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Abstract We study natural linear representations of self-similar groups over finite
fields. In particular, we show that if the group is generated by a finite automaton,
then obtained matrices are automatic. This shows a new relation between two separate
notions of automaticity: groups generated by automata and automatic sequences. We
also show that if the group acts on the tree by p-adic automorphisms, then the corre-
sponding linear representation is a representation by infinite triangular matrices. We
relate this observation with the notion of height of an automorphism of a rooted tree
due to L. Kaloujnine.
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1 Introduction

Self-similar groups is an active topic of modern group theory. They initially appeared
as interesting examples of groups with unusual properties (see [1,21,24,44]). The
main techniques of the theory were developed for the study of these examples. Later
a connection to dynamical systems was discovered (see [33,35]) via the notion of the
iterated monodromy group. Many interesting problems were solved using self-similar
groups (see [10,11,16,22]).

One of the ways to define self-similar groups is to say that they are groups generated
by all states of an automaton (of Mealy type, also called a transducer, or sequential
machine). Especially important case is when the group is generated by the states of a
finite automaton. All examples mentioned above (including the iterated monodromy
groups of expanding dynamical systems) are like that.

Themain goal of this article is to indicate a new relation between self-similar groups
and another classical notion of automaticity: automatic sequences and matrices. See
the monographs [2,50] for theory of automatic sequences and applications.

More precisely, we are going to study natural linear representations of self-similar
groups over finite fields, and show that matrices associated with elements of a group
generated by a finite automaton are automatic.

There are several ways to define automatic sequences and matrices. One can use
Moore automata, substitutions (e.g., Morse–Thue substitution leading to the famous
Morse–Thue sequence), or Christol’s characterization of automatic sequences in terms
of algebraicity of the generating power series over a suitable finite field [2, Theo-
rem 12.2.5]. The theory of automatic sequences is rich and is related to many topics in
dynamical systems, ergodic theory, spectral theory of Schrödinger operators, number
theory etc., see [2,50].

It is well known that linear groups (that is subgroups of groups ofmatricesGLN (k),
where k is a field) is quite a restrictive class of groups as the Tits alternative [48] holds
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for them. Moreover, the group of (finite) upper triangular matrices is solvable, and
the group of upper unitriangular matrices is nilpotent. In contrast, if one uses infinite
triangular matrices over a finite field, one can get much more groups. In particular,
every countable residually finite p-group can be embedded into the group of upper
uni-triangular matrices over the finite field Fp.

We will pay special attention to the case when the constructed representation is
a representation by infinite unitriangular matrices. One of the results of our paper is
showing that the natural (and optimal in certain sense) representation by uni-triangular
matrices constructed in [29,31] leads to automatic matrices, if the group is generated
by a finite automaton. In particular, the diagonals of these uni-triangular matrices
are automatic sequences. We study them separately, in particular, by computing their
generating series (as algebraic functions).

The roots of the subject of our paper go back to L. Kaloujnin’s results on Sylow
p-subgroups of the symmetric group [26–28], theory of groups generated by finite
automata [1,17,19,25,45], theory of self-similar groups [7,35], and group actions on
rooted trees [8,19,23].

Note that study of actions on rooted trees (every self-similar group is, by definition,
an automorphism group of the rooted tree of finite words over a finite alphabet) is
equivalent to the study of residually finite groups by geometric means, i.e., via repre-
sentations of them in groups of automorphisms of rooted trees. The theory of actions on
rooted trees is quite different from the Bass–Serre theory [41] of actions on (unrooted)
trees, and uses different methods and tools. The important case is when a group is
residually finite p-group (p prime), i.e., is approximated by finite p-groups. The class
of residually finite p-groups contains groups with many remarkable properties. For
instance, Golod’s p-groups that were constructed in [20] based on Golod-Shafarevich
theorem to answer a question of Burnside on the existence of a finitely generated
infinite torsion group are residually p groups. Other important examples are the first
self-similar groups mentioned at the beginning of this introduction.

At the end of the paper we study a notion of uniseriality which plays an important
role in the study of actions of groups on finite p-groups [15,30]. Our analysis is based
upon classical results of L. Kaloujnine on height of automorphisms of rooted trees
[27,28].Applications of uniseriality to Lie algebras associatedwith self-similar groups
were, for instance, demonstrated in [5]. Proposition 5.29 gives a simple criterion of
uniseriality of action of a group on rooted trees and allows to substitute lemma 5.2
from [5]. A number of examples is presented which demonstrate the basic notions,
ideas, and results.

2 Groups acting on rooted trees

2.1 Rooted trees and their automorphisms

Let X be a finite alphabet. Denote by X∗ the set of finite words over X , which we will
view as the free monoid generated by X . It is a disjoint union of the sets Xn of words
of length n. We denote the empty word, which is the only element of X0, by ∅. We
will write elements of Xn either as words x1x2 · · · xn , or as n-tuples (x1, x2, . . . , xn).
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234 R. Grigorchuk et al.

We consider X∗ as the set of vertices of a rooted tree, defined as the right Cayley
graph of the free monoid. Namely, two vertices of X∗ are connected by an edge if and
only if they are of the form v, vx for v ∈ X∗ and x ∈ X . The empty word is the root
of the tree. For v ∈ X∗, we consider vX∗ = {vw : w ∈ X∗} as the set of vertices of
a sub-tree with the root v.

Denote by Aut(X∗) the group of all automorphisms of the rooted tree X∗. Every
element of Aut(X∗) preserves the levels Xn of the tree, and for every g ∈ Aut(X∗)
beginning of length n ≤ m of the word g(x1x2 · · · xm) is equal to g(x1x2 · · · xn).
It follows that for every v ∈ X∗ the transformation αg,v : X −→ X defined by
g(vx) = g(v)αg,v(x) is a permutation, and that the action of g on X∗ is determined
by these permutations according to the rule

g(x1x2 · · · xn) = αg,∅(x1)αg,x1(x2)αg,x1x2(x3) · · · αg,x1x2···xn−1(xn). (1)

The map v �→ αg,v from X∗ to the symmetric group Symm(X) is called the portrait
of the automorphism g.

Equivalently, we can represent g by the sequence

τ = [τ0, τ1, τ2, . . .]

of maps τn : Xn −→ Symm(X), where τn(v) = αg,v . Such sequences are called,
following L. Kaloujnine [26], tableaux, and are denoted τ(g).

If [τ0, τ1, . . .] and [σ0, σ1, . . .] are tableaux of elements g1, g2 ∈ Aut(X∗), respec-
tively, then the tableau of their product g1g2 is the sequence of functions

τ(g1g2) = [τn(g(x1x2 · · · xn)) · σn(x1x2 · · · xn)]∞i=0. (2)

The tableau of the inverse of the element g1 is

τ(g−1
1 ) =

[
τn(g

−1(x1x2 · · · xn))−1
]∞
n=0

. (3)

Here, and in most of our paper, (except when we talk about bisets, i.e., about sets
with left and right actions) group elements and permutations act from the left.

Denote by X [n] the finite sub-tree of X∗ spanned by the set of vertices
⋃n

k=0 X
k .

The group Aut(X∗) acts on X [n], and the kernel of the action coincides with the kernel
of the action on Xn . The quotient of Aut(X∗) by the kernel of the action is a finite
group, which is naturally identified with the full automorphism group of the tree X [n].
We will denote this finite group by Aut(X [n]).

The group Aut(X∗) is naturally isomorphic to the inverse limit of the groups
Aut(X [n]) (with respect to the restrictionmaps). This shows that Aut(X∗) is a profinite
group. The basis of neighborhoods of the identity of Aut(X∗) is the set of kernels of
its action on the levels Xn of the tree X∗.
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2.2 Self-similarity of Aut(X∗)

Let g ∈ Aut(X∗), and v ∈ X∗. Then there exists an automorphism of X∗, denoted g|v
such that

g(vw) = g(v)g|v(w)

for all w ∈ X∗.
We call g|v the section of g at v. The sections obviously have the properties

g|v1v2 = g|v1 |v2 , (g1g2)|v = g1|g2(v)g2|v, (4)

for all g, g1, g2 ∈ Aut(X∗) and v, v1, v2 ∈ X∗.
The portrait of the section g|v is obtained by restricting the portrait of g to the

subtree vX∗, and then identifying vX∗ with X∗ by the map vw �→ w.

Definition 2.1 The set g|X∗ = {g|v : v ∈ X∗} ⊂ Aut(X∗) for g ∈ Aut(X∗), is
called the set of states of g. An automorphism g ∈ Aut(X∗) is said to be finite state if
g|X∗ is finite.

It follows from (4) that

g−1|X = (g|X∗)−1, (g1g2)|X ⊂ g1|X g2|X ,

which implies that the set of finite state elements of Aut(X∗) is a group. We call it the
group of finite automata, and denote it FAut(X∗). This name comes from interpretation
of elements of Aut(X∗) with automata (transducers), see 3.1 below. Namely, the
set of states of the automaton corresponding to g is g|X∗ . The element g ∈ g|X∗
is the initial state. If the current state of the automaton is h, and when it reads a
letter x ∈ X on its input, then it outputs h(x) and changes its current state to h|x .
It is easy to check that if we give the consecutive letters of a word x1x2 · · · xn on
input of the automaton with the initial state g, then we will get on output the word
g(x1x2 · · · xn) = g(x1)g|x1(x2)g|x1x2(x3) . . ., compare with (1).

Every element g ∈ Aut(X∗) is uniquely determined by the permutation π it defines
on the first level X ⊂ X∗ and the first level sections g|x , x ∈ X . In fact, the map

g �→ π · (g|x )x∈X
is an isomorphism of Aut(X∗) with the wreath product Symm(X) � Aut(X∗)X =
Symm(X) 
 Aut(X∗). We call the isomorphism

φ : Aut(X∗) −→ Symm(X) 
 Aut(X∗) : g �→ π · (g|x )x∈X
the wreath recursion.

For a fixed ordering x1, x2, . . . , xd of the letters of X , the elements of Symm(X) 

Aut(X∗) are written as π(g1, g2, . . . , gd), where π ∈ Symm(d) and gi = g|xi .
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Definition 2.2 A subgroup G ≤ Aut(X∗) is said to be self-similar if g|x ∈ G for all
g ∈ G and x ∈ X .

In other words, a group G ≤ Aut(X∗) is self-similar if restriction of the wreath
restriction to G is a homomorphism φ : G −→ Symm(X) 
 G. Note that the wreath
recursion is usually not an isomorphism (but is an embedding, since we assume that
G acts faithfully on X∗).

Example 2.3 Let X = {0, 1}. Consider the automorphism of the tree X∗ given by the
rules

a(0w) = 1w, a(1w) = 0a(w).

These rules can be written using wreath recursion as φ(a) = σ(1, a), where σ = (01)
is the transposition. We will usually omit φ, and write

a = σ(1, a),

thus identifying Aut(X∗) with Symm(X) 
 Aut(X∗).
The automorphism a is called the (binary) adding machine, since it describes the

process of adding one to a dyadic integer: a(x1x2 · · · xn) = y1y2 · · · yn if and only if

(x1 + 2x2 + 22x3 + · · · + 2n−1xn) + 1 = y1 + 2y2 + · · · + 2n−1yn (mod 2n).

The group generated by a (which is infinite cyclic) is self-similar, and is a subgroup
of the group of finite automata.

Example 2.4 Consider the group G generated by the elements a, b, c, d that are
defined inductively by the recursions

a = σ, b = (a, c), c = (a, d), d = (1, b).

Here σ , as before, is the transposition (01), and when we omit either the element of
Symm(X) or the element of Aut(X∗)X whenwriting elements of Symm(X)
Aut(X∗),
we assume that it is equal to the identity element of the respective group.

The group G is then a self-similar subgroup of the group of finite automata. It is
the Grigorchuk group, defined in [21].

2.3 Self-similarity bimodule

We can identify the letters x ∈ X with transformations v �→ xv of the set X∗. Then
the identity g(xv) = yh(v) for x ∈ X , y = g(x), and h = g|x is written as equality
of compositions of transformations:

g · x = y · h.
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Consider the set X · G of compositions of the form x · g, i.e., transformations
v �→ xg(v), v ∈ X∗. It is closed with respect to pre- and post-compositions with the
elements of G:

(x · g) · h = x · (gh), h · (x · g) = h(x) · (h|x g).
We get in this way a biset, i.e., a set with two commuting left and right actions of the
group G.

Let k be a field, and let k[G] be the group ring over k. Denote by � the vector
space k

X ·G spanned by X · G. Then the left and the right actions of G on X · G are
extended by linearity to a structure of a k[G]-bimodule on �. We will denote by G�

and �G the space � seen as a left and a right k[G]-module, respectively.
It follows directly from the definition of the right action of G on X · G that X

(identified with X · 1) is a free basis of �G . The left action is not free in general, since
it is possible to have g(xv) = xv for all v ∈ X∗ and for a non-trivial element g ∈ G,
which will imply, by definition of the left action, that g · x = x .

For every element a ∈ k[G] the map v �→ a · v for v ∈ � is an endomorphism of
�G , denoted 	(a). The map 	 : k[G] −→ End�G is obviously a homomorphism
of k-algebras.

After fixing a basis of the right module �G (for example X ), we can identify the
algebra of endomorphisms End�G of the right k[G]-module �G with the algebra
of |X | × |X | matrices over k[G]. In this case the homomorphism 	 : k[G] −→
M|X |(k[G]) ∼= End�G is called the matrix recursion associated with the self-similar
group G (and the basis of the right module).

More explicitly, if B = {e1, . . . , ed} is a basis of the right k[G]-module �G , then,
for a ∈ k[G] the matrix 	(a) = (ai, j )1≤i, j≤d ∈ Md(k[G]) is given by the condition

a · e j =
d∑

i=1

ei · ai, j .

If we use the basis {x1, x2, . . . , xd} = X of the right module �G , then the matrix
recursion 	 is a direct rewriting of the wreath recursion φ : G −→ Symm(X) 
 G in
matrix terms. Namely, 	(g) is the matrix with entries ai j , 1 ≤ i, j ≤ d, given by the
rule

ai j =
{
g|x j if g(x j ) = xi ,
0 otherwise

(5)

Example 2.5 The adding machine recursion a = σ(1, a) is defined in the terms of the
bimodule as

a · x0 = x1, a · x1 = x0 · a,

where x0, x1 are identified with the symbols 0, 1, respectively, from Example 2.3.
It follows that the recursion is written in matrix form as

	(a) =
(
0 a
1 0

)
.
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The recursive definition of the generators a, b, c, d of the Grigorchuk group is
written as

	(a) =
(
0 1
1 0

)
, 	(b) =

(
a 0
0 c

)
, 	(c) =

(
a 0
0 d

)
, 	(d) =

(
1 0
0 b

)
.

