎥⎦ ∈ C
N p×N p,

where (χ[N ](x))� := [
Ip, . . . , Ipx N−1

] ∈ C
p×N p[x].
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Lemma 1 (Root spectral jets and Jordan pairs) Given a canonical Jordan pair (X , J )

for the monic matrix polynomial W (x) we have that

Qn = X J n, n ∈ {0, 1, . . .}.

Thus, any polynomial Pn(x) = ∑n
j=0 Pj x j has as its spectral jet vector corresponding

to W (x) the following matrix

J P = P0X + P1X J + · · · + Pn X J n−1.

Definition 10 If W (x) = ∑N
k=0 Ak xk ∈ C

p×p[x] is a matrix polynomial of degree
N , we introduce the matrix

B :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

A1 A2 A3 . . . AN−1 AN

A2 A3
... . .

. AN 0p

A3 . . . AN−1 . .
. 0p 0p

... . .
.

. .
.

. .
. ...

AN−1 AN 0p

AN 0p 0p . . . 0p

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
N p×N p.

Lemma 2 Given a Jordan triple (X , J , Y ) for the monic matrix polynomial W (x) we
have

Q =

⎡

⎢⎢⎣

X
X J
...

X J N−1

⎤

⎥⎥⎦ , (BQ)−1 = [
Y , JY , . . . , J N−1Y

] =: R.

Proof From Lemma 1 we deduce that

Q =

⎡

⎢⎢⎣

X
X J
...

X J N−1

⎤

⎥⎥⎦

which is nonsingular, see Propositions 8 and 9. The biorthogonality condition (2.6) of
[39] forR and Q is

RBQ = IN p,

and if (X , J , Y ) is a canonical Jordan triple, then

R = [
Y , JY , . . . , J N−1Y

]
. (5)


�
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Proposition 12 The matrix Rn := [
Y , JY , . . . , J n−1Y

] ∈ C
N p×np has full rank.

Regarding the matrix B,

Definition 11 Let us consider the bivariate matrix polynomial

V(x, y) := (
(χ(y))[N ]

)�B(χ(x))[N ] ∈ C
p×p[x, y],

where A j are the matrix coefficients of W (x), see (1).

We consider the complete homogeneous symmetric polynomials in two variables

hn(x, y) =
n∑

j=0

x j yn− j .

For example, the first four polynomials are

h0(x, y) = 1, h1(x, y) = x + y,

h2(x, y) = x2 + xy + y2,

h3(x, y) = x3 + x2y + xy2 + y3.

Proposition 13 In terms of complete homogeneous symmetric polynomials in two vari-
ables we can write

V(x, y) =
N∑

j=1

A j h j−1(x, y).

1.2 On orthogonal matrix polynomials

The polynomial ring C
p×p[x] is a free bimodule over the ring of matrices C

p×p

with a basis given by {Ip, Ipx, Ipx2, . . .}. Important free bisubmodules are the sets
C

p×p
m [x] of matrix polynomials of degree less than or equal to m. A basis, which has

cardinality m + 1, for C
p×p
m [x] is {Ip, Ipx, . . . , Ipxm}; as C has the invariant basis

number (IBN) property so does C
p×p, see [64]. Therefore, being C

p×p an IBN ring,
the rank of the free module C

p×p
m [x] is unique and equal to m + 1, i.e. any other basis

has the same cardinality. Its algebraic dual
(
C

p×p
m [x])∗ is the set of homomorphisms

φ : C
p×p
m [x] → C

p×p which are, for the right module, of the form

〈φ, P(x)〉 = φ0 p0 + · · · + φm pm, P(x) = p0 + · · · + pm xm,

where φk ∈ C
p×p. Thus, we can identify the dual of the right module with the

corresponding left submodule. This dual is a free module with a unique rank, equal to
m + 1, and a dual basis {(Ipxk)∗}m

k=0 given by
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〈(Ipxk)∗, Ipxl〉 = δk,l I p.

We have similar statements for the left module C
p×p
m [x], being its dual a right module

〈P(x), φ〉 = P0φ0 + · · · + Pmφm, 〈Ipxl , (Ipxk)∗〉 = δk,l I p.

Definition 12 (Sesquilinear form) A sesquilinear form 〈·, ·〉 on the bimodule C
p×p[x]

is a continuous map

〈·, ·〉 : C
p×p[x] × C

p×p[x] −→ C
p×p,

(P(x), Q(x)) �→ 〈P(x), Q(y)〉 ,

such that for any triple P(x), Q(x), R(x) ∈ C
p×p[x] the following properties are

fulfilled

(i) 〈AP(x) + B Q(x), R(y)〉 = A 〈P(x), R(y)〉+ B 〈Q(x), R(y)〉, ∀A, B ∈ C
p×p,

(ii) 〈P(x), AQ(y) + B R(y)〉 = 〈P(x), Q(y)〉 A� + 〈P(x), R(y)〉 B�, ∀A, B ∈
C

p×p.

The reader probably has noticed that, despite dealing with complex polynomials
in a real variable, we have followed [26] and chosen the transpose instead of the
Hermitian conjugated. For any couple of matrix polynomials P(x) = ∑deg P

k=0 pk xk

and Q(x) = ∑deg Q
l=0 ql xl the sesquilinear form is defined by

〈P(x), Q(y)〉 =
∑

k=1,...,deg P
l=1,...,deg Q

pk Gk,l(ql)
�,

where the coefficients are the values of the sesquilinear form on the basis of themodule

Gk,l =
〈
Ipxk, Ip yl

〉
.

The corresponding semi-infinite matrix

G =
⎡

⎣
G0,0 G0,1 . . .

G1,0 G1,1 . . .
...

...

⎤

⎦

is the named as the Gram matrix of the sesquilinear form.

1.2.1 Hankel sesquilinear forms

Now, we present a family of examples of sesquilinear forms in C
p×p[x] that we call

Hankel sesquilinear forms. A first example is given by matrices with complex (or real)
Borel measures in R as entries
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μ =
⎡

⎣
μ1,1 . . . μ1,p

...
...

μp,1 . . . μp,p

⎤

⎦ ,

i.e., a p × p matrix of Borel measures supported in R. Given any pair of matrix
polynomials P(x), Q(x) ∈ C

p×p[x] we introduce the following sesquilinear form

〈P(x), Q(x)〉μ =
∫

R

P(x) dμ(x)(Q(x))�.

A more general sesquilinear form can be constructed in terms of generalized func-
tions (or continuous linear functionals). In [53,54] a linear functional setting for
orthogonal polynomials is given. We consider the space of polynomials C[x], with an
appropriate topology, as the space of fundamental functions, in the sense of [27,28],
and take the space of generalized functions as the corresponding continuous linear
functionals. It is remarkable that the topological dual space coincides with the alge-
braic dual space. On the other hand, this space of generalized functions is the space
of formal series with complex coefficients (C[x])′ = C[[x]].

In this article we use generalized functions with a well defined support and, conse-
quently, the previously described setting requires of a suitablemodification. Following
[27,28,67], let us recall that the space of distributions is a space of generalized functions
when the space of fundamental functions is constituted by the complex valued smooth
functions of compact support D := C∞

0 (R), the so called space of test functions. In
this context, the set of zeros of a distribution u ∈ D′is the region � ⊂ R if for any
fundamental function f (x) with support in � we have 〈u, f 〉 = 0. Its complement,
a closed set, is what is called support, supp u, of the distribution u. Distributions of
compact support, u ∈ E ′, are generalized functions for which the space of fundamental
functions is the topological space of complex valued smooth functions E = C∞(R).
AsC[x] � E we also know that E ′

� (C[x])′ ∩D′. The set of distributions of compact
support is a first example of an appropriate framework for the consideration of poly-
nomials and supports simultaneously. More general settings appear within the space
of tempered distributions S ′, S ′

� D′. The space of fundamental functions is given
by the Schwartz space S of complex valued fast decreasing functions, see [27,28,67].
We consider the space of fundamental functions constituted by smooth functions of
slow growthOM ⊂ E , whose elements are smooth functions with derivatives bounded
by polynomials. As C[x],S � OM , for the corresponding set of generalized func-
tions we find that O′

M ⊂ (C[x])′ ∩ S ′. Therefore, these distributions give a second
appropriate framework. Finally, for a third suitable framework, including the two pre-
vious ones, we need to introduce bounded distributions. Let us consider as space of
fundamental functions, the linear space B of bounded smooth functions, i.e., with all
its derivatives in L∞(R), being the corresponding space of generalized functions B′
the bounded distributions. From D � B we conclude that bounded distributions are
distributions B′

� D′. Then, we consider the space of fast decreasing distributions
O′

c given by those distributions u ∈ D′ such that for each positive integer k, we have(√
1 + x2

)k
u ∈ B′ is a bounded distribution. Any polynomial P(x) ∈ C[x], with
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deg P = k, can be written as P(x) =
(√

1 + x2
)k

F(x) and F(x) = P(x)(√
1+x2)

)k ∈ B.

Therefore, given a fast decreasing distribution u ∈ O′
c we may consider

〈u, P(x)〉 =
〈(√

1 + x2
)k

u, F(x)

〉

which makes sense as
(√

1 + x2
)k

u ∈ B′, F(x) ∈ B. Thus, O′
c ⊂ (C[x])′ ∩ D′.

Moreover it can be proven thatO′
M � O′

c, see [53]. Summarizing this discussion, we
have found three generalized function spaces suitable for the discussion of polynomials
and supports simultaneously: E ′ ⊂ O′

M ⊂ O′
c ⊂ (

(C[x])′ ∩ D′).
The linear functionals could have discrete and, as the corresponding Grammatrix is

required to be quasidefinite, infinite support. Then, we are faced with discrete orthog-
onal polynomials, see for example [57]. Two classical examples are those of Charlier
and the Meixner. For μ > 0 we have the Charlier (or Poisson–Charlier) linear func-
tional

u =
∞∑

k=0

μk

k! δ(x − k),

and β > 0 and 0 < c < 1, the Meixner linear functional is

u =
∞∑

k=0

β(β + 1) · · · (β + k − 1)

k! ckδ(x − k).

See [4] for matrix extensions of these discrete linear functionals and corresponding
matrix orthogonal polynomials.

Definition 13 (Hankel sesquilinear forms) Given a matrix of generalized functions as
entries

u =
⎡

⎣
u1,1 . . . u1,p

...
...

u p,1 . . . u p,p

⎤

⎦ ,

i.e., ui, j ∈ (C[x])′, then the associated sesquilinear form 〈P(x), Q(x)〉u is given by

( 〈P(x), Q(x)〉u
)

i, j :=
p∑

k,l=1

〈
uk,l , Pi,k(x)Q j,l(x)

〉
.

When uk,l ∈ O′
c, we write u ∈ (

O′
c

)p×p and say that we have a matrix of fast decreas-
ing distributions. In this case the support is defined as supp(u) := ∪N

k,l=1 supp(uk,l).

Observe that in this Hankel case, we could also have continuous and discrete orthog-
onality.
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Proposition 14 In terms of the moments

mn :=
⎡

⎣

〈
u1,1, xn

〉
. . .

〈
u1,p, xn

〉
...

...〈
u p,1, xn

〉
. . .

〈
u p,p, xn

〉

⎤

⎦

the Gram matrix of the sesquilinear form given in Definition 13 is the following moment
matrix

G :=

⎡

⎢⎢⎣

m0 m1 m2 · · ·
m1 m2 m3 · · ·
m2 m3 m4 · · ·
...

...
...

⎤

⎥⎥⎦ ,

of Hankel type.

1.2.2 Matrices of generalized kernels and sesquilinear forms

The previous examples all have in common the same Hankel block symmetry for the
corresponding matrices. However, there are sesquilinear forms which do not have this
particular Hankel type symmetry. Let us stop for a moment at this point, and elaborate
on bilinear and sesquilinear forms for polynomials.We first recall some facts regarding
the scalar case with p = 1, and bilinear forms instead of sesquilinear forms. Given
ux,y ∈ (C[x, y])′ = (C[x, y])∗ ∼= C[[x, y]], we can consider the continuous bilinear
form B(P(x), Q(y)) = 〈ux,y, P(x) ⊗ Q(y)〉. This gives a continuous linear map
Lu : C[y] → (C[x])′ such that B(P(x), Q(y))) = 〈Lu(Q(y)), P(x)〉. The Gram
matrix of this bilinear form has coefficients Gk,l = B(xk, yl) = 〈ux,y, xk ⊗ yl〉 =
〈Lu(yl), xk〉. Here we follow Schwartz discussion on kernels and distributions [66],
see also [45]. A kernel u(x, y) is a complex valued locally integrable function, that
defines an integral operator f (x) �→ g(x) = ∫

u(x, y) f (y) d y. Following [67] we
denote (D)x and (D′)x the test functions and the corresponding distributions in the
variable x , and similarly for the variable y. We extend this construction considering
a bivariate distribution in the variables x, y, ux,y ∈ (D′)x,y , that Schwartz called
noyau-distribution, and as we use a wider range of generalized functions we will call
generalized kernel. This ux,y generates a continuous bilinear form Bu

(
φ(x), ψ(y)

) =
〈ux,y, φ(x) ⊗ ψ(y)〉. It also generates a continuous linear map Lu : (D)y → (D′)x

with 〈(Lu(ψ(y)))x , φ(x)〉 = 〈ux,y, φ(x)⊗ψ(y)〉. The Schwartz kernel theorem states
that every generalized kernel ux,y defines a continuous linear transformation Lu from
(D)y to (D′)x , and to each of such continuous linear transformations we can associate
one and only one generalized kernel. According to the prolongation scheme developed
in [66], the generalized kernel ux,y is such that Lu : (E)y → (E ′)x if and only if the
support of ux,y in R

2 is compact.1

We can extended these ideas to the matrix scenario of this paper, where instead of
bilinear forms we have sesquilinear forms.

1 Understood as a prolongation problem, see §5 in [66], we have similar results if we require Lu : OM →
O′

c or Lu : Oc → O′
c or any other possibility that makes sense for polynomials and support.
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Definition 14 Given a matrix of generalized kernels

ux,y :=
⎡

⎣
(ux,y)1,1 . . . (ux,y)1,p

...
...

(ux,y)p,1 . . . (ux,y)p,p

⎤

⎦

with (ux,y)k,l ∈ (C[x, y])′ or, if a notion of support is required, (ux,y)k,l ∈
(E ′)x,y, (O′

M )x,y, (O′
c)x,y , provides a continuous sesquilinear form with entries given

by

(〈P(x), Q(y〉u
)

i, j =
p∑

k,l=1

〈
(ux,y)k,l , Pi,k(x) ⊗ Q j,l(y)

〉

=
p∑

k,l=1

〈
Luk,l (Q j,l(y)), Pi,k(x)

〉
,

where Luk,l : C[y] → (C[x])′—or depending on the setting Luk,l : (E)y → (E ′)x ,
Luk,l : (OM )y → (O′

c)x , for example—is a continuous linear operator. We can
condensate it in a matrix form, for ux,y ∈ (Cp×p[x, y])′ = (Cp×p[x, y])∗ ∼=
C

p×p[[x, y]], a sesquilinear form is given

〈P(x), Q(y)〉u = 〈ux,y, P(x) ⊗ Q(y)〉 = 〈Lu(Q(y)), P(x)〉,

with Lu : C
p×p[y] → (Cp×p[x])′ a continuous linear map. Or, in other scenarios

Lu : ((E)y)
p×p → ((E ′)x )

p×p or Lu : ((OM )y)
p×p → ((O′

c)x )
p×p.

If, instead of a matrix of bivariate distributions, we have a matrix of bivari-
ate measures then we could write for the sesquilinear form 〈P(x), Q(y)〉 =∫∫

P(x) dμ(x, y)(Q(y))�, where μ(x, y) is a matrix of bivariate measures.
For the scalar case p = 1, Adler and van Moerbeke discussed in [1] different

possibilities of non-Hankel Gram matrices. Their Gram matrix has as coefficients
Gk,l = 〈ul , xk〉, for a infinite sequence of generalized functions ul , that recovers the
Hankel scenario for ul = xlu. They studied in more detail the following cases

(i) Banded case: ul+km = xkmul .
(ii) Concatenated solitons: ul(x) = δ(x − pl+1) − (λl+1)

2δ(x − qk+1).
(iii) Nested Calogero–Moser systems: ul(x) = δ′(x − pl+1) + λl+1δ(x − pl+1).
(iv) Discrete KdV soliton type: ul(x) = (−1)kδ(l)(x − p) − δ(l)(x + p).

