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Abstract In this paper, we study semi-slant submanifolds and their warped products in
Kenmotsu manifolds. The existence of such warped products in Kenmotsu manifolds
is shown by an example and a characterization. A sharp relation is obtained as a
lower bound of the squared norm of second fundamental form in terms of the warping
function and the slant angle. The equality case is also considered in this paper. Finally,
we provide some applications of our derived results.
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1 Introduction

Warped product manifolds were defined and studied by Bishop and ONeill [5] as a
natural generalization of the Riemannian product manifolds. The geometrical aspects
of these manifolds have been studied later by many mathematicians.

The study of warped product submanifolds from extrinsic view points was initiated
by Chen [9,10]. He proved that there do not exist warped product CR-submanifolds
of the form M| x y My, where M7 and M are holomorphic (complex) and totally
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real submanifolds of a Kaehler manifold M, respectively. Then he studied warped
products of the form M7 x s M , known as CR-warped products. Several fundamental
results on CR-warped products in Kaehler manifolds were established in [9-11] by
him. Motivated by Chens fundamental seminal work, many geometers studied warped
product submanifolds in various Riemannian manifolds (see [1,12,14,15,19,20,27-
30] and the references therein). For the most recent detailed survey on warped product
manifolds and submanifolds, see [13].

The notion of slant submanifolds of almost Hermitian manifolds was introduced
by Chen [8]. Later, Cabrerizo et al. studied in [7] slant immersions in K-contact
and Sasakian manifolds. In particular, they provided interesting examples of slant
submanifolds in both almost contact metric manifolds and Sasakian manifold. In [7],
they also characterized slant submanifolds by means of the covariant derivative of the
square of the tangent projection on the submanifold. In [6], they defined and studied
semi-slant submanifolds of Sasakian manifolds.

The non-existence of warped product semi-slant submanifolds of Kaehler manifolds
was proved in [25]. Later, Atceken [3] studied warped product semi-slant submanifolds
and proved non-existence of such submanifolds in Kenmotsu manifolds. The warped
product semi-slant submanifolds of Kenmotsu manifolds were also studied in [22,26].
For the survey on warped product submanifolds of Kenmotsu manifolds, we refer to
[4,21-23].

In this paper, we continue the study of warped product semi-slant submanifolds in
Kenmotsu manifolds. In the first part of this paper, we give some fundamental results
for semi-slant submanifolds of Kenmotsu manifolds. Then we prove existence of such
warped products by applying a characterization result. We also give an example of
non-trivial proper warped product semi-slant submanifolds in Kenmotsu manifolds.
In the second part, we derive a sharp inequality for the squared norm of the second
fundamental form in terms of the warping function and the slant angle. We also inves-
tigate the equality case of this inequality. Several applications of our results are present
in the last part.

2 Preliminaries

Let M be an almost contact metric manifold with structure (¢, &, 1, g), where ¢ is a
(1, 1) tensor field, & a vector field, n is a 1-form and g is a Riemannian metric on M
satisfying the following properties

o’ =—T+n®E =0, nop=0, nE&) =1, (1)
g@X, YY) =g(X,Y) —n(X)n(Y). 2)

In addition, if the following relation [17]

(Vxp)Y = g(9X, Y)E — n(Y)pX A3)
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holds for any X, Y on M , then M is called a Kenmotsu manifold, where V is the
Levi-Civita connection of g. It is easy to see from (3) that @Xé =X —n(X)&. We
shall use the symbol I" (T M) for the Lie algebra of vector fields on the manifold M.

Let M be a submanifold of an almost contact metric manifold M with induced
metric g and if V and V= are the induced connections on the tangent bundle 7 M
and the normal bundle 7+ M of M, respectively then Gauss—Weingarten formulas are
respectively given by

VxY = VxY + h(X,Y) 4)
VxN = —AnyX + Vi N, (5)

foreach X, Y € I'(TM) and N € I'(T+M), where h and Ay are the second
fundamental form and the shape operator (corresponding to the normal vector field
N) respectively for the immersion of M into M. They are related by the relation
g(ANX,Y) = g(h(X,Y), N).