When we change the basis of the right module �G , we just conjugate the map 	

by the transition matrix. Namely, if {x1, . . . , xd} and {y1, . . . , yd} are bases of the
right module �G , then we can write y j = ∑∞

i=1 yi · bi, j for bi, j ∈ k[G]. Then the
matrix T = (bi, j )1≤i, j≤d is the transition matrix from the basis {xi }1≤i≤d to the basis
{yi }1≤i≤d .

Example 2.6 Consider again the adding machine example. Let us take, instead of the
standard basis {x0, x1} = X , the basis y0 = x0 + x1, y1 = x1. (Here we replace the
letters 0, 1 of the binary alphabet by x0 and x1, respectively, in order not to confuse
them with elements 0, 1 ∈ k[G].) Then the transition matrix to the new basis is

T =
(
1 0
1 1

)
. It inverse is T−1 =

(
1 0

−1 1

)
. Consequently, the matrix recursion in

the new basis is

a �→ T−1
(
0 a
1 0

)
T =

(
a a

1 − a −a

)
.

This can be checked directly:

a · y0 = a · (x0 + x1) = x1 + x0 · a = y1 + (y0 − y1) · a = y0 · a + y1 · (1 − a)

and

a · y1 = a · x1 = x0 · a = y0 · a − y1 · a.

If we take the basis {y0 = x0, y1 = x1 · a}, then matrix recursion becomes

a �→
(
1 0
0 a−1

)
·
(
0 a
1 0

)
·
(
1 0
0 a

)
=
(

0 a2

a−1 0

)
.

If the basis is a subset of X · G, then the matrix recursion corresponds to a wreath
recursion G �→ Symm(X) 
 G. For instance, in the last example the matrix recursion
corresponds to the wreath recursion

a �→ σ(a−1, a2).

This wreath recursion describes the process of adding 1 to a dyadic numbers in the
binary numeration system with digits 0 and 3. For more on changes of bases in the
biset X ·G and the corresponding transformations of the wreath recursion see [35,36].
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If �1 and �2 are bimodules over a k-algebra A, then their tensor product �1 ⊗ �2
is the quotient of the k-vector space spanned by �1 × �2 by the sub-space generated
by the elements of the form

(v1, a · v2) − (v1 · a, v2)

for v1 ∈ �1, v2 ∈ �2, a ∈ A. It is a k[G]-bimodule with respect to the actions
a · (v1 ⊗ v2) = (a · v1) ⊗ v2 and (v1 ⊗ v2) · a = v1 ⊗ (v2 · a).

If �2 is a left A-module, and �1 is an A-bimodule, then the left module �1 ⊗ �2
is defined in the same way.

Let �, as above, be the bimodule associated with a self-similar group G. Then X
is a basis of the right k[G]-module �G , and the set

Xn = {x1 ⊗ · · · ⊗ xn : xi ∈ X}

is a basis of the right module �⊗n
G , which is hence a free module. Note that Xn · G is

the basis of �⊗n as a vector space over k.
We identify x1 ⊗ · · · ⊗ xn with the word x1 · · · xn . The left module structure on

�⊗n is given by the rules similar to the definition of �:

g · v = g(v) · g|v (6)

for v ∈ Xn and g ∈ G. In particular, up to an ordering of the basis Xn , the associated
matrix recursion 	n : k[G] −→ M|Xn |(k[G]) is obtained from the recursion 	n−1 :
k[G] −→ M|Xn−1|(k[G]) by replacing every entry ai j of the matrix 	n−1(a) by the
matrix 	(ai j ).

Example 2.7 The matrix recursion G −→ M4(k[G]) for the adding machine (in the
standard basis X2) is

a �→

⎛
⎜⎜⎝
0 0 0 a
0 0 1 0
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ ,

which is obtained by iterating the matrix recursion

a �→
(
0 a
1 0

)
.

In this case the basis X2 is ordered in the lexicographic order x0x0 < x0x1 < x1x0 <

x1x1. But since a is the adding machine, and it describes adding 1 to a dyadic integer
that is written is such a way that the less significant digits come before the more
significant ones, it is more natural to order the basis in the inverse lexicographic order
x0x0 < x1x0 < x0x1 < x1x1. In this case the matrix recursion becomes
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a �→

⎛
⎜⎜⎝
0 0 0 a
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ .

Proposition 2.8 Let T be the transition matrix from a basis X of �G to a basis Y .
Suppose that all entries of T are elements of k. Then the transition matrices Tn from
the basis X⊗n to Y⊗n are equal to

Tn = T ⊗ T ⊗ · · · ⊗ T︸ ︷︷ ︸
|X |

,

where ⊗ is the Kronecker product of matrices.

Proof Let Tn−1 = (au,v)u∈X⊗(n−1),v∈Y⊗(n−1) , i.e.,

v =
∑

u∈X⊗(n−1)

u · au,v

for all v ∈ Y⊗(n−1). Similarly, denote T = (ax,y)x∈X,y∈Y . Then

y ⊗ v = y ⊗
∑

u∈X⊗(n−1)

u · au,v =
(∑
x∈X

x · ax,y
)

⊗
∑

u∈X⊗(n−1)

u · au,v

=
∑

u⊗x∈X⊗n

x · ⊗ax,y · u · au,v =
∑

u⊗x∈X⊗n

x ⊗ u · ax,y · au,v,

which shows that

axu,yv = ax,yau,v,

which agrees with the definition of the Kronecker product. 
�
In other words, we can write

Tn = T (n)

⎛
⎜⎜⎜⎝

Tn−1 0 · · · 0
0 Tn−1 · · · 0
...

...
. . .

...

0 0 · · · Tn−1

⎞
⎟⎟⎟⎠ , (7)

where T1 = T , and T (n) is the matrix T in which each entry ai j is replaced by ai j
times the unit matrix of dimension |X |n−1 ×|X |n−1. Here the rows and columns of Tn
correspond to the elements of X⊗n and Y⊗n , respectively, ordered lexicographically.

It is easy to see from the proof, that in the general case (when not all entries of T
are elements of k), the formula (7) remains to be true, if we replace T (n) by the image
of T under the (n − 1)st iteration of the matrix recursion (in the basis X ).
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Example 2.9 Let k = R, X = {x0, x1}. Consider a new basis of �G

{
y0 = x0 + x1√

2
, y1 = x0 − x1√

2

}
.

The transition matrix to the new basis is

(
1/

√
2 1/

√
2

1/
√
2 −1/

√
2

)
= 1√

2

(
1 1
1 −1

)
.

Then the transition matrix from X⊗n to Y⊗n satisfies the recursion

Hn = 1√
2

(
1 1
1 −1

)(
Hn−1 0
0 Hn−1

)
= 1√

2

(
Hn−1 Hn−1
Hn−1 −Hn−1

)
.

2.4 Inductive limit of k
Xn

Let kXn
be the vector space of functions Xn −→ k. It is naturally isomorphic to the nth

tensor power of k
X . The isomorphism maps an elementary tensor f1 ⊗ f2 ⊗ · · · ⊗ fn

to the function

f1 ⊗ f2 ⊗ · · · ⊗ fn(x1x2 · · · xn) = f1(x1) f2(x2) · · · fn(xn).

More generally, we have natural isomorphisms k
Xn ⊗ k

Xm ∼= k
Xn+m

defined by the
equality

f1 ⊗ f2(x1x2 · · · xn+m) = f1(x1x2 · · · xn) f2(xn+1xn+2 · · · xn+m).

We denote by δv , for v ∈ Xn the delta-function of v, i.e., the characteristic function
of {v}. It is an element of k

Xn
. Note that

δx1x2···xn = δx1 ⊗ δx2 ⊗ · · · ⊗ δxn ,

with respect to the above identification of k
Xn+m

with k
Xn ⊗ k

Xm
.

Let G ≤ Aut(X∗). Denote by πn the natural permutational representation of G on
k
Xn

coming from the action G on Xn . It is given by the rule πn(δv) = δg(v), i.e., by

πn(g)( f )(v) = f (g−1(v)), f ∈ k
X , v ∈ Xn .

Denote by Vn the vector space k
Xn

seen as a left k[G]-module of the representation
πn , and by [ε] the left k[G]-module of the trivial representation of G. More explicitly,
it is a one-dimensional vector space over k spanned by an element ε, together with
the left action of k[G] given by the rule

g · ε = ε
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for all g ∈ G. The following proposition is a direct corollary of (6).

Proposition 2.10 The left module Vn is isomorphic to �⊗n ⊗ [ε]. The isomorphism
is the k-linear extension of the map δx1x2···xn �→ x1 ⊗ x2 ⊗ · · · ⊗ xn ⊗ ε for xi ∈ X.

Denote by 1 the function
∑

x∈X δx ∈ V1 taking constant value 1 ∈ k. We have
then, for every f ∈ Vn = k

Xn
,

f ⊗ 1(x1x2 · · · xn+1) = f (x1x2 · · · xn).

The following proposition is straightforward.

Proposition 2.11 The map ιn : v �→ v ⊗ 1 : Vn −→ Vn+1 is an embedding of the left
k[G]-modules. In other words,

πn+1(g)( f ⊗ 1) = πn(g)( f ) ⊗ 1

for all g ∈ G and f ∈ Vn.

The space Xω = {x1x2 · · · : xi ∈ X} has a natural topology of a direct (Tikhonoff)
power of the discrete space X . A basis of this topology consists of the cylindrical sets
vXω, for v ∈ X∗.

Denote by C(Xω, k) the vector space of maps f : Xω −→ k such that f −1(a) is
open and closed (clopen) for every a ∈ k. In other words, C(Xω, k) is the space of all
continuous maps f : Xω −→ k, where k is taken with discrete topology. Note that
the set of values of any element of C(Xω, k) is finite, since Xω is compact.

For example, a map f : Xω −→ R belongs toC(Xω, R) if and only it is continuous
and has a finite set of values.

The groupG acts naturally on Xω by homeomorphisms, hence it also acts naturally
on the space C(Xω, k) by the rule

g(ξ)(w) = ξ(g−1(w))

for g ∈ G, ξ ∈ C(Xω, k), and w ∈ Xω.
For every f ∈ Vn = k

Xn
consider the natural extension of f : Xn −→ k to a

function on Xω:

f (x1x2 · · · ) = f (x1x2 · · · xn).

For example, the delta-function δv is extended to the characteristic functions of the
subset vXω, which we will also denote δv .

It is easy to see that this defines an embedding of the k[G]-modules Vn −→
C(Xω, k). Moreover, these embeddings agree with the embeddings ιn : Vn −→ Vn+1.

Denote by V∞ the direct limit of the G-modules Vn with respect to the maps ιn .
We will denote by π∞ the corresponding representation of G on V∞.

Proposition 2.12 The module V∞ is naturally isomorphic to the left k[G]-module
C(Xω, k).
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Proof The set { f −1(t) : t ∈ k, f −1(t) �= ∅} is a finite covering of Xω by clopen
disjoint sets. Every clopen set of Xω is a finite union of cylindrical sets of the form
vXω, for v ∈ X∗. Consequently, there exists n such that f is constant on every
cylindrical set of the form vXω for v ∈ Xn . Then f ∈ k

Xn
in the identification of k

Xn

with a subspace of C(Xω, k), described above. It follows that the inductive limit of
k
Xn

coincides with C(Xω, k). We have already seen that the representations πn agree
with the representation of G on C(Xω, k), restricted to Vn = k

Xn
) which finishes the

proof. 
�

Let B be a basis of the k-vector space k
X such that the constant one function 1

belongs to B. Then B⊗n is a basis of the k-vector space k
Xn = Vn , and we have

ιn(B⊗n) ⊂ B⊗n+1. Then the inductive limit B∞ of the bases B⊗n with respect to the
maps ιn is a basis ofC(Xω, k) = V∞. The elements of this basis are equal to functions
of the form

f (x1x2 · · · ) �→ f1(x1) f2(x2) · · · ,

where fi ∈ B and all but a finite number of the functions fi are equal to the constant
one.

Example 2.13 Suppose that the field k ∼= Fq is finite, and let X = k. Then the
functions ek : X −→ k : x �→ xk for k = 1, 2, . . . , q − 1 together with the constant
one function 1, formally denoted x0, form a basis of V1.

The corresponding basis of C(Xω, k) is equal to the set of all monomial functions

f (x1, x2, . . .) = xk11 xk22 · · · ,

where all but a finite number of powers ki are equal to zero.
Writing the elements of C(Xω, k) in this basis amounts to representing them as

polynomials.

Example 2.14 Let X = {x0, x1}, char k �= 2, and let W be the basis of k
X consisting

of the functions y0 = δx0 + δx1 = 1 and y1 = δx0 − δx1 . The corresponding basisW∞
of C(Xω, k) is called the Walsh basis, see [51].

For k = C, the Walsh basis is an orthonormal set of complex-valued functions on
Xω with respect to the uniform Bernoulli measure on Xω. This is a direct corollary
of the fact that {y0, y1} is orthonormal. Since W∞ is a basis of the linear space of
continuous functions Xω −→ C with finite sets of values, and this space is dense in
the Hilbert space L2(Xω), the Walsh basis is an orthonormal basis of L2(Xω).

We can use Proposition 2.8 to find transition matrices from {δv}v∈Xn to the basis
W⊗n (just use the proposition for the case of the trivial group G). In the case of Walsh
basis we get the matrices from Example 2.9, but without 1/

√
2:

Hn =
(
Hn−1 Hn−1
Hn−1 −Hn−1

)
,
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Fig. 1 Walsh basis

compare with Example 2.9. These matrices are examples of Hadamard matrices (i.e.,
matrices whose entries are +1 and −1 and whose rows are orthogonal) and were
constructed for the first time by Sylvester [46]. They are also called Walsh matrices.

See Fig. 1, where graphs of the first eight elements of the Walsh basis are shown.
Herewe identify {0, 1}ω with the unit interval [0, 1] via real binary numeration system.

Example 2.15 A related basis of C(Xω, k) is the Haar basis, which is constructed
in the following way. Again, we assume that characteristic of k is different from 2,
and X = {x0, x1}. Let y0 = 1 and y1 = δx0 − δx1 , as in the previous example. Let
us construct an increasing sequence of bases Yn of k

Xn
< C(Xω, k) in the following

way. Let Y0 = {y0}. Define then inductively:

Yn+1 = Yn ∪ {δv ⊗ y1 : v ∈ Xn}.

Note that, since {δv : v ∈ Xn} is a basis ofkXn
, the set {δv⊗y0 : v ∈ Xn}∪{δv⊗y1 :

v ∈ Xn} is a basis of k
Xn+1

. But {δv ⊗ y0 : v ∈ Xn} = {δv : v ∈ Xn} is a basis of
k
Xn
, since y0 = 1. Consequently, Yn+1 is a basis of k

Xn+1
. (Here everywhere k

Xn
are

identified with the corresponding subspaces of C(Xω, k).)
In the case k = C, and identification of C(Xω, C) with a linear subspace of

L2(Xω, μ), where μ is the uniform Bernoulli measure on Xω, it makes sense to
normalize the elements of Yn in order to make them of norm one. Since norm of δv is
equal to 2−n/2, the recurrent definition of the basis in this case is

Yn+1 = Yn ∪
{
2−n/2 ⊗ y1 : v ∈ Xn

}
.