We see that the three last weights are generalized functions. To compare with the
Schwartz’s approach we observe that 〈ux,y, xk ⊗ yl〉 = 〈ul , xk〉 and, consequently,
we deduce ul = Lu(yl) (and for continuous kernels ul(x) = ∫

u(x, y)yl d y). The
first case, has a banded structure and its Gram matrix fulfills �m G = G(��)m . In [2]
different examples are discussed for the matrix orthogonal polynomials, like bigraded
Hankel matrices �nG = G

(
��)m , where n, m are positive integers, can be realized

as Gk,l = 〈ul , Ipxk〉, in terms of matrices of linear functionals ul which satisfy the
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following periodicity condition ul+m = ul xn . Therefore, given the linear functionals
u0, . . . , um−1 we can recover all the others.

1.2.3 Sesquilinear forms supported by the diagonal and Sobolev sesquilinear forms

First we consider the scalar case

Definition 15 A generalized kernel ux,y is supported by the diagonal y = x if

〈
ux,y, φ(x, y)

〉 =
∑

n,m

〈
u(n,m)

x ,
∂n+mφ(x, y)

∂xn∂ ym

∣∣∣
y=x

〉

for a locally finite sum and generalized functions u(n,m)
x ∈ (D′)x .

Proposition 15 (Sobolev bilinear forms) The bilinear form corresponding to a gener-
alized kernel supported by the diagonal is B(φ(x), ψ(x)) = ∑

n,m〈
u(n,m)

x , φ(n)(x)ψ(m)(x)
〉
, which is of Sobolev type,

For order zero u(n,m)
x generalized functions, i.e. for a set of Borel measures μ(n,m), we

have

B(φ(x), ψ(x)) =
∑

n,m

∫
φ(n)(x)ψ(m)(x) dμ(n,m)(x),

which is of Sobolev type. Thus, in the scalar case, generalized kernels supported by
the diagonal are just Sobolev bilinear forms. The extension of these ideas to the matrix
case is immediate, we only need to require to all generalized kernels to be supported
by the diagonal.

Proposition 16 (Sobolev sesquilinear forms) A matrix of generalized kernels sup-
ported by the diagonal provides Sobolev sesquilinear forms

(〈P(x), Q(x)〉u
)

i, j =
p∑

k,l=1

∑

n,m

〈
u(n,m)

k,l , P(n)
i,k (x)Q(m)

j,l (x)
〉
.

for a locally finite sum, in the of derivatives order n, m, and of generalized functions
u(n,m)

x ∈ (C[x])′. All Sobolev sesquilinear forms are obtained in this form.

For a recent review on scalar Sobolev orthogonal polynomials see [51]. Observe that
with this general framework we could consider matrix discrete Sobolev orthogonal
polynomials, that will appear whenever the linear functionals u(m,n) have infinite
discrete support, as far as u is quasidefinite.
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1.2.4 Biorthogonality, quasidefiniteness and Gauss–Borel factorization

Definition 16 (Biorthogonal matrix polynomials) Given a sesquilinear form 〈·, ·〉,
two sequences of matrix polynomials

{
P [1]

n (x)
}∞

n=0 and
{

P [2]
n (x)

}∞
n=0 are said to

be biorthogonal with respect to 〈·, ·〉 if
(i) deg(P [1]

n (x)) = deg(P [2]
n (x)) = n for all n ∈ {0, 1, . . . },

(ii)
〈
P [1]

n (x), P [2]
m (y)

〉
= δn,m Hn for all n, m ∈ {0, 1, . . . },

where Hn are nonsingular matrices and δn,m is the Kronecker delta.

Definition 17 (Quasidefiniteness) A Gram matrix of a sesquilinear form 〈·, ·〉u is said
to be quasidefinite whenever det G[k] �= 0, k ∈ {0, 1, . . . }. Here G[k] denotes the
truncation

G[k] :=
⎡

⎣
G0,0 . . . G0,k−1

...
...

Gk−1,0 . . . Gk−1,k−1

⎤

⎦ .

We say that the bivariate generalized function ux,y is quasidefinite and the correspond-
ing sesquilinear form is nondegenerate whenever its Gram matrix is quasidefinite.

Proposition 17 (Gauss–Borel factorization, see [7]) If the Gram matrix of a sesquilin-
ear form 〈·, ·〉u is quasidefinite, then there exists a unique Gauss–Borel factorization
given by

G = (S1)
−1H(S2)

−�, (6)

where S1, S2 are lower unitriangular block matrices and H is a diagonal block matrix

Si =

⎡

⎢⎢⎢⎣

Ip 0p 0p . . .

(Si )1,0 Ip 0p · · ·
(Si )2,0 (Si )2,1 Ip

. . .
...

...
. . .

. . .

⎤

⎥⎥⎥⎦ , i = 1, 2, H = diag(H0, H1, H2, . . . ),

with (Si )n,m and Hn ∈ C
p×p, ∀n, m ∈ {0, 1, . . . }.

For l ≥ k we will also use the following bordered truncated Gram matrix

G[1]
[k,l] :=

⎡

⎢⎢⎣

G0,0 · · · G0,k−1
...

...

Gk−2,0 · · · Gk−2,k−1

Gl,0 . . . Gl,k−1

⎤

⎥⎥⎦ ,

where we have replaced the last row of blocks of the truncated Gram matrix G[k] by
the row of blocks [ Gl,0,...,Gl,k−1 ]. We also need a similar matrix but replacing the last
block column of G[k] by a column of blocks as indicated
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G[2]
[k,l] :=

⎡

⎣
G0,0 · · · G0,k−2 G0,l

...
...

...

Gk−1,0 · · · Gk−1,k−2 Gk−1,l

⎤

⎦ .

Using last quasideterminants, see [29,58] and “Appendix”, we find

Proposition 18 If the last quasideterminants of the truncated moment matrices are
nonsingular, i.e.,

det�∗(G[k]) �=0, k = 1, 2, . . . ,

then, the Gauss–Borel factorization can be performed and the following expressions
are fulfilled

Hk = �∗

⎡

⎢⎢⎣

G0,0 G0,1 . . . G0,k−1
G1,0 G1,1 . . . G1,k−1

...
...

...

Gk−1,0 Gk−1,1 . . . Gk−1,k−1

⎤

⎥⎥⎦ ,

(S1)k,l = �∗

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G0,0 G0,1 . . . G0,k−1 0p

G1,0 G1,1 . . . G1,k−1 0p
...

...
...

...

Gl−1,0 Gl,1 . . . Gl−1,k−1 0p

Gl,0 Gl,1 . . . Gl,k−1 Ip

Gl+1,0 Gl+1,1 . . . Gl+1,k−1 0p
...

...
...

...

Gk,0 Gk,1 . . . Gk,k−1 0p

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(
(S2)

�)
k,l = �∗

⎡

⎢⎢⎢⎢⎣

G0,0 G0,1 . . . G0,l−1 G0,l G0,l+1 . . . G0,k
G1,0 G1,1 . . . G1,l−1 G1,l G1,l+1 . . . G1,k

...
...

...
...

...
...

Gk−1,0 Gk−1,1 . . . Gk−1,l−1 Gk−1,l Gk−1,l+1 . . . Gk−1,k
0p 0p . . . 0p Ip 0p . . . 0p

⎤

⎥⎥⎥⎥⎦
,

and for the inverse elements [58] the formulas

(S−1
1 )k,l = �∗(G[1]

[k,l+1])�∗(G[l+1])−1,

(S−1
2 )k,l = (

�∗(G[l+1])−1�∗(G[2]
[k,l+1])

)�
,

hold true.

We see that the matrices Hk are quasideterminants, and following [7,8] we refer to
them as quasitau matrices.
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1.2.5 Biorthogonal polynomials, second kind functions and Christoffel–Darboux
kernels

Definition 18 We define χ(x) := [Ip, Ipx, Ipx2, . . . ]�, and for x �= 0, χ∗(x) :=
[Ipx−1, Ipx−2, Ipx−3, . . . ]�.
Remark 1 Observe that the Gram matrix can be expressed as

G = 〈χ(x), χ(y)〉u

= 〈ux,y, χ(x) ⊗ χ(y)〉 (7)

and its block entries are

Gk,l =
〈
Ipxk, Ip yl

〉

u
.

If the sesquilinear form derives from a matrix of bivariate measures μ(x, y) =
[μi . j (x, y)] we have for the Gram matrix blocks

Gk,l =
∫∫

xk dμ(x, y)yl .

which reduces for absolutely continuous measures with respect the Lebesgue mea-
sure d x d y to a matrix of weights w(x, y) = [wi, j (x, y)], and When the matrix
of generalized kernels is Hankel we recover the classical Hankel structure, and the
Gram matrix is a moment matrix. For example, for a matrix of measures we will have
Gk,l = ∫

xk+l dμ(x).

Definition 19 Given a quasidefinite matrix of generalized kernels ux,y and the Gauss–
Borel factorization (17) of its Grammatrix, the corresponding first and second families
of matrix polynomials are

P [1](x) =

⎡

⎢⎢⎢⎣

P [1]
0 (x)

P [1]
1 (x)

...

⎤

⎥⎥⎥⎦ := S1χ(x), P [2](y) =

⎡

⎢⎢⎢⎣

P [2]
0 (y)

P [2]
1 (y)

...

⎤

⎥⎥⎥⎦ := S2χ(y), (8)

respectively.

Proposition 19 (Biorthogonality) Given a quasidefinite matrix of generalized kernels
ux,y , the first and second families of monic matrix polynomials

{
P [1]

n (x)
}∞

n=0 and{
P [2]

n (x)
}∞

n=0 are biorthogonal

〈
P [1]

n (x), P [2]
m (y)

〉

u
= δn,m Hn, n, m ∈ {0, 1, . . . }. (9)
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Remark 2 The biorthogonal relations yield the orthogonality relations

〈
P [1]

n (x), ym Ip

〉

u
= 0p,

〈
xm Ip, P [2]

n (y)
〉

u
= 0p, m ∈ {1, . . . n − 1}, (10)

〈
P [1]

n (x), yn Ip

〉

u
= Hn,

〈
xn Ip, P [2]

n (y)
〉

u
= Hn . (11)

Remark 3 (Symmetric generalized kernels) If ux,y = (uy,x )
�, the Gram matrix is

symmetric G = G� and we are dealing with a Cholesky block factorization with
S1 = S2 and H = H�. Now P [1]

n (x) = P [2]
n (x) =: Pn(x), and {Pn(x)}∞n=0 is a set of

monic orthogonal matrix polynomials. In this case C [1]
n (x) = C [2]

n (x) =: Cn(x).

The shift matrix is the following semi-infinite block matrix

� :=

⎡

⎢⎢⎢⎢⎢⎢⎣

0p Ip 0p 0p . . .

0p 0p Ip 0p
. . .

0p 0p 0p Ip
. . .

0p 0p 0p 0p
. . .

...
. . .

. . .
. . .

. . .

⎤

⎥⎥⎥⎥⎥⎥⎦

which satisfies the spectral property

�χ(x) = xχ(x).

Proposition 20 The symmetry of the block Hankel moment matrix reads �G = G��.

Notice that this symmetry completely characterizes Hankel block matrices.

Definition 20 The matrices J1 := S1�(S1)−1 and J2 := S2�(S2)−1 are the Jacobi
matrices associated with the Gram matrix G.

The reader must notice the abuse in the notation. But for the sake of simplicity we
have used the same letter for Jacobi and Jordan matrices. The type of matrix will be
clear from the context.

Proposition 21 The biorthogonal polynomials are eigenvectors of the Jacobi matrices

J1P [1](x) = x P [1](x), J2P [2](x) = x P [2](x).

and the second kind functions ála Gram satisfy

(
H(J2)

�H−1)
C [1](x)

= xC [1](x) − H0

⎡

⎣
Ip

0p
...

⎤

⎦ ,
(
H�(J1)

�H−�)
C [2](x) = xC [2](x) − H�

0

⎡

⎣
Ip

0p
...

⎤

⎦ .
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Proposition 22 For Hankel type Gram matrices (i.e., associated with a matrix of uni-
variate generalized functionals) the two Jacobi matrices are related by H−1 J1 =
J�
2 H−1, being, therefore, a tridiagonal matrix. This yields the three term relation for

biorthogonal polynomials and second kind functions, respectively.

Proposition 23 We have the following last quasideterminantal expressions

P [1]
n (x) = �∗

⎡

⎢⎢⎢⎢⎣

G0,0 G0,1 · · · G0,n−1 Ip

G1,0 G1,1 · · · G1,n − 1 Ipx
...

...
...

...

Gn−1,0 Gn−1,1 · · · Gn−1,n−1 Ipxn−1

Gn,0 Gn,1 · · · Gn,n−1 Ipxn

⎤

⎥⎥⎥⎥⎦
,

(P [2]
n (y))� = �∗

⎡

⎢⎢⎢⎢⎣

G0,0 G0,1 · · · G0,n−1 G0,n
G1,0 G1,1 · · · G1,n−1 G1,n

...
...

...
...

Gn−1,0 Gn−1,1 · · · Gn−1,n−1 Gn−1,n

Ip Ip y · · · Ip yn−1 Ip yn

⎤

⎥⎥⎥⎥⎦
.

Definition 21 (Christoffel–Darboux kernel, [15,68]) Given two sequences of matrix
biorthogonal polynomials

{
P [1]

k (x)
}∞

k=0 and
{

P [2]
k (y)

}∞
k=0, with respect to the

sesquilinear form 〈·, ·〉u , we define the n-th Christoffel–Darboux kernel matrix poly-
nomial

Kn(x, y) :=
n∑

k=0

(P [2]
k (y))�(Hk)

−1P [1]
k (x), (12)

and the mixed Christoffel–Darboux kernel

K (pc)
n (x, y) :=

n∑

k=0

(
P [2]

k (y)
)�

(Hk)
−1C [1]

k (x).

Proposition 24 (i) For a quasidefinite matrix of generalized kernels ux,y , the corre-
sponding Christoffel–Darboux kernel gives the projection operator

〈
Kn(x, z),

∑

0≤ j�∞
C j P [2]

j (y)

〉

u

=
⎛

⎝
n∑

j=0

C j P [2]
j (z)

⎞

⎠
�

,

〈
∑

0≤ j�∞
C j P [1]

j (x), (Kn(z, y))�
〉

u

=
n∑

j=0

C j P [1]
j (z). (13)

(ii) In particular, we have

〈
Kn(x, z), Ip yl

〉

u
= Ipzl , l ∈{0, 1, . . . , n}. (14)
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Proposition 25 (Christoffel–Darboux formula) When the sesquilinear form is Hankel
(now u is a matrix of univariate generalized functions with its Gram matrix of block
Hankel type) the Christoffel–Darboux kernel satisfies

(x − y)Kn(x, y) = (P [2]
n (y))�(Hn)−1P [1]

n+1(x) − (P [2]
n+1(y))�(Hn)−1P [1]

n (x),

and the mixed Christoffel–Darboux kernel fulfills

(x − y)K (pc)
n (x, y) = (P [2]

n (y))� H−1
n C [1]

n+1(x) − (P [2]
n+1(y))� H−1

n C [1]
n (x) + Ip.

Proof We only prove the second formula, for the first one proceeds similarly. It is
obviously a consequence of the three term relation. Firstly, let us notice that

J�
2 H−1C [1](x) = x H−1C [1](x) −

⎡

⎣
Ip

0p
...

⎤

⎦ ,

(P [2](y))� J�
2 H−1 = y(P [2](y))� H−1.

Secondly, we have

J�
2 H−1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
J�
2 H−1

]
[n]

0 0 . . .
...

...

0 0 . . .

H−1
n 0 . . .

0 . . . 0 H−1
n

0 . . . 0 0
...

...
...

