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Abstract In this paper,we study semi-slant submanifolds and theirwarped products in
Kenmotsu manifolds. The existence of such warped products in Kenmotsu manifolds
is shown by an example and a characterization. A sharp relation is obtained as a
lower bound of the squared norm of second fundamental form in terms of the warping
function and the slant angle. The equality case is also considered in this paper. Finally,
we provide some applications of our derived results.
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1 Introduction

Warped product manifolds were defined and studied by Bishop and ONeill [5] as a
natural generalization of the Riemannian product manifolds. The geometrical aspects
of these manifolds have been studied later by many mathematicians.

The study of warped product submanifolds from extrinsic view points was initiated
by Chen [9,10]. He proved that there do not exist warped product CR-submanifolds
of the form M⊥ × f MT , where MT and M⊥ are holomorphic (complex) and totally
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real submanifolds of a Kaehler manifold M̃ , respectively. Then he studied warped
products of the formMT × f M⊥, known as CR-warped products. Several fundamental
results on CR-warped products in Kaehler manifolds were established in [9–11] by
him.Motivated by Chens fundamental seminal work, many geometers studied warped
product submanifolds in various Riemannian manifolds (see [1,12,14,15,19,20,27–
30] and the references therein). For the most recent detailed survey on warped product
manifolds and submanifolds, see [13].

The notion of slant submanifolds of almost Hermitian manifolds was introduced
by Chen [8]. Later, Cabrerizo et al. studied in [7] slant immersions in K-contact
and Sasakian manifolds. In particular, they provided interesting examples of slant
submanifolds in both almost contact metric manifolds and Sasakian manifold. In [7],
they also characterized slant submanifolds by means of the covariant derivative of the
square of the tangent projection on the submanifold. In [6], they defined and studied
semi-slant submanifolds of Sasakian manifolds.

The non-existence ofwarpedproduct semi-slant submanifolds ofKaehlermanifolds
was proved in [25]. Later,Atceken [3] studiedwarped product semi-slant submanifolds
and proved non-existence of such submanifolds in Kenmotsu manifolds. The warped
product semi-slant submanifolds of Kenmotsu manifolds were also studied in [22,26].
For the survey on warped product submanifolds of Kenmotsu manifolds, we refer to
[4,21–23].

In this paper, we continue the study of warped product semi-slant submanifolds in
Kenmotsu manifolds. In the first part of this paper, we give some fundamental results
for semi-slant submanifolds of Kenmotsu manifolds. Then we prove existence of such
warped products by applying a characterization result. We also give an example of
non-trivial proper warped product semi-slant submanifolds in Kenmotsu manifolds.
In the second part, we derive a sharp inequality for the squared norm of the second
fundamental form in terms of the warping function and the slant angle. We also inves-
tigate the equality case of this inequality. Several applications of our results are present
in the last part.

2 Preliminaries

Let M̃ be an almost contact metric manifold with structure (ϕ, ξ, η, g), where ϕ is a
(1, 1) tensor field, ξ a vector field, η is a 1-form and g is a Riemannian metric on M̃
satisfying the following properties

ϕ2 = −I + η ⊗ ξ, ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1. (1)

g(ϕX, ϕY ) = g(X,Y ) − η(X)η(Y ). (2)

In addition, if the following relation [17]

(∇̃Xϕ)Y = g(ϕX,Y )ξ − η(Y )ϕX (3)

123



Geometry of warped product semi-slant submanifolds... 437

holds for any X,Y on M̃ , then M̃ is called a Kenmotsu manifold, where ∇̃ is the
Levi-Civita connection of g. It is easy to see from (3) that ∇̃Xξ = X − η(X)ξ . We
shall use the symbol Γ (T M̃) for the Lie algebra of vector fields on the manifold M̃ .

Let M be a submanifold of an almost contact metric manifold M̃ with induced
metric g and if ∇ and ∇⊥ are the induced connections on the tangent bundle T M
and the normal bundle T⊥M of M , respectively then Gauss–Weingarten formulas are
respectively given by

∇̃XY = ∇XY + h(X,Y ) (4)

∇̃X N = −AN X + ∇⊥
X N , (5)

for each X, Y ∈ Γ (T M) and N ∈ Γ (T⊥M), where h and AN are the second
fundamental form and the shape operator (corresponding to the normal vector field
N ) respectively for the immersion of M into M̃ . They are related by the relation
g(AN X,Y ) = g(h(X,Y ), N ).

For any X ∈ Γ (T M) and N ∈ Γ (T⊥M), we write

(a) ϕX = PX + FX, (b) ϕN = t N + f N (6)

where PX and t N are the tangential components of ϕX and ϕN , respectively and FX
and f N are the normal components of ϕX and ϕN , respectively.

A submanifold M is said to be invariant if F is identically zero, that is, ϕX ∈
Γ (T M) for any X ∈ Γ (T M). On the other hand,M is anti-invariant if P is identically
zero, that is, ϕX ∈ Γ (T⊥M), for any X ∈ Γ (T M).