It is easy to see that the unionY∞ of the basesYn is an orthonormal basis of L2(Xω, μ).
It is called the Haar basis. See its use in the context of groups acting on rooted trees
in [6].
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3 Automata

3.1 Mealy and Moore automata

Definition 3.1 A Mealy automaton (or Mealy machine) is a tuple

A = (Q, X,Y, π, τ, q0),

where

• Q is the set of states of the automaton;
• X and Y are the input and output alphabets of the automaton;
• π : Q × X −→ Q is the transition map;
• τ : Q × X −→ X is the output map;
• q0 ∈ Q is the initial state.

We always assume that X and Y are finite and have more than one element each.

We frequently assume that X = Y , and say that the automaton is defined over the
alphabet X. The automaton is finite if the set Q is finite. In some cases, we do not
assume that an initial state is chosen.

Let A = (Q, X, Y, π, τ, q0) be a Mealy automaton. Let us extend the definition
of the maps π and τ to maps π : Q × X∗ −→ Q and τ : Q × X∗ −→ X by the
inductive rules

π(q, xv) = π(π(q, x), v), τ (q, xv) = τ(π(q, x), v)).

We interpret the automaton A as a machine, which being in a state q ∈ Q and reading
a letter x ∈ X , goes to the state π(q, x), and gives the letter τ(q, x) on the output. If
the machine starts at the state q ∈ Q, and reads a word v, then its final state will be
π(q, v), and its final letter on output will be τ(q, v).

Definition 3.2 The transformation Aq0 : X∗ −→ X∗ or Aq0 : Xω −→ Xω defined
by a Mealy automaton A = (Q, X,Y, π, τ, q0) is the map

Aq0(x0x1x2 · · · ) = τ(q0, x0)τ (q1, x1)τ (q2, x2) . . . , (8)

where qi+1 = π(qi , xi ).

In other words, Aq0(v) is the word that the machine gives on output, when it reads
the word v on input, if q0 is its initial state.

Example 3.3 Let G ≤ Aut(X∗) be a self-similar group. Consider the corresponding
full automaton with the set of states Q = G, and output and transition functions
defined by the rules:

π(g, x) = g|x , τ (g, x) = g(x).
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It follows from (4) that if we choose g ∈ G as the initial state, then the transformations
of X∗ and Xω defined by this automaton coincides with the original transformations
defined by g ∈ Aut(X∗).

This automaton is infinite, but if G ≤ FAut(X∗), then for every g ∈ G, the set
{g|v : v ∈ X∗} is a finite set, and we can take it as a set of states of a finite automaton
defining the transformation g.

A special type of Mealy automata are the Moore automata. The definition of a
Moore automaton is the same as Definition 3.1, except that the output function is a
map τ : Q −→ X , i.e., the output depends only on the state, and does not depend on
the input letter.

Moore automata also act on words, essentially in the same way as Mealy automata.
We can extend the definition of the transition function π to Q × X∗ by the same
formula as for the Mealy automata. Then the action of a Moore automaton with initial
state q0 on words is given by the rule

Aq0(x1x2 · · · ) = τ(q1)τ (q2) . . . , (9)

where qi+1 = π(qi , xi+1).
Even though the definition of a Moore automaton seems to be more restrictive than

the definition of a Mealy automaton, the two notions are basically equivalent, as any
Mealy automaton can be modeled by a Moore automaton. Hence, the set of maps
defined by finite Mealy automata coincides with the set of maps defined by finite
Moore automata.

LetA = (Q, X,Y, π, τ, q0) be aMealy automaton. Consider theMoore automaton
A′ over the input and output alphabets X and Y , respectively, with the set of states
Q× X ∪{p0}, where p0 is an element not belonging to Q× X , and with the transition
and output maps π ′ and τ ′ given by the rules

π ′(p0, x) = (π(q0, x), x), π ′((q, x1), x2)) = (π(q, x2), x2)),

and

τ ′(q, x1) = τ(q, x1),

where x, x1, x2 ∈ X (We define τ ′(p0) to be any letter, since it will never appear in
the output). It is easy to check that the new Moore automaton with the initial state p0
defines the same maps on X∗ and Xω as the original Mealy automaton A.

Therefore, we will not use Moore automata to define transformations of the sets
of words. They will be used to define automatic sequences and matrices in Sect. 4.
Traditionally, Mealy automata are used in theory of groups generated by automata
(see [19]), while Moore automata are used for generation of sequences (even though
the term “Moore automata” is not used in [2]).
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Fig. 2 The binary adding
machine

Fig. 3 The generators of the
Grigorchuk group

3.2 Diagrams of automata

The automata are usually represented as labeled graphs (called Moore diagrams).
The set of vertices coincides with the set of states Q. For every q ∈ Q and
x ∈ X there is an arrow from q to π(q, x) labeled by (x, τ (q, x)) in the case of
Mealy automata, and just by x in the case of Moore automata. The initial state is
marked, and the states are marked by the values of τ(q), if it is a Moore automa-
ton.

Sometimes the arrows of diagrams of Mealy automata are just labeled by the
input letters x , and the vertices are labeled by the corresponding transformation
x �→ τ(q, x).

Consider a directed graph with one marked (initial) vertex, in which the edges
are labeled by pairs (x, y) ∈ X2. The necessary and sufficient condition for such
a graph to represent a Mealy automaton is that for every vertex q and every letter
x ∈ X there exists a unique arrow starting at q and labeled by (x, y) for some y ∈ X .
Then the image of a word x1x2 · · · under the action of the automaton is calculated by
finding the unique direct path e1, e2, . . . of arrows starting at the initial vertex, whose
arrows are labeled by (x1, y1), (x2, y2), . . ., respectively. Then y1y2 · · · is the image
of x1x2 · · · .

The diagram of the adding machine transformation (see Example 2.3) is shown on
Fig. 2. We mark the initial state by a double circle.

Example 3.4 The generators a, b, c, d are defined by one automaton, shown on Fig. 3,
for different choices of the initial state.
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Fig. 4 Appending and erasing
letters

3.3 Non-deterministic automata

Let us generalize the notion of a Mealy automaton by allowing more general Moore
diagrams.

Definition 3.5 A (non-deterministic) synchronous automaton A over an alphabet X
is an oriented graph whose arrows are labeled by pairs of letters (x, y) ∈ X2. Such
automaton is called ω-deterministic if for every infinite word x1x2 · · · ∈ Xω and for
every vertex (i.e., state) q of A there exists at most one directed path starting in q
which is labeled by (x1, y1), (x2, y2), . . . for some yi ∈ X .

Note that in the above definition for a vertex state q of A and a letter x ∈ X there
maybe several or no edges starting at q and labeled by (x, y) for y ∈ X . It means that
the automatonAmay be non-deterministic on finite words and partial, i.e., that a state
q transforms a finite word v ∈ X∗ into several different words, and may not accept
some of the words on input.

If an automaton A is ω-deterministic, then every its state q defines a map between
closed subsets of Xω, mapping x1x2 · · · to y1y2 · · · , if there exists a directed path
starting in q and labeled by (x1, y1), (x2, y2), . . ..

Example 3.6 Let X = {0, 1}. The states T0 and T1 of the automaton shown on Fig. 4
define the transformations x1x2 · · · �→ 0x1x2 · · · and x1x2 · · · �→ 1x1x2 · · · , respec-
tively. The states T ′

0 and T ′
1 define the inverse transformations 0x1x2 · · · �→ x1x2 · · ·

and 1x1x2 · · · �→ x1x2 · · · .
Note that the first automaton (defining the transformations T0 and T1) is deter-

ministic. For example, the state T0 acts on the finite words by transformations
x1x2 · · · xn �→ 0x1x2 · · · xn−1. The second automaton is partial and non-deterministic
on finite words. For example, there are two arrows starting at T ′

0 labeled by (0, 1) and
(0, 0), but no arrows labeled by (1, y).

An asynchronous automaton is defined in the same way, but the labels are pairs of
arbitrary words (u, v) ∈ (X∗)2.

Definition 3.7 A homeomorphism φ : Xω −→ Xω is synchronously (resp. asyn-
chronously) automatic if it is defined by a finite ω-deterministic synchronous (resp.
asynchronous) automaton.

A criterion for a homeomorphism to be synchronously automatic is given in
Proposition 4.23.
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Asynchronously automatic homeomorphisms of Xω are studied in [18,19]. It is
shown there that the set of asynchronously automatic homeomorphisms of Xω is a
group, and that it does not depend on X (if |X | > 1). More precisely, it is proved
that for any two finite alphabets X,Y (such that |X |, |Y | > 1) there exists a home-
omorphism Xω −→ Yω conjugating the corresponding groups of asynchronously
automatic homeomorphisms. Very little is known about this group, which is called in
[19] the group of rational homeomorphisms of the Cantor set.

4 Automatic matrices

4.1 Automatic sequences

Here we review the basic definitions and facts about automatic sequences. More can
be found in the monographs [2,50].

Let A be a finite alphabet, and let Aω be the space of the right-infinite sequence of
elements of A with the direct product topology.

Fix an integer d ≥ 2, and consider the transformation 	d : Aω −→ (Aω)d , which
we called the stencil map, defined by the rule

	d(a0a1a2 · · · ) = (a0ada2d . . . , a1ad+1a2d+1 . . . , . . . , ad−1a2d−1a3d−1 · · · ).

It is easy to see that 	d is a homeomorphism. We denote the coordinates of 	d(w) by
	d(w)i , so that

	d(w) = (	d(w)0, 	d(w)1, . . . , 	d(w)d−1),

and call them d-decimations of the sequence w. Repeated d-decimations of w are
all sequences that can be obtained from w by iterative application of the decimation
procedure, i.e., all sequences of the form

	d(	d(· · · 	d(w)in · · · )i2)i1 .

Definition 4.1 A sequence w ∈ Aω is d-automatic if the set of all repeated d-
decimations of w (called the kernel of w in [2, Section 6.6]) is finite.

We say that a subset Q ⊂ Aω is d-decimation-closed if for every w ∈ Q all
d-decimations of w belong to Q. The following is obvious.

Lemma 4.2 A sequence is d-automatic if it belongs to a finite d-decimation-closed
subset of Aω.

Classically, a sequence w = a0a1 · · · is called d-automatic if there exists a Moore
automaton A with input alphabet {0, 1, . . . , d − 1} and output alphabet A such that
if n = i0 + i1d + · · · + imdm is a base d expansion of n, then the output of A after
reading the word i0i1 · · · im is an . An equivalent variant of the definition requires that
an is the output of the automaton after reading imim−1 · · · i1i0. One also may allow,
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Fig. 5 Automaton generating
the Thue–Morse sequence

or not im to be equal to zero, and the numeration of the letters of the sequence w to
start from 1. All these different definitions of automaticity of sequences are equivalent
to each other, see [2, Section 5.2]. They are also equivalent to Definition 4.1, see [2,
Theorem 6.6.2].

Example 4.3 The Thue–Morse sequence is the sequence t0t1 · · · ∈ {0, 1}ω, where tn
is the sum modulo 2 of the digits of n in the binary numeration system. The beginning
of length 2n of this sequence can be obtained from 0 by applying the substitution

0 �→ 01, 1 �→ 10

n times:

0 �→ 01 �→ 0110 �→ 01101001 �→ 0110100110010110 �→ · · ·

It is easy to see that this sequence is generated by the automaton shown on Fig. 5. Here
we label the vertices (the states) of the automaton by the corresponding values of the
output function. The initial state is marked by a double circle. For more on properties
of the Thue–Morse sequence, see [2, 5.1].

The last example can be naturally generalized to include all automatic sequences.
Namely, a k-uniform morphism φ : X∗ −→ Y ∗ is a morphism of monoids such that
|φ(x)| = k for every x ∈ X . By a theorem of Combham (see [2, Theorem 6.3.2]) a
sequence is k-automatic if and only if it is an image, under a coding (i.e., a 1-uniform
morphism), of a fixed point of a k-uniform endomorphism φ : X∗ −→ X∗.

Example 4.4 Consider the alphabet X = {a, b, c}, and the morphism φ : X∗ −→ X∗
given by

φ(a) = aca, φ(b) = d, φ(c) = b, φ(d) = c.

This substitution appears in the presentation [32] of the Grigorchuk group.
The fixed point of φ is obtained as the limit of φn(a), and starts with

acabacadacabaca . . .. The morphism φ is not uniform, but it is easy to see that the
fixed point belongs to {ab, ac, ad}∞, and for the words B = ab,C = ac, D = ad it
acts on {B,C, D}∞ as a 2-uniform endomorphism:

φ(B) = acad = CD, φ(C) = acab = CB, φ(D) = acac = CC.

It follows from Combham’s theorem that the fixed point of φ is 2-automatic.
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Let us show how to construct an automaton producing a sequence satisfying the
conditions of Definition 4.1.

Suppose that w0 ∈ Aω is automatic, and let Q be a finite d-decimation-closed
subset of Aω that contains w0 (for example, we can take Q to be equal to the set of all
repeated d-decimations of w0).

Consider aMoore automatonwith the set of states Q, initial statew0, input alphabet
{0, 1, . . . , d − 1}, output alphabet A, transition function

π(w, i) = 	d(w)i ,

output function

τ(x0x1 · · · ) = x0.

We call the constructed Moore automaton

A = (Q, {0, 1, . . . , d − 1}, A, π, τ,w0)

the automaton of w0.

Proposition 4.5 Let w0 = a0a1 · · · ∈ Aω be an automatic sequence, and let A be
its automaton. Let n be a non-negative integer, and let i0, i1, . . . , im be a sequence of
elements of the set {0, 1, . . . , d −1} such that n = i0 + i1d + i2d2 +· · ·+ imdm. Then
τ(w0, i0i1 · · · im) = an , i.e., the output of A after reading i0i1 · · · im is an.

Proof It follows from the definition of the automaton A that

π(w, i0 · · · im) = 	d(· · · 	d(	d(x0x1 · · · )i0)i1 · · · )im (10)

for all w = x0x1 · · · ∈ Q.
It also follows from the definition of the stencil map that the sequence (10) is equal

to

xnxn+dm+1xn+2dm+1xn+3dm+1 . . . ,

where n = i0 + i1d + i2d2 + · · · + imdm . It follows that τ(w0, i0i1 · · · im) = xn . 
�

4.2 Automatic infinite matrices

The notion of automaticity of sequences can be generalized to matrices in a straight-
forward way (see [2, Chapter 14], where they are called two-dimensional sequences).

Let A be a finite alphabet, and let Aω×ω be the space of all infinite to right and
down two-dimensional matrices of elements of A, i.e., arrays of the form

a =
⎛
⎜⎝
a11 a12 · · ·
a21 a22 · · ·
...

...
. . .