∗

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using this, we calculate the
(
P [2]

[n] (y)
)� [

J�
2 H−1

]
[n] C [1]

[n](x), first by computing the
action of middle matrix on its left and then on its right to get

x K (pc)
n−1 (x, y) − (P [2]

n−1(y))� H−1
n C [1]

n (x) − P0 = yK (pc)
n−1 (x, y) − (P [2]

n (y))� H−1
n C [1]

n−1(x),

and since P0 = Ip the Proposition is proven. 
�
Next, we deal with the fact that our definition of second kind functions implies non

admissible products and do involve series.

Definition 22 For the support of the matrix of generalized kernels supp(ux,y) ⊂ C
2

we consider the action of the component projections π1, π2 : C
2 → C on its first and

second variables, (x, y)
π1�→ x , (x, y)

π2�→ y, respectively, and introduce the projected
supports suppx (u) := π1

(
supp(ux,y)

)
and suppy(u) := π2

(
supp(ux,y)

)
, both subsets

of C. We will assume that rx := sup{|z| : z ∈ suppx u}) < ∞ and ry := sup{|z| :
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z ∈ suppy u}) < ∞ We also consider the disks about infinity, or annulus around the
origin, Dx := {z ∈ C : |z| > rx } and Dy := {z ∈ C : |z| > ry}.
Definition 23 (Second kind functions á la Cauchy) For a generalized kernels is such
that ux,y ∈ (

(O′
c)x,y

)p×p we define two families of second kind functions á la Cauchy
given by

C [1]
n (z) =

〈
P [1]

n (x),
Ip

z − y

〉

u
, z /∈ suppy(u),

(
C [2]

n (z)
)� =

〈
Ip

z − x
, P [2]

n (y)

〉

u
, z /∈ suppx (u).

2 Matrix Geronimus transformations

Geronimus transformations for scalar orthogonal polynomials were first discussed in
[35], where some determinantal formulas were found, see [55,73]. Geronimus per-
turbations of degree two of scalar bilinear forms have been very recently treated in
[16] and in the general case in [17]. Here we discuss its matrix extension for general
sesquilinear forms.

Definition 24 Given amatrix of generalizedkernelsux,y = ((ux,y)i, j ) ∈ (
(O′

c)x,y
)p×p

with a given support supp ux,y , and a matrix polynomial W (y) ∈ C
p×p[y] of degree

N , such that σ(W (y)) ∩ suppy(u) = ∅, a matrix of bivariate generalized functions
ǔx,y is said to be a matrix Geronimus transformation of the matrix of generalized
kernels ux,y if

ǔx,y W (y) = ux,y . (15)

Proposition 26 In terms of sesquilinear forms a Geronimus transformation fulfills

〈
P(x), Q(y)(W (y))�

〉

ǔ
= 〈P(x), Q(y)〉u ,

while, in terms of the corresponding Gram matrices, satisfies

ǦW (��) = G.

We will assume that the perturbed moment matrix has a Gauss–Borel factorization
Ǧ = Š−1

1 Ȟ(Š2)−�, where Š1, Š2 are lower unitriangular block matrices and Ȟ is a
diagonal block matrix

Ši =

⎡

⎢⎢⎢⎣

Ip 0p 0p . . .

(Ši )1,0 Ip 0p · · ·
(Ši )2,0 (Ši )2,1 Ip

. . .
. . .

. . .

⎤

⎥⎥⎥⎦ , i = 1, 2, Ȟ = diag(Ȟ0, Ȟ1, Ȟ2, . . . ).
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Hence, the Geronimus transformation provides the family of matrix biorthogonal
polynomials

P̌ [1](x) = Š1χ(x), P̌ [2](y) = Š2χ(y),

with respect to the perturbed sesquilinear form 〈·, ·〉ǔ .
Observe that the matrix generalized kernels vx,y such that vx,y W (y) = 0p, can be

added to a Geronimus transformed matrix of generalized kernels ǔx,y �→ ǔx,y + vx,y ,
to get a new Geronimus transformed matrix of generalized kernels. We call masses
these type of terms.

2.1 The resolvent and connection formulas

Definition 25 The resolvent matrix is

ω := Š1(S1)
−1. (16)

The key role of this resolvent matrix is determined by the following properties

Proposition 27 (i) The resolvent matrix can be also expressed as

ω = Ȟ
(
Š2

)−�
W (��)

(
S2

)�
H−1, (17)

where the products in the RHS are associative.
(ii) The resolvent matrix is a lower unitriangular block banded matrix —with only

the first N block subdiagonals possibly not zero, i.e.,

ω =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ip 0p . . . 0p 0p . . .

ω1,0 Ip
. . . 0p 0p

. . .
...

. . .
. . .

. . .
. . .

ωN ,0 ωN ,1 . . . Ip 0p
. . .

0p ωN+1,1 · · · ωN+1,N Ip
. . .

...
. . .

. . .
. . .

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(iii) The following connection formulas are satisfied

P̌ [1](x) = ωP [1](x), (18)
(
Ȟ−1ωH

)�
P̌ [2](y) = P [2](y)W �(y). (19)

(iv) For the last subdiagonal of the resolvent we have

ωN+k,k = ȞN+k AN (Hk)
−1. (20)
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Proof (i) From Proposition 26 and the Gauss–Borel factorization of G and Ǧ we get

(
S1

)−1
H

(
S2

)−� =
((

Š1
)−1

Ȟ
(
Š2

)−�)
W (��),

so that

Š1
(
S1

)−1
H = Ȟ

(
Š2

)−�
W (��)

(
S2

)�
.

(ii) The resolvent matrix, being a product of lower unitriangular matrices, is a lower
unitriangular matrix. However, from (17) we deduce that is a matrix with all its
subdiagonals with zero coefficients but for the first N . Thus, it must have the
described band structure.

(iii) From the definition we have (18). Let us notice that (17) can be written as

ω� Ȟ−� = H−�S2W �(�)
(
Š2

)−1
,

so that

ω� Ȟ−� P̌ [2](y) = H−�S2W �(�)χ(y),

and (19) follows.
(iv) It is a consequence of (17).


�The connection formulas (18) and (19) can be written as

P̌ [1]
n (x) = P [1]

n (x) +
n−1∑

k=n−N

ωn,k P [1]
k (x), (21)

W (y)
(
P [2]

n (y)
)�

(Hn)−1 = (
P̌ [2]

n (y)
)�

(Ȟn)−1 +
n+N∑

k=n+1

(
P̌ [2]

k (y)
)�

(Ȟk)
−1ωk,n . (22)

Lemma 3 We have that

W (��)χ∗(x) = χ∗(x)W (x) −
⎡

⎣
B(χ(x))[N ]

0p
...

⎤

⎦ , (23)

with B given in Definition 10.

Proposition 28 The Geronimus transformation of the second kind functions satisfies

Č [1](x)W (x) −
⎡

⎢⎣

(
Ȟ

(
Š2

)−�)
[N ]B(χ(x))[N ]
0p
...

⎤

⎥⎦ = ωC [1](x), (24)

(
Č [2](x)

)�
Ȟ−1ω = (

C [2](x)
)�

H−1. (25)
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Proof To get (24) we argue as follows

Č [1](z)W (z) − ωC [1](z) =
〈

P̌1(x),
Ip

z − y

〉

ǔ
W (z)

−
〈

P̌1(x),
Ip

z − y

〉

ǔW
use (18) and (15)

=
〈

P̌1(x),
W (z) − W (y)

z − y

〉

ǔ
.

But, we have

W (z) − W (y)

z − y
= Ip

zN − yN

z − y
+ AN−1

zN−1 − yN−1

z − y
+ · · · + A1

= IphN−1(z, y) + AN−1hN−2(z, y) + · · · + A1

= (χ(y))�
[
B(χ(z))N

0

]

so that

Č [1](z)W (z) − ωC [1](z) = Š1 〈χ(x), χ(y)〉ǔ

[
B(χ(z))N

0

]

= Š1Ǧ

[
B(χ(x))N

0

]
.

and using the Gauss–Borel factorization the result follows. For (25) we have

(
Č [2](x)

)�
Ȟ−1ω − (

C [2](x)
)�

H−1

=
〈

Ip

z − x
, P̌ [2](y)

〉

ǔ
Ȟ−1ω −

〈
Ip

z − x
, P [2](y)

〉

u
H−1

=
〈

Ip

z − x
,
(
Ȟ−1ω

)�
P̌ [2](y)

〉

ǔ
−

〈
Ip

z − x
, H−� P [2](y)

〉

u

=
〈

Ip

z − x
, H−� P [2](y)(W (y))�

〉

ǔ
−

〈
Ip

z − x
, H−� P [2](y)

〉

u

= 0.


�
Observe that the corresponding entries are

(
C [2]

n (y)
)�

(Hk)
−1 = (

Č [2]
n (y)

)�
(Ȟn)

−1 +
n+N∑

k=n+1

(
Č [2]

k (y)
)�

(Ȟk)
−1ωn,k . (26)
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2.2 Geronimus transformations and Christoffel–Darboux kernels

Definition 26 The resolvent wing is the matrix

�[n] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢⎢⎢⎢⎣

ωn,n−N . . . . . . ωn,n−1

0p
. . .

...
...

. . .
. . .

...

0p . . . 0p ωn+N−1,n−1

⎤

⎥⎥⎥⎥⎦
∈ C

N p×N p, n ≥ N ,

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ωn,0 . . . . . . ωn,n−1
...

...

ωN ,0 ωN ,n−1

0p
. . .

...
. . .

. . .
...

0p . . . 0p ωn+N−1,n−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
N p×np, n < N .

Theorem 1 For m = min(n, N ), the perturbed and original Christoffel–Darboux
kernels are related by the following connection formula

Ǩn−1(x, y) = W (y)Kn−1(x, y)

−
[(

P̌ [2]
n (y)

)�
Ȟ−1

n , . . . ,
(
P̌ [2]

n+N−1(y)
)�

Ȟ−1
n+N−1

]
�[n]

⎡

⎢⎣
P [1]

n−m(x)
...

P [1]
n−1(x)

⎤

⎥⎦ .

(27)

For n ≥ N, the connection formula for the mixed Christoffel–Darboux kernels is

Ǩ (pc)
n−1 (x, y)W (x) = W (y)K (pc)

n−1 (x, y)

−
[(

P̌ [2]
n (y)

)�
Ȟ−1

n , . . . ,
(
P̌ [2]

n+N−1(y)
)�

Ȟ−1
n+N−1

]
�[n]

⎡

⎢⎣
C [1]

n−N (x)
...

C [1]
n−1(x)

⎤

⎥⎦

+ V(x, y), (28)

where V(x, y) was introduced in Definition 11.

Proof For the first connection formula (27) we consider the pairing

Kn−1(x, y) :=
[(

P̌ [2]
0 (y)

)�
(Ȟ0)

−1, . . . ,
(
P̌ [2]

n−1(y)
)�

(Ȟn−1)
−1

]
ω[n]

⎡

⎢⎣
P [1]
0 (x)

...

P [1]
n−1(x)

⎤

⎥⎦ ,
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and compute it in two different ways. From (21) we get

ω[n]

⎡

⎢⎣
P [1]
0 (x)

...

P [1]
n−1(x)

⎤

⎥⎦ =
⎡

⎢⎣
P̌ [1]
0 (x)

...

P̌ [1]
n−1(x)

⎤

⎥⎦ ,

and, therefore, Kn−1(x, y) = Ǩn−1(x, y). Relation (22) leads to

Kn−1(x, y) = W (y)Kn−1(x, y)

−
[(

P̌ [2]
n (y)

)�
(Ȟn)−1, . . . ,

(
P̌ [2]

n+N−1(y)
)�

(Ȟn+N−1)
−1

]
�[n]

⎡

⎢⎣
P [1]

n−m(x)
...

P [1]
n−1(x)

⎤

⎥⎦ ,

and (27) is proven.
To derive (28) we consider the pairing

K(pc)
n−1(x, y) :=

[(
P̌ [2]
0 (y)

)�
(Ȟ0)

−1, . . . ,
(
P̌ [2]

n−1(y)
)�

(Ȟn−1)
−1

]
ω[n]

⎡

⎢⎣
C [1]
0 (x)

...

C [1]
n−1(x)

⎤

⎥⎦ ,

which, as before, can be computed in two different forms. On the one hand, using (24)
we get

K(pc)
n−1(x, y) =

[(
P̌ [2]
0 (y)

)�
(Ȟ0)

−1, . . . ,
(
P̌ [2]

n−1(y)
)�

(Ȟn−1)
−1

]

⎛

⎜⎝

⎡

⎢⎣
Č [1]
0 (x)W (x)

...

Č [1]
n−1(x)W (x)

⎤

⎥⎦ − (
Ȟ

(
Š2

)−�)
[n,N ]B(χ(x))[N ]

⎞

⎟⎠

= Ǩ (pc)
n−1 (x, y)W (x)

− (
(χ(y))[n]

)� ((
Š2

)�
Ȟ−1)

[n]
(
Ȟ

(
Š2

)−�)
[n,N ]B(χ(x))[N ],

where
(
Ȟ

(
Š2

)−�)
[n,N ] is the truncation to the n first block rows and first N block

columns of Ȟ
(
Š2

)−�. This simplifies for n ≥ N to

K(pc)
n−1(x, y) = Ǩ (pc)

n−1 (x, y)W (x) − (
(χ(y))[N ]

)�B(χ(x))[N ].

On the other hand, from (22) we conclude

K(pc)
n−1(x, y) = W (y)K (pc)

n−1 (x, y)
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−
[(

P̌ [2]
n (y)

)�
(Ȟn)−1, . . . ,

(
P̌ [2]

n+N−1(y)
)�

(Ȟn+N−1)
−1

]
�[n]

⎡

⎢⎣
C [1]

n−N (x)
...

C [1]
n−1(x)

⎤

⎥⎦ ,

and, consequently, we obtain

Ǩ (pc)
n−1 (x, y)W (x) = W (y)K (pc)

n−1 (x, y)

−
[(

P̌ [2]
n (y)

)�
(Ȟn)

−1, . . . ,
(
P̌ [2]

n+N−1(y)
)�

(Ȟn+N−1)
−1

]
�[n]

⎡

⎢⎣
C [1]

n−N (x)
...

C [1]
n−1(x)

⎤

⎥⎦

+ (
(χ(y))[N ]

)�B(χ(x))[N ].


�

2.3 Spectral jets and relations for the perturbed polynomials and its second kind
functions

For the time being we will assume that the perturbing polynomial is monic, W (x) =
Ipx N + ∑N−1

k=0 Ak xk ∈ C
p×p[x].

Definition 27 Given a perturbing monic matrix polynomial W (y) the most general
mass term will have the form

vx,y :=
q∑

a=1

sa∑

j=1

κ
(a)
j −1∑

m=0

(−1)m

m!
(
ξ

[a]
j,m

)
x ⊗ δ(m)(y − xa)l(a)

j (y), (29)

expressed in terms of derivatives of Dirac linear functionals and adapted left root
polynomials l(a)

j (x) of W (x), and for vectors of generalized functions
(
ξ

[a]
j,m

)
x ∈(

(C[x])′)p . Discrete Hankel masses appear when these terms are supported by the
diagonal with

vx,x :=
q∑

a=1

sa∑

j=1

κ
(a)
j −1∑

m=0

(−1)mδ(m)(x − xa)
ξ

[a]
j,m

m! l(a)
j (x), (30)

with ξ
[a]
j,m ∈ C

p.

Remark 4 Observe that the Hankel masses (30) are particular cases of (29) with

vx,y :=
q∑

a=1

sa∑

j=1

κ
(a)
j −1∑

m=0

(−1)m
ξ

[a]
j,m

m!
m∑

k=0

(
m

k

)
δ(m−k)(x − xa) ⊗ δ(k)(y − xa)l(a)

j (y),
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so that, with the particular choice in (29)

(
ξ

[a]
j,k

)
x =

κ
(a)
j −1−k∑

n=0

(−1)n
ξ

[a]
j,k+n

n! δ(n)(x − xa),

we get the diagonal case.

Remark 5 For the sesquilinear forms we have

〈P(x), Q(y)〉ǔ =
〈
P(x), Q(y)(W (y))−�〉

u

+
q∑

a=1

sa∑

j=1

κ
(a)
j −1∑

m=0

〈
P(x),

(
ξ

[a]
j,m

)
x

〉 1

m!
(

l(a)
j (y)

(
Q(y)

)�)(m)

xa
.