Forany X € I'(TM) and N € I (T+M), we write

(@) X = PX + FX, (b) oN =tN+ fN (6)

where PX and ¢ N are the tangential components of ¢ X and ¢ N, respectively and F' X
and f N are the normal components of ¢ X and ¢ N, respectively.

A submanifold M is said to be invariant if F is identically zero, that is, ¢ X €
I'(TM)forany X € I'(T M). Onthe other hand, M is anti-invariant if P isidentically
zero, that is, X € I'(T-M), for any X € I'(T M).

Let M be a submanifold tangent to the structure vector field & isometrically
immersed into an almost contact metric manifold M. Then M is said to be a con-
tact CR-submanifold if there exists a pair of orthogonal distributions D : p — D,
and D+ : p — DL, V p € M such that

(i) TM =D @® D+ @ (&), where (£) is the 1-dimensional distribution spanned by
the structure vector field &,
(i) D isinvariant, i.e., 9D =D,
(iii) D~ is anti-invariant, i.e., D+ € T+ M.

The invariant and anti-invariant submanifolds are the special cases of a contact
CR-submanifold. If we denote the dimensions of D and D by d; and ds, respectively
then M is invariant (resp. anti-invariant) if do = 0 (resp. d; = 0).

There is another class of submanifolds which are known as slant submanifolds
which we define as follows:

For each non zero vector X tangent to M at p, such that X is not proportional to
&, we denote by 0(X), the angle between ¢ X and T, M, for all p € M. Then, M is
said to be slant [7] if the angle 6(X) is constant for all X € TM — {{}and p e M
i.e., 0(X) is independent of the choice of the vector field X and the point p € M. The
angle 0(X) is called the slant angle. Obviously, if 6 = 0 then, M is invariant and if
0 = /2 then, M is an anti-invariant submanifold. If the slant angle of M is neither O
nor /2, then it is called proper slant.

A characterization of slant submanifolds was given in [7] as follows:
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Theorem 1 [7] Let M be a submanifold of an almost contact metric manifold M such
thaté € I'(TM). Then M is slant if and only if there exists a constant A € [0, 1] such
that

PP=a-14+1nQE&). (7)

Furthermore, in such case, if  is slant angle, then A = cos> 6.

The following relations are straight forward consequences of (7)

g(PX, PY) = cos” 0[g(X, Y) — n(X)n(Y)] ®)
g(FX, FY) =sin’0[g(X,Y) — n(X)n(¥)] &)

for any X, Y tangent to M.

3 Semi-slant submanifolds

In [24], semi-slant submanifolds were defined and studied by Papaghiuc as a natural
generalization of CR-submanifolds of almost Hermitian manifolds in terms of the
slant distribution. Later on, Cabrerizo et al. [6] studied these submanifolds in contact
geometry. They defined these submanifolds as follows:

Definition 1 [6] A Riemannian submanifold M of an almost contact manifold M is
said to be a semi-slant submanifold if there exist two orthogonal distributions D and
DY such that TM = D @ DY & (£), the distribution D is invariant i.e., D = D and
the distribution D? is slant with slant angle 6 # .

If we denote the dimensions of D and DY by d; and d, respectively, then it is clear
that contact CR-submanifolds and slant submanifolds are semi-slant submanifolds
with § = 7 and d; = 0, respectively. If neither d; = O nor & = 7, then M is a proper
semi-slant submanifold.

Moreover, if v is the p—invariant subspace of the normal bundle TLM, then in
case of a semi-slant submanifold, the normal bundle 71+ M can be decomposed as
T+M = FD? @ v.

First, we give the following non-trivial example of a semi-slant submanifold of an
almost contact metric manifold.

Example 1 Consider a submanifold M of R? with the cartesian coordinates (x1, x2, x3,
X4, Y1, Y2, V3, Y4, z) and the contact structure

il ol il ol il 0. l<ii<d
- = —— P = —, _ =V, =<1, = 4.
¢ 0x; By,- ¢ 8yj ax]' ¢ 0z /

It is easy to show that (¢, &, 1, g) is an almost contact metric structure on R? with
&= E?_z’ n = dz and g, the Euclidean metric of R?. Consider an immersion ¥ on R’
defined by
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v, ¢, v, w, 2)
(cos(9+¢) 0—¢, 9+¢ v+ w, sin@@ +¢), ¢ —6, 0+ ¢ w— z).