Let M be a submanifold tangent to the structure vector field ξ isometrically
immersed into an almost contact metric manifold M̃ . Then M is said to be a con-
tact CR-submanifold if there exists a pair of orthogonal distributions D : p → Dp

and D⊥ : p → D⊥
p , ∀ p ∈ M such that

(i) T M = D ⊕ D⊥ ⊕ 〈ξ 〉, where 〈ξ 〉 is the 1-dimensional distribution spanned by
the structure vector field ξ ,

(ii) D is invariant, i.e., ϕD = D,
(iii) D⊥ is anti-invariant, i.e., ϕD⊥ ⊆ T⊥M .

The invariant and anti-invariant submanifolds are the special cases of a contact
CR-submanifold. If we denote the dimensions ofD andD⊥ by d1 and d2, respectively
then M is invariant (resp. anti-invariant) if d2 = 0 (resp. d1 = 0).

There is another class of submanifolds which are known as slant submanifolds
which we define as follows:

For each non zero vector X tangent to M at p, such that X is not proportional to
ξ , we denote by θ(X), the angle between ϕX and TpM, for all p ∈ M . Then, M is
said to be slant [7] if the angle θ(X) is constant for all X ∈ T M − {ξ} and p ∈ M
i.e., θ(X) is independent of the choice of the vector field X and the point p ∈ M . The
angle θ(X) is called the slant angle. Obviously, if θ = 0 then, M is invariant and if
θ = π/2 then, M is an anti-invariant submanifold. If the slant angle of M is neither 0
nor π/2, then it is called proper slant.

A characterization of slant submanifolds was given in [7] as follows:
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Theorem 1 [7] Let M be a submanifold of an almost contact metric manifold M̃ such
that ξ ∈ Γ (T M). Then M is slant if and only if there exists a constant λ ∈ [0, 1] such
that

P2 = λ(−I + η ⊗ ξ). (7)

Furthermore, in such case, if θ is slant angle, then λ = cos2 θ .

The following relations are straight forward consequences of (7)

g(PX, PY ) = cos2 θ [g(X,Y ) − η(X)η(Y )] (8)

g(FX, FY ) = sin2 θ [g(X,Y ) − η(X)η(Y )] (9)

for any X,Y tangent to M .

3 Semi-slant submanifolds

In [24], semi-slant submanifolds were defined and studied by Papaghiuc as a natural
generalization of CR-submanifolds of almost Hermitian manifolds in terms of the
slant distribution. Later on, Cabrerizo et al. [6] studied these submanifolds in contact
geometry. They defined these submanifolds as follows:

Definition 1 [6] A Riemannian submanifold M of an almost contact manifold M̃ is
said to be a semi-slant submanifold if there exist two orthogonal distributions D and
Dθ such that T M = D ⊕ Dθ ⊕ 〈ξ 〉, the distribution D is invariant i.e., ϕD = D and
the distribution Dθ is slant with slant angle θ 
= π

2 .

If we denote the dimensions of D and Dθ by d1 and d2 respectively, then it is clear
that contact CR-submanifolds and slant submanifolds are semi-slant submanifolds
with θ = π

2 and d1 = 0, respectively. If neither d1 = 0 nor θ = π
2 , then M is a proper

semi-slant submanifold.
Moreover, if ν is the ϕ−invariant subspace of the normal bundle T⊥M , then in

case of a semi-slant submanifold, the normal bundle T⊥M can be decomposed as
T⊥M = FDθ ⊕ ν.

First, we give the following non-trivial example of a semi-slant submanifold of an
almost contact metric manifold.

Example 1 Consider a submanifoldM ofR9 with the cartesian coordinates (x1, x2, x3,
x4, y1, y2, y3, y4, z) and the contact structure

ϕ

(
∂

∂xi

)
= − ∂

∂yi
, ϕ

(
∂

∂y j

)
= ∂

∂x j
, ϕ

(
∂

∂z

)
= 0, 1 ≤ i, j ≤ 4.

It is easy to show that (ϕ, ξ, η, g) is an almost contact metric structure on R
9 with

ξ = ∂
∂z , η = dz and g, the Euclidean metric of R9. Consider an immersion ψ on R

9

defined by
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ψ(θ, φ, v, w, z)

=
(
cos(θ + φ), θ − φ,

1

2
θ + φ, v + w, sin(θ + φ), φ − θ, θ + 1

2
φ, w − v, z

)
.