Observe that the distribution vx,y is associated with the eigenvalues and left root
vectors of the perturbing polynomial W (x). Needless to say that, when W (x) has a
singular leading coefficient, this spectral part could even disappear, for example if
W (x) is unimodular; i.e., with constant determinant, not depending on x . Notice that,
in general, we have N p ≥ ∑q

a=1

∑sa
i=1 κ

(a)
j and we can not ensure the equality, up to

for the nonsingular leading coefficient case.

Definition 28 Given a set of generalized functions (ξ
[a]
i,m)x , we introduce the matrices

〈
P̌ [1]

n (x), (ξ
[a]
i )x

〉
:=

[〈
P̌ [1]

n (x),
(
ξ

[a]
i,0

)
x

〉
,
〈
P̌ [1]

n (x),
(
ξ

[a]
i,1

)
x

〉
, . . . ,

〈
P̌ [1]

n (x),
(
ξ

[a]
i,κ(a)

i −1

)
x

〉]
∈ C

p×κ
(a)
i ,

〈
P̌ [1]

n (x), (ξ [a])x

〉
:=

[〈
P̌ [1]

n (x),
(
ξ

[a]
1

)
x

〉
,
〈
P̌ [1]

n (x),
(
ξ

[a]
2

)
x

〉
, . . . ,

〈
P̌ [1]

n (x),
(
ξ

[a]
sa

)
x

〉]
∈ C

p×αa ,

〈
P̌ [1]

n (x), (ξ)x

〉
:=

[〈
P̌ [1]

n (x),
(
ξ [1])

x

〉
,
〈
P̌ [1]

n (x),
(
ξ [2])

x

〉
, . . . ,

〈
P̌ [1]

n (x),
(
ξ

[q]
sa

)
x

〉]
∈ C

p×N p .

Definition 29 The exchange matrix is

η
(a)
i :=

⎡

⎢⎢⎢⎢⎣

0 0 . . . 0 1
0 0 . . . 1 0
... . .

. ...

0 1 . . . 0 0
1 0 . . . 0 0

⎤

⎥⎥⎥⎥⎦
∈ C

κ
(a)
i ×κ

(a)
i .
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Definition 30 The left Jordan chain matrix is given by

L(a)
i :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

l(a)
i,0 l(a)

i,1 l(a)
i,2 . . . l(a)

i,κ(a)
i −1

01×p l(a)
i,0 l(a)

i,1 . . . l(a)

i,κ(a)
i −2

01×p 01×p l(a)
i,0 . . . l(a)

i,κ(a)
i −3

...
. . .

. . .
. . .

...

01×p 01×p l(a)
i,0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
κ

(a)
i ×pκ

(a)
i .

For z �= xa , we also introduce the p × p matrices

Č(a)
n;i (z) :=

〈
P̌ [1]

n (x), (ξ
[a]
i )x

〉
η

(a)
i L(a)

i

⎡

⎢⎢⎣

Ip

(z−xa)
κ
(a)
i

...
Ip

z−xa

⎤

⎥⎥⎦ , (31)

where i = 1, . . . , sa .

Remark 6 Assume that the mass matrix is as in (30). Then, in terms of

X (a)
i :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ
[a]
i,κ(a)

i −1
ξ

[a]
i,κ(a)

i −2
ξ

[a]
i,κ(a)

i −3
. . . ξ

[a]
i,0

0p×1 ξ
[a]
i,κ(a)

i −1
ξ

[a]
i,κ(a)

i −2
. . . ξ

[a]
i,1

0p×1 0p×1 ξ
[a]
i,κ(a)

i −1
. . . ξ

[a]
i,2

...
. . .

. . .
. . .

...

0p×1 0p×1 ξ
[a]
i,κ(a)

i −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
pκ

(a)
i ×κ

(a)
i , (32)

we can write

〈
P̌ [1]

n (x), (ξ
[a]
i )x

〉
η

(a)
i = J (i)

P̌ [1]
n

(xa)X (a)
i . (33)

Consequently,

Č(a)
n;i (z) := J (i)

P̌ [1]
n

(xa)X (a)
i L(a)

i

⎡

⎢⎢⎣

Ip

(z−xa)
κ
(a)
i

...
Ip

z−xa

⎤

⎥⎥⎦ .

Observe that X (a)
i L(a)

i ∈ C
pκ

(a)
i ×pκ

(a)
i is a block upper triangular matrix, with blocks

in C
p×p.
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Proposition 29 For z /∈ suppy(ǔ) = suppy(u) ∪ σ(W (y)), the following expression

Č [1]
n (z) =

〈
P̌ [1]

n (x),
Ip

z − y

〉

uW−1
+

q∑

a=1

sa∑

i=1

Č(a)
n;i (z)

holds.

Proof We have

Č [1]
n (z) =

〈
P̌ [1]

n (x),
Ip

z − y

〉

ǔ

=
〈

P̌ [1]
n (x),

Ip

z − y

〉

uW−1
+

q∑

a=1

sa∑

i=1

κ
(a)
i −1∑

m=0

〈
P̌ [1]

n (x),
(
ξ

[a]
j,m

)
x

〉 (
1

m!
l(a)
i (x)

z − x

)(m)

xa

.

Now, taking into account that

(
1

m!
l(a)
i (x)

z − x

)(m)

x=xa

=
m∑

k=0

(
l(a)
i (x)

(m − k)!

)(m−k)

xa

1

(z − xa)k+1 ,

we deduce the result. 
�

Lemma 4 Let r (a)
j (x) be right root polynomials of the monic matrix polynomial W (x)

given in (2), then

L(a)
i

⎡

⎢⎢⎢⎢⎣

Ip

(x − xa)κ
(a)
i

...
Ip

x − xa

⎤

⎥⎥⎥⎥⎦
W (x)r (a)

j (x) =

⎡

⎢⎢⎢⎢⎣

1

(x − xa)κ
(a)
i

...
1

x − xa

⎤

⎥⎥⎥⎥⎦

l(a)
i (x)W (x)r (a)

j (x) + (x − xa)
κ

(a)
j T (x), T (x) ∈ C

κ
(a)
j [x].

Proof Notice that we can write

L(a)
i

⎡

⎢⎢⎢⎢⎣

Ip

(x − xa)κ
(a)
i

...
Ip

x − xa

⎤

⎥⎥⎥⎥⎦
W (x)r (a)

j (x)
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=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

l(a)
i,0 l(a)

i,1 l(a)
i,2 · · · l(a)

i,κ(a)
i −1

01×p l(a)
i,0 l(a)

i,1 · · · l(a)

i,κ(a)
i −2

01×p 01×p l(a)
i,0 l(a)

i,κ(a)
i −3

...
. . .

. . .
. . .

...

01×p 01×p l(a)
i,0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

Ip

(x − xa)κ
(a)
i

...
Ip

x − xa

⎤

⎥⎥⎥⎥⎦
W (x)r (a)

j (x)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l(a)
i (x)

(x − xa)κ
(a)
i

l(a)
i (x)

(x − xa)κ
(a)
i −1

− l(a)

i,κ(a)
i −1

...

l(a)
i (x)

x − xa
− l(a)

i,1 − · · · − l(a)

i,κ(a)
i −1

(x − xa)κ
(a)
i −2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

W (x)r (a)
j (x).


�

Lemma 5 The function Č(a)
n;i (x)W (x)r (b)

j (x) ∈ C
p[x] satisfies

Č(a)
n;i (x)W (x)r (b)

j (x)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈
P̌ [1]

n (x), (ξ
[a]
i )x

〉
η

(a)
i

⎡

⎢⎢⎣

(x − xa)
κ

(a)
max(i, j)−κ

(a)
i

...

(x − xa)
κ

(a)
max(i, j)−1

⎤

⎥⎥⎦ w
(a)
i, j (x) + (x − xa)

κ
(a)
j T (a,a)(x), if a = b,

(x − xb)
κ

(b)
j T (a,b)(x), if a �= b,

(34)

where the C
p-valued function T (a,b)(x) is analytic at x = xb and, in particular,

T (a,a)(x) ∈ C
p[x] .

Proof First, for the function Č(a)
n;i (x)W (x)r (b)

j (x) ∈ C
p[x], with a �= b,

we have

Č(a)
n;i (x)W (x)r (b)

j (x) =
〈
P̌ [1]

n (x), (ξ
[a]
i )x

〉
η

(a)
i L(a)

i

⎡

⎢⎢⎢⎢⎣

Ip

(x − xa)κ
(a)
i

...
Ip

x − xa

⎤

⎥⎥⎥⎥⎦
W (x)r (b)

j (x)

= (x − xb)
κ

(b)
j T (a,b)(x),
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where the C
p-valued function T (a,b)(x) is analytic at x = xb. Secondly, from (31)

and Lemma 4 we deduce that

Č(a)
n;i (x)W (x)r (a)

j (x) =
〈
P̌ [1]

n (x), (ξ
[a]
i )x

〉
η

(a)
i L(a)

i

⎡

⎢⎢⎢⎢⎣

Ip

(x − xa)κ
(a)
i

...
Ip

x − xa

⎤

⎥⎥⎥⎥⎦
W (x)r (a)

j (x)

=
〈
P̌ [1]

n (x), (ξ
[a]
i )x

〉
η

(a)
i

⎡

⎢⎢⎢⎢⎣

Ip

(x − xa)κ
(a)
i

...
Ip

x − xa

⎤

⎥⎥⎥⎥⎦
l(a)
i (x)W (x)r (a)

j (x)

+ (x − xa)
κ

(a)
j

〈
P̌ [1]

n (x), (ξ
[a]
i )x

〉
η

(a)
i T (a,a)(x),

for some T (a,a)(x) ∈ C
p[x]. Therefore, from Proposition 11 we get

Č(a)
n;i (x)W (x)r (a)

j (x) =
〈
P̌ [1]

n (x), (ξ
[a]
i )x

〉
η

(a)
i

⎡

⎢⎢⎣

(x − xa)
κ

(a)
max(i, j)−κ

(a)
i

...

(x − xa)
κ

(a)
max(i, j)−1

⎤

⎥⎥⎦

×
(
w

(a)
i, j;0 + w

(a)
i, j;1(x − xa) + · · · + w

(a)

i, j;κ(a)
min(i, j)+N−2

(x − xa)
κ

(a)
min(i, j)+N−2

)
.

+ (x − xa)
κ

(a)
j

〈
P̌ [1]

n (x), (ξ
[a]
i )x

〉
η

(a)
i T (a,a)(x),

and the result follows. 
�

We evaluate now the spectral jets of the second kind functions Č [1](z) á la Cauchy,
thus we must take limits of derivatives precisely in points of the spectrum of W (x),
which do not lay in the region of definition but on the border of it. Notice that these
operations are not available for the second kind functions á la Gram.

Lemma 6 For m = 0, . . . , κ(a)
j − 1, the following relations hold

(
Č [1]

n (z)W (z)r (a)
j (z)

)(m)

xa
=

sa∑

i=1

(
Č(a)

n;i (z)W (z)r (a)
j (z)

)(m)

xa
. (35)

Proof For z /∈ suppy(u) ∪ σ(W (y)), a consequence of Proposition 29 is that
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(
Č [1]

n (z)W (z)r (a)
j (z)

)(m)

xa
=

( 〈
P̌ [1]

n (x),
Ip

z − y

〉

uW−1
W (z)r (a)

j (z)

)(m)

xa

+
q∑

b=1

sb∑

i=1

(
Č(b)

n;i (z)W (z)r (a)
j (z)

)(m)

xa
.

But, as σ(W (y)) ∩ suppy(u) = ∅, the derivatives of the Cauchy kernel 1/(z − y) are
analytic functions at z = xa . Therefore,

( 〈
P̌ [1]

n (x),
Ip

z − y

〉

uW−1
W (z)r (a)

j (z)

)(m)

xa

=
〈

P̌ [1]
n (x),

( W (z)r (a)
j (z)

z − y

)(m)

xa

〉

uW−1

=
〈

P̌ [1]
n (x),

m∑

k=0

(
m

k

)(
W (z)r (a)

j (z)
)(k)

xa

(−1)m−k(m − k)!
(xa − y)m−k+1

〉

uW−1

= 0p×1,

for m = 0, . . . , κ(a)
j − 1. Equation (34) shows that Č(b)

n;i (x)W (x)r (a)
j (x) for b �= a has

a zero at z = xa of order κ
(a)
j and, consequently,

(
Č(b)

n;i (x)W (x)r (a)
j (x)

)(m)

xa
= 0, b �= a,

for m = 0, . . . , κ(a)
j − 1. 
�

Definition 31 Given the functionsw
(a)
i, j;k introduced in Proposition 11, let us introduce

the matrix W(a)
j,i ∈ C

κ
(a)
j ×κ

(a)
i

W(a)
j,i :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η
(a)
j

⎡

⎢⎢⎢⎢⎢⎢⎣
0
κ

(a)
j ×(κ

(a)
i −κ

(a)
j )

w
(a)
i, j;0 w

(a)
i, j;1 · · · w

(a)

i, j;κ(a)
j −1

0p w
(a)
i, j :0 · · · w

(a)

i, j;κ(a)
j −2

...
. . .

...

0p 0p w
(a)
i, j :0

⎤

⎥⎥⎥⎥⎥⎥⎦
, i ≥ j,

η
(a)
j

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w
(a)

i, j;κ(a)
j −κ

(a)
i

w
(a)

i, j;κ(a)
j −κ

(a)
i +1

· · · w
(a)

i, j,κ(a)
j −1

...
...

w
(a)
i, j;0 w

(a)
i, j;1 · · · w

(a)

i, j;κ(a)
i −1

0p w
(a)
i, j;0

...
...

. . .

0p 0p w
(a)
i, j;0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i ≤ j .
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and the matrixW(a)
j ∈ C

κ
(a)
j ×αa given by

W(a)
j :=

[
W(a)

j,1, . . . ,W
(a)
j,sa

]
.

We also consider the matrices W(a) ∈ C
αa×αa and W ∈ C

N p×N p

W(a) :=
⎡

⎢⎣
W(a)

1
...

W(a)
sa

⎤

⎥⎦ , W := diag(W(1), . . . ,W(q)). (36)

Proposition 30 The following relations among the spectral jets, introduced in Defini-
tion 8, of the perturbed polynomials and second kind functions

J ( j)

Č [1]
n W

(xa) =
sa∑

i=1

J ( j)

Čn;i W
(xa), J Č [1]

n W (xa) =
sa∑

i=1

J Čn;i W (xa), (37)

J ( j)

Čn;i W
(xa) =

〈
P̌ [1]

n (x), (ξ
[a]
i )x

〉
W(a)

i, j , J Čn;i W (xa) =
〈
P̌ [1]

n (x), (ξ
[a]
i )x

〉
W(a)

i ,

(38)

J Č [1]
n W (xa) =

〈
P̌ [1]

n (x), (ξ [a])x

〉
W(a), J Č [1]

n W =
〈
P̌ [1]

n (x), (ξ)x

〉
W, (39)

are satisfied.

Proof Equation (37) is a direct consequence of (35). According to (34) for m =
0, . . . , κ(a)

j − 1, we have

(Č(a)
n;i (x)W (x)r (a)

j (x)
)(m)

x=xa
=

〈
P̌ [1]

n (x), (ξ
[a]
i )x

〉
η

(a)
i

⎡

⎢⎢⎢⎣

(
(x − xa)

κ
(a)
max(i, j)−κ

(a)
i w

(a)
i, j (x)

)(m)

xa
...(

(x − xa)
κ

(a)
max(i, j)−1

w
(a)
i, j (x)

)(m)

xa

⎤

⎥⎥⎥⎦ ,

and collecting all these equations in a matrix form we get (38). Finally, we notice that
from (37) and (38) we deduce

J ( j)

Č [1]
n W

(xa) =
sa∑

i=1

〈
P̌ [1]

n (x), (ξ
[a]
i )x

〉
W(a)

i, j , J Č [1]
n W (xa) =

sa∑

i=1

〈
P̌ [1]

n (x), (ξ
[a]
i )x

〉
W(a)

i .