If we put
X1 =—s1n(9—i—¢)——i—i—i-li +cos(9+¢)——i+i,
dxy  20x3 ayr  dy»  0y3
X2=—sm(9+¢>——i+i+cos(e+¢>—+i+1i,
0x; 0xp  0x3 dy,  20y3
I BV T B )
3)64 8y4 3)64 8y4 9z

then the restriction of { X1, X3, X3, X4, X5} to M forms an orthogonal frame fields of
the tangent bundle 7 M. Clearly, we have

§0X1—Sln(9+¢)a—yl—%—%ai—i-cos(@-i-d))?—aim-i—%,
ad d a 1 0
(sz—sm(O—i—qb)— a—yz—a——i—cos(O—i—(p)— 8_x2+§£
¢X3=_i_i’ (px4=_i+i, pXs5 =0.
0ys  Oxg dys  0xg

It is easy to verify that D = Span{X3, X4} is an invariant distribution and DY =
Span{X1 Xz} is a slant distribution of M with slant angle # = cos™! (17) such that
=& = 3 is tangent to M. Thus, M is a proper semi-slant submanifold of R.

Now, we give some basic results for semi-slant submanifolds of Kenmotsu mani-
folds which are useful to the next section.

Lemma 1 Let M be a proper semi-slant submanifold of a Kenmotsu manifold M with
invariant and proper slant distributions D @ (£) and D?, respectively. Then we have:

sin® 0 g(Vy X, Z) = g(Arz¢X — AppzX.Y) (10)
forany X,Y € I'(D & (&) and Z € I'(D?).
Proof Forany X,Y e '(D&® (§)) and Z € (DY), we have
§(VyX.Z) = g(VyX. 2) = g(¢Vy X, ¢Z).
Using the covariant derivative property of ¢ and the relation (6), we get

¢(VyX,Z) = g(VypX, PZ) + g(VypX, FZ) — g(Vyp) X, ¢Z).
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Then from (3), (4) and the fact that ¢ X and P Z are orthogonal vector fields, we derive

g(VyX, Z) = —g(¢X,Vy PZ) + g(h(¢X,Y), FZ)
= g(X,VygPZ) — g(X, (Vy@)PZ) + g(Arz9X,Y)
=g(X,VyP*Z) + (X, VyFPZ)—g((Vy@)PZ, X)+g(Arz¢X, Y).

Again using (3), (5) and (7) and the fact that £ € I" (D), we find
g(VyX, Z) = —cos” 0g(X, VyZ) — g(ArpzX, ¥) + g(Arz9X, Y).

Hence, the result follows from the last relation. O

The following corollary is an immediate consequence of the above lemma.

Corollary 1 Let M be a proper semi-slant submanifold of a Kenmotsu manifold M.
Then, the distribution D & (&) defines a totally geodesic foliation if and only if

gArzpX — AppzX,Y) =0

forany X,Y € I'(D @ (&) and Z € I'(D?).
Also, we have the following results for the leaves of the slant distribution.

Lemma 2 Let M be a proper semi-slant submanifold of a Kenmotsu manifold M.
Then we have

g(VzW, X) =csc® 0 (¢(ArpwX — ApwoX, Z)) — n(X)g(Z, W) (11)

forany X e (D@ () and Z, W € I'(D?).
Proof Forany X € I'(D @ (¢)) and Z, W € I'(D?), we find

g(VZW, X) = g(VzoW, pX) + n(X)g(VZ W, &).
Using (3) and (6), we get
g(VzW.X) = g(VzPW.pX) + g(VzFW.¢X) — n(X)g(Z, W).
Then from (2) and (5), we arrive at
g(VzW.X) = —g(@VzPW.X) — g(ApwZ. ¢X) — n(X)g(Z, W).