If we put

X1 = − sin(θ + φ)
∂

∂x1
+ ∂

∂x2
+ 1

2

∂

∂x3
+ cos(θ + φ)

∂

∂y1
− ∂

∂y2
+ ∂

∂y3
,

X2 = − sin(θ + φ)
∂

∂x1
− ∂

∂x2
+ ∂

∂x3
+ cos(θ + φ)

∂

∂y1
+ ∂

∂y2
+ 1

2

∂

∂y3
,

X3 = ∂

∂x4
− ∂

∂y4
, X4 = ∂

∂x4
+ ∂

∂y4
, X5 = ∂

∂z

then the restriction of {X1, X2, X3, X4, X5} to M forms an orthogonal frame fields of
the tangent bundle T M . Clearly, we have

ϕX1 = sin(θ + φ)
∂

∂y1
− ∂

∂y2
− 1

2

∂

∂y3
+ cos(θ + φ)

∂

∂x1
− ∂

∂x2
+ ∂

∂x3
,

ϕX2 = sin(θ + φ)
∂

∂y1
+ ∂

∂y2
− ∂

∂y3
+ cos(θ + φ)

∂

∂x1
+ ∂

∂x2
+ 1

2

∂

∂x3
,

ϕX3 = − ∂

∂y4
− ∂

∂x4
, ϕX4 = − ∂

∂y4
+ ∂

∂x4
, ϕX5 = 0.

It is easy to verify that D = Span{X3, X4} is an invariant distribution and Dθ =
Span{X1, X2} is a slant distribution of M with slant angle θ = cos−1

( 3
17

)
such that

X5 = ξ = ∂
∂z is tangent to M . Thus, M is a proper semi-slant submanifold of R9.

Now, we give some basic results for semi-slant submanifolds of Kenmotsu mani-
folds which are useful to the next section.

Lemma 1 Let M be a proper semi-slant submanifold of a Kenmotsu manifold M̃ with
invariant and proper slant distributions D ⊕ 〈ξ 〉 and Dθ , respectively. Then we have:

sin2 θ g(∇Y X, Z) = g(AFZϕX − AFPZ X,Y ) (10)

for any X,Y ∈ Γ (D ⊕ 〈ξ 〉) and Z ∈ Γ (Dθ ).

Proof For any X,Y ∈ Γ (D ⊕ 〈ξ 〉) and Z ∈ Γ (Dθ ), we have

g(∇Y X, Z) = g(∇̃Y X, Z) = g(ϕ∇̃Y X, ϕZ).

Using the covariant derivative property of ϕ and the relation (6), we get

g(∇Y X, Z) = g(∇̃YϕX, PZ) + g(∇̃YϕX, FZ) − g((∇̃Yϕ)X, ϕZ).
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Then from (3), (4) and the fact that ϕX and PZ are orthogonal vector fields, we derive

g(∇Y X, Z) = −g(ϕX, ∇̃Y PZ) + g(h(ϕX,Y ), FZ)

= g(X, ∇̃YϕPZ) − g(X, (∇̃Yϕ)PZ) + g(AFZϕX,Y )

= g(X, ∇̃Y P
2Z) + g(X, ∇̃Y FPZ)−g((∇̃Yϕ)PZ , X)+g(AFZϕX,Y ).

Again using (3), (5) and (7) and the fact that ξ ∈ Γ (D), we find

g(∇Y X, Z) = − cos2 θg(X, ∇̃Y Z) − g(AFPZ X,Y ) + g(AFZϕX,Y ).

Hence, the result follows from the last relation. ��
The following corollary is an immediate consequence of the above lemma.

Corollary 1 Let M be a proper semi-slant submanifold of a Kenmotsu manifold M̃.
Then, the distribution D ⊕ 〈ξ 〉 defines a totally geodesic foliation if and only if

g(AFZϕX − AFPZ X,Y ) = 0

for any X,Y ∈ Γ (D ⊕ 〈ξ 〉) and Z ∈ Γ (Dθ ).

Also, we have the following results for the leaves of the slant distribution.

Lemma 2 Let M be a proper semi-slant submanifold of a Kenmotsu manifold M̃.
Then we have

g(∇ZW, X) = csc2 θ
(
g(AFPW X − AFWϕX, Z)

) − η(X)g(Z ,W ) (11)

for any X ∈ Γ (D ⊕ 〈ξ 〉) and Z ,W ∈ Γ (Dθ ).

Proof For any X ∈ Γ (D ⊕ 〈ξ 〉) and Z ,W ∈ Γ (Dθ ), we find

g(∇ZW, X) = g(∇̃ZϕW, ϕX) + η(X)g(∇̃ZW, ξ).

Using (3) and (6), we get

g(∇ZW, X) = g(∇̃Z PW, ϕX) + g(∇̃Z FW, ϕX) − η(X)g(Z ,W ).

Then from (2) and (5), we arrive at

g(∇ZW, X) = −g(ϕ∇̃Z PW, X) − g(AFW Z , ϕX) − η(X)g(Z ,W ).

By using the covariant derivative property of ϕ and the symmetry of the shape operator
A, we obtain

g(∇ZW, X) = g((∇̃Zϕ)PW, X) − g(∇̃ZϕPW, X) − g(AFWϕX, Z)

− η(X)g(Z ,W ).
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Again using (3) and (6), we derive

g(∇ZW, X) = − g(∇̃Z P
2W, X) − g(∇̃Z FPW, X) + g(PZ , PW )η(X)

− g(AFWϕX, Z) − η(X)g(Z ,W ).