Now, using (36) we can write the second equation as

J Č [1]
n W (xa) =

sa∑

i=1

〈
P̌ [1]

n (x), (ξ
[a]
i )x

〉
W(a)

i

=
〈
P̌ [1]

n (x), (ξ [a])x

〉
W(a).
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A similar argument leads to the second relation in (39). 
�

Definition 32 For the Hankel masses, we also consider thematrices T (a)
i ∈ C

pκ
(a)
i ×αa ,

T (a) ∈ C
pαa×αa and T ∈ C

N p2×N p given by

T (a)
i := X (a)

i η
(a)
i W(a)

i , T (a) :=
⎡

⎢⎣
T (a)
1
...

T (a)
sa

⎤

⎥⎦ , T := diag(T (1), . . . , T (q)).

2.4 Spectral Christoffel–Geronimus formulas

Proposition 31 If n ≥ N, the matrix coefficients of the connection matrix satisfy

[
ωn,n−N , . . . , ωn,n−1

] = −(J C [1]
n

−
〈
P [1]

n (x), (ξ)x

〉
W)

⎡

⎢⎢⎣

J C [1]
n−N

−
〈
P [1]

n−N (x), (ξ)x

〉
W

...

J C [1]
n−1

−
〈
P [1]

n−1(x), (ξ)x

〉
W

⎤

⎥⎥⎦

−1

.

Proof From the connection formula (24), for n ≥ N

Č [1]
n (x)W (x) =

n−1∑

k=n−N

ωn,kC [1]
k (x) + C [1]

n (x),

and we conclude that

J Č [1]
n W = [

ωn,n−N , . . . , ωn,n−1
]

⎡

⎢⎣

J C [1]
n−N
...

J C [1]
n−1

⎤

⎥⎦ + J C [1]
n

.

Similarly, using the equation (21), we get

〈
P̌ [1]

n (x), (ξ)x

〉
W = [

ωn,n−N , . . . , ωn,n−1
]

⎡

⎢⎢⎣

〈
P [1]

n−N (x), (ξ)x

〉
W

...〈
P [1]

n−1(x), (ξ)x

〉
W

⎤

⎥⎥⎦

+
〈
P [1]

n (x), (ξ)x

〉
W. (40)

Now, from (39) we deduce

[
ωn,n−N , . . . , ωn,n−1

]
⎡

⎢⎣

J C [1]
n−N
...

J C [1]
n−1

⎤

⎥⎦ + J C [1]
n
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= [
ωn,n−N , . . . , ωn,n−1

]

⎡

⎢⎢⎣

〈
P [1]

n−N (x), (ξ)x

〉
W

...〈
P [1]

n−1(x), (ξ)x

〉
W

⎤

⎥⎥⎦

+
〈
P [1]

n (x), (ξ)x

〉
W,

that is to say

[
ωn,n−N , . . . , ωn,n−1

]

⎡

⎢⎢⎣

J C [1]
n−N

−
〈
P [1]

n−N (x), (ξ)x

〉
W

...

J C [1]
n−1

−
〈
P [1]

n−1(x), (ξ)x

〉
W

⎤

⎥⎥⎦

= −
(
J C [1]

n
−

〈
P [1]

n (x), (ξ)x

〉
W

)
.


�

Remark 7 In the next results, the jets of theChristoffel–Darboux kernels are considered
with respect to the first variable x , and we treat the y-variable as a parameter.

Theorem 2 (Spectral Christoffel–Geronimus formulas) When n ≥ N, for monic
Geronimus perturbations, with masses as described in (29), we have the following
last quasideterminantal expressions for the perturbed biorthogonal matrix polynomi-
als and its matrix norms

P̌ [1]
n (x) = �∗

⎡

⎢⎢⎣

J C [1]
n−N

−
〈
P [1]

n−N (x), (ξ)x

〉
W P [1]

n−N (x)

...
...

J C [1]
n

−
〈
P [1]

n (x), (ξ)x

〉
W P [1]

n (x)

⎤

⎥⎥⎦ ,

Ȟn = �∗

⎡

⎢⎢⎢⎢⎢⎣

J C [1]
n−N

−
〈
P [1]

n−N (x), (ξ)x

〉
W Hn−N

J C [1]
n−N+1

−
〈
P [1]

n−N+1(x), (ξ)x

〉
W 0p

...
...

J C [1]
n

−
〈
P [1]

n (x), (ξ)x

〉
W 0p

⎤

⎥⎥⎥⎥⎥⎦
,

(
P̌ [2]

n (y)
)� = −�∗

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

J C [1]
n−N

−
〈
P [1]

n−N (x), (ξ)x

〉
W Hn−N

J C [1]
n−N+1

−
〈
P [1]

n−N+1(x), (ξ)x

〉
W 0p

...
...

J C [1]
n−1

−
〈
P [1]

n−1(x), (ξ)x

〉
W 0p

W (y)
(J

K (pc)
n−1

(y) − 〈Kn−1(x, y), (ξ)x 〉W
) + J V (y) 0p

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Proof First, we consider the expressions for P̌ [1]
n (x) and Ȟn . Using relation (21) we

have

P̌ [1]
n (x) = P [1]

n (x) + [
ωn,n−N , . . . , ωn,n−1

]
⎡

⎢⎣
P [1]

n−N (x)
...

P [1]
n−1(x)

⎤

⎥⎦ ,

from Proposition 31 we obtain

P̌ [1]
n (x) = P [1]

n (x) −
(
J C [1]

n
−

〈
P [1]

n (x), (ξ)x

〉
W

)

⎡

⎢⎢⎣

J C [1]
n−N

−
〈
P [1]

n−N (x), (ξ)x

〉
W

...

J C [1]
n−1

−
〈
P [1]

n−1(x), (ξ)x

〉
W

⎤

⎥⎥⎦

−1 ⎡

⎢⎣
P [1]

n−N (x)
...

P [1]
n−1(x)

⎤

⎥⎦ ,

and the result follows. To get the transformation for the H ’s we proceed as follows.
From (20) we deduce

Ȟn = ωn,n−N Hn−N . (41)

But, according to Proposition 31, we have

ωn,n−N = −(J C [1]
n

−
〈
P [1]

n (x), (ξ)x

〉
W)

⎡

⎢⎢⎣

J C [1]
n−N

−
〈
P [1]

n−N (x), (ξ)x

〉
W

...

J C [1]
n−1

−
〈
P [1]

n−1(x), (ξ)x

〉
W

⎤

⎥⎥⎦

−1 ⎡

⎢⎢⎣

Ip

0p
...

0p

⎤

⎥⎥⎦ .

Hence,

Ȟn = −(J
C [1]

n
−

〈
P[1]

n (x), (ξ)x

〉
W)

⎡

⎢⎢⎢⎣

J
C [1]

n−N
−

〈
P[1]

n−N (x), (ξ)x

〉
W

...

J
C [1]

n−1
−

〈
P[1]

n−1(x), (ξ)x

〉
W

⎤

⎥⎥⎥⎦

−1 ⎡

⎢⎢⎣

Hn−N
0p
...

0p

⎤

⎥⎥⎦ .

We now prove the result for
(

P̌ [2]
n (y)

)�
. On one hand, according to Definition 12

we rewrite (28) as

n−1∑

k=0

(
P̌ [2]

k (y)
)�

Ȟ−1
k Č [1]

k (x)W (x) = W (y)K (pc)
n−1 (x, y)

−
[(

P̌ [2]
n (y)

)�
Ȟ−1

n , . . . ,
(
P̌ [2]

n+N−1(y)
)�

Ȟ−1
n+N−1

]
�[n]

⎡

⎢⎣
C [1]

n−N (x)
...

C [1]
n−1(x)

⎤

⎥⎦ + V(x, y).
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Therefore, the corresponding spectral jets do satisfy

n−1∑

k=0

(
P̌ [2]

k (y)
)�

Ȟ−1
k J Č [1]

k W = W (y)J
K (pc)

n−1
(y)

−
[(

P̌ [2]
n (y)

)�
Ȟ−1

n , . . . ,
(
P̌ [2]

n+N−1(y)
)�

Ȟ−1
n+N−1

]
�[n]

⎡

⎢⎣

J C [1]
n−N
...

J C [1]
n−1

⎤

⎥⎦ + J V (y),

and, recalling (39), we conclude that

n−1∑

k=0

(
P̌ [2]

k (y)
)�

Ȟ−1
k

〈
P̌ [1]

k (x), (ξ)x

〉
W = W (y)J

K (pc)
n−1

(y)

−
[(

P̌ [2]
n (y)

)�
Ȟ−1

n , . . . ,
(
P̌ [2]

n+N−1(y)
)�

Ȟ−1
n+N−1

]
�[n]

⎡

⎢⎣

J C [1]
n−N
...

J C [1]
n−1

⎤

⎥⎦ + J V (y).

(42)

On the other hand, from (27) we realize that

n−1∑

k=0

(
P̌ [2]

k (y)
)�

Ȟ−1
k

〈
P [1]

k (x), (ξ)x

〉
W = W (y) 〈Kn−1(x, y), (ξ)x 〉W

−
[(

P̌ [2]
n (y)

)�
Ȟ−1

n , . . . ,
(
P̌ [2]

n+N−1(y)
)�

Ȟ−1
n+N−1

]
�[n]

⎡

⎢⎢⎣

〈
P [1]

n−N (x), (ξ)x

〉
W

...〈
P [1]

n−1(x), (ξ)x

〉
W

⎤

⎥⎥⎦ ,

which can be subtracted to (42) to get

W (y)
(J

K (pc)
n−1

(y) − 〈Kn−1(x, y), (ξ)x 〉W
) + J V (y)

=
[(

P̌ [2]
n (y)

)�
Ȟ−1

n , . . . ,
(
P̌ [2]

n+N−1(y)
)�

Ȟ−1
n+N−1

]

�[n]

⎡

⎢⎢⎣

J C [1]
n−N

−
〈
P [1]

n−N (x), (ξ)x

〉
W

...

J C [1]
n−1

−
〈
P [1]

n−1(x), (ξ)x

〉
W

⎤

⎥⎥⎦ .

Hence, we obtain the formula

[(
P̌ [2]

n (y)
)�

Ȟ−1
n , . . . ,

(
P̌ [2]

n+N−1(y)
)�

Ȟ−1
n+N−1

]
�[n]
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=
(

W (y)
(J

K (pc)
n−1

(y) − 〈Kn−1(x, y), (ξ)x 〉W
) + J V (y)

)

⎡

⎢⎢⎣

J C [1]
n−N

−
〈
P [1]

n−N (x), (ξ)x

〉
W

...

J C [1]
n−1

−
〈
P [1]

n−1(x), (ξ)x

〉
W

⎤

⎥⎥⎦

−1

. (43)

Now, for n ≥ N , from Definition 26 and the fact that ωn,n−N = Ȟn
(
Hn−N

)−1, we
get

(
P̌ [2]

n (y)
)� =

(
W (y)

(J
K (pc)

n−1
(y) − 〈Kn−1(x, y), (ξ)x 〉W

) + J V (y)
)

⎡

⎢⎢⎣

J C [1]
n−N

−
〈
P [1]

n−N (x), (ξ)x

〉
W

...

J C [1]
n−1

−
〈
P [1]

n−1(x), (ξ)x

〉
W

⎤

⎥⎥⎦

−1 ⎡

⎢⎢⎣

Hn−N

0p
...

0p

⎤

⎥⎥⎦ ,

and the result follows. 
�

2.5 Nonspectral Christoffel–Geronimus formulas

We now present an alternative orthogonality relations approach for the derivation of
Christoffel type formulas, that avoids the use of the second kind functions and of the
spectral structure of the perturbing polynomial. A key feature of these results is that
they hold even for perturbing matrix polynomials with singular leading coefficient.

Definition 33 For a given perturbed matrix of generalized kernels ǔx,y = ux,y(
W (y)

)−1 + vx,y , with vx,y W (y) = 0p, we define a semi-infinite block matrix

R :=
〈
P [1](x), χ(y)

〉

ǔ

=
〈
P [1](x), χ(y)

〉

uW−1
+

〈
P [1](x), χ(y)

〉

v
.

Remark 8 Its blocks are Rn,l =
〈
P [1]

n (x), Ip yl
〉

ǔ
∈ C

p×p. Observe that for a Geron-

imus perturbation of a Borel measure dμ(x, y), with general masses as in (29) we
have

Rn,l =
∫

P [1]
n (x) dμ(x, y)(W (y))−1yl

+
q∑

a=1

sa∑

i=1

κ
(a)
j −1∑

m=0

1

m! 〈P [1]
n (x),

(
ξ

[a]
i,m

)
x 〉

(
l(a)

j (y)yl)(m)

xa
,
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that, when the masses are discrete and supported by the diagonal y = x , reduces to

Rn,l =
∫

P [1]
n (x) dμ(x, y)(W (y))−1yl

+
q∑

a=1

sa∑

i=1

κ
(a)
j −1∑

m=0

1

m!
(

P [1]
n (x)xlξ

[a]
i,ml(a)

j (x)
)(m)

xa
.

Proposition 32 The following relations hold true

R = S1Ǧ, (44)

ωR = Ȟ
(
Š2

)−�
, (45)

RW (��) = H
(
S2

)−�
. (46)

Proof Equation (44) follows from Definition 33. Indeed,

R =
〈
P [1](x), χ(y)

〉

ǔ

= S1 〈χ(x), χ(y)〉ǔ .

To deduce (45) we recall (16), (44), and the Gauss factorization of the perturbedmatrix
of moments

ωR = (
Š1(S1)

−1)
(S1Ǧ)

= Š1Ǧ

= Š1
(
(Š1)

−1 Ȟ(Š2)
−�)

Finally, to get (46), we use (17) together with (45), which implies ω = ωRW (��)(
S2)� H−1, and as the resolvent is unitriangular with a unique inverse matrix [14], we
obtain the result. 
�

From (45) it immediately follows that

Proposition 33 The matrix R fulfills

(ωR)n,l =
{
0p, l ∈ {0, . . . , n − 1},
Ȟn, n = l.

Proposition 34 The matrix

[ R0,0 ... R0,n−1
...

...
Rn−1,0 ... Rn−1,n−1

]
is nonsingular.

Proof From (44) we conclude for the corresponding truncations that R[n] =
(S1)[n]Ǧ[n] is nonsingular, as we are assuming, to ensure the orthogonality, that Ǧ[n]
is nonsingular for all n ∈ {1, 2, . . . }. 
�
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Definition 34 Let us introduce the polynomials r K
n,l(z) ∈ C

p×p[z], l ∈ {0, . . . , n −1},
given by

r K
n,l(z) : =

〈
W (z)Kn−1(x, z), Ip yl

〉

ǔ
− Ipzl

=
〈
W (z)Kn−1(x, z), Ip yl

〉

uW−1
+

〈
W (z)Kn−1(x, z), Ip yl

〉

v
− Ipzl .

Proposition 35 For l ∈ {0, 1, . . . , n − 1} and m = min(n, N ) we have

r K
n,l(z) =

[
(P̌ [2]

n (z))�(Ȟn)−1, . . . , (P̌ [2]
n−1+N (z))�(Ȟn−1+N )−1

]
�[n]

⎡

⎣
Rn−m,l

...

Rn−1,l

⎤

⎦ .

Proof It follows from (27), Definition 33, and (14). 
�
Definition 35 For n ≥ N , given the matrix

⎡

⎣
Rn−N ,0 . . . Rn−N ,n−1

...
...

Rn−1,0 . . . Rn−1,n−1

⎤

⎦ ∈ C
N p×np,

we construct a submatrix of it by selecting N p columns among all the np columns. For
that aim, we use indexes (i, a) labeling the columns, where i runs through {0, . . . , n −
1} and indicates the block, and a ∈ {1, . . . , p} denotes the corresponding column in
that block; i.e., (i, a) is an index selecting the a-th column of the i-block. Given a set
of N different couples I = {(ir , ar )}N

r=1, with a lexicographic ordering, we define the
corresponding square submatrix R�

n := [
c(i1,a1), . . . , c(iN p,aN p)

]
. Here c(ir ,ar ) denotes

the ar -th column of the matrix

⎡

⎣
Rn−N ,ir

...

Rn−1,ir

⎤

⎦ .