By using the covariant derivative property of ¢ and the symmetry of the shape operator
A, we obtain

§(VzW, X) = g(Vzp)PW, X) — g(VzoPW, X) — g(ArweX, Z)
—n(X)g(Z, W).
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Again using (3) and (6), we derive

g(VzW,X) =—g(VzP*W,X)— g(VzFPW, X) + g(PZ, PW)n(X)
—8(ArwoX,Z) —n(X)g(Z, W).

From Theorem 1 and the relation (5), we find

g(VzW, X) =cos’>0g(VzW, X) + g(AppwZ, X) + cos> 0g(Z, W)n(X)
—g(ArweX, Z) —n(X)g(Z, W).

Since A is self-adjoint, then by using trigonometric identities, the result follows from
the last relation. O

From the above lemma, we have the following results.

Corollary 2 Let M be a proper semi-slant submanifold of a Kenmotsu manifold M.
Then the slant distribution D defines a totally geodesic foliation if and only if

gAppzX — ApzoX, W) =n(X)g(Z, W)

forany X e I(D @ (§)) and Z, W € I'(D?).

Lemma 3 Let M be a proper semi-slant submanifold of a Kenmotsu manifold M.
Then we have:

sin®0 g(1Z, W1, X) = g(ArzpX — AppzX, W) — g(ArweX — ArpwX, Z)
forany X € (D@ (§)) and Z, W € I'(D?).
Proof From (11), we have
sin?0 g(VzW, X) = g(AppwX — ApweX, Z) —sin? 0 n(X)g(Z, W)  (12)
forany X e I'(D@ (§))and Z, W € r Y. Interchanging Z and W in (12), we find
sin0 g(VwZ, X) = g(AppzX — ApzoX, W) —sin> 0 n(X)g(Z, W).  (13)

Thus, the result follows from (12) and (13).

4 Warped product semi-slant submanifolds
In this section, we study warped product semi-slant submanifolds of Kenmotsu man-

ifolds, by considering that one of the factor is a slant submanifold. In the following
first, we give brief introduction of warped product manifolds.
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Let M and M3 be two Riemannian manifolds with Riemannian metrics g1 and g2,
respectively, and f be a positive differentiable function on M;. Then, M = My x ¢
M, = (M| x M», g), is a warped product manifold of M; and M such that

(X, Y) = g1(m1, X, 11,Y) + (f o 11)?g2(m2, X, 72, Y) (14)

where the vector fields X and Y are tangent to M = My x y M3 at (p, q) and 7y and
15 are the canonical projections of M = M| x M, onto M and M5, respectively and
* is the symbol for the tangent map. A warped product manifold M = My x y M =
(My x M>, g) is said to be trivial or simply a Riemannian product if the warping
function f is constant. If X is a vector field on M; and V is an another vector field on
M>, then from Lemma 7.3 of [5], we have

VxV =VyX =X(nf)V (15)

where V denotes the Levi-Civita connection on M. It is well-known that M| is a totally
geodesic submanifold and M is a totally umbilical submanifold of M (cf. [5,11]).

The gradient V f of a function f on M is defined as g(V f, X) = X (f), for any
vector field X on M. If {ey, . ..e,} is an orthonormal frame field of the tangent space
of M, then we have

VAR =) (e(f)> (16)
i=1

In this paper, we study warped product semi-slant submanifolds of the form My x ¢
My of a Kenmotsu manifold M, where M7t and My are invariant and proper slant
submanifolds of M , respectively. First, we consider M| and M; be two Riemannian
submanifolds of a Kenmotsu manifold M. Then their warped product submanifold M
is of the form M/ x y M. Since, we consider the structure vector field & is tangent to
M, therefore two possible cases arise:

Case 1 When the structure vector field & is tangentto M», thenforany X € I'(T M),
we have @Xé = X.From (4) and (15), we find that X (In )& = X, by taking the inner
product with &, we observe that f is constant, i.e., the warped product My x 5 M>
becomes a Riemannian product (trivial).