⎞
⎟⎠ . (11)
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Fig. 6 The stencil

Fix an integer d ≥ 2, and consider the map:

	d : Aω×ω −→ (Aω×ω)d×d

from the set of infinite matrices to the set of d×d matrices whose entries are elements
of Aω×ω. It maps the matrix a to the matrix

	(a) =

⎛
⎜⎜⎜⎝

	d(a)00 	d(a)01 · · · 	d(a)0,d−1
	d(a)10 	d(a)11 · · · 	d(a)1,d−1

...
...

. . .
...

	d(a)d−1,0 	d(a)d−1,1 · · · 	d(a)d−1,d−1

⎞
⎟⎟⎟⎠ ,

where

	d(a)i j =

⎛
⎜⎜⎜⎝

ai, j ai, j+d ai, j+2d · · ·
ai+d, j ai+d, j+d ai+d, j+2d · · ·
ai+2d, j ai+2d, j+d ai+2d, j+2d · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎠ .

The entries of 	d(a) are called d-decimations of a. We call 	d the stencil map, since
entries of the matrix 	d(A) are obtained from the matrix A by selecting entries using
a “stencil” consisting of a square grid of holes, see Fig. 6.

The definition of automaticity for matrices is then the same as for sequences.

Definition 4.6 A matrix a ∈ Aω×ω is d-automatic ([d, d]-automatic in terminology
of [2]) if the set of matrices that can be obtained from a by repeated d-decimations is
finite.

One can also use stencils with a rectangular grid of holes, i.e., selecting the entries
of a decimation with one step horizontally, and with a different step vertically. This
will lead us to the notion of a [d1, d2]-automatic matrix, as in [2], but we do not use
this notion in our paper.

An interpretation of automaticity ofmatrices via automata theory is also very similar
to the interpretation for sequences. The only difference is that the input alphabet of
the automaton is the direct product {0, 1, . . . , d − 1} × {0, 1, . . . , d − 1}. If we want
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to find an entry an1,n2 of an automatic matrix defined by a Moore automaton A, then
we represent the indices n1 and n2 in base d:

n1 = i0 + i1d + · · · + imd
m, n2 = j0 + j1d + · · · + jmd

m

for 0 ≤ is, jt ≤ d − 1, and then feed the sequence (i0, j0)(i1, j1) · · · (im, jm) to the
automaton A. Its final output will be an1,n2 .

We say that a matrix a = (ai j )i≥0, j≥0 over a field k is column-finite if the number
of non-zero entries in each column of a is finite. The set M∞(k) of all column-finite
matrices is an algebra isomorphic to the algebra of endomorphisms of the infinite-
dimensional vector space k

∞ = ⊕
N

k. We denote by Mk(k) the algebra of k ×
k-matrices over k.

Lemma 4.7 The stencil map 	d : M∞(k) −→ Md(M∞(k)) is an isomorphism of
k-algebras.

Proof A direct corollary of the multiplication rule for matrices. 
�
Denote by Ad(k) ⊂ M∞(k) the set of all column-finite d-automatic matrices over

k.

Proposition 4.8 Let k be a finite field. Then Ad(k) is an algebra. The stencil map

	d : Ad(k) −→ Md(Ad(k))

is an isomorphism of k-algebras.

Proof Let A and B be d-automatic column-finite matrices. Let A and B be finite
decimation-closed sets containing A and B, respectively. Then the set {a1A1+b1B1 :
A1 ∈ A, B1 ∈ B, a1, b1 ∈ k} is decimation-closed, and it contains any linear com-
bination of A and B. The set is finite, which shows that any linear combination of A
and B is automatic.

Let C be the linear span of all products A1B1 for A1 ∈ A, B1 ∈ B. Since the stencil
map 	d : M∞(k) −→ Md (M∞(k)) is an isomorphism of k-algebras, the set C is
decimation-closed. It contains AB, hence AB is automatic.

The map 	d : Ad(k) −→ Md (Ad(k)) is obviously a bijection. It is a homomor-
phism of k-algebras, because it is a homomorphism on M∞(k). 
�

If we have a finite d-decimation-closed set of matrices A, then its elements are
uniquely determined by the corresponding matrix recursion 	d : A −→ Md (A) and
by the top left entries a00 of each matrix A ∈ A. Namely, suppose that we want to find
an entry am,n of a matrix A ∈ A. Let 0 ≤ i < d and 0 ≤ j < d be the remainders
of division of n and m by d. Then am,n is equal to the entry bm−i

d ,
n− j
d

of the matrix

B = 	d(A)i, j . Repeating this procedure several times, we eventually will find a
matrix C = (ci, j )∞i, j=0 ∈ A such that am,n = c0,0.
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Example 4.9 A particular case of automatic matrices are triangular matrices of the
form

⎛
⎜⎜⎜⎝

a00 a01 a02 · · ·
0 a11 a12 · · ·
0 0 a22 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ ,

where the diagonals a0,i , a1,i+1, a2,i+2, . . . are eventually periodic, and only a finite
number of them are non-zero. Note that the set of such uni-triangular matrices is a
group.

The following subgroup of this group (of matrices over the field F2) was con-

sidered in [38]. Let B1 =
⎛
⎝
1 1 1
1 0 0
1 1 1

⎞
⎠, C1 =

⎛
⎝
1 0 0
0 0 0
1 0 0

⎞
⎠, B2 =

⎛
⎝
1 1 0
0 1 0
1 1 0

⎞
⎠,

C2 =
⎛
⎝
1 0 0
1 0 0
1 0 0

⎞
⎠. It is shown in [38] that the infinite matrices

F1 =

⎛
⎜⎜⎜⎝

I B1 C1 O O · · ·
O I B1 C1 O · · ·
O O I B1 C1 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎠ , F2 =

⎛
⎜⎜⎜⎝

I B2 C2 O O · · ·
O I B2 C2 O · · ·
O O I B2 C2 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎠

generate a free group of rank 2. Here I and O are the identity and zero matrices of
size 3 × 3, respectively.

In Sect. 5 we will show that any residually finite p-group can be represented in
triangular form. Groups generated by finite automata will be represented by automatic
uni-triangular matrices. The next subsection is the first step in this direction.

4.3 Representation of automata groups by automatic matrices

Let B be a basis of k
X such that 1 ∈ B. Order the elements of B into a sequence

y0 < y1 < · · · < yd−1, where y0 = 1. Recall that the inductive limit B∞ of the bases
B⊗n of k

Xn
with respect to the embeddings f �→ f ⊗1 is a basis of C(Xω, k), whose

elements are infinite tensor products yi0 ⊗ yi1 ⊗ · · · , where all but a finite number of
factors yik are equal to y0 = 1. In other words, B∞ consists of functions of the form

f (x0x1 · · · ) = yi0(x0)yi1(x1) · · · ,

where all but a finite number of factors on the right-hand side are equal to the constant
one function.

We can order such products using the inverse lexicographic order, namely yi0 ⊗
yi1 ⊗ · · · < y j0 ⊗ y j1 ⊗ · · · if and only if yik < y jk , where k is the largest index such
that yik �= y jk .
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It is easy to see that the ordinal type of B∞ is ω. Let e0 < e1 < e2 < · · · be
all elements of B∞ taken in the defined order. It is checked directly that if en =
yi0 ⊗ yi1 ⊗ . . ., then n = i0 + i1 · d + i2 · d2 + · · · , i.e., . . . i2i1i0 is the base-d
expansion of n (only a finite number of coefficients i j are different from zero).

Definition 4.10 An ordered basis B of k
X is called marked if its minimal element is

1.
The self-similar basis B∞ of C(Xω, k) associated with B is the inverse lexico-

graphically ordered set of functions of the form e1 ⊗ e2 ⊗ . . ., where ei ∈ B and all
but a finite set of elements ei are equal to 1, as it is described above.

Let B = {b0, b1, . . . , bd−1} be an arbitrary (non necessarily marked) basis of the
space k

X . We define the associated matrix recursion for linear operators on C(Xω, k)

in the usual way: given an operator a, define its image 	B(a) = (Ai, j )
d−1
i, j=0 in

Md(C(Xω, k) by the rule

a(b j ⊗ f ) =
d−1∑
i=0

bi ⊗ Ai, j ( f ), f ∈ C(Xω, k), 0 ≤ j ≤ d − 1.

IfB is the basis {δx }x∈X , then the matrix recursion	B restricted to a self-similar group
G ≤ Aut(X∗) coincides with the matrix recursion (5) coming directly from the wreath
recursion.

Lemma 4.11 Let B be a marked basis of kX . Then the matrix recursion 	B coincides
with the stencil map for the matrices of linear operators in the associated basis B∞.

Proof Let Ai j , 0 ≤ i, j ≤ d−1, be the entries of	B(a). Let n = i0+i1 ·d+i2 ·d2+· · ·
be a non-negative integer written in base d. Then

a(b j+dn) = a(b j ⊗ bn) =
d−1∑
i=0

bi ⊗ Ai, j (bn). (12)

Let am,n, 0 ≤ m, n < ∞, be the entries of the matrix of a in the basis B∞. Then

a(b j+dn) =
∞∑
k=0

ak, j+dnbk =
d−1∑
i=0

∞∑
r=0

ai+dr, j+dnbi ⊗ br

=
d−1∑
i=0

bi ⊗
( ∞∑
r=0

ai+dr, j+dnbr

)
,

which together with (12) implies that cr,n = ai+dr, j+dn are the entries of Ai, j in the
basis B∞, i.e., that Ai, j = 	d(a)i, j . 
�
Definition 4.12 Let k be a finite field. We say that a linear operator a on C(Xω, k)

is automatic if there exists a finite set A of operators such that a ∈ A, and for every
a′ ∈ A all entries of the matrix 	B(a′) belong to A.
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Proposition 4.13 Let B1,B2 be two bases of k
X . A linear operator on C(Xω, k) is

automatic with respect to B1 if and only if it is automatic with respect to B2.

Proof Let a1 be an operator which is automatic with respect to B1. Let A be the
corresponding finite set of operators, closed with respect to taking entries of the matrix
recursion. LetA′ be the set of all linear combinations of elements ofA, which is finite,
since we assume that k is finite. If T is the transition matrix from B1 to B2, then

	B2(a) = T−1	B1(a)T

for every linear operator a. It follows that A′ is closed with respect to taking entries
of 	B2 . The set A

′ is finite, a1 ∈ A′, hence a1 is also automatic with respect to B2. 
�
As a direct corollary of Proposition 4.13 we get the following relation between

finite-state automorphisms of the rooted tree X∗ and automatic matrices.

Theorem 4.14 Suppose that k is finite. LetB be amarked basis of kX . Then the matrix
of π∞(g) in the associated basis B∞, where g ∈ Aut(X∗), is d-automatic if and only
if g is finite-state.

We get, therefore, a subgroup of the group of units of Ad(k) isomorphic to the
group FAut(X∗) of finite-state automorphisms of the tree X∗.

Matrix recursions (i.e., homomorphisms from an algebra A to the algebra of matri-
ces over A) associated with groups acting on rooted trees, and in more general cases
were studied in many papers, for instance in [3,4,6,34,37,42,43]. Note that the alge-
bra generated by the natural representation on C(Xω, k) of a group G acting on the
rooted tree X∗ is different from the group ring. This algebra (and its analogs) were
studied in [4,34,42].

4.4 Creation and annihilation operators

For h ∈ k
X , denote by Th the operator on C(Xω, k) acting by the rule

Th( f ) = h ⊗ f.

It is easy to see that Th is linear, and that we have Ta1h1+a2h2 = a1Th1 + a2Th2 for all
h1, h2 ∈ k

X and a1, a2 ∈ k.
Consider the dual vector space (kX )′ to the space k

X of functions. We will denote
the value of a functional v on a function f ∈ k

X by 〈v| f 〉. Then for every v ∈ (kX )′
we have an operator Tv on C(Xω, k) defined by

Tv( f )(x1, x2, . . .) = 〈v| f (x, x1, x2, . . .)〉,

where f (x, x1, x2, . . .) on the right-hand side of the equation is seen for every choice
of the variables x1, x2, . . . as a function of one variable x , i.e., an element of k

X .

123



Self-similar groups, automatic sequences, and unitriangular… 257

Let B = {ei }d−1
i=0 be a basis of k

X . Let B′ = {e′
i }d−1
i=0 be the basis of the dual space

defined by 〈e′
i |e j 〉 = δi, j . (Here and in the sequel, δi, j is the Kronecker’s symbol equal

to 1 when i = j , and to 0 otherwise.) We will denote Te′
i
= T ′

ei .
Then Tei is an isomorphism between the space C(Xω, k) and its subspace ei ⊗

C(Xω, k). It is easy to see that T ′
ei restricted onto ei ⊗C(Xω, k) is the inverse of this

isomorphism, and that T ′
ei restricted onto e j ⊗ C(Xω, k) is equal to zero for j �= i .

The operators Tei and T ′
e j satisfy the relations:

T ′
ei Te j = δei ,e j ,

∑
ei∈B

Tei T
′
ei = 1. (13)

The products Tei T
′
ei are projections onto the summands ei ⊗ C(Xω, k) of the direct

sum decomposition

C(Xω, k) =
⊕
ei∈B

ei ⊗ C(Xω, k).

Let B be a marked basis of k
X , and let 1 = e0 < e1 < · · · < ed−1 be its elements.

Let B∞ be the associated ordered basis of C(Xω, k).
If A is (not necessarily square) finite matrix, then we denote by A⊕∞ the infinite

matrix

⎛
⎜⎜⎜⎝

A O O · · ·
O A O · · ·
O O A · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ ,

where O is the zero matrix of the same size as A.
The following is a direct corollary of the definitions.

Proposition 4.15 The matrices of Te0 , Te1, . . . , Ted−1 in the basis B∞ are equal to

E0 =

⎛
⎜⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎟⎠

⊕∞

, E1 =

⎛
⎜⎜⎜⎝

0
1
...

0

⎞
⎟⎟⎟⎠

⊕∞

, . . . , Ed−1 =

⎛
⎜⎜⎜⎝

0
0
...

1

⎞
⎟⎟⎟⎠

⊕∞

,

respectively. The matrix of T ′
ei is the transpose E�

i of the matrix Ei .

The matrices Ei and E ′
i have a natural relation to decimation of matrices. The proof

of the next proposition is a straightforward computation of matrix products.
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Proposition 4.16 Let A = (ai, j )∞i, j=0 be an infinite matrix, and let

	d(A) =

⎛
⎜⎜⎜⎝

A0,0 A0,1 · · · A0,d−1
A1,0 A1,1 · · · A1,d−1
...

...
. . .

...

Ad−1,0 Ad−1,1 · · · Ad−1,d−1

⎞
⎟⎟⎟⎠

be the matrix of its d-decimations. Then

Ai, j = E�
i AE j

and

A =
d−1∑
i, j=0

Ei Ai, j E
�
j .