The set of indexes I is said poised if R�
n is nonsingular. We also use the notation

where r�
n := [

c̃(i1,a1), . . . , c̃(iN p,aN p)

]
. Here c̃(ir ,ar ) denotes the ar -th column of the

matrix Rn,ir . Given a poised set of indexes we define (r K
n (y))� as the matrix built up

by taking from the matrices r K
n,ir

(y) the columns ar .

Lemma 7 For n ≥ N, there exists at least a poised set.

Proof For n ≥ N , we consider the rectangular block matrix

⎡

⎣
Rn−N ,0 . . . Rn−N ,n−1

...
...

Rn−1,0 . . . Rn−1,n−1

⎤

⎦ ∈ C
N p×np.

123



Matrix biorthogonal polynomials on the real line…

As the truncation R[n] is nonsingular, this matrix is full rank, i.e., all its N p rows are
linearly independent. Thus, there must be N p independent columns and the desired
result follows. 
�
Lemma 8 Whenever the leading coefficient AN of the perturbing polynomial W (y) is
nonsingular, we can decompose any monomial Ip yl as

Ip yl = αl(y)(W (y))� + βl(y),

where αl(y), βl(y) = βl,0 + · · · + βl,N−1yN−1 ∈ C
p×p[y], with degαl(y) ≤ l − N.

Proposition 36 Let us assume that the matrix polynomial W (y) = AN yN + · · · + A0
has a nonsingular leading coefficient and n ≥ N. Then, the set {0, 1, . . . , N − 1} is
poised.

Proof From Proposition 33 we deduce

[
ωn,n−N , . . . , ωn,n−1

]
⎡

⎣
Rn−N ,l

...

Rn−1,l

⎤

⎦ = −Rn,l ,

for l ∈ {0, 1, . . . , n − 1}. In particular, the resolvent vector
[
ωn,n−N , . . . , ωn,n−1

]
is

a solution of the linear system

[
ωn,n−N , . . . , ωn,n−1

]
⎡

⎣
Rn−N ,0 . . . Rn−N ,N−1

...
...

Rn−1,0 . . . Rn−1,N−1

⎤

⎦ = − [
Rn,0, . . . , Rn,N−1

]
. (47)

We will show now that this is the unique solution to this linear system. Let us proceed
by contradiction and assume that there is another solution, say

[
ω̃n,n−N , . . . , ω̃n,n−1

]
.

Consider then the monic matrix polynomial

P̃n(x) = P [1]
n (x) + ω̃n,n−1P [1]

n−1(x) + · · · + ω̃n,n−N P [1]
n−N (x).

Because
[
ω̃n,n−N , . . . , ω̃n,n−1

]
solves (47) we know that

〈P̃n(x), Ip yl〉ǔ = 0p, l ∈ {0, . . . , N − 1}.

Lemma 8 implies the following relations for degαl(y) < m,

〈P [1]
m (x), Ip yl〉ǔ = 〈P [1]

m (x), αl(y)〉ǔW + 〈P [1]
m (x), βl(y)〉ǔ

= 〈P [1]
m (x), αl(y)〉u + 〈P [1]

m (x), βl(y)〉ǔ

= 〈P [1]
m (x), βl(y)〉ǔ .
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But degαl(y) ≤ l − N , so that the previous equation will hold at least for l − N < m;
i.e., l < m + N . Consequently, for l ∈ {0, . . . , n − 1}, we find

〈P̃n(x), Ip yl〉ǔ = 〈P [1]
n (x), Ip yl〉ǔ + ω̃n,n−1〈P [1]

n−1(x), Ip yl〉ǔ

+ · · · + ω̃n,n−N 〈P [1]
n−N (y), Ip yl〉ǔ

= 〈P [1]
n (x), βl(y)〉ǔ + ω̃n,n−1〈P [1]

n−1(x), βl(y)〉ǔ

+ · · · + ω̃n,n−N 〈P [1]
n−N (x), βl(y)〉ǔ

=
N−1∑

k=0

(
Rn,k + ω̃n,n−1Rn−1,k + · · · + ω̃n,n−N Rn−N ,k

)
(βl,k)

�

= 0p.

Therefore, from the uniqueness of the biorthogonal families, we deduce P̃n(x) =
P̌ [1]

n (x), and, recalling (21), there is a unique solution of (47). Thus,

⎡

⎣
Rn−N ,0 . . . Rn−N ,n−1

...
...

Rn−1,0 . . . Rn−1,n−1

⎤

⎦

is nonsingular, and I = {0, . . . , N − 1} is a poised set. 
�
Proposition 37 For n ≥ N, given poised set, which always exists, we have

[
ωn,n−N , . . . , ωn,n−1

] = −r�
n (R�

n )−1.

Proof It follows from Proposition 33. 
�
Theorem 3 (Non-spectral Christoffel–Geronimus formulas) Given a matrix Geron-
imus transformation the corresponding perturbed polynomials, {P̌ [1]

n (x)}∞n=0 and

{P̌ [2]
n (y)}∞n=0, and matrix norms {Ȟn}∞n=0 can be expressed as follows. For n ≥ N,

P̌ [1]
n (x) = �∗

⎡

⎢⎢⎢⎣

P [1]
n−N (x)

R�
n

...

P [1]
n−1(x)

r�
n P [1]

n (x)

⎤

⎥⎥⎥⎦ ,
(
P̌ [2]

n (y)
)�

AN = −�∗

⎡

⎢⎢⎢⎢⎣
R�

n

Hn−N

0p
...

0p

(r K
n (y))� 0p

⎤

⎥⎥⎥⎥⎦
,

and two alternative expressions

Ȟn = �∗

⎡

⎢⎢⎣
R�

n

Rn−N ,n
...

Rn−1,n

r�
n Rn,n

⎤

⎥⎥⎦ = �∗

⎡

⎢⎢⎢⎢⎣
R�

n

Hn−N

0p
...

0p

r�
n 0p

⎤

⎥⎥⎥⎥⎦
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Proof For m = min(n, N ), from the connection formula (18) we have

P̌ [1]
n (x) = [ωn,n−m, . . . , ωn,n−1]

⎡

⎢⎣
P [1]

n−m(x)
...

P [1]
n−1(x)

⎤

⎥⎦ + P [1]
n (x),

and from Proposition 33 we deduce

Ȟn = [ωn,n−m, . . . , ωn,n−1]
⎡

⎣
Rn−m,n

...

Rn−1,n

⎤

⎦ + Rn,n,

and use (41). Then, recalling Proposition 37we obtain the desired formulas for P̌ [1]
n (x)

and Ȟn .
For n ≥ N , we have

r K
n,l(y) =

[
(P̌ [2]

n (y))�(Ȟn)
−1, . . . , (P̌ [2]

n−1+N (y))�(Ȟn−1+N )−1
]
�[n]

⎡

⎣
Rn−N ,l

...

Rn−1,l

⎤

⎦ ,

so that

(r K
n (y))�(R�

n )−1 =
[
(P̌ [2]

n (y))�(Ȟn)−1, . . . , (P̌ [2]
n−1+N (y))�(Ȟn−1+N )−1

]
�[n].

In particular, recalling (20), we deduce that

(P̌ [2]
n (y))� AN = (r K

n (y))�(R�
n )−1

⎡

⎢⎢⎣

Hn−N

0p
...

0p

⎤

⎥⎥⎦ .


�

2.6 Spectral versus nonspectral

Definition 36 We introduce the truncation given by taking only the first N columns
of a given semi-infinite matrix

R(N ) :=
⎡

⎣
R0,0 R0,1 . . . R0,N−1
R1,0 R0,1 . . . R1,N−1
...

...
...

⎤

⎦ .

Then, we can connect the spectral methods and the nonspectral techniques as fol-
lows
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Proposition 38 The following relation takes place

J C [1] −
〈
P [1](x), (ξ)x

〉
W = −R(N )BQ.

Proof From (24) we deduce that

Č [1](x)W (x) − Ȟ
(
Š2

)−�
⎡

⎣
B(χ(x))[N ]

0p
...

⎤

⎦ = ωC [1](x).

Taking the corresponding root spectral jets, we obtain

J Č [1]W − Ȟ
(
Š2

)−�
⎡

⎣
BQ
0p
...

⎤

⎦ = ωJ C [1] ,

that, together with (39), gives

ω
(
J C [1] −

〈
P [1](x), (ξ)x

〉
W

)
= −Ȟ

(
Š2

)−�
⎡

⎣
BQ
0p
...

⎤

⎦ .

Now, relation (45) implies

ω
(
J C [1] −

〈
P [1](x), (ξ)x

〉
W + R(N )BQ

)
= 0.

But, given that ω is a lower unitriangular matrix, and therefore with an inverse, see
[14], the unique solution to ωX = 0, where X is a semi-infinite matrix, is X = 0. 
�
We now discuss an important fact, which ensures that the spectral Christoffel–
Geronimus formulas presented in previous sections make sense

Corollary 1 If the leading coefficient AN is nonsingular and n ≥ N, then

⎡

⎢⎢⎣

J C [1]
n−N

−
〈
P [1]

n−N (x), (ξ)x

〉
W

...

J C [1]
n−1

−
〈
P [1]

n−1(x), (ξ)x

〉
W

⎤

⎥⎥⎦

is nonsingular.

Proof From Proposition 38 one deduces the following formula

⎡

⎢⎢⎣

J C [1]
n−N

−
〈
P [1]

n−N (x), (ξ)x

〉
W

...

J C [1]
n−1

−
〈
P [1]

n−1(x), (ξ)x

〉
W

⎤

⎥⎥⎦ = −
⎡

⎢⎣
Rn−N ,0 . . . Rn−N ,N−1

...
...

Rn−1,0 . . . Rn−1,N−1

⎤

⎥⎦BQ. (48)
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Now, Proposition 36 and Lemma 2 lead to the result. 
�
We stress at this point that (48) connects the spectral and the nonspectral methods.
Moreover, when we border with a further block row we obtain

⎡

⎢⎢⎣

J C [1]
n−N

−
〈
P [1]

n−N (x), (ξ)x

〉
W

...

J C [1]
n

−
〈
P [1]

n (x), (ξ)x

〉
W

⎤

⎥⎥⎦ = −
⎡

⎣
Rn−N ,0 . . . Rn−N ,N−1

...
...

Rn,0 . . . Rn,N−1

⎤

⎦BQ.

2.7 Applications

2.7.1 Unimodular Christoffel perturbations and nonspectral techniques

The spectral methods apply to those Geronimus transformations with a perturbing
polynomial W (y) having a nonsingular leading coefficient AN . This was also the case
for the techniques developed in [3] for matrix Christoffel transformations, where the
perturbing polynomial had a nonsingular leading coefficient. However, we have shown
that despite we can extend the use of the spectral techniques to the study of matrix
Geronimus transformations, we also have a nonspectral approach applicable even for
singular leading coefficients. For example, some cases that have appeared several times
in the literature –see [21]– are unimodular perturbations and, consequently, with W (y)

having a singular leading coefficient. In this case, we have that (W (y))−1 is a matrix
polynomial, and we can consider the Geronimus transformation associated with the
matrix polynomial (W (y))−1 –as the spectrum is empty σ(W (y)) = ∅, no masses
appear– as a Christoffel transformation with perturbing matrix polynomial W (y) of
the original matrix of generalized kernels

ǔx,y = ux,y
(
(W (y))−1)−1 = ux,y W (y). (49)

We can apply Theorem 3 with

R =
〈
P [1](x), χ(y)

〉

uW
, Rn,l =

〈
P [1]

n (x), Ip yl
〉

uW
∈ C

p×p.

For example, when the matrix of generalized kernels is a matrix of measures μ, we
can write

Rn,l =
∫

P [1]
n (x) dμ(x, y)W (y)yl .

Here W (x) is a Christoffel perturbation and deg((W (x))−1) gives you the number of
original orthogonal polynomials required for the Christoffel type formula. Theorem 3
can be nicely applied to get P̌ [1]

n (x) and Ȟn . However, it only gives Christoffel–
Geronimus formulas for

(
P̌ [2]

n (y)
)�

AN and given that AN is singular, we only partially

recover P̌ [2]
n (y). This problem disappears whenever we have symmetric generalized
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kernels ux,y = (uy,x )
�, see Remark 3, as then P [1]

n (x) = P [2]
n (x) =: Pn(x) and

biorthogonality collapses to orthogonality of {Pn(x)}∞n=0. From (49), we need to
require

ux,y W (y) = (W (x))�(uy,x )
�,

that when the initial matrix of kernels is itself symmetric ux,y = (uy,x )
� reads

ux,y W (y) = (W (x))�ux,y . Now, if we are dealing with Hankel matrices of gen-
eralized kernels ux,y = ux,x we find ux,x,W (x) = (W (x))�ux,x , that for the scalar
case reads ux,x = u0 Ip with u0 a generalized function we need W (x) to be a sym-
metric matrix polynomial. For this scenario, if {pn(x)}∞n=0 denotes the set of monic
orthogonal polynomials associated with u0, we have Rn,l = 〈

u0, pn(x)W (x)xl
〉
.

For example, if we take p = 2, with the unimodular perturbation given by

W (x) =
[
(A2)1,1x2 + (A1)1,1x + (A0)1,1 (A2)1,2x2 + (A1)1,2x + (A0)1,2
(A2)1,2x2 + (A1)1,2x + (A0)1,2 (A2)2,2x2 + (A1)2,2x + (A0)2,2

]

we have, that the inverse is the following matrix polynomial

(W (x))−1 = 1

det W (x)[
(A2)2,2x2 + (A1)2,2x + (A0)2,2 −(A2)1,2x2 − (A1)1,2x − (A0)1,2

−(A2)1,2x2 − (A1)1,2x − (A0)1,2 (A2)1,1x2 + (A1)1,1x + (A0)1,1

]
,

where det W (x) is a constant, and the inverse has also degree 2. Therefore, for n ∈
{2, 3, . . . }, we have the following expressions for the perturbed matrix orthogonal
polynomials

P̌n(x)

= �∗

⎡

⎢⎢⎣

〈
u0, pn−2(x)xk (A2x2 + A1x + A0)

〉 〈
u0, pn−2(x)xl (A2x2 + A1x + A0)

〉
pn−2(x)Ip

〈
u0, pn−1(x)xk (A2x2 + A1x)

〉 〈
u0, pn−1(x)xl (A2x2 + A1x + A0)

〉
pn−1(x)Ip

〈
u0, pn(x)xk A2x2

〉 〈
u0, pn(x)xl (A2x2 + A1x)

〉
pn(x)Ip

⎤

⎥⎥⎦ ,

and the corresponding matrix norms or quasitau matrices are

Ȟn = �∗

⎡

⎢⎢⎢⎢⎢⎢⎣

〈
u0, pn−2(x)xk(A2x2 + A1x + A0)

〉 〈
u0, pn−2(x)xl (A2x2 + A1x + A0)

〉
〈
u0, pn−2(x)xn(A2x2 + A1x + A0)

〉
〈
u0, pn−1(x)xk(A2x2 + A1x)

〉 〈
u0, pn−1(x)xl (A2x2 + A1x + A0)

〉
〈
u0, pn−1(x)xn(A2x2 + A1x + A0)

〉
〈
u0, pn(x)xk A2x2

〉 〈
u0, pn(x)xl (A2x2 + A1x)

〉
〈
u0, pn(x)xn(A2x2 + A1x + A0)

〉

⎤

⎥⎥⎥⎥⎥⎥⎦
.
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Here the natural numbers k and l satisfy 0 ≤ k < l ≤ n − 1 and are among those (we
know that they do exist) that fulfil

det

[〈
u0, pn−2(x)xk(A2x2 + A1x + A0)

〉 〈
u0, pn−2(x)xl(A2x2 + A1x + A0)

〉

〈
u0, pn−1(x)xk(A2x2 + A1x)

〉 〈
u0, pn−1(x)xl(A2x2 + A1x + A0)

〉

]
�= 0.

Observe that the case of size p = 2 unimodular matrix polynomials is particularly
simple, because the degree of the perturbation and its inverse coincide. However, for
bigger sizes this is not the case. For a better understanding, let us recall that unimodular
matrices always factorize in terms of elementary matrix polynomials and elementary
matrices, which are of the following form

(i) Elementary matrix polynomials: ei, j (x) = Ip + Ei, j p(x) with i �= j and Ei, j

the matrix with a 1 at the (i, j) entry and zero elsewhere, and p(x) ∈ C[x].
(ii) Elementary matrices:

(a) Ip + (c − 1)Ei,i with c ∈ C.
(b) η(i, j) = Ip − Ei,i − E j, j + Ei, j + E j,i : the identity matrix with the i-th and

j-th rows interchanged.