Case 2 When the structure vector field £ is tangent to My, thenforany Z € I'(T M>),
we have

VzE = VzE+h(Z,§).
Then from (3) and (15), we find that
(i) Elnf =1, (i) h(Z,E) =0, VZ € I'(TM). a7

Now, in the following we consider the warped products of the form My x y Mg,
called warped product semi-slant submanifolds of a Kenmotsu manifold M such that
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& is tangent to M, where M7 and My are invariant and proper slant submanifolds
of M, respectively. If neither dim M7 is zero nor the slant angle of My is 7, then the
warped product semi-slant submanifold is called proper. It is clear that the contact
CR-warped product submanifolds are the special cases of warped product semi-slant
submanifolds.

First, we give the following non-trivial example of warped product semi-slant sub-
manifolds in Kenmotsu manifolds.

Example 2 Consider the complex Euclidean space C* with its usual Kaehler structure
and the real global coordinates (x1, x2, X3, X4, Y1, Y2, ¥3, y4). Let M=R X f C*bea
warped product manifold between the product of real line R and the complex space C*.
In fact, M is a Kenmotsu manifold with the almost contact metric structure (0, 6,1, 8)
such that

d a a a d ..
(p P = ——, (p —_— = —, (p —_— =O, 1519] 547
dx; dyi dyj)  9xj 9z

and

d
S =t <8_Z> , N = ede, 8= 62Z<v>

where (,) denotes the Euclidean metric tensor of R?. Consider a submanifold M
defined by the immersion ¢ as follows

¢ (uy, uz, u3, uq,z) = (u1,0,u3,0,u2,0,usc080, uysind, 7)

with @ € (0, w/2). Then the tangent space T M of M at any point is spanned by the
following vectors

P N N B .
1_8X1 V1 9z ’ 2_8)}1, 3_3)63 V3 9z s

X 0 9 + siné 9 X g : &
= cos0— +sinf—, = — = —&.
4 ay3 dy4 > dz €%
Then, we find
X —8 X _8 X —_—
YAl = — , QYA = , QA3 = — s
Ay dx ay3

ad a
9X4 =cosf— +sinf—, ¢X5=0.
0x3 0x4

Thus, M is a proper semi-slant submanifold tangent to the structure vector field & with
invariant and proper slant distributions D = Span{X;, X5} and Dl = Span{X3, X4}
respectively with slant angle 6. It is easy to see that the distributions D and D? are
integrable. Consider, the integral manifolds corresponding to the distributions D and
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DY by M7 and My, respectively. Then it is easy to check that M = M7 x £ My is
a proper warped product semi-slant submanifold isometrically immersed in M with
warping function f = €%, z € R.

Now, we have the following useful lemma for later use.

Lemmad4 Let M = M7 x Mg be a warped product semi-slant submanifold of
a Kenmotsu manifold M such that € is tangent to My, where My is an invariant
submanifold and My is a proper slant submanifold of M. Then, we have

g(h(X,Z), FW) = (n(X) — X(In ))g(Z, PW) — X (In f) g(Z, W)  (18)

forany X € '(TMrt)and Z, W € I'(T Myp).

Proof Forany X € I'(TMr7) and Z, W € I'(T My), we have

g(h(X,Z), FW) = g(VzX,pW) — g(VzX, PW)
= —g(pVzX, W) — g(VzX, PW).

Using a covariant derivative property of ¢ and (15), we find
g(h(X,2), FW) = g(Vzp)X, W) — g(VzpX, W) — X (In ) g(Z, PW).

Again using (3), (4) and (15), we get the desired result. O

The following relations can be easily obtained by interchanging X by ¢ X and Z
by PZ and W by PW in (18), forany X € I'(TM7) and Z, W € I'(T My)

g(h(pX,Z), FW) = (X(In f) = 1(X))g(Z, W) — X (In f) g(Z, PW),
g(h(X, PZ), FW) = ¢X(In f)g(Z, PW)

—cos”0(X(In f) — (X)) g(Z, W), (19)
ge((X,Z), FPW) = coszé(X(ln ) —n(X))g(Z, W)
—9X(In f) g(Z, PW), (20)

and

g(h(X, PZ), FPW) = —cos’> 60X (In f)g(Z, W)
—cos?0(X(In f) — (X)) g(Z, PW). 1)

From (19) and (20), we have

gh(X,PZ), FW)=—gh(X,Z), FPW).