From Theorem 1 and the relation (5), we find

g(∇ZW, X) = cos2 θg(∇̃ZW, X) + g(AFPW Z , X) + cos2 θg(Z ,W )η(X)

− g(AFWϕX, Z) − η(X)g(Z ,W ).

Since A is self-adjoint, then by using trigonometric identities, the result follows from
the last relation. ��

From the above lemma, we have the following results.

Corollary 2 Let M be a proper semi-slant submanifold of a Kenmotsu manifold M̃.
Then the slant distribution Dθ defines a totally geodesic foliation if and only if

g(AFPZ X − AFZϕX,W ) = η(X)g(Z ,W )

for any X ∈ Γ (D ⊕ 〈ξ 〉) and Z ,W ∈ Γ (Dθ ).

Lemma 3 Let M be a proper semi-slant submanifold of a Kenmotsu manifold M̃.
Then we have:

sin2 θ g([Z ,W ], X) = g(AFZϕX − AFPZ X,W ) − g(AFWϕX − AFPW X, Z)

for any X ∈ Γ (D ⊕ 〈ξ 〉) and Z ,W ∈ Γ (Dθ ).

Proof From (11), we have

sin2 θ g(∇̃ZW, X) = g(AFPW X − AFWϕX, Z) − sin2 θ η(X)g(Z ,W ) (12)

for any X ∈ Γ (D⊕〈ξ 〉) and Z ,W ∈ Γ (Dθ ). Interchanging Z andW in (12), we find

sin2 θ g(∇̃W Z , X) = g(AFPZ X − AFZϕX,W ) − sin2 θ η(X)g(Z ,W ). (13)

Thus, the result follows from (12) and (13).

4 Warped product semi-slant submanifolds

In this section, we study warped product semi-slant submanifolds of Kenmotsu man-
ifolds, by considering that one of the factor is a slant submanifold. In the following
first, we give brief introduction of warped product manifolds.

123



442 S. Uddin

Let M1 and M2 be two Riemannian manifolds with Riemannian metrics g1 and g2,
respectively, and f be a positive differentiable function on M1. Then, M = M1 × f

M2 = (M1 × M2, g), is a warped product manifold of M1 and M2 such that

g(X,Y ) = g1(π1
X, π1
Y ) + ( f ◦ π1)
2g2(π2
X, π2
Y ) (14)

where the vector fields X and Y are tangent to M = M1 × f M2 at (p, q) and π1 and
π2 are the canonical projections of M = M1 × M2 onto M1 and M2, respectively and

 is the symbol for the tangent map. A warped product manifold M = M1 × f M2 =
(M1 × M2, g) is said to be trivial or simply a Riemannian product if the warping
function f is constant. If X is a vector field on M1 and V is an another vector field on
M2, then from Lemma 7.3 of [5], we have

∇XV = ∇V X = X (ln f )V (15)

where∇ denotes the Levi-Civita connection onM . It is well-known thatM1 is a totally
geodesic submanifold and M2 is a totally umbilical submanifold of M (cf. [5,11]).

The gradient ∇ f of a function f on M is defined as g(∇ f, X) = X ( f ), for any
vector field X on M . If {e1, . . . en} is an orthonormal frame field of the tangent space
of M , then we have

‖∇ f ‖2 =
n∑

i=1

(ei ( f ))
2. (16)

In this paper, we study warped product semi-slant submanifolds of the formMT × f

Mθ of a Kenmotsu manifold M̃ , where MT and Mθ are invariant and proper slant
submanifolds of M̃ , respectively. First, we consider M1 and M2 be two Riemannian
submanifolds of a Kenmotsu manifold M̃ . Then their warped product submanifold M
is of the form M1 × f M2. Since, we consider the structure vector field ξ is tangent to
M , therefore two possible cases arise:

Case1When the structure vector field ξ is tangent toM2, then for any X ∈ Γ (T M1),
we have ∇̃Xξ = X . From (4) and (15), we find that X (ln f )ξ = X , by taking the inner
product with ξ , we observe that f is constant, i.e., the warped product M1 × f M2
becomes a Riemannian product (trivial).

Case 2When the structure vector field ξ is tangent toM1, then for any Z ∈ Γ (T M2),
we have

∇̃Z ξ = ∇Z ξ + h(Z , ξ).

Then from (3) and (15), we find that

(i) ξ ln f = 1, (i i) h(Z , ξ) = 0, ∀ Z ∈ Γ (T M2). (17)

Now, in the following we consider the warped products of the form MT × f Mθ ,
called warped product semi-slant submanifolds of a Kenmotsu manifold M̃ such that
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ξ is tangent to MT , where MT and Mθ are invariant and proper slant submanifolds
of M̃ , respectively. If neither dim MT is zero nor the slant angle of Mθ is π

2 , then the
warped product semi-slant submanifold is called proper. It is clear that the contact
CR-warped product submanifolds are the special cases of warped product semi-slant
submanifolds.