The inverses of these matrices are elementary again

(ei, j (x))−1 = Ip − p(x)Ei, j ,

(Ip + (c − 1)Ei,i )
−1 = Ip + (c−1 − 1)Ei,i ,

(η(i, j))−1 = η(i, j),

and the inverse of a general unimodular matrix polynomial can be computed imme-
diately once its factorization in terms of elementary matrices is given. However, the
degree of the matrix polynomial and its inverse requires a separate analysis.

If our perturbation W (x) = Ip + p(x)Ei, j is an elementary matrix polynomial,
with deg p(x) = N , then we have that (W (x))−1 = Ip − p(x)Ei, j and deg W (x) =
deg((W (x))−1) = N . If we assume a departing matrix of generalized kernels ux,y ,
for n ≥ N , the first family of perturbed polynomials will be

P̌ [1]
n (x)

= �∗

⎡

⎢⎣

〈
P [1]

n−N (x), yk1 (Ip + p(y)Ei, j )
〉
u . . .

〈
P [1]

n−N (x), ykN (Ip + p(y)Ei, j )
〉
u P [1]

n−N (x)
...

...
...〈

P [1]
n (x), yk1 (Ip + p(y)Ei, j )

〉
u . . .

〈
P [1]

n (x), ykN (Ip + p(y)Ei, j )
〉
u P [1]

n (x)

⎤

⎥⎦ .

Here, the sequence of different integers {k1, . . . , kN } ⊂ {1, . . . , n − 1} is such that

det

⎡

⎢⎣

〈
P [1]

n−N (x), yk1(Ip + p(y)Ei, j )
〉
u . . .

〈
P [1]

n−N (x), ykN (Ip + p(y)Ei, j )
〉
u

...
...〈

P [1]
n−1(x), yk1(Ip + p(y)Ei, j )

〉
u . . .

〈
P [1]

n−1(x), ykN (Ip + p(y)Ei, j )
〉
u

⎤

⎥⎦ �= 0.
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A bit more complex situation appears when we have the product of different ele-
mentary matrix polynomials, for example

W (x) = (
Ip + p(1)

i1, j1
(x)Ei1, j1

)(
Ip + p(2)

i2, j2
(x)Ei2, j2

)
,

which has two possible forms depending on whether j1 �= i2 or j1 = i2

W (x) =
⎧
⎨

⎩
Ip + p(1)

i1, j1
(x)Ei1, j1 + p(2)

i2, j2
(x)Ei2, j2 , j1 �= i2,

Ip + p(1)
i1, j1

(x)Ei1, j1 + p(2)
j2, j2

(x)E j2, j2 + p(1)
i1, j1

(x)p(2)
j1, j2

(x)Ei1, j2 , j1 = i2,

so that

deg(W (x))

=

⎧
⎪⎪⎨

⎪⎪⎩

(1 − δi1,i2δ j1, j2)max
(
deg(p(1)

i1, j1
(x)), deg(p(2)

i2, j2
(x))

)

+δi1,i2δ j1, j2 deg(p(1)
i1, j1

(x) + p(2)
i2, j2

), j1 �= i2,

deg(p(1)
i1, j1

(x)) + deg(p(1)
j1, j2

(x)), j1 = i2.

For the inverse, we find

(W (x))−1

=
⎧
⎨

⎩
Ip − p(1)

i1, j1
(x)Ei1, j1 − p(2)

i2, j2
(x)Ei2, j2 , j2 �= i1,

Ip − p(1)
i1, j1

(x)Ei1, j1 − p(2)
i2,i1

(x)Ei2,i1 + p(1)
i1, j1

(x)p(2)
i2,i1

(x)Ei2, j1 , j2 = i1,

and

deg
(
(W (x))−1)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − δi1,i2δ j1, j2)max(deg(p(1)
i1, j1

(x)), deg(p(2)
i2, j2

(x))

+δi1,i2δ j1, j2 deg(p(1)
i1, j1

(x) + p(2)
i2, j2

), j2 �= i1,

deg(p(1)
i1, j1

(x)) + deg(p(2)
i2,i1

(x)), j2 = i1.

Thus, if either j1 �= i2 and j2 �= i1, or when j1 = i2 and j2 = i1, the degrees W (x)

and (W (x))−1 coincide, for j1 = i2 and j2 �= i1 we find deg W (x) > deg((W (x))−1)

and when j1 �= i2 and j2 = i1 we have deg W (x) < deg((W (x))−1). Consequently,
the degrees of unimodular matrix polynomials can be bigger than, equal to or smaller
than the degrees of its inverses.

Wewill be interested in unimodular perturbations W (x) that factorize in terms of K
elementary polynomial factors {eim , jm (x)}K

m=1 and L exchange factors {η(ln ,qn)}L
n=1.

We will use the following notation for elementary polynomials and elementary matri-
ces

(i, j)pi, j (x) := Ei, j pi, j (x) [l, q] := ηl,q ,
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suited to take products among them, according to the product table

(i1, j1)pi1, j1
(i2, j2)pi2, j2

= δ j1,i2 (i1, j2)pi1, j1 pi2, j2
,

[l, q](i, j)pi, j = (1 − δl,i )(1 − δq,i )(i, j)pi, j + δl,i (q, j)pi, j + δq,i (l, j)pi, j ,

(i, j)pi, j [l, q] = (1 − δl, j )(1 − δq, j )(i, j)pi, j + δl, j j(i, )pi, j + δq, j (i, l)pi, j .

Bearing this in mind, we denote all the possible permutations of a vector with K

entries, having i out of these equal to 1 and the rest equal to zero, by σ K
i = {

σ K
i, j

}|σ K
i |

j=1

with σ K
i, j =

(
(σ K

i, j )1, . . . , (σ
K
i, j )K

)
∈ (Z2)

K where (σ K
i, j )r ∈ Z2 := {1, 0} and

|σ K
i | =

(
K
i

)
we can rewrite a given unimodular perturbation as a sum. Actually, any

unimodular polynomial that factorizes in terms of K elementary polynomials ei, j (x)

and L elementary matrices η(l,q), in a given order, can be expanded into a sum of 2K

terms

W (x) = ei1, j1(x) · · · eir , jr (x)η(l1,q1) · · · η(lt ,qt )eir+1, jr+1(x) · · · η(lL ,qL ) · · · eiK , jK (x)

=
K∑

i=0

|σ K
i |∑

j=1

(i1, j1)
(σ K

i, j )1
pi1, j1

· · · (ir , jr )
(σ K

i, j )r
pir , jr

[l1, q1]

· · · [lt , qt ](ir+1, jr+1)
(σ K

i, j )r+1
pir+1, jr+1

. . . [lL , qL ] . . . (iK , jK )
(σ K

i, j )K
piK , jK

,

where (i, j)0pi, j
= Ip. Notice that although in the factorization of W we have assumed

that it starts and ends with elementary polynomials, the result would still be valid
if it started and/or ended with an interchange elementary matrix η. We notationally
simplify these type of expressions by considering the sequences of couples of natural
numbers {i1, j1} {(i2, j2}), . . . , {ik, jk}

}
, where {n, m} stands either for (n, m)pm,n or

[m, n], and identifying paths. We say that two couples of naturals {k, l} and {n, m}
are linked if l = n. When we deal with a couple [n, m] the order is not of the natural
numbers is not relevant, for example (k, l) and [l, m] are linked as well as (k, l) and
[m, l] are linked. A path of length l is a subset of I of the form

{{a1, a2}, {a2, a3}, {a3, a4}, . . . , {al−1, al}, {al , al+1}
}

l .

The order of the sequence is respected for the construction of each path. Thus, the ele-
ment (ai , ai+1), as an element of the sequence I , is previous to the element (ai+1, ai+2)

in the sequence. A path is proper if it does not belong to a longer path. Out of the 2K

terms that appear only paths remain. In order to know the degree of the unimodular
polynomial one must check the factors of the proper paths, and look for the maximum
degree involved in those factors . For a better understanding let us work out a cou-
ple of significant examples. These examples deal with non symmetric matrices and,
therefore, we have complete Christoffel type expressions for P̌ [1]

n (x) and Ȟn , but also
the mentioned penalty for P [2]

n (x). Firstly, let us consider a polynomial with K = 5,
L = 0 and p = 6,
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W (x) = e1,2(x)e2,3(x)e3,6(x)e4,3(x)e3,5(x)

in terms of sequences of couples the paths for this unimodular polynomial has the
following structure

{∅}i=5,

{∅}i=4,

{(1, 2), (2, 3), (3, 6)}i=3, {(1, 2), (2, 3), (3, 5)}i=3,

{(4, 3), (3, 5)}i=2, {(2, 3), (3, 5)}i=2, {(2, 3), (3, 6)}i=2, {(1, 2)(2, 3)}i=2,

{(1, 2)}i=1, {(2, 3)}i=1, {(3, 6)}i=1, {(4, 3)}i=1, {(3, 5)}i=1,

{I6}i=0,

where {I6}i=0 indicates that the product not involving couples produces the identity
matrix (in general will be a product of interchangingmatrices) and we have underlined
the proper paths. Thus

W (x) = e1,2(x)e2,3(x)e3,6(x)e4,3(x)e3,5(x)

= (1, 6)p1,2 p2,3 p3,6 + (1, 5)p1,2 p2,3 p3,5 + (4, 5)p4,3 p3,5 + (2, 5)p2,3 p3,5

+ (2, 6)p2,3 p3,6 + (1, 3)p1,2 p2,3

+ (1, 2)p1,2 + (2, 3)p2,3 + (3, 6)p3,6 + (4, 3)p4,3 + (3, 5)p3,5 + I5

=

⎡

⎢⎢⎢⎢⎢⎢⎣

1 p1,2(x) p1,2(x)p2,3(x) 0 p1,2(x)p2,3(x)p3,5(x) p1,2(x)p2,3(x)p3,6(x)

0 1 p2,3(x) 0 p2,3(x)p3,5(x) p2,3(x)p3,6(x)

0 0 1 0 p3,5(x) p3,6(x)

0 0 p4,3(x) 1 p4,3(x)p3,5(x) 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Its inverse is

(W (x))−1 = (e3,5(x))−1(e4,3(x))−1(e3,6(x))−1(x)(e2,3(x))−1(e1,2(x))−1,

and the paths are

{∅}i=5,

{∅}i=4,

{∅}i=3,

{(4, 3), (3, 6)}i=2,

{(3, 5)}i=1, {(4, 3)}i=1, {(3, 6)}i=1, {(2, 3)}i=1, {(1, 2)}i=1,

{I6}i=0.

Thus,

(W (x))−1 = (4, 6)p4,3 p3,6 + (3, 5)−p3,5 + (4, 3)−p4,3 + (3, 6)−p3,6

+ (2, 3)−p2,3 + (1, 2)−p1,2 + I6
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=

⎡

⎢⎢⎢⎢⎢⎢⎣

1 −p1,2(x) 0 0 0 0
0 1 −p2,3(x) 0 0 0
0 0 1 0 −p3,5(x) −p3,6(x)

0 0 −p4,3(x) 1 0 p4,3(x)p3,6(x)

0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Then, looking at the proper paths, we find

deg W (x) = max
(
deg p1,2(x) + deg p2,3(x) + deg p3,6(x), deg p1,2(x)

+ deg p2,3(x) + deg p3,5(x), deg p4,3(x) + deg p3,5(x)
)
,

deg((W (x))−1) = max
(
deg p1,2(x), deg p2,3(x), deg p3,6(x)

+ deg p4,3(x), deg p3,5(x)
)
.

For example, if we assume that

deg p1,2(x) = 2, deg p2,3(x) = 1, deg p3,6(x) = 2, deg p4,3(x) = 1, deg p3,5(x) = 3,

we get for the corresponding unimodular matrix polynomial and its inverse

deg(W (x)) = 6, deg
(
(W (x))−1) = 3,

so that, for example, the first family of perturbed biorthogonal polynomials, for n ≥ 3
is

P̌ [1]
n (x) = �∗

⎡

⎢⎢⎢⎢⎢⎢⎣

〈
P [1]

n−3(x), yk1 W (y)
〉
u

〈
P [1]

n−3(x), xk2 W (y)
〉
u

〈
P [1]

n−3(x), yk3 W (y)
〉
u P [1]

n−3(x)

〈
P [1]

n−2(x), yk1 W (y)
〉
u

〈
P [1]

n−2(x), yk2 W (y)
〉
u

〈
P [1]

n−2(x), yk3 W (y)
〉
u P [1]

n−2(x)

〈
P [1]

n−1(x), yk1 W (y)
〉
u

〈
P [1]

n−1(x), yk2 W (y)
〉
u

〈
P [1]

n−1(x), yk3 W (y)
〉
u P [1]

n−1(x)

〈
P [1]

n (x), yk1 W (y)
〉
u

〈
P [1]

n (x), yk2 W (y)
〉
u

〈
P [1]

n (x), yk3 W (y)
〉
u P [1]

n (x)

⎤

⎥⎥⎥⎥⎥⎥⎦
.

(50)

Here, the sequence of different integers {k1, k2, k3} ⊂ {1, . . . , n − 1} is such that

det

⎡

⎢⎢⎢⎣

〈
P [1]

n−3(x), yk1W (y)
〉
u

〈
P [1]

n−3(x), yk2W (y)
〉
u

〈
P [1]

n−3(x), yk3W (y)
〉
u

〈
P [1]

n−2(x), yk1W (y)
〉
u

〈
P [1]

n−2(x), yk2W (y)
〉
u

〈
P [1]

n−2(x), yk3W (y)
〉
u

〈
P [1]

n−1(x), yk1W (y)
〉
u

〈
P [1]

n−1(x), yk2W (y)
〉
u

〈
P [1]

n−1(x), yk3W (y)
〉
u

⎤

⎥⎥⎥⎦ �= 0.

Let us now work out a polynomial with K = L = 4 and p = 5. The unimodular
matrix polynomial we consider is

W (x) = e2,1(x)η(1,4)η(5,4)e5,1(x)η(3,2)e2,3(x)η(3,1)e1,5(x).
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The paths are

so that

W (x) = (2, 3)p2,1 p5,1 + (3, 5)p2,3 p1,5 + (2, 5)p2,1 + (1, 3)p5,1

+ (3, 1)p2,3 + (2, 5)p1,5 + [1, 4][5, 4][3, 2][3, 1] (51)

=

⎡

⎢⎢⎢⎢⎣

0 0 p5,1(x) 0 1
1 0 p2,1(x)p5,1(x) 0 p2,1(x) + p1,5(x)

p2,3(x) 1 0 0 p2,3(x)p1,5(x)

0 0 1 0 0
0 0 0 1 0

⎤

⎥⎥⎥⎥⎦
. (52)

The inverse matrix is

(W (x))−1 = (e1,5(x))−1η(3,1)(e2,3(x))−1η(3,2)(e5,1(x))−1η(5,4)η(1,4)(e2,1(x))−1,

with paths given by

and, consequently,

(W (x))−1 = (1, 4)p1,5 p5,1 + (2, 1)p2,3 p2,1 + (1, 1)−p2,1 + (5, 4)−p5,1

+ (2, 2)−p2,3 + (1, 1)−p1,5 + [3, 1][3, 2][5, 4][1, 4]

=

⎡

⎢⎢⎢⎢⎣

−p2,1(x) − p1,5(x) 1 0 p1,5(x)p5,1(x) 0
p2,3(x)p2,1(x) −p2,3(x) 1 0 0

0 0 0 1 0
0 0 0 0 1
1 0 0 −p5,1(x) 0

⎤

⎥⎥⎥⎥⎦
.

Proper paths, which we have underlined, give the degrees of the polynomials

deg W (x) = max
(
deg p2,1(x) + deg p5,1(x), deg p1,5(x) + deg p2,3(x)

)
,

deg((W (x))−1) = max
(
deg p1,5(x) + deg p5,1(x), deg p2,3(x) + deg p2,1(x)

)
.
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For example, if we assume that

deg p2,1(x) = 2, deg p5,1(x) = 1, deg p1,5(x) = 2, deg p2,3(x) = 1,

we find deg W (x) = deg((W (x))−1) = 3 and formula (50) is applicable for W (x) as
given in (51).