@ Springer



Geometry of warped product semi-slant submanifolds... 445

On the other hand, forany X, Y € I'(TMr)and Z € I'(T My), we have by Lemma
4.1 (1) of [22]

gh(X,Y), FZ) =0. (22)
In order to give a characterization result for semi-slant submanifolds of a Kenmotsu
manifold, we recall the following result of Hiepko [16]:

Hiepko’s Theorem. Let D and D, be two orthogonal distribution on a Riemannian
manifold M. Suppose that D; and D; both are involutive such that D is a totally
geodesic foliation and D, is a spherical foliation. Then M is locally isometric to a
non-trivial warped product My x y M>, where M and M, are integral manifolds of
D; and Ds, respectively.

Now, we are able to prove the following main result of this section.

Theorem 2 Let M be a proper semi-slant submanifold with invariant distribution
D @ (&) and proper slant distribution D’ of a Kenmotsu manifold M. Then M is
locally a warped product submanifold of the form Mt x y Mg if and only if

ApzoX — AppzX = sinze(X(M) -n(X))Z (23)

forany X € I'(D @ (&) and Z € I'(D?) and for some function w on M satisfying
Wu =0, forany W e I' (D).

Proof If M = M7 X y Mg is a warped product submanifold of a Kenmotsu manifold
M such that M7 is an invariant submanifold and My is a proper slant submanifold

of M, then from (22), we have g(Arz¢X,Y) = 0, forany X,Y € I'(TMr) and
Z € I'(TMyp), i.e., ArzeX has no components in 7 M7. Also, if we interchange Z
by PZ in (22), then we have g(Arpz X, Y) = 0,i.e., Appz X also has no components
T Mrt. Therefore, Apz9oX — AppzX lies in T My only. On the other hand, for any
X, Ye I'(TMy)and Z, W € I'(T My), we have
g(ArzoX, W) = g(h(pX, W), FZ) = g(VwoX, FZ).
From the covariant derivative proper of ¢, we find
g(ArzoX. W) = g(Vw)X. FZ) + g(pVwX. ¢Z) — g(pVw X, PZ).

Using (2), (3), (6), (9) and (15), we obtain

g(ArzoX, W) = —sin® 0 n(X) g(Z, W) + X(n f)g(Z, W) + g(VwX, P>Z)
+g(VwX,FPZ).

Then from (4), Theorem 1 and (15), we find
g(ApzoX, W) = —sin® 0 n(X) g(Z, W) + X(In f)g(Z, W)

—cos’0 X(In f) g(Z, W) + g(Appz X, W).
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Then (23) follows from the above relation with 4 = In f.

Conversely, if M is a proper semi-slant submanifold of a Kenmotsu manifold M
such that (23) holds, then from Lemma 1 and the given condition (23), we conclude
that sin”0 g(VyX, Z) = 0, forany X,Y € I'(D @ (¢£)) and Z € I'(D?). Since
M is a proper semi-slant submanifold, then sinZ 0 # 0, therefore g(Vy X, Z) = 0,
i.e., the leaves of the distribution D @ (&) are totally geodesic in M. Also, from
Lemma 3 and the given condition (23), we find that sin? @ g([Z, W], X) =0, for any
Xel'(D®{€))and Z, W € ' (D?). Since, M is a proper semi-slant submanifold,
thus we have g([Z, W], X) = 0, i.e., the slant distribution DY is integrable. If we
consider h? be the second fundamental form of a leaf My of D? in M, then for any
Z,We (M and X € I'(D @ (£)), we have

g (W% (Z, W), X) = g(VzW, X).
Using Lemma 2, we derive
g (h(Z, W), X) = —csc®0 g(ApwoX — AppwX, Z) — n(X)g(Z, W).
From the given condition (23), we find
g (h(Z, W), X) = =X (w)g(Z, W).
Then, from the definition of gradient, we get
h(Z, W) ==V(u) g(Z, W),