First, we give the following non-trivial example of warped product semi-slant sub-
manifolds in Kenmotsu manifolds.

Example 2 Consider the complex Euclidean spaceC4 with its usual Kaehler structure
and the real global coordinates (x1, x2, x3, x4, y1, y2, y3, y4). Let M̃ = R× f C

4 be a
warped productmanifold between the product of real lineR and the complex spaceC4.
In fact, M̃ is a Kenmotsu manifold with the almost contact metric structure (ϕ, ξ, η, g)
such that

ϕ

(
∂

∂xi

)
= − ∂

∂yi
, ϕ

(
∂

∂y j

)
= ∂

∂x j
, ϕ

(
∂

∂z

)
= 0, 1 ≤ i, j ≤ 4,

and

ξ = ez
(

∂

∂z

)
, η = ezdz, g = e2z〈, 〉

where 〈, 〉 denotes the Euclidean metric tensor of R9. Consider a submanifold M
defined by the immersion φ as follows

φ(u1, u2, u3, u4, z) = (u1, 0, u3, 0, u2, 0, u4 cos θ, u4 sin θ, z)

with θ ∈ (0, π/2). Then the tangent space T M of M at any point is spanned by the
following vectors

X1 = ∂

∂x1
+ y1

(
∂

∂z

)
, X2 = ∂

∂y1
, X3 = ∂

∂x3
+ y3

(
∂

∂z

)
,

X4 = cos θ
∂

∂y3
+ sin θ

∂

∂y4
, X5 = ∂

∂z
= 1

ez
ξ.

Then, we find

ϕX1 = − ∂

∂y1
, ϕX2 = ∂

∂x1
, ϕX3 = − ∂

∂y3
,

ϕX4 = cos θ
∂

∂x3
+ sin θ

∂

∂x4
, ϕX5 = 0.

Thus, M is a proper semi-slant submanifold tangent to the structure vector field ξ with
invariant and proper slant distributions D = Span{X1,X2} and Dθ = Span{X3,X4}
respectively with slant angle θ . It is easy to see that the distributions D and Dθ are
integrable. Consider, the integral manifolds corresponding to the distributions D and
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444 S. Uddin

Dθ by MT and Mθ , respectively. Then it is easy to check that M = MT × f Mθ is
a proper warped product semi-slant submanifold isometrically immersed in M̃ with
warping function f = ez, z ∈ R.

Now, we have the following useful lemma for later use.

Lemma 4 Let M = MT × f Mθ be a warped product semi-slant submanifold of
a Kenmotsu manifold M̃ such that ξ is tangent to MT , where MT is an invariant
submanifold and Mθ is a proper slant submanifold of M̃. Then, we have

g(h(X, Z), FW ) = (
η(X) − X (ln f )

)
g(Z , PW ) − ϕX (ln f ) g(Z ,W ) (18)

for any X ∈ Γ (T MT ) and Z ,W ∈ Γ (T Mθ ).

Proof For any X ∈ Γ (T MT ) and Z ,W ∈ Γ (T Mθ ), we have

g(h(X, Z), FW ) = g(∇̃Z X, ϕW ) − g(∇̃Z X, PW )

= −g(ϕ∇̃Z X,W ) − g(∇Z X, PW ).

Using a covariant derivative property of ϕ and (15), we find

g(h(X, Z), FW ) = g((∇̃Zϕ)X,W ) − g(∇̃ZϕX,W ) − X (ln f ) g(Z , PW ).

Again using (3), (4) and (15), we get the desired result. ��

The following relations can be easily obtained by interchanging X by ϕX and Z
by PZ and W by PW in (18), for any X ∈ Γ (T MT ) and Z ,W ∈ Γ (T Mθ )

g(h(ϕX, Z), FW ) = (
X (ln f ) − η(X)

)
g(Z ,W ) − ϕX (ln f ) g(Z , PW ),

g(h(X, PZ), FW ) = ϕX (ln f ) g(Z , PW )

− cos2 θ
(
X (ln f ) − η(X)

)
g(Z ,W ), (19)

g(h(X, Z), FPW ) = cos2 θ
(
X (ln f ) − η(X)

)
g(Z ,W )

−ϕX (ln f ) g(Z , PW ), (20)

and

g(h(X, PZ), FPW ) = − cos2 θϕX (ln f )g(Z ,W )

− cos2 θ
(
X (ln f ) − η(X)

)
g(Z , PW ). (21)

From (19) and (20), we have

g(h(X, PZ), FW ) = −g(h(X, Z), FPW ).
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On the other hand, for any X,Y ∈ Γ (T MT ) and Z ∈ Γ (T Mθ ), we have by Lemma
4.1 (i) of [22]

g(h(X,Y ), FZ) = 0. (22)

In order to give a characterization result for semi-slant submanifolds of a Kenmotsu
manifold, we recall the following result of Hiepko [16]:

Hiepko’s Theorem. Let D1 and D2 be two orthogonal distribution on a Riemannian
manifold M . Suppose that D1 and D2 both are involutive such that D1 is a totally
geodesic foliation and D2 is a spherical foliation. Then M is locally isometric to a
non-trivial warped product M1 × f M2, where M1 and M2 are integral manifolds of
D1 and D2, respectively.