If we seek for symmetric unimodular polynomials of the form

W (x) = V (x)
(
V (x)

)�
,

where V (x) is a unimodular matrix polynomial. For example, we put p = 4, and
consider

V (x) =

⎡

⎢⎢⎣

1 p1,2(x)p3,2(x) p1,2(x) 0
0 p3,2(x) 1 0
0 1 0 0
0 0 p4,3(x) 1

⎤

⎥⎥⎦ ,

in such a way the perturbing symmetric unimodular matrix polynomial is

W (x)

=

⎡

⎢⎢⎣

1 + (p1,2(x))2(p3,2(x))2 p1,2(x)(p3,2(x))2 + p1,2(x) p1,2(x)p3,2(x) p1,2(x)p4,3(x)

p1,2(x)(p3,2(x))2 + p1,2(x) 1 + (p3,2(x))2 p3,2(x) p4,3(x)

p1,2(x)p3,2(x) p3,2(x) 1 0
p1,2(x)p4,3(x) p4,3(x) 0 1 + (p4,3(x))2

⎤

⎥⎥⎦ .

Let us assume that

deg p1,2(x) = 3, deg p3,2(x) = 1, deg p4,3(x) = 1,

then

deg W (x) = 8, deg
(
(W (x))−1) = 4.

Now, we take a scalar matrix of linear functionals u = u0 Ip, with u0 ∈ (
R[x])′

positive definite, and assume that the polynomials p1,2(x), p2,3(x), p3,4(x) ∈ R[x].
Then, we obtain matrix orthogonal polynomials {Pn(x)}∞n=0 for the matrix of linear
functionals W (x)u0, which in terms of the sequence of scalar orthogonal polynomials
{pn(x)}∞n=0 of the linear functional u0 are, for n ≥ 4
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Pn(x) = �∗

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈
u0, pn−4(x)xk1W (x)

〉 〈
u0, pn−4(x)xk2W (x)

〉 〈
u0, pn−4(x)xk3W (x)

〉

〈
u0, pn−3(x)xk1W (x)

〉 〈
u0, pn−3(x)xk2W (x)

〉 〈
u0, pn−3(x)xk3W (x)

〉

〈
u0, pn−2(x)xk1W (x)

〉 〈
u0, pn−2(x)xk2W (x)

〉 〈
u0, pn−2(x)xk3W (x)

〉

〈
u0, pn−1(x)xk1W (x)

〉 〈
u0, pn−1(x)xk2W (x)

〉 〈
u0, pn−1(x)xk3W (x)

〉

〈
u0, pn(x)xk1W (x)

〉 〈
u0, pn(x)xk2W (x)

〉 〈
u0, pn(x)xk3W (x)

〉
〈
u0, pn−4(x)xk4W (x)

〉
pn−4(x)Ip

〈
u0, pn−3(x)xk4W (x)

〉
pn−3(x)Ip

〈
u0, pn−2(x)xk4W (x)

〉
pn−2(x)Ip

〈
u0, pn−1(x)xk4W (x)

〉
pn−1(x)Ip

〈
u0, pn(x)xk4W (x)

〉
pn(x)Ip

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The set {k1, k2, k3, k4} ⊂ {1, . . . , n − 1} is such that

det

⎡

⎢⎢⎢⎢⎢⎣

〈
u0, pn−4(x)xk1W (x)

〉 〈
u0, pn−4(x)xk2W (x)

〉

〈
u0, pn−3(x)xk1W (x)

〉 〈
u0, pn−3(x)xk2W (x)

〉

〈
u0, pn−2(x)xk1W (x)

〉 〈
u0, pn−2(x)xk2W (x)

〉

〈
u0, pn−1(x)xk1W (x)

〉 〈
u0, pn−1(x)xk2W (x)

〉
〈
u0, pn−4(x)xk3W (x)

〉 〈
u0, pn−4(x)xk4W (x)

〉

〈
u0, pn−3(x)xk3W (x)

〉 〈
u0, pn−3(x)xk4W (x)

〉

〈
u0, pn−2(x)xk3W (x)

〉 〈
u0, pn−2(x)xk4W (x)

〉

〈
u0, pn−1(x)xk3W (x)

〉 〈
u0, pn−1(x)xk4W (x)

〉

⎤

⎥⎥⎥⎥⎥⎦
�= 0.

2.7.2 Degree onematrix Geronimus transformations

We consider a degree one perturbing polynomial of the form

W (x) = x Ip − A,

and assume, for the sake of simplicity, that all ξ are taken zero, i.e., there are nomasses.
Observe that in this case a Jordan pair (X , J ) is such that A = X J X−1, and Lemma 1
implies that the root spectral jet of a polynomial P(x) = ∑

k Pk xk ∈ C
p×p[x] is

J P = P(A)X , where we understand a right evaluation, i.e., P(A) := ∑
k Pk Ak . An

similar argument, for σ(A) ∩ suppy(u) = ∅, yields

J C [1]
n

=
〈
P [1](x), (A − Ip y)−1X

〉

u
,
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expressed in terms of the resolvent (A − Ip y)−1 of A. Formally, it can be written

J C [1]
n

= C [1]
n (A)X ,

where we again understand a right evaluation in the Taylor series of the Cauchy
transform. Moreover, we also need the root spectral jet of the mixed Christoffel–
Darboux kernel

J
K (pc)

n−1
(y) =

n−1∑

k=0

(
P [2]

k (y)
)�(

Hk
)−1

C [1]
k (A)X

=: K (pc)
n−1 (A, y)X ,

that for a Hankel generalized kernel ux,y , using the Christoffel–Darboux formula for
mixed kernels, reads

J
K (pc)

n−1
(y) =

((
P [2]

n−1(y)
)�(

Hn−1
)−1

C [1]
n (A)

− (
P [2]

n (y)
)�(

Hn−1
)−1

C [1]
n−1(A) + Ip

)
(A − Ip y)−1X .

We also have V(x, y) = Ip so that J V = X .
Thus, for n ≥ 1 we have

P̌ [1]
n (x) = �∗

[
C [1]

n−1(A)X P [1]
n−1(x)

C [1]
n (A)X P [1]

n (x)

]

= P [1]
n (x) − C [1]

n (A)
(
C [1]

n−1(A)
)−1

P [1]
n−1(x),

Ȟn = �∗

[
C [1]

n−1(A)X Hn−1

C [1]
n (A)X 0p

]

= −C [1]
n (A)

(
C [1]

n−1(A)
)−1

Hn−1,

(
P̌ [2]

n (y)
)� = �∗

[
C [1]

n−1(A)X Hn−1

(Ip y − A)
(
K (pc)

n−1 (A, y) + Ip
)
X 0p

]

= (
(Ip y − A)K (pc)

n−1 (A, y) + Ip
)(

C [1]
n−1(A)

)−1
Hn−1.

For a Hankel matrix of bivariate generalized functionals, i.e., with a Hankel Gram
matrix so that the Christoffel–Darboux formula holds, we have

(
P̌ [2]

n (y)
)� = −(Ip y − A)

((
P [2]

n−1(y)
)�(

Hn−1
)−1

C [1]
n (A)

− (
P [2]

n (y)
)�(

Hn−1
)−1

C [1]
n−1(A)

)
(Ip y − A)−1Hn−1.
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Appendix A. Schur complements and quasideterminants

We first notice that the Schur complement was not introduced by Issai Schur but by
Emilie Haynsworth in 1968 in [43,44]. Haynsworth coined that named because the
Schur determinant formula given in what today is known as Schur lemma in [65].
For an ample overview on Schur complement and many of its applications [72] one
can find an . The most easy examples of quasi-determinants are Schur complements.
Gel’fand and collaborators have made many essential contributions to the subject, see
[29] for an excellent survey on the subject. Peter Olver’s on a paper on multivariate
interpolation, see [58], discusses an alternative interesting approach to the subject. In
the late 1920 Richardson [61,62], and Heyting [47], studied possible extensions of
the determinant notion to division rings. Heyting defined the designant of a matrix
with noncommutative entries, which for 2 × 2 matrices was the Schur complement,
and generalized to larger dimensions by induction. Let us stress that both Richard-
son’s and Heyting’s quasi-determinants were generically rational functions of the
matrix coefficients. In 1931, Ore [59] gave a polynomial proposal, the Ore’s determi-
nant. A definitive impulse to the modern theory was given by the Gel’fand’s school
[22,23,30–33]. Quasi-determinants where defined over free division rings and was
early noticed that is not an analog of the commutative determinant but rather of a ratio
determinants. A n essential aspect for quasi-determinants is the heredity principle,
quasi-determinants of quasi-determinants are quasi-determinants; there is no analog
of such a principle for determinants. Many of the properties of determinants extend to
this case, see the cited papers and also [49] for quasi-minors expansions. Already in
the early 1990 the Gelf’and school [31] it was noticed the role quasi-determinants for
some integrable systems, see also [60] for some recent work in this direction regard-
ing non-Abelian Toda and Painlevé II equations. Jon Nimmo and his collaborators,
the Glasgow school, have studied the relation of quasi-determinants and integrable
systems, in particular we can mention the papers [36–38,50]. All this paved the route,
using the connection with orthogonal polynomials à la Cholesky, to the appearance
of quasi-determinants in the multivariate orthogonality context. Later, in 2006 Olver
[58] applied quasi-determinants to multivariate interpolation.

A.1 Schur complements

Given M = (
A B
C D

)
in block form the Schur complement with respect to A (if

det A �= 0) is

SC

(
A B
C D

)
≡ M/A := D − C A−1B.

123

http://creativecommons.org/licenses/by/4.0/


Matrix biorthogonal polynomials on the real line…

The Schur complement with respect to D (if det D �= 0) is

SCD

(
A B
C D

)
≡ M/D :− A − B D−1C .

Observe that we have the block Gauss factorization
(

A B
C D

)
=

(
I 0

C A−1
I

) (
A 0
0 M/A

) (
I A−1B
0 I

)

=
(

I B D−1

0 I

) (
M/D 0
0 D

) (
I 0

D−1C I

)

implies the Schur determinant formula det M = det(A) det(M/A). This is in fact the
Schur lemma in a disguise form, in fact Schur lemma in [65] assumes that [A, C] = 0
so that det M = det(AD − BC). In terms of the Schur complements we have the
following well known expressions for the inverse matrices

M−1 =
(

I −A−1B
0 I

) (
A−1 0
0 (M/A)−1

) (
I 0

−C A−1
I

)

=
(

A−1 + A−1B(M/A)−1C A−1 −A−1B(M/A)

−(M/A)−1C A−1 (M/A)−1

)

=
(

I 0
−D−1C I

) (
(M/D)−1 0

0 D−1

) (
I −B D−1

0 I

)

=
(

(M/D)−1 −(M/D)−1B D−1

−D−1B(M/D)−1 D−1 + D−1(M/D)−1B D−1

)
. (53)

A.2 Quasi-determinants and the heredity principle

Given any partitioned matrix where Ai, j ∈ R
mi ×m j for i, j ∈ {1, . . . , k − 1}, and

Ak,k ∈ R
κ1×κ2 ,Ai,k ∈ R

mi ×κ2 and Ak, j ∈ R
κ1×m j , we are going to define its quasi-

determinant à la Olver recursively. We start with k = 2, so that A =
(

A1,1 A1,2
A2,1 A2,2

)
, in

this case the first quasi-determinant is different to that of the Gel’fand school where

�1(A) = |A|2,2 =
∣∣∣∣

A1,1 A1,2

A2,1 A2,2

∣∣∣∣. There is another quasi-determinant �2(A) =

A/A22 = |A|1,1 =
∣∣∣∣

A1,1 A1,2

A2,1 A2,2

∣∣∣∣, the other Schur complement, and we need A2,2

to be a invertible square matrix. Other quasi-determinants that can be considered for

regular square blocks are

∣∣∣∣
A1,1 A1,2

A2,1 A2,2

∣∣∣∣ and
∣∣∣∣

A1,1 A1,2

A2,1 A2,2

∣∣∣∣.
Following [58] we remark that quasi-determinantal reduction is a commutative

operation. This is the heredity principle formulated by Gel’fand and Retakh [29,33]:
quasi-determinants of quasi-determinants are quasi-determinants. Let us illustrate this
by reproducing a nice example discussed in [58]. We consider the matrix and take
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the quasi-determinant with respect the first diagonal block, which we define as the
Schur complement indicated by the non dashed lines, to get a matrix with blocks
with subindexes involving 2 and 3 but not 1. Notice also, that us we are allowed to
take blocks of different sizes we have taken the quasi-determinant with respect to a
bigger block, composed of two rows and columns of basic blocks. This is the Olver’s
generalization of Gel’fand’s et al. construction. Now, we take the quasi-determinant
given by the Schur complement as indicated by the dashed lines, to get

�2(�1(A)) =
∣∣∣∣∣∣

A2,2 − A2,1A−1
1,1A1,2 A2,3 − A2,1A−1

1,1A1,3

A3,2 − A3,1A−1
1,1A1,2 A3,3 − A3,1A−1

1,1A1,3

∣∣∣∣∣∣
(54)

= A3,3 − A3,1A−1
1,1A1,3

− (
A3,2 − A3,1A−1

1,1A1,2
)(

A2,2 − A2,1A−1
1,1A1,2

)−1

(
A2,3 − A2,1A−1

1,1A1,3
)
. (55)

We are ready to compute, for the very same matrix

A =
⎛

⎝
A1,1 A1,2 A1,3
A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

⎞

⎠ , (56)

the quasi-determinant associated to the two first diagonal blocks, that we label as
{1, 2}; i.e., the Schur complement indicated by the non-dashed lines in (56, to get

�{1,2}(A) =

∣∣∣∣∣∣∣

A1,1 A1,2 A1,3
A2,1 A2,2 A2,3

A1,3 A2,3 A3,3

∣∣∣∣∣∣∣

=A3,3 − (
A3,1 A3,2

) (
A1,1 A1,2
A2,1 A2,2

)−1 (
A1,3
A2,3

)

But recalling (53)

(
A1,1 A1,2

A2,1 A2,2

)−1

=
(

A−1
1,1 + A−1

1,1A1,2(A2,2 − A2,1A−1
1,1A1,2)

−1 A2,1A−1
1,1 −A−1

1,1A1,2(A2,2 − A2,1A−1
1,1A1,2)

−(A2,2 − A2,1A−1
1,1A1,2)

−1 A2,1A−1
1,1 (A2,2 − A2,1A−1

1,1A1,2)
−1

)

we get

�{1,2}(A) = A3,3 − A3,1A−1
1,1A1,3 + A3,1A−1

1,1A1,2
(

A2,2 − A2,1A−1
1,1A1,2

)−1
A2,1A−1

1,1A1,3

− A3,2
(

A2,2 − A2,1A−1
1,1A1,2

)−1
A2,1A−1

1,1A1,3
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− A3,1A−1
1,1A1,2

(
A2,2 − A2,1A−1

1,1A1,2
)−1

A2,3

+ A3,2
(

A2,2 − A2,1A−1
1,1A1,2

)−1
A2,3

which is identical to (54), so that

�2(�1(A)) = �{1,2}(A).

Given any set I = {i1, . . . , im} ⊂ {1, . . . , k} the heredity principle allows us to
define the quasi-determinant2

�I (A) = �i1(�i2(· · · �im (A) · · · ))

and the �-th quasi-determinant is

�(�)(A) = �{1,...,�−1,�+1,...,k}(A) = |A|�,� =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1,1 A1,2 . . . A1,� . . . A1,k

A2,1 A2,2 . . . A2,� . . . A2,k
...

...
...

...

A�,1 A�,2 . . . A�,� . . . A�,k

...
...

...
...

Ak,1 Ak,2 . . . Ak,� . . . Ak,k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The last quasi-determinant is denoted by

�∗(A) = �(k)(A) = |A|k,k =

∣∣∣∣∣∣∣∣∣

A1,1 A1,2 . . . A1,k
A2,1 A2,2 . . . A2,k
...

...
...

Ak,1 Ak,2 . . . Ak,k

∣∣∣∣∣∣∣∣∣

.
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