which means that Mp is totally umbilical in M with mean curvature vector H? =
—V(u). Now we prove that HY is parallel corresponding to the normal connec-
tion DV of My in M. Consider any ¥ € I'(D @ (£)) and Z € I'(D?), then
we find that g(DZZVV,u, Y) = g(VzVu,Y) = Zg(Vu,Y) — g(Vu,VzY) =
ZY (W) — g(Vi, [Z.Y]) — g(Vi, VyZ) = Y(Zp) + g(Vy Vi, Z)} = 0, since
Z(u) =0, forall Z € I'(D?) and thus VyVu € I'(D & (£)). This means that the
mean curvature of Mjy is parallel. Thus the leaves of the distribution DY are totally
umbilical in M with non-vanishing parallel mean curvature vector H? i.e., Mp is an
extrinsic sphere in M. Then from Hiepko’s Theorem [16], M is a warped product
submanifold, which proves the theorem completely.

Now, we construct the following orthonormal frame fields for a proper warped
product semi-slant submanifold M = Mt X y Mg of a (2m+1)-dimensional Kenmotsu
manifold M such that the structure vector field & is tangent to Mr. Consider M =
M7 x y Mg be an n-dimensional warped product semi-slant submanifold of a Kenmotsu
manifold M. If dim M7 = 2t + 1 and dim My = 2s, then n = 2¢ + 1 + 2s. Let us
consider the orthonormal frame fields of the corresponding tangent bundles D and DY

of Mt and My, respectively as: {e1, ..., e, e;41 = peq, ..., ey = e, €41 = &}
is the orthonormal frame field of D and {ex; 12 = €], ..., exq145s = €}, €2 4245 =
e;ﬂ =secf Pej,..., e, = e5, = secf Pej} is the orthonormal frame field of De.
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Then the orthonormal frame fields in the normal bundle 7+ M of FD? and invariant

normal subbundle v respectively are {e,;1 = €| = cscO Fe]...,ep1s = & =
csch Fey,epygq1 = €5y =csclsech FPel, ..., e 0 = e =csclsectd FPey}
and {en 12541 = €254 15+ +» €2m i1 = €2mt1-n—2s}-

Next, we use the above constructed frame fields to find a relation (lower bound)
for the squared norm of the second fundamental form ||4||, in terms of the warping
function and the slant angle of a proper warped product semi-slant submanifold of
Kenmotsu manifolds.

Theorem 3 Let M = M7y x ¢ My be a proper warped product semi-slant submanifold
of a Kenmotsu manifold M such that the structure vector field & is tangent to Mr,

where My is an invariant submanifold and My is a proper slant submanifold of M.
Then

(i) The squared norm of the second fundamental form h of M satisfies
1817 = 4s (csc?6 +co?6) (IV7 (n I 1) (24)

where VT (In f) is the gradient of the warping function In f along My and
25 = dim M.
(1) If the equality sign in (i) holds, then M7 is a totally geodesic submanifold and
My is a totally umbilical submanifold of M. Furthermore, M is minimal in M.

Proof From the definition of &, we have

n
InI? =" g (h(eie;) heies))
i,j=1
2m+1 n

Z Z h(eie)) )2

r=n+1i,j=1

2m+1—-n—2s n

:ZZ heies).a)+ > Y g(hlee).a). @5

r=11i,j=1 r=2s+1 i, j=I

First term in the right hand side of (25) has F De—components and the second term
has v-components. Let us compute FD?-components terms only by using the frame
fields of D and D?. Then we have

25 2t+1 2s 2t+1 2s 5
1P =Y 3 g (h(ennes) &)’ 423 DY g (h(ener) @)
r=11i,j=1 r=1i=1 j=1
2s  2s )
+3 3¢ (h (e;, e;) e) . (26)
r=1i,j=1
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Then from (22), the first term in the right hand side of above inequality is identically
zero. Let us compute just next term

2s 2t+1 2s

LS 3D (h(ere3) )"

_2”2:1;5;( (el, ]> e,) +2er_: ( ( ),é,)2.