Now, we are able to prove the following main result of this section.

Theorem 2 Let M be a proper semi-slant submanifold with invariant distribution
D ⊕ 〈ξ 〉 and proper slant distribution Dθ of a Kenmotsu manifold M̃. Then M is
locally a warped product submanifold of the form MT × f Mθ if and only if

AFZϕX − AFPZ X = sin2 θ
(
X (μ) − η(X)

)
Z (23)

for any X ∈ Γ (D ⊕ 〈ξ 〉) and Z ∈ Γ (Dθ ) and for some function μ on M satisfying
Wμ = 0, for any W ∈ Γ (Dθ ).

Proof If M = MT × f Mθ is a warped product submanifold of a Kenmotsu manifold
M̃ such that MT is an invariant submanifold and Mθ is a proper slant submanifold
of M̃ , then from (22), we have g(AFZϕX ,Y ) = 0, for any X,Y ∈ Γ (T MT ) and
Z ∈ Γ (T Mθ ), i.e., AFZϕX has no components in T MT . Also, if we interchange Z
by PZ in (22), then we have g(AFPZ X,Y ) = 0, i.e., AFPZ X also has no components
T MT . Therefore, AFZϕX − AFPZ X lies in T Mθ only. On the other hand, for any
X,Y ∈ Γ (T MT ) and Z ,W ∈ Γ (T Mθ ), we have

g(AFZϕX,W ) = g(h(ϕX,W ), FZ) = g(∇̃WϕX, FZ).

From the covariant derivative proper of ϕ, we find

g(AFZϕX,W ) = g((∇̃Wϕ)X, FZ) + g(ϕ∇̃W X, ϕZ) − g(ϕ∇̃W X, PZ).

Using (2), (3), (6), (9) and (15), we obtain

g(AFZϕX,W ) = − sin2 θ η(X) g(Z ,W ) + X (ln f )g(Z ,W ) + g(∇̃W X, P2Z)

+ g(∇̃W X, FPZ).

Then from (4), Theorem 1 and (15), we find

g(AFZϕX,W ) = − sin2 θ η(X) g(Z ,W ) + X (ln f )g(Z ,W )

− cos2 θ X (ln f ) g(Z ,W ) + g(AFPZ X,W ).
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Then (23) follows from the above relation with μ = ln f .
Conversely, if M is a proper semi-slant submanifold of a Kenmotsu manifold M̃

such that (23) holds, then from Lemma 1 and the given condition (23), we conclude
that sin2 θ g(∇Y X, Z) = 0, for any X,Y ∈ Γ (D ⊕ 〈ξ 〉) and Z ∈ Γ (Dθ ). Since
M is a proper semi-slant submanifold, then sin2 θ 
= 0, therefore g(∇Y X, Z) = 0,
i.e., the leaves of the distribution D ⊕ 〈ξ 〉 are totally geodesic in M . Also, from
Lemma 3 and the given condition (23), we find that sin2 θ g([Z ,W ], X) = 0, for any
X ∈ Γ (D ⊕ 〈ξ 〉) and Z ,W ∈ Γ (Dθ ). Since, M is a proper semi-slant submanifold,
thus we have g([Z ,W ], X) = 0, i.e., the slant distribution Dθ is integrable. If we
consider hθ be the second fundamental form of a leaf Mθ of Dθ in M , then for any
Z ,W ∈ Γ (Dθ ) and X ∈ Γ (D ⊕ 〈ξ 〉), we have

g
(
hθ (Z ,W ), X

) = g(∇ZW, X).

Using Lemma 2, we derive

g
(
hθ (Z ,W ), X

) = − csc2 θ g(AFWϕX − AFPW X, Z) − η(X)g(Z ,W ).

From the given condition (23), we find

g
(
hθ (Z ,W ), X

) = −X (μ)g(Z ,W ).

Then, from the definition of gradient, we get

hθ (Z ,W ) = −∇(μ) g(Z ,W ),

which means that Mθ is totally umbilical in M with mean curvature vector H θ =
−∇(μ). Now we prove that H θ is parallel corresponding to the normal connec-
tion DN of Mθ in M . Consider any Y ∈ Γ (D ⊕ 〈ξ 〉) and Z ∈ Γ (Dθ ), then
we find that g(DN

Z ∇μ,Y ) = g(∇Z∇μ,Y ) = Zg(∇μ,Y ) − g(∇μ,∇ZY ) =
Z(Y (μ)) − g(∇μ, [Z ,Y ]) − g(∇μ,∇Y Z) = Y (Zμ) + g(∇Y∇μ, Z)} = 0, since
Z(μ) = 0, for all Z ∈ Γ (Dθ ) and thus ∇Y∇μ ∈ Γ (D ⊕ 〈ξ 〉). This means that the
mean curvature of Mθ is parallel. Thus the leaves of the distribution Dθ are totally
umbilical in M with non-vanishing parallel mean curvature vector H θ i.e., Mθ is an
extrinsic sphere in M . Then from Hiepko’s Theorem [16], M is a warped product
submanifold, which proves the theorem completely.

