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Abstract Recently, Chang and Xu gave a probabilistic proof of a combinatorial iden-
titywhich involves binomial coefficients. Duarte andGuedes deOliveira (J Integer Seq
16, 2013) extended the result. Applying a generalization of the Leibniz rule for higher
derivatives of the product of functions yields a new short proof and a generalization
of the above mentioned identity.
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1 Introduction and main results

Throughout the paperk = (k1, . . . , kr ) ∈ N
r
0 denotes amulti-index, |k| = k1+· · ·+kr ,

and the multinomial coefficient is defined by

(
n

k

)
=

(
n

k1, . . . , kr

)
:= n!

k1! . . . kr ! (n − |k|)! .

In 2011, Chang and Xu [4, Theorem 1] gave a probabilistic proof of the combinatorial
identity

∑
|k|=n

[
r∏

i=1

(
2ki
ki

)]
= 4n

(
n + r/2 − 1

n

)
,

for n, r ∈ N, r ≥ 2,which involves central binomial coefficients. It consists of showing
that the identity essentially computes the moment of order