Corollary 4.17 Let A be an operator on C(Xω, k), and let B = {ei } be a basis of kX .
Then the entries of the associated matrix recursion for A are equal to T ′

ei ATe j .

The next proposition is a direct corollary of Proposition 4.15.

Proposition 4.18 If h = a0e0 +a1e1 +· · ·+ad−1ed−1, then the matrix of Th is equal

to

⎛
⎜⎜⎜⎝

a0
a1
...

ad−1

⎞
⎟⎟⎟⎠

⊕∞

.

Corollary 4.19 Let B be a marked basis of k
X . Order the letters of the alphabet X

in a sequence x0, x1, . . . , xd−1. Let Ti = Tδxi
and T ′

i = T ′
δxi

be the corresponding

operators, defined using the basis {δxi }.
Let S = (ai j )

d−1
i, j=0 be the transition matrix from the basis δx0 < δx1 < · · · < δxd−1

to B. Let S−1 = (bi j )
d−1
i, j=0 be the inverse matrix.

Then the matrix of Ti is

⎛
⎜⎜⎝

b0,i
b1,i
· · ·

bd−1,i

⎞
⎟⎟⎠

⊕∞

,

and the matrix of T ′
i is

(
ai,0 ai,1 · · · ai,d−1

)⊕∞
.
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Let us consider now the case of the basisD = {δx }x∈X . For simplicity, let us denote
Tx = Tδx and T ′

x = T ′
δx
. Then the operators Tx and T ′

x act on C(Xω, k) by the rule

Tx ( f )(x1, x2, . . .) =
{
f (x2, x3, . . .) if x = x1,
0 otherwise.

(14)

and
T ′
x ( f )(x1, x2, . . .) = f (x, x1, x2, . . .). (15)

In other words, the operator Tx is induced by the natural homeomorphism Xω −→
x Xω : w �→ xw, and T ′

x is induced by its inverse map x Xω −→ Xω : xw �→ w.

Proposition 4.20 Let B∞ be a basis of C(Xω, k) associated with a marked basis B
(see Definition 4.10). Then the matrices of the operators Tx and T ′

x , for x ∈ X , in the
ordered basis B∞ are |X |-automatic.

Note that we do not require in this proposition the field k to be finite.

Proof Let δx = ∑d−1
i=0 αx,i ei for x ∈ X , B = {ei }d−1

i=0 and αx,i ∈ k. It follows from
Proposition 4.16 that the entries of the matrix 	d(Tx ) with respect to the basis B
are equal to

∑d−1
k=0 αx,kT ′

ei Tek Te j . Every product of the form T ′
ei Tek Te j is equal, by

relations (13), either to zero, or to Te j . It follows that decimations of Tx are either
zeros or of the form αx,i Te j . It follows that the set of repeated decimations of the
matrix of Tx is contained in {αx,0, αx,1, . . . , αx,d−1} · {Te0 , Te1 , . . . , Ted−1} ∪ {0}. 
�
Example 4.21 Let us consider the case X = {0, 1} and B = {y0, y1}, where y0 =
δ0 + δ1 and y1 = δ1. Then the transition matrix from {δ0, δ1} to {y0, y1} is

(
1 0
1 1

)
,

whose inverse is

(
1 0

−1 1

)
.

It follows then from Corollary 4.19 that the matrices of T0, T1, T ′
0, and T ′

1 in the
basis B∞ are

T0 =
(

1
−1

)⊕∞
, T1 =

(
0
1

)⊕∞
,

and

T ′
0 = (

1 0
)⊕∞

, T ′
1 = (

1 1
)⊕∞

.

Example 4.22 In the case k = C, it is natural to consider the operators

Sx = 1√|X |Tx .

Then Sx are isometries of the Hilbert space L2(Xω), and their conjugates S∗
x are equal

to
√|X |T ′

x .
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The C∗-algebra of operators on L2(Xω) generated by the operators Sx is called
the Cuntz algebra [14], and is usually denoted O|X |. Any isometries satisfying the
relations

S∗
x Sx = 1,

∑
x∈X

Sx S
∗
x = 1

generate a C∗-algebra isomorphic to O|X |. In particular, the C∗-algebra generated by
the matrices Ei is the Cuntz algebra. Representation of the Cuntz algebra by matrices
Ei is an example of a permutational representation of Od . More on such and similar
representations, see [9].

Recall that, for X = {0, 1}, theWalsh basis of L2(Xω) is the basisW∞ constructed
starting from the basis W = {y0, y1}, where y0 = δ0 + δ1 and y1 = δ0 − δ1. Then
direct computation with of the transition matrices show that the matrices of S0 and S1
are

S0 =
(

1√
2
1√
2

)⊕∞
, S1 =

(
1√
2

− 1√
2

)⊕∞
.

4.5 Cuntz algebras and Higman–Thompson groups

If ψ : Xω −→ Xω is a homeomorphism, then it induces a linear operator Lψ on
C(Xω, k) given by

Lψ( f )(w) = f (ψ−1(w))

for f ∈ C(Xω, k) and w ∈ Xω.
Fixing any ordered basis of C(Xω, k), we get thus a natural faithful representation

of the homeomorphism group of Xω in the group of units of the algebra M∞(k) of
column-finite matrices over k.

Proposition 4.23 Let ψ be a homeomorphism of Xω. Let u, v ∈ Xn , and denote by
ψu,v the partially defined map given by the formula

ψu,v(w) =
{

w′ if ψ(vw) = uw′,
not defined otherwise.

The following conditions are equivalent.

1. The homeomorphism ψ is (non-deterministically) synchronously automatic.
2. The set of partial maps {ψu,v : u, v ∈ X∗, |u| = |v|} is finite.
3. For every finite field k, the operator Lψ : C(Xω, k) −→ C(Xω, k) is automatic.
4. For some finite field k, the operator Lψ : C(Xω, k) −→ C(Xω, k) is automatic.

Synchronously automatic homeomorphisms are defined in Definition 3.7.
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Proof Equivalence of conditions (2), (3), and (5) followdirectly fromProposition 4.16.
Suppose that ψ is synchronously automatic. LetA be an initial automaton defining

ψ . For every pair u = a1a2 · · · an, v = b1b2 · · · bn ∈ X∗ of words of equal length, let
Qu,v be the set of states q ofA such that there exists a directed path starting in the initial
state q0 ofA and labeled by (a1, b1), (a2, b2), . . . , (an, bn). Then the set Qu,v defines
the mapψu,v in the following sense. We haveψu,v(x1x2 · · · ) = y1y2 · · · if and only if
there exists a path starting in an element of Qu,v and labeled by (x1, y1), (x2, y2), . . ..
It follows that the number of possible maps of the form ψu,v is not larger than the
number of subsets of the set of states of A. This shows that every synchronously
automatic homeomorphism satisfies condition (2).

Suppose now that a homeomorphism ψ satisfies condition (2), and let us show
that it is synchronously automatic. Construct an automaton A with the set of states
Q equal to the set of non-empty maps of the form ψu,v . For every (x, y) ∈ X2 and
ψu,v ∈ Q we have an arrow from ψu,v to ψux,vy , labeled by (x, y), provided the
map ψux,vy is not empty. The initial state of the automaton is the map ψ = ψ∅,∅.
Let us show that this automaton defines the homeomorphism ψ . It is clear that if
ψ(x1x2 · · · ) = y1y2 · · · , then there exists a path starting at the initial state of A and
labeled by (x1, y1), (x2, y2), . . .. On the other hand, if such a path exists for a pair of
infinite words x1x2 · · · , y1y2 · · · , then the maps ψx1x2···xn ,y1y2···yn are non-empty for
every n. In other words, for every n the setWn of infinite sequencesw ∈ x1x2 · · · xn Xω

such that ψ(w) ∈ y1y2 · · · yn Xω is non-empty. It is clear that the sets Wn are closed
and Wn+1 ⊂ Wn for every n. By compactness of Xω it implies that

⋂
n≥1 Wn is

non-empty. It follows that ψ(x1x2 · · · ) = y1y2 · · · . 
�
The next corollary follows directly from condition (2) of Proposition 4.23.

Corollary 4.24 The set of all automatic homeomorphisms of Xω is a group.

We have already seen in Theorem 4.14 that a homeomorphisms g of Xω defined
by an automorphisms of X∗ is automatic if and only if it is finite state. Note that in
this case gu,v is either empty (if g(v) �= u) or is equal to g|v .

Another example of a group of finitely automatic homeomorphisms of Xω is the
Higman-Thompson groupV|X |. It is the set of all homeomorphisms that can be defined
in the following way. We say that a subset A ⊂ X∗ is a cross-section if the sets
uXω for u ∈ A are disjoint and their union is Xω. Let A = {v1, v2, . . . , vn} and
B = {u1, u2, . . . , un} be cross-sections of equal cardinality together with a bijection
vi �→ ui . Define a homeomorphism ψ : Xω −→ Xω by the rule

ψ(viw) = uiw. (16)

The set of all homeomorphisms that can be defined in this way is the Higman–
Thompson group V|X |, see [12,47].

Letψ be the homeomorphism defined by (16). It follows directly from (14) and (15)
that the operator Lψ induced by ψ is equal to

Lψ =
n∑

i=1

Tui T
′
vi

,
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where we use notation

Tx1x2···xm = Tx1Tx2 · · · Txn , T ′
x1x2···xm = T ′

xm T
′
xm−1

· · · T ′
x1 .

The next proposition follows then from Proposition 4.20.

Proposition 4.25 The Higman–Thompson group V|X | is a subgroup of the group of
synchronously automatic homeomorphisms of Xω.

The group generated by V2 and the Grigorchuk group was studied by Roever
[40]. He proved that it is a finitely presented simple group isomorphic to the abstract
commensurizer of the Grigorchuk group. Generalizations of this group (for arbitrary
self-similar group) was studied in [34].

5 Representations by uni-triangular matrices

5.1 Sylow p-subgroup of Aut(X∗)

Let |X | = p be prime. We assume that X = {0, 1, . . . , p − 1} is equal to the field
Fp of p elements. From now on, we will write the vertices of the tree X∗ as tuples
(x1, x2, . . . , xn) in order not to confuse them with products of elements of Fp.

Denote byKp the subgroupofAut(X∗) consisting of automorphisms gwhose labels
αg,v of the vertices of the portrait consist only of powers of the cyclic permutation
σ = (0, 1, . . . , p − 1). It follows from (2) and (3) that Kp is a group. The study of
the group Kp (and its finite analogs) were initiated by Kaloujnine [26–28].

Suppose that an element g ∈ Kp is represented by a tableau

[a0, a1(x1), a2(x1, x2), . . .],

as in Sect. 2.1. Then an(x1, x2, . . . , xn) are maps from Xn to the group generated
by the cyclic permutation σ . The elements of this group act on X = Fp by maps
σ a : x �→ x + a. It follows that we can identify functions an with maps Xn −→ Fp,
so that an element g ∈ Kp represented by a tableau

[a0, a1(x1), a2(x1, x2), . . .]

acts on sequences v = (x0, x1, . . .) ∈ Xω by the rule

g(v) = (x0 + a0, x1 + a1(x0), x2 + a2(x1, x2), x3 + a3(x1, x2, x3), . . .).

It follows that if g1, g2 ∈ Kp are represented by the tableaux [an]∞n=0 and [bn]∞n=0,
then their product g1g2 is represented by the tableau

[b0 + a0, b1(x0) + a1(x0 + b0),

b2(x0, x1) + a2(x0 + b0, x1 + b1(x0)),

b3(x0, x1, x2) + a3(x0 + b0, x1 + b1(x0), x2 + b2(x0, x1)), . . .]. (17)
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Denote by Kp,n the quotient of Kp by the pointwise stabilizer of the nth level of
the tree X∗. We can consider Kp,n as a subgroup of the automorphism group of the
finite subtree X [n] = ⋃n

k=0 X
k ⊂ X∗.

Proposition 5.1 The group Kp,n is a Sylow subgroup of the symmetric group
Symm(Xn) and of the automorphism group of the tree X [n].

Proof The order of Symm(Xn) is pn !, and the maximal power of p dividing it is

pn

p
+ pn

p2
+ · · · + pn

pn
= pn − 1

p − 1
.

It follows that the order of the Sylow p-subgroup of Symm(Xn) is p
pn−1
p−1 . The order

of Kp,n is equal to the number of possible tableaux

[a0, a1(x1), a2(x1, x2), . . . an−1(x1, . . . , xn−1)],

where ai is an arbitrary map from Xi to the cyclic group 〈σ 〉 of order p. The number
of possibly maps ai is hence ppi . Consequently, the number of possible tableaux is

p1+p+p2+···+pn−1 = p
pn−1
p−1 . Since the group of all automorphisms of the tree X [n]

is contained in Symm(Xn) and contains Kp,n , the subgroup Kp,n is its Sylow p-
subgroup. 
�
Proposition 5.2 Let g ∈ Kp be represented by a tableau [a0, a1(x1), a2(x1, x2), . . .].
Consider the map α : Kp −→ F

ω
p , where F

ω
p is the infinite Cartesian product of

additive groups of Fp, given by

α(g) =
⎛
⎜⎝a0,

∑
x1∈Fp

a1(x1),
∑

(x1,x2)∈F2
p

a2(x1, x2), . . .

⎞
⎟⎠ . (18)

In other words, we just sum up modulo p all the decorations of the portrait of g on
each level. Then α is the abelianization epimorphism Kp −→ Kp/[Kp,Kp] ∼= F

ω
p .

Proof It is easy to check that α is a homomorphism. It remains to show that its kernel
is the derived subgroup ofKp. This is a folklore fact, and we show here how it follows
from a more general result of Kaloujnine.

Let g ∈ Kp be represented by a tableau

[a0, a1(x1), a2(x1, x2), . . .].

Each function an(x1, x2, . . . , xn) can be written as a polynomial

∑
0≤ki≤p−1

ck1,k2,...,kn x
k1
1 xk22 · · · xknn

for some coefficients ck1,k2,...,kn ∈ Fp.
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It is proved in [27, Theorem 6] (see also Equation (5.4) in [28]) that the derived
subgroup [Kp,Kp] of Kp is the set of elements defined by tableaux in which a0 and

the coefficient cp−1,p−1,...,p−1 at the eldest term x p−1
1 x p−1

2 · · · x p−1
n are equal to zero

for every n.
Note that

∑
x∈Fp

xk is equal to zero for k = 0, 1, . . . , p − 2 and is equal to −1 for
k = p − 1. Therefore,

∑
(x1,x2,...,xn)∈Fn

p

xk11 xk22 · · · xknn =
n∏

i=1

∑
x∈Fp

xki

is equal to zero for all n-tuples (k1, k2, . . . , kn) ∈ {0, 1, . . . , p − 1}n except for
(p − 1, p − 1, . . . , p − 1), when it is equal to (−1)n . It follows that the coef-
ficient at the eldest term of an(x1, x2, . . . , xn) is equal to zero if and only if∑

(x1,x2,...,xn)∈Fn
p
an(x1, x2, . . . , xn) = 0. 
�

5.2 Polynomial bases of C(Xω, F p)

Proposition 5.3 Suppose that an ordered basis B of k
X is such that the matrices of

π1(g) for g ∈ G ≤ Aut(X∗) are all upper uni-triangular, and the minimal element
of B is the constant one function. Then the matrices of πn(g) in the basis B⊗n and of
π∞(g) in the associated basis B∞ are upper uni-triangular for all g ∈ G.

See Sect. 2.4 for the definition of the representations πn . We say that a matrix is
upper uni-triangular if all its elements below the main diagonal are equal to zero, and
all the elements on the diagonal are equal to one. From now on, unless the contrary is
specifically mentioned, “uni-triangular” will mean “upper uni-triangular”. Note that if
G is a subgroup of the group of finite automata, then thematricesπ∞(g) are automatic,
by Theorem 4.14.

Proof Let b0 < b1 < · · · < bd−1 be the ordered basis B. Let Y = {y0, y1, . . . , yd−1}
be the corresponding basis of the right module �G . Namely, we take for every∑

x∈X axδx ∈ B the corresponding element
∑

x∈X ax x ∈ � = k[X ·G], see Sect. 2.3.
Then B = Y ⊗ ε, where [ε] is the left G-module of the trivial representation of G,
see 2.4.

If the matrices of π1(g) are uni-triangular, then

π1(g)(bi ) = bi + ai−1,i bi−1 + ai−2,i bi−2 + · · · + a0,i b0

for some ak,i ∈ k and all i . It follows that, in the bimodule �, we have relations

g · yi = yi · gi,i + ai−1,i yi−1 · gi−1,i + ai−2,i yi−2 · gi−2,i + · · · + a0,i y0 · g0,i (19)

for some g j,i ∈ k[G] such that g j,i · ε = ε (Recall that the last equality just means
that the sum of coefficients of g j,i ∈ k[G], i.e., the value of the augmentation map,
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is equal to one). Consequently, relation (19) together with the condition g j,i · ε = ε

hold for all g ∈ k[G] such that g · ε = ε.
It follows that every element g · yi1 ⊗ yi2 ⊗ · · · ⊗ yin ∈ �⊗n is equal to yi1 ⊗ yi2 ⊗

· · · ⊗ yin · h plus a sum of elements of the form y j1 ⊗ y j2 ⊗ · · · y jn · a j1, j2,..., jn , where
h ∈ k[G] is such that h ·ε = ε, a j1, j2,..., jn ∈ k[G], and jk ≤ ik for all k = 1, 2, . . . , n,
and ( j1, j2, . . . , jn) �= (i1, i2, . . . , in). Taking tensor product with ε and applying
Proposition 2.10, we conclude that for every function bi1 ⊗ bi2 ⊗ · · · ⊗ bin ∈ k

Xn
the

function π∞(g)(bi1 ⊗ bi2 ⊗ · · · ⊗ bin ) is equal to bi1 ⊗ bi2 ⊗ · · · ⊗ bin plus a linear
combination of functions b j1 ⊗b j2 ⊗· · ·⊗b jn such that jk ≤ ik for all k = 1, 2, . . . , n,
and ( j1, j2, . . . , jn) �= (i1, i2, . . . , in). But any such function b j1 ⊗ b j2 ⊗ · · · ⊗ b jn
is an element of B∞, which is smaller than bi1 ⊗ bi2 ⊗ · · · ⊗ bin in the inverse
lexicographic order. This proves that the matrix of π∞(g) in the basis B∞ is uni-
triangular. 
�

Throughout the rest of our paper we assume that |X | = p is prime, k is the field Fp

of p elements,G is a subgroup ofKp, and we identify X with Fp. We will be able then
to use Proposition 5.3 to construct bases of C(Xω, Fp) in which the representation
π∞ of Kp (and hence of G) are uni-triangular.

Every function f ∈ F
X
p can be represented as a polynomial f (x) ∈ Fp[x], using

the formula

δt (x) = x(x − 1)(x − 2) · · · (x − p + 1)

(x − t)
,

where (x − t) in the numerator and the denominator cancel each other (Recall that
(p − 1)! = −1 (mod p), by Wilson’s theorem).

Since x p = x as a function on Fp (by Fermat’s little theorem), polynomials that
differ by an element of the ideal generated by x p − x represent the same function.
Note that the ring Fp[x]/(x p − x) has cardinality pp, hence we get a natural bijection
between Fp[x]/(x p − x) and F

X
p , mapping a polynomial to the function it defines on

Fp. From now on, we will thus identify the space of functions F
X
p with the Fp-algebra

Fp[x]/(x p − x).
Following Kaloujnine, we will call the elements of Fp[x]/(x p − x) reduced poly-

nomials. We write them as usual polynomials a0+a1x+· · ·+ap−1x p−1 (but keeping
in mind reduction, when performing multiplication).

Suppose that g ∈ G is such that g(x) = x + 1 for all x ∈ X . Then π1(g) acts on
the functions f ∈ V1 = F

X
p by the rule

π1(g)( f )(x) = f (x − 1).

In particular, if we represent f as a polynomial, then π1(g) does not change its
degree and the coefficient of the leading term. It follows that the matrix of the operator
π1(g) in the basis e0(x) = 1, e1(x) = x, e2(x) = x2, . . . , ep−1(x) = x p−1 is uni-
triangular. Let us denote this marked basis by E.
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Definition 5.4 The basis E∞ of C(Xω, Fp) corresponding to E and consisting of all

monomial functions xk11 xk22 · · · on Xω ordered inverse lexicographically, so that

e0 = 1, e1 = x1, e2 = x21 , . . . , ep−1 = x p−1
1 , ep = x2, ep+1 = x1x2, . . .

is called the Kaloujnine basis of monomials.

It is easy to see that en ∈ E∞ is equal to the monomial function

en(x1x2 · · · ) = xk11 xk22 . . . , (20)

where k1, k2, . . . are the digits of the base p expansion of n, i.e., such that ki ∈
{0, 1, . . . , p − 1} and

n = k1 + k2 · p + k3 · p2 + · · · .

Coordinates of a function f ∈ C(Xω, Fp) in the basis E∞ are the coefficients of
the representation of the function f as a polynomial in the variables x1, x2, . . .. Since
we are dealing with functions, we assume that these polynomials are reduced, i.e., are
elements of the ring Fp[x1, x2, . . .]/(x p

1 − x1, x
p
2 − x2, . . .).

As an immediate corollary of Proposition 5.3 we get the following.

Theorem 5.5 The representation π∞ of Kp in the Kaloujnine basis E∞ is uni-
triangular. In particular, the representations π∞ of all its subgroups G ≤ Kp are
uni-triangular in E∞.

We can change the ordered basis E = {e0 = 1, e1 = x, . . . , ep−1(x) = x p−1}
to any ordered basis F = ( f0, f1, . . . , f p−1) consisting of polynomials of degrees
0, 1, 2, . . . , p − 1, respectively, since then the transition matrix from E to F will be
triangular, hence the representation of G in the basis F will be also uni-triangular.

For example, a natural choice is the basis B in which the matrix of the cyclic
permutation x �→ x + 1 : X −→ X is the Jordan cell

⎛
⎜⎜⎜⎝

1 1 0 · · ·
0 1 1 · · ·
0 0 1 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ .

To get such a basis, define the functions b0, b1, . . . , bp−1 ∈ V1 by the formula

bk = (π1(g) − 1)p−1−k(δ0)

for k = 0, 1, . . . , p−2 and bp−1 = δ0. Then (π1(g)−1)(bk) = (π1(g)−1)p−k(δ0) =
bk−1, for all k = 1, 2, . . . , p − 1, i.e.,

bk−1(x) = bk(x − 1) − bk(x).
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Note that

b0 = (π1(g) − 1)p−1(δ0) = (π1(g)
p−1 + π1(g)

p−2 + · · · + 1)(δ0) =
p−1∑
k=0

δk = 1,

i.e., the basis b0 < b1 < · · · < bp−1 is marked.

Proposition 5.6 For every k ∈ {1, . . . , p − 1} and x ∈ X = Fp we have

bk(x) = (−1)k
(
x + k

k

)
= (−1)k

(x + 1)(x + 2) · · · (x + k)

k! .

Note that k! �= 0 in Fp for every k = 1, 2, . . . , p − 1.

Proof We have (p − 1)! = 1 and (−1)p−1 = 1 in Fp. We also have (x + 1)(x +
2) · · · (x + p − 1) = 0 for all x ∈ Fp\{0}. It follows that (−1)p−1

(x+p−1
p−1

) = δ0 =
f p−1.
It is enough now to check that the functions (−1)k

(x+k
k

)
satisfy the recurrent relation

bk−1(x) = bk(x − 1) − bk(x). But we have

(−1)k
(
x − 1 + k

k

)
− (−1)k

(
x + k

k

)
= (−1)k−1

((
x + k

k

)
−
(
x + k − 1

k

))

= (−1)k−1
(
x + k − 1

k − 1

)

by the well known identity

(
a

b

)
=
(
a − 1

b

)
+
(
a − 1

b − 1

)
.


�

Proposition 5.7 The transition matrix from the basis (δ0, δ1, . . . , δp−1) to the basis
B = (b0, b1, . . . , bp−1) is

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(p−1
0

) (p−1
1

) (p−1
2

) (p−1
3

) · · · (p−1
p−1

)
(p−2

0

) (p−2
1

) (p−2
2

) (p−2
3

) · · · 0
...

...
...

...
. . .

...

1 3 3 1 · · · 0
1 2 1 0 · · · 0
1 1 0 0 · · · 0
1 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Its inverse is obtained by transposing T with respect to the secondary diagonal:

T−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · · (p−1
p−1

)

0 0 0 0 · · · (p−1
p−2

)
...

...
...

...
. . .

...

0 0 0 1 · · · (p−1
3

)
0 0 1 3 · · · (p−1

2

)
0 1 2 3 · · · (p−1

1

)
1 1 1 1 · · · (p−1

0

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof It follows from Proposition 5.6 that the entry ti j of the transition matrix, where
i = 0, 1, . . . , p − 1 and j = 0, 1, . . . , p − 1 is equal to

ti j = (−1) j
(
i + j

j

)
= (−1) j

(i + j)(i + j − 1) · · · (i + j − j + 1)

j !
= (−i − j)(−i − j + 1) · · · (−i − 1)

j !
= (p − i − j)(p − i − j + 1) · · · (p − i − 1)

j ! =
(
p − 1 − i

j

)
,

which proves the first claim of the proposition.
In order to prove the second claim, we have to show that the product

((
p − 1 − i

j

))p−1

i, j=0
·
((

j

p − 1 − i

))p−1

i, j=0

is equal to the identity matrix. The general entry of the product is equal to

ai j =
p−1∑
k=0

(
p − 1 − i

k

)
·
(

j

p − 1 − k

)
=
(
p − 1 − i + j

p − 1

)
.

But
(x+p−1

p−1

) = (x+p−1)(x+p−2)···(x+1)
(p−1)! is equal to one for x = 0 and is equal to zero

for x �= 0, which shows that the product is equal to the identity matrix. 
�

Example 5.8 In the case p = 2, the transition matrix is T =
(
1 1
1 0

)
, and its inverse

is T−1 =
(
0 1
1 1

)
. Let us use this to find the matrix recursions for some self-similar

groups acting on the binary tree in the new basis B = {b0, b1}.
For the adding machine (see Examples 2.3, 2.5, 2.6), we have

	2(a) =
(
0 1
1 1

)
·
(
0 a
1 0

)
·
(
1 1
1 0

)
=
(

1 1
1 + a 1

)
.
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Proposition 5.9 The matrix of the binary adding machine π∞(a) in the basis B∞ is
the infinite Jordan cell

⎛
⎜⎜⎜⎜⎜⎝

1 1 0 0 · · ·
0 1 1 0 · · ·
0 0 1 1 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

.

Proof Let us prove the statement by induction, using the matrix recursion from Exam-
ple 5.8. The matrix of a on V0 is (1). The four 2-decimations 	2(J )i j of the Jordan
cell are

	2(J )00 :

⎛
⎜⎜⎜⎜⎜⎝

1© 1 0© 0 · · ·
0 1 1 0 · · ·
0© 0 1© 1 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

�→

⎛
⎜⎜⎜⎝

1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ ,

	2(J )01 :

⎛
⎜⎜⎜⎜⎜⎝

1 1© 0 0© · · ·
0 1 1 0 · · ·
0 0© 1 1© · · ·
0 0 0 1 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

�→

⎛
⎜⎜⎜⎝

1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ ,

	2(J )10 :

⎛
⎜⎜⎜⎜⎜⎝

1 1 0 0 · · ·
0© 1 1© 0 · · ·
0 0 1 1 · · ·
0© 0 0© 1 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

�→

⎛
⎜⎜⎜⎝

0 1 0 · · ·
0 0 1 · · ·
0 0 0 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ ,

	2(J )11 :

⎛
⎜⎜⎜⎜⎜⎝

1 1 0 0 · · ·
0 1© 1 0© · · ·
0 0 1 1 · · ·
0 0© 0 1© · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

�→

⎛
⎜⎜⎜⎝

1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ ,

which agrees with the recursion 	2(a) =
(

1 1
1 + a 1

)
. 
�

Lemma 5.10 If g ∈ Aut(X∗) satisfies the wreath recursion g = (g0, g1), then its
matrix recursion in the basis B∞ (over the field Fp for p = 2) is

	2(g) =
(

g1 0
g0 + g1 g0

)
.
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Fig. 7 The matrices of the generators b, c, d of the Grigorchuk group

If it satisfies g = σ(g0, g1), then

	2(g) =
(

g0 g0
g0 + g1 g0

)
.

Proof We have, in the first case,

	2(g) =
(
0 1
1 1

)(
g0 0
0 g1

)(
1 1
1 0

)
=
(

g1 0
g0 + g1 g0

)
.

In the second case:

	2(g) =
(
0 1
1 1

)(
0 g1
g0 0

)(
1 1
1 0

)
=
(

g0 g0
g0 + g1 g0

)
.


�

Example 5.11 It follows fromLemma 5.10 that thematrix recursion for the generators
of the Grigorchuk group (see Example 2.4) in the basis B is

	2(a) =
(
1 1
0 1

)
, 	2(b) =

(
c 0

a + c a

)
,

	2(c) =
(

d 0
a + d a

)
, 	2(d) =

(
b 0

1 + b 1

)
.

See a visualization of the matrices b, c, d on Fig. 7, where black pixels correspond to
ones, and white pixels to zeros.

Denote Un = 〈b0, b1, . . . , bn〉 = 〈e0, e1, . . . , en〉 < C(Xω, Fp).

Proposition 5.12 Each space Un isKp-invariant, and the kernel inKp of the restric-
tion of π∞ onto Upn−1 = 〈b0, b1, . . . , bpn−1〉 coincides with the kernel of πn. In other
words, restriction of π∞ onto Upn−1 defines a faithful representation of Kp,n.
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Proof The subspace 〈b0, b1, . . . , bpn−1〉 < C(Xω, Fp) is equal to the span of the
product Vn−1 · epn−1 , where epn−1 is the function on Xω given by

epn−1(x1x2 · · · ) = xn,

according to (20). In otherwords, it is the tensor product Vn−1⊗〈e1〉, where e1(x) = x .
Suppose that g ∈ G belongs to the kernel of the restriction of π∞ onto Vn−1⊗〈e1〉.

Then for every v ∈ Xn−1 we have π1(g)(δv) = δv , since δv ∈ Vn−1. Then

π∞(g)(δv ⊗ e1) = δv ⊗ (e1 ◦ π1(g|v)−1),

hence π1(g|v) is identical for every v ∈ Xn−1. It follows that g acts trivially on Xn ,
i.e., that πn(g) is trivial. 
�

Thus, we get a faithful representation ofKp,n = 
nk=1Cp by uni-triangular matrices
of dimension pn−1 + 1. Note that this is the smallest possible dimension for a faithful
representation, since the nilpotency class ofKp,n is equal to pn−1, while the nilpotency
class of the group of uni-triangular matrices of dimension d is equal to d − 1.

5.3 The first diagonal

Let α : Kp −→ F
ω
p be the abelianization homomorphism given by (18). We write

α(g) = (α0(g), α1(g), . . .).

If A = (ai j )∞i, j=0 is an infinite matrix, then its first diagonal is the sequence
(a01, a12, a23, . . .), i.e., the first diagonal above the main diagonal of A.

Theorem 5.13 Let g ∈ G, and let Ag = (ai j )∞i, j=0 be the matrix of π∞(g) in the
basis B∞, constructed in the previous section. Let (s1, s2, . . .) = (a01, a12, . . .) be the
first diagonal of Ag. Then

sn = αk(g),

where pk is the maximal power of p dividing n.

For example, if p = 2, and α(g) = (a0, a1, a2, . . .), then the first diagonal of Ag

is

a0, a1, a0, a2, a0, a1, a0, a3, a0, a1, a0, a2, . . .

Proof The first diagonal of a product of two upper uni-triangular matrices A and B is
equal to the sumof thefirst diagonals of thematrices A and B. It follows that it is enough
to prove the theorem for rooted automorphisms of Aut(X∗) (i.e., automorphisms g
such that g|v is trivial for all non-empty words v ∈ X∗) and for automorphisms acting
trivially on the first level X .
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If the automorphism is rooted, then it is a power of the automorphism

a : x1x2 · · · xn �→ (x1 + 1)x2 · · · xn .

It follows from the definition of the basis B that the matrix of π∞(a) is the block-
diagonal matrix consisting of the Jordan cells of size p. Consequently, its first diagonal
is the periodic sequence of period (1, 1, . . . , 1, 0) of length p. Hence, the first diagonal
of as is (s, s, . . . , s, 0) repeated periodically. This proves the statement of the theorem
for the automorphisms of the form as .

Suppose that g acts trivially on the first level of the tree. Then its matrix recursion
in the basis {δx }x∈X is the diagonal matrix with the entries g|x on the diagonal. It
follows that the matrix recursion for g in the basis {bi }p−1

i=0 is equal to the product of
the matrices

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · (p−1
p−1

)

0 0 0 · · · (p−1
p−2

)
...

...
...

. . .
...

0 0 1 · · · (p−1
2

)
0 1 2 · · · (p−1

1

)
1 1 1 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎝

g|0 0 0 · · · 0
0 g|1 0 · · · 0
0 0 g|2 · · · 0
...

...
...

. . .
...

0 0 0 · · · g|p−1

⎞
⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
(p−1

1

) (p−1
2

) · · · (p−1
p−1

)

1
(p−2

1

) (p−2
2

) · · · 0
...

...
...

. . .
...

1 2 1 · · · 0
1 1 0 · · · 0
1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

It is easy to see that the entries on the first diagonal above the main diagonal of the
product are equal to zero, and that the entry in the left bottom corner is equal to
g|0 + g|1 + · · · + g|p−1.

If we apply the stencil map

	p(s1, s2, . . .) = ((s1, s1+p, . . .), (s2, s2+p, . . .), . . . , (sp, s2p, . . .))

= (w1, w2, . . . , wp)

to the first diagonal of Ag , then w1, w2, . . . , wp−1 are the main diagonals of the p-
decimations B1, B2, . . . , Bp−1 of Ag , where (B1, B2, . . . , Bp−1) is the first diagonal
above the main diagonal of 	p(Ag). The sequence wp is the first diagonal of the
entry in the lower left corner of 	p(Ag). It follows that (s1, s2, . . .) is of the form
(0, 0, . . . , s′

1, 0, 0, . . . , s
′
2, . . .), where there are p − 1 zeros at the beginning and

between the entries s′
i , and (s′

1, s
′
2, . . .) is the first diagonal of π∞(g|0 + g|1 + · · · +

g|p−1) in the basis (b0, b1, . . . , bp−1). This provides us with an inductive proof of the
statement of the theorem. 
�
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Example 5.14 Consider the matrices a, b, c, d generating the Grigorchuk group, as it
is described in Example 5.11. It follows directly from the description of the action of
the elements a, b, c, d on the rooted tree (see Example 2.4) that

α(a) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .),

α(b) = (0, 1, 1, 0, 1, 1, 0, 1, 1, 0, . . .),

α(c) = (0, 1, 0, 1, 1, 0, 1, 1, 0, 1, . . .),

α(d) = (0, 0, 1, 1, 0, 1, 1, 0, 1, 1, . . .).

It follows from Theorem 5.13 that the first diagonal of a is (1, 0, 1, 0, . . .). The first
diagonal of b is (s1, s2, . . .) where

s23k (2m+1) = 0, s23k+1(2m+1) = 1, s23k+2(2m+1) = 1,

where k,m ≥ 0 are integers.

Sequence sn from the previous example is a Toeplitz sequence, see [39,49] and [2,
Exercise 10.11.42]. If G is a finitely generated finite state self-similar group, then the
sequence αk(g) in Theorem 5.13 is eventually periodic for every g ∈ G, and then the
sequence sn is Toeplitz.

5.4 Generating series

Let w = (a0, a1, . . .) ∈ k
ω, and consider the corresponding formal power series

a0 + a1x + a2x2 + · · · = Gw(x) ∈ k[[x]]. It is easy to see that if

	d(w) = (w0, w1, . . . , wd−1),

then

Gw(x) = Gw0(x
d) + xGw1(x

d) + · · · + xd−1Gwd−1(x
d).

Note that if k = Fp and d = p, then we get

Gw(x) = (Gw0(x))
p + x(Gw1(x))

p + · · · + x p−1(Gwp−1(x))
p.

We have the following characterization of automatic sequences, due to Christol,
see [2, Theorem 12.2.5].

Theorem 5.15 Let k be a finite field of characteristic p. Then a sequence w ∈ k
ω is

p-automatic if and only if the generating series Gw(x) is algebraic over k(x).

Similarly, if A = (ai j )∞i, j=0 is a matrix over a field k, then we can consider the

formal series GA(x, y) = ∑∞
i, j=0 ai j x

i y j ∈ k[[x, y]]. If

	d(A) = (
Ai j

)d−1
i, j=0 ,
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then

GA =
d−1∑
i, j=0

xi y jGAi j (x
d , yd).

We also have a complete analog of Christol’s theorem for matrices, see [2, Theo-
rem 14.4.2].

Theorem 5.16 Let k be a finite field of characteristic p. Then a matrix A = (ai j )∞i, j=0
is p-automatic if and only if the series GA is algebraic over k(x, y).

In the case when A is triangular, it may be natural to use the generating function

TA(t, s) =
∑

ai j t
j−i si ,

so that TA(t, s) = H0(s) + H1(s)t + H2(s)t2 + · · · , where Hi (y) are generating
functions of the diagonals of A. Note that TA and GA are related by the formula:

TA(t, s) = GA(s/t, t)

Example 5.17 Consider the generators of the Grigorchuk group a, b, c, d given by
the matrices from Example 5.11. Let A(x, y), B(x, y),C(x, y), and D(x, y) be the
corresponding generating series. Note that the generating series of the unit matrix is
I (x, y) = 1

1+xy = 1
1+s .

It follows from the recursions in Example 5.11 that

A = I (x2, y2) + y I (x2, y2) + xy I (x2, y2) = 1 + y + xy

1 + x2y2
= 1

1 + s
+ t

1 + s2
.

B = C2 + x(A2 + C2) + xyA2 = (1 + x)C2 + (x + xy)A2

C = (1 + x)D2 + (x + xy)A2

D = (1 + x)B2 + (x + xy)I 2.

Let us make a substitution A = y Ã+ 1
1+xy , B = y B̃+ 1

1+xy , C = yC̃ + 1
1+xy , and

D = y D̃ + 1
1+xy . Note that I = 1

1+xy , so we set Ĩ = 0. The series Ã, B̃, C̃, D̃ are the
generating series of the matrices obtained from the matrices a, b, c, d by removing
the main diagonal, and shifting all columns to the left by one position.

We have then

Ã = 1

1 + x2y2
= 1

1 + s2

and

y B̃ + 1

1 + xy
= (1 + x)

(
y2C̃2 + 1

1 + x2y2

)
+ (x + xy)

(
y2 Ã2 + 1

1 + x2y2

)
,
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hence

y B̃ = (1 + x)y2C̃2 + (x + xy)y2 Ã2,

hence

B̃ = (y + xy)C̃2 + xy + xy2

1 + x4y4
= (s + t)C̃2 + s + ts

1 + s4
.

Similarly,

C̃ = (y + xy)D̃2 + xy + xy2

1 + x4y4
= (s + t)D̃2 + s + ts

1 + s4
,

and

D̃ = (y + xy)B̃2 = (s + t)B̃2.

Let us denote F = s+ts
1+s4

. Then B̃, C̃ , and D̃ are solutions of the equations

(s + t)7 B̃8 + B̃ + (s + t)F2 + F = 0

(s + t)7C̃8 + C̃ + (s + t)3F4 + F = 0,

(s + t)7 D̃8 + D̃ + (s + t)3F4 + (s + t)F2 = 0.

Substituting t = 0, we get equations for the generating functions B1(s),C1(s),
D1(s) of the first diagonals above the main in the matrices b, c, d:

s7B8
1 + B1 + s3

1 + s8
+ s

1 + s4
= 0, (21)

s7C8
1 + C0 + s7

1 + s16
+ s

1 + s4
= 0, (22)

s7D8
1 + D1 + s7

1 + s16
+ s3

1 + s8
= 0. (23)

Denote

J =

⎛
⎜⎜⎜⎝

0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎠

Then every upper uni-triangular matrix M can be written as

I + D1(M)J + D2(M)J 2 + D3(M)J 3 + · · · , (24)
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where Di (M) are diagonal matrices whose main diagonals are equal to the i th diago-
nals of M .

The generating series TM (t, s) is equal to

1

1 + s
+ M1(s)t + M2(s)t

2 + M3(s)t
3 + · · · , (25)

whereMi (s) is the usual generating series of themain diagonal of Di (M). Addition and
multiplication of diagonal matrices diag(a0, a1, . . .) corresponds to the usual addition
and the Hadamard (coefficient-wise) multiplication of the power series a0 + a1s +
a2s2 + · · · . Note that we have

J diag(a0, a1, . . .) = diag(a1, a2, . . .)J,

which gives an algebraic rule for multiplication of the power series (25) corresponding
to multiplication of matrices.

Namely, we can replace the matrix M by the formal power series (25), where the
series in the variable s are added and multiplied coordinate-wise, while the series in
the variable t are multiplied in the usual (though non-commutative) way subject to the
relation

t (a0s
0 + a1s + a2s

2 + · · · ) = (a1s
0 + a2s + a3s

2 + · · · )t.

Let A = (
ai j

)∞
i, j=0 be a matrix, and denote by �i (M) = (a0,i , a1,i+1, a2,i+2, . . .)

the sequence equal to the i th diagonal of A.
Let d > 2, k ∈ {0, 1, . . . , d − 1}, n ≥ 1 be integers, and let k + n = dq + r

for q ∈ Z and r ∈ {0, 1, . . . , d − 1}. Then the sequence 	d(�n(M))k =
(ak,dq+r , ak+d,d(q+1)+r , ak+2d,d(q+2)+r , . . .) is equal to the qth diagonal of the matrix
(	dM)k,r .

Example 5.18 Consider, as in the previous examples, the matrices a, b, c, d generat-
ing the Grigorchuk group. Denote An = �n(a), Bn = �n(b),Cn = �n(c), Dn =
�n(d). Note that A0 = (1, 1, . . .), A1 = (1, 0, 1, 0, . . .), and An = 0 for all n ≥ 2.
We have

	2(B2n) = (Cn, An)

	2(B2n+1) = (0,Cn+1 + An+1) .

Similarly,

	2(C2n) = (Dn, An)

	2(C2n+1) = (0, An+1 + Dn+1) ,

and

	2(D2n) = (Bn, In) ,

	2(D2n+1) = (0, In+1 + Bn+1) .
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These stencil recursions give us recursive formulas for the corresponding generating
functions, whichwewill denote Bn(s),Cn(s), Dn(s). Recall that An(s) = 0 for n ≥ 2,
In(s) = 0 for n ≥ 1, A1(s) = 1

1+s2
, and A0(s) = I0(s) = 1

1+s .

B2n(s) = C2
n + s A2

n

B2n+1(s) = s(C2
n+1 + A2

n+1)

C2n(s) = D2
n + s A2

n

C2n+1(s) = s(D2
n+1 + A2

n+1)

D2n(s) = B2
n + s I 2n

D2n+1(s) = s(I 2n+1 + B2
n+1)

Note that iterations of the map 2n �→ n, 2n+1 �→ n+1 on the set of non-negative
integers are attracted to two fixed points 0 �→ 0 and 1 �→ 1. Consequently, we get the
following

Proposition 5.19 For every n ≥ 1 the generating functions Bn(s),Cn(s), Dn(s) are
of the form

p0(s)

1 + s2k
+ p1(s)B1(s)

2l ,

where k, l ≥ 0 are integers, and p0(s), p1(s) are polynomials over F2.

5.5 Principal columns

Let g ∈ Kp, let Ag be the matrix of π∞(g) in the basis E∞ of monomials. Recall that
we number the columns and rows of the matrix Ag starting from zero.

Proposition 5.20 Every entry ai, j of the matrix Ag is a polynomial function (not
depending on g) of the entries of the columns number p, p2, . . . , p�logp j�.

The same statement is true for the matrices of π∞(g) in the basis B∞.

Proof Let

[a0, a1(x1), a2(x1, x2), . . .]

be the tableau of g, as in Sect. 5.1.
Recall that epn is the monomial xn . Consequently,

π∞(g)(epn ) = xn + un(x1, x2, . . . , xn−1).

It follows that the entries of column number pn of the matrix Ag above the main
diagonal are the coefficients of the representation of un as a linear combination of
monomials ei for i < pn , i.e., are the coefficients of the polynomial un . (The entries
below the diagonal are zeros, and the entry on the diagonal is equal to one, of course.)
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If k is a natural number such that k < pn+1, then ek = xr11 xr22 · · · xrnn , where
rn, rn−1, . . . , r1 are the digits of the representation of k in the base p numeration
system, and

π∞(g)(ek) = (x1 + u1)
r1(x2 + u2(x1))

r2 · · · (xn + un(x1, x2, . . . , xn−1)
rn ,

which implies the statement of the proposition.
For the basis B∞ we have bpn = −(xn+1

1

) = −xn − 1, and a similar proof works.

�

Definition 5.21 Columns number pn , n = 0, 1, 2, . . ., of the matrix Ag are called the
principal columns of Ag .

Example 5.22 Let, for p = 2, the first four principal columns of thematrix Ag , g ∈ Kp

be (a01, 1, 0, . . .)�, (a02, a12, 1, 0, . . .)�, and (a04, a14, a24, a34, 1, 0, . . .)�. Then the
columns number 3, 5, 6, and 7 (when numeration of the columns starts from zero)
are

⎛
⎜⎜⎝

a01a02
a01a12 + a12 + a02

a01
1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎜⎝

a01a04
a01a14 + a14 + a04

a01a24
a24 + a34a01 + a34

a01
1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a02a04
a02a14 + a12a04 + a12a14

a04 + a24a02 + a24
a14 + a34 + a02a34 + a12a34 + a12a24

a02
a12
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a01a02a04
(a04 + a14a01 + a14)(a02 + a12) + a01a12a04

a01a04 + a01a24a02 + a01a24
(a02 + a12 + 1)(a24 + a34 + a01a34) + a01(a14 + a12a24) + a04 + a14

a01a02
a02 + a12 + a01a12

a01
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

respectively.
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5.6 Uniseriality

Recall that the basis E∞ of C(Xω, Fp) consists of monomial functions e0, e1, . . .,
where

ek0+k1 p+k2 p2+···(x1, x2, . . .) = xk01 xk12 xk23 · · · ,

where ki ∈ {0, 1, . . . , p − 1} are almost all equal to zero. Let us call, following [27]
(though we use a slightly different definition), n = k0 + k1 p + k2 p2 + · · · the height
of the monomial en = xk01 xk12 xk23 · · · .

Height of a reduced polynomial f is defined as themaximal height of itsmonomials,
and is denoted γ ( f ). We define γ (0) = −1 (note that our definition is different from
the definition of Kaloujnine, which uses γ ( f ) + 1, so that height of 0 is zero).

Let us describe, following [13], an algorithm for computing height of a function
f ∈ F

Xn

p . Let B be the basis b0 < b1 < · · · < bp−1 of F
X
p , constructed in 5.2.

Let {δ′
0, δ

′
1, . . . , δ

′
p−1} and {b′

0, b
′
1, . . . , b

′
p−1} be the bases of the space of function-

als
(
F
X
p

)′
dual to the bases {δ0, δ1, . . . , δp−1} and B, respectively, i.e., δ′

i and b′
i are

defined by the condition

〈δ′
i |δ j 〉 = 〈b′

i |bi 〉 = δi, j

for all 0 ≤ i, j ≤ p − 1.
Then we have

〈δ′
x | f 〉 = f (x),

for all f ∈ F
X
p and x ∈ X = Fp.

It follows from Proposition 5.7 and elementary linear algebra that the transition
matrix from the basis {δ′

0, δ
′
1, . . . , δ

′
p−1} to {b′

0, b
′
1, . . . , b

′
p−1} is the matrix transposed

to the matrix T−1 of Proposition 5.7, i.e., the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0 0 1
0 · · · 0 0 1 1
0 · · · 0 1 2 1
0 · · · 1 3 3 1
... · · · ...

...
...

...(p−1
p−1

) · · · (p−1
3

) (p−1
2

) (p−1
1

) (p−1
0

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

In other words,

b′
k =

p−1∑
l=0

(
l

p − 1 − k

)
δ′
l , (26)
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so that

〈b′
k | f 〉 =

p−1∑
l=0

(
l

p − 1 − k

)
f (l).

For instance, 〈b′
p−1| f 〉 = ∑

x∈X f (x).

Define linear maps Rk : F
Xn+1

p −→ F
Xn

p , k = 0, 1, . . . , p − 1, as the linear
extension of the map

bi1 ⊗ · · · bin ⊗ bin+1 �→ 〈b′
k |bin+1〉 · bi1 ⊗ · · · bin .

In other terms, the map Rk is given by

Rk( f )(x1, x2, . . . , xn) = 〈b′
k | f (x1, x2, . . . , xn, x)〉,

where f (x1, x2, . . . , xn, x) ∈ F
Xn+1

p on the right-hand side of the equality is treated

as a function of x for every choice of (x1, x2, . . . , xn) ∈ F
Xn

p .
Using (26), we see that Rk can be computed using the formula

Rk( f )(x1, x2, . . . , xn) =
p−1∑
x=0

(
x

p − 1 − k

)
f (x1, x2, . . . , xn, x).

Proposition 5.23 Let f ∈ F
Xn

p . Define jn as the maximal value of j = 0, 1, . . . , p−1
such that R j ( f ) �= 0, and then define inductively jk for 1 ≤ k < n as the maximal
value of j such that R j ◦ R jk+1 ◦ · · · ◦ R jn ( f ) �= 0. Then

γ ( f ) = j1 + j2 p + j3 p
2 + · · · + jn p

n−1.

Proof For any monomial bi1 ⊗ bi2 ⊗ · · · ⊗ bim and any 0 ≤ j ≤ p − 1, we have

〈b′
j |bim 〉 · bi1 ⊗ bi2 ⊗ · · · ⊗ bim−1 =

{
0 if j �= im,

bi1 ⊗ bi2 ⊗ · · · ⊗ bim−1 otherwise.

The proof of the proposition is now straightforward. 
�
In [13] a different basis of the dual space was used (formal dot products with bk),

but the transition matrix from their basis to {b′
i } is triangular, so a statement similar to

Proposition 5.23 holds.
One can find the height of a function f ∈ F

Xn

p “from the other end” by applying
the maps Tb′

k
, defined in Sect. 4.4. Recall, that these maps act by the rule

Tb′
k
( f )(x1, x2, . . . , xn−1) = 〈b′

k | f (x, x1, x2, . . . , xn−1)〉,
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i.e., they are linear extensions of the maps

Tb′
k
(bi1 ⊗ bi2 ⊗ · · · ⊗ bin ) = 〈b′

k |bi1〉bi2 ⊗ · · · ⊗ bin , (27)

and are computed by the rule

Tb′
k
( f )(x1, x2, . . . , xn−1) =

p−1∑
x=0

(
x

p − 1 − k

)
f (x, x1, x2, . . . , xn−1).

Equation (27) imply then the following algorithm for computing height of a func-
tion.

Proposition 5.24 Let f ∈ F
Xn

p , and let hk = Tb′
k
( f ) for 0 ≤ k ≤ p − 1. Let

hk1 , hk2 , . . . , hks be the functions of the maximal height among the functions hk , and
let j1 = max(ki ). Then

γ ( f ) = j1 + d · γ (h j1).

Proposition 5.24 seems to be less efficient than Proposition 5.23 in general, but it is
convenient in the case p = 2. Let f ∈ F

Xn

2 . Denote f0 = Tδ′
0
( f ), f1 = Tδ′

1
( f ), i.e.,

f0(x1, x2, . . . , xn−1) = f (0, x1, x2, . . . , xn−1),

f1(x1, x2, . . . , xn−1) = f (1, x1, x2, . . . , xn−1).

Proposition 5.25 For every f ∈ F
Xn

2 we have

γ ( f ) =
{
2max(γ ( f0), γ ( f1)) + 1 if γ ( f0) �= γ ( f1),
2γ ( f0) if γ ( f0) = γ ( f1).

Proof We have h0 = f1, h1 = f0 + f1.
If γ ( f0) < γ ( f1), then γ (h1) = γ ( f0+ f1) = γ ( f1), hence γ ( f ) = 2γ (h1)+1 =

2γ ( f1) + 1.
If γ ( f0) > γ ( f1), then γ (h1) = γ ( f0 + f1) = γ ( f0) > γ ( f1) = γ (h0), hence

γ ( f ) = 2γ (h1) + 1 = 2γ ( f0) + 1.
If γ ( f0) = γ ( f1), then γ (h1) = γ ( f0 + f1) < γ ( f1) = γ ( f0), hence γ ( f ) =

2γ (h0). 
�
For more on height of functions on trees, and its generalizations, see [13].
Denote, as before,Un = 〈e0, e1, . . . , en〉. ThenUn consists of reduced polynomials

of height not bigger than n.
Since the representation of G is uni-triangular in the basis E∞, the spaces Un are

G-invariant, i.e., are sub-modules of the G-module C(Xω, Fp). Note also that Un−1
has co-dimension 1 in Un .

Proposition 5.26 Let g ∈ Kp be the adding machine. Then Un = (g − 1)Un+1 for
every n.
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Proof We know that the matrix of g in the basis B∞ is the infinite Jordan cell. Con-
sequently, (g − 1)(b0) = 0, and (g − 1)(bn+1) = bn for all n ≥ 0. It follows that

(g − 1)(Un+1) = (g − 1)(〈b0, b1, . . . , bn+1〉) = 〈b0, b1, . . . , bn〉 = Un .


�
Theorem 5.27 If V is a sub-module of the Kp-module C(Xω, Fp), then either V =
{0}, or V = C(Xω, Fp), or V = Un for some n.

Proof Let v ∈ V and n ≥ 0 be such that v ∈ Un\Un−1. Let g ∈ Kp be the adding
machine defined as the automorphism of the tree X∗ acting by the rule

g(x1, x2, . . . , xn) =
{

(x1 + 1, x2, . . . , xn) 0 ≤ x1 ≤ p − 2,
(0, g(x2, . . . , xn)) x1 = p − 1.

Then (g−1)k(v) ∈ Un−k\Un−k−1 for all 1 ≤ k ≤ n. (We assume thatU−1 = {0}.)
It follows that 〈v, (g − 1)(v), (g − 1)2(v), . . . , (g − 1)n(v)〉Fp = Un ⊂ V .

Let n be the maximal height of an element of V . If n is finite, then by the proven
above, V = Un . If n is infinite, then, by the proven above, V contains

⋃∞
n=0Un =

C(Xω, Fp). 
�
We adopt therefore, the following definition.

Definition 5.28 Let G ≤ Kp. We say that the action of G on C(Xω, Fp) is uniserial
if for every n ≥ 0 the set

⋃
g∈G(g − 1)Un+1 generates Un .

A module M is said to be uniserial if its lattice of sub-modules is a chain. It is
easy to see that the same arguments as in the proof of Theorem 5.27 show that if the
action of G on C(Xω, Fp) is uniserial, then Un are the only proper sub-modules of
the G-module C(Xω, Fp). Consequently, the G-module C(Xω, Fp) is uniserial.

In group theory (see [15,30]) an action of a group G on a finite p-groupU is said to
be uni-serial, if |N : [N ,G]| = p for every non-trivial G-invariant subgroup N ≤ U .
Here [N ,G] is the subgroup of N generated by the elements hgh−1 for h ∈ H and
g ∈ G, where hg denotes the action of g ∈ G on h ∈ H .

Let g ∈ Kp, and let

[ f0, f1(x1), f2(x1, x2), . . .]

be the tableau of g. We have seen in Sect. 5.5 (see the proof of Proposition 5.20)
that the entries of the principal columns (a0,pn , a1,pn , . . . , apn−1,pn )

� of the matrix
(ai, j )∞i, j=0 of π∞(g) in the basis E∞ are precisely the coefficients of the polynomials
fn :

fn(x1, x2, . . . , xn−1) =
pn−1∑
k=0

ak,pn ek,

where ek is the monomial of height k.
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It follows that the height of fn is equal to the largest index of a non-zero non-
diagonal entry of the column number pn of the matrix of π∞(g) in the basis E∞. Note
that the same is true for the matrix of π∞(g) in the basis B∞.

Proposition 5.29 Let G ≤ Kp, and let α : Kp −→ F
ω
p : g �→ (α0(g), α1(g), . . .)

be the abelianization homomorphism given by (18). The action of the group G on
C(Xω, Fp) is uniserial if and only if every homomorphism αk : G −→ Fp is non-
zero.

Proof It follows from Theorem 5.13 that all homomorphisms αk are non-zero if and
only if for every k = 1, 2, . . . there exists gk ∈ G such that the entry number k on the
first diagonal of π∞(gk) is non-zero.

Then for every monomial ek the height of (1 − gk)(ek) is equal to k − 1, which
shows that

⋃k
i=1(1 − gk)(Uk) generates Uk−1, hence the action of G is uniserial. 
�

Corollary 5.30 Let S be a generating set of G ≤ Kp. Then the action of G on
C(Xω, Fp) is uniserial if and only if for every k = 0, 1, . . . there exists gk ∈ S such
that αk(gk) �= 0.

Note that it also follows from Theorem 5.13 and from the fact that the entries in the
principal columns are the coefficients of the polynomials in the tableau, thatαn(g) �= 0
if and only if height of the polynomial fn of the tableau [ f0, f1(x1), f2(x1, x2), . . .]
representing g is equal to pn − 1, i.e., has the maximal possible value.

Example 5.31 The cyclic group generated by an element g ∈ Kp is transitive on the
levels Xn if and only ifαn(g) �= 0 for alln. It follows that ifG contains a level-transitive
element, then its action is uniserial. But there exist torsion groups with uniserial action
on C(Xω, Fp), as the following example shows.

Example 5.32 It is easy to check that for the generators a, b, c, d of the Grigorchuk
group, we have α(a) = (1, 0, 0, 0, . . .), and

α(b) = (0, 1, 1, 0, 1, 1, 0, 1, 1, 0, . . .)

α(c) = (0, 1, 0, 1, 1, 0, 1, 1, 0, 1, . . .)

α(d) = (0, 0, 1, 1, 0, 1, 1, 0, 1, 1, . . .).

(In the last three equalities, each sequence have a pre-period of length 1 and a period
of length 3). It follows that the action of the Grigorchuk group is uniserial.

Example 5.33 Gupta–Sidki group [24] is generated by two elements a, b acting on
{0, 1, 2}∗, where a is the cyclic permutation σ = (012) on the first level of the tree
(i.e., changing only the first letter of a word), and b is defined by the wreath recursion

b = (a, a−1, b).

Then α(a) = (1, 0, 0, . . .), and α(b) = (0, 0, 0, . . .), hence the group 〈a, b〉 does not
act uniserially on {0, 1, 2}ω.
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