Now, we construct the following orthonormal frame fields for a proper warped
product semi-slant submanifoldM = MT × f Mθ of a (2m+1)-dimensionalKenmotsu
manifold M̃ such that the structure vector field ξ is tangent to MT . Consider M =
MT× f Mθ be ann-dimensionalwarped product semi-slant submanifold of aKenmotsu
manifold M̃ . If dim MT = 2t + 1 and dim Mθ = 2s, then n = 2t + 1 + 2s. Let us
consider the orthonormal frame fields of the corresponding tangent bundlesD andDθ

of MT and Mθ , respectively as: {e1, . . . , et , et+1 = ϕe1, . . . , e2t = ϕet , e2t+1 = ξ}
is the orthonormal frame field of D and {e2t+2 = e


1, . . . , e2t+1+s = e

s , e2t+2+s =

e

s+1 = sec θ Pe


1, . . . , en = e

2s = sec θ Pe


s } is the orthonormal frame field of Dθ .
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Then the orthonormal frame fields in the normal bundle T⊥M of FDθ and invariant
normal subbundle ν respectively are {en+1 = ẽ1 = csc θ Fe


1 . . . , en+s = ẽs =
csc θ Fe


s , en+s+1 = ẽs+1 = csc θ sec θ FPe

1, . . . , en+2s = ẽ2s = csc θ sec θ FPe


s }
and {en+2s+1 = ẽ2s+1, . . . , e2m+1 = ẽ2m+1−n−2s}.

Next, we use the above constructed frame fields to find a relation (lower bound)
for the squared norm of the second fundamental form ‖h‖2, in terms of the warping
function and the slant angle of a proper warped product semi-slant submanifold of
Kenmotsu manifolds.

Theorem 3 Let M = MT × f Mθ be a proper warped product semi-slant submanifold
of a Kenmotsu manifold M̃ such that the structure vector field ξ is tangent to MT ,
where MT is an invariant submanifold and Mθ is a proper slant submanifold of M̃.
Then

(i) The squared norm of the second fundamental form h of M satisfies

‖h‖2 ≥ 4s
(
csc2 θ + cot2 θ

) (
‖∇T (ln f )‖2 − 1

)
(24)

where ∇T (ln f ) is the gradient of the warping function ln f along MT and
2s = dim Mθ .

(ii) If the equality sign in (i) holds, then MT is a totally geodesic submanifold and
Mθ is a totally umbilical submanifold of M̃. Furthermore, M is minimal in M̃.

Proof From the definition of h, we have

‖h‖2 =
n∑

i, j=1

g
(
h

(
ei , e j

)
, h

(
ei , e j

))

=
2m+1∑
r=n+1

n∑
i, j=1

g
(
h

(
ei , e j

)
, er

)2

=
2s∑
r=1

n∑
i, j=1

g
(
h

(
ei , e j

)
, ẽr

)2 +
2m+1−n−2s∑

r=2s+1

n∑
i, j=1

g
(
h

(
ei , e j

)
, ẽr

)2
. (25)

First term in the right hand side of (25) has FDθ -components and the second term
has ν-components. Let us compute FDθ -components terms only by using the frame
fields of D and Dθ . Then we have

‖h‖2 ≥
2s∑
r=1

2t+1∑
i, j=1

g
(
h

(
ei , e j

)
, ẽr

)2 + 2
2s∑
r=1

2t+1∑
i=1

2s∑
j=1

g
(
h

(
ei , e



j

)
, ẽr

)2

+
2s∑
r=1

2s∑
i, j=1

g
(
h

(
e

i , e



j

)
, ẽr

)2
. (26)
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Then from (22), the first term in the right hand side of above inequality is identically
zero. Let us compute just next term

‖h‖2 ≥ 2
2s∑
r=1

2t+1∑
i=1

2s∑
j=1

g
(
h

(
ei , e



j

)
, ẽr

)2
.

= 2
2s∑

r, j=1

2t∑
i=1

g
(
h

(
ei , e



j

)
, ẽr

)2 + 2
2s∑

r, j=1

g
(
h

(
ξ, e


j

)
, ẽr

)2
.

Since for a submanifold M of a Kenmotsu manifold M̃ , we have h(X, ξ) = 0, for any
X ∈ Γ (T M). By using this fact the last term in above inequality is identically zero.
Then from the assumed frame fields of D, Dθ and FDθ , we derive

‖h‖2 ≥ 2 csc2 θ

t∑
i=1

s∑
r, j=1

g
(
h

(
ei , e



j

)
, Fe


r

)2

+2 csc2 θ sec4 θ

t∑
i=1

s∑
r, j=1

g
(
h

(
ei , Pe



j

)
, FPe


r

)2

+2 csc2 θ

t∑
i=1

s∑
r, j=1

g
(
h

(
ϕei , e



j

)
, Fe


r

)2

+2 csc2 θ sec4 θ

t∑
i=1

s∑
r, j=1

g
(
h

(
ϕei , Pe



j

)
, FPe


r

)2

+2 csc2 θ sec2 θ

t∑
i=1

s∑
r, j=1

g
(
h

(
ei , Pe



j

)
, Fe


r

)2

+2 csc2 θ sec2 θ

t∑
i=1

s∑
r, j=1

g
(
h

(
ei , e



j

)
, FPe


r

)2

+2 csc2 θ sec2 θ

t∑
i=1

s∑
r, j=1

g
(
h

(
ϕei , Pe



j

)
, Fe


r

)2

+2 csc2 θ sec2 θ

t∑
i=1

s∑
r, j=1

g
(
h

(
ϕei , e



j

)
, FPe


r

)2
.

From the relations (18)–(21) and the fact that for an orthonormal frame field of
D, η(ei ) = 0, for i = 1, . . . , 2t , we find

‖h‖2 ≥ 4 csc2 θ

2t∑
i=1

s∑
r, j=1

(ϕei (ln f ))2 g
(
e

j , e



r

)2

+ 4 cot2 θ

2t∑
i=1

s∑
r, j=1

(ei (ln f ))2 g
(
e

j , e



r

)2
.
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Hence, to satisfy (16), we add and subtract the same term in the above relation and
then we get

‖h‖2 ≥ 4(csc2 θ + cot2 θ)

s∑
r, j=1

2t+1∑
i=1

(ei (ln f ))2g
(
e

j , e



r

)2

− 4(csc2 θ + cot2 θ)

s∑
r, j=1

(ξ(ln f ))2g
(
e

j , e



r

)2
.

Then from (16) and (17) (i), we obtain

‖h‖2 ≥ 4s
(
csc2 θ + cot2 θ

) (
‖∇T (ln f )‖2 − 1

)

which is the inequality (i). If the equality holds in (i), then from (25) and (26), we find

h(D,D) = 0, h(Dθ ,Dθ ) = 0 and h(D,Dθ ) ∈ FDθ . (27)

If hθ is the second fundamental form of Mθ in M , then we have

g(hθ (Z ,W ), X) = g(∇ZW, X) = −X (ln f ) g(Z ,W ) (28)

for any X ∈ Γ (D) and Z ,W ∈ Γ (Dθ ). Since MT is a totally geodesic submanifold
in M [5,9], using this fact with the first condition of (27), we find that MT is totally
geodesic in M̃ . Also, since Mθ is totally umbilical in M [5,9], using this fact with
(28) and the second condition of (27), we observe that Mθ is totally umbilical in M̃ .
Moreover all conditions of (27) with the above fact show the minimality of M in M̃ .
This proves the theorem completely. ��

Now, we have the following applications of our derived results.
1. If we assume θ = π

2 in Theorem 2 and interchange X by ϕX in (23) for any
X ∈ Γ (D⊕〈ξ 〉), then the warped product semi-slant submanifold becomes a contact
CR-warped product of the form M = MT × f M⊥ in a Kenmotsu manifold. Thus,
Theorem 3.4 of [18] is a special case of Theorem 2 as follows:

Corollary 3 (Theorem3.4 of [18]) Aproper contactCR-submanifold M of aKenmotsu
manifold M̃ is locally a contact CR-warped product if and only if

AϕZ X = −ϕX (μ)Z , X ∈ Γ (D ⊕ 〈ξ 〉), Z ∈ Γ (D⊥)

for some smooth function μ on M satisfying W (μ) = 0, for each W ∈ Γ (D⊥).

2. Also, if we assume θ = π
2 in Theorem 3, then warped product semi-slant subman-

ifold is of the form M = MT × f M⊥ i.e., M becomes a contact CR-warped product.
Thus, Theorem 3.1 of [2] is a special case of Theorem 3 as below:
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Corollary 4 (Theorem 3.1 of [2]) Let M̃ be a (2m + 1)-dimensional Kenmotsu
manifold and M = M1 × f M2 be an n-dimensional contact CR-warped product
submanifold, such that M1 is a (2t + 1)-dimensional invariant submanifold tangent
to ξ and M2 is a s-dimensional anti-invariant submanifold of M̃. Then

(i) The squared norm of the second fundamental form of M satisfies

‖h‖2 ≥ 2s
(
‖∇T (ln f )‖2 − 1

)
(29)

where ∇T (ln f ) is the gradient of ln f .
(ii) If the equality sign in (29) holds identically, then M1 is a totally geodesic subman-

ifold and M2 is a totally umbilical submanifold of M̃. Moreover, M is a minimal
submanifold of M̃.
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