Since for a submanifold M of a Kenmotsu manifold M , we have h(X, &) = 0, for any
X € I'(T M). By using this fact the last term in above inequality is identically zero.
Then from the assumed frame fields of D, D? and FD?, we derive

(= 2C8029i i g (h (ei,e;) ’ Fe:>2

i=1rj=1

s
2
+2csc? B sect Z Z g (h (ei, Pe’;-) , FPe:)

i=1rj=1

—i—chczéiig( ((pel, ]) Fe )2

i=1rj=1

t N
+205029sec492 Z glh <pe,,Pe> FPe)

i=1rj=1
N 2
e, Pe]) )

t s
+2cs029se0292 Z g(
i=1rj=1
( ei, e;

h

h

t s
+2csc? 0 sec? 6 Z Z g

i=1rj=1

%
v
"1
~
S,
N

(
(
(
P00} 3 g (1 (ven Pes). rer)

i=1rj=I

t s 2
+2csc? O sec’ 6 Z Z g (h ((pei, e;) , FPej) .

i=1rj=I
From the relations (18)—(21) and the fact that for an orthonormal frame field of
D, n(e;) =0,fori =1,..., 2, we find

2t K
1P = 4es?0 Y 3 (weitin )¢ (e5.¢;)

i=1rj=1

2t K
+4cot292 Z (ei(In f))* g (e;,e:)2.

i=1rj=1

@ Springer



Geometry of warped product semi-slant submanifolds... 449

Hence, to satisfy (16), we add and subtract the same term in the above relation and
then we get

s 2t+1

IAl1> > 4(csc? 6 + cot’ 0) Z Z(e,- (In f))%g (e;, e;)2

r,j=1 i=1

—d(esc* 6+ cot?0) Y (6(In f))g (e;, e;)2 .

r,j=1

Then from (16) and (17) (i), we obtain
Ih]1% > 4s (csc20 T cot29) (||VT(1n NI? = 1)
which is the inequality (i). If the equality holds in (i), then from (25) and (26), we find
h(D,D) =0, h(D’ D) =0 and h(D,Dy) € FD . 27)
If 17 is the second fundamental form of My in M, then we have
g(h’(Z, W), X) = g(VzW, X) = —X(n f) g(Z, W) (28)

forany X € I'(D)and Z, W € I (D?). Since M7y is a totally geodesic submanifold
in M [5,9], using this fact with the first condition of (27), we find that M7 is totally
geodesic in M. Also, since My is totally umbilical in M [5,9], using this fact with
(28) and the second condition of (27), we observe that Mjy is totally umbilical in M.
Moreover all conditions of (27) with the above fact show the minimality of M in M.
This proves the theorem completely. O

Now, we have the following applications of our derived results.
1. If we assume 6 = 7 in Theorem 2 and interchange X by ¢X in (23) for any
X € I'(D & (&)), then the warped product semi-slant submanifold becomes a contact
CR-warped product of the form M = M7 xy M, in a Kenmotsu manifold. Thus,
Theorem 3.4 of [18] is a special case of Theorem 2 as follows:

Corollary 3 (Theorem 3.4 of[18]) A proper contact CR-submanifold M of a Kenmotsu
manifold M is locally a contact CR-warped product if and only if

ApzX =—9X(WZ, XeT(D& (), Zel (D)

for some smooth function n on M satisfying W () = 0, for each W € I'(D4).

2. Also, if we assume § = % in Theorem 3, then warped product semi-slant subman-
ifold is of the form M = My x y M i.e., M becomes a contact CR-warped product.
Thus, Theorem 3.1 of [2] is a special case of Theorem 3 as below:
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Corollary 4 (Theorem 3.1 of [2]) Let M be a 2m + 1)-dimensional Kenmotsu
manifold and M = My x yM, be an n-dimensional contact CR-warped product
submanifold, such that M is a (2t + 1)-dimensional invariant submanifold tangent
t0 & and M is a s-dimensional anti-invariant submanifold of M. Then

(i) The squared norm of the second fundamental form of M satisfies
a2 = 25 (IV" (n )12 = 1) 29)

where VT (In f) is the gradient of In f.

(ii) Ifthe equality sign in (29) holds identically, then M is a totally geodesic subman-
ifold and M is a totally umbilical submanifold of M. Moreover, M is a minimal
submanifold of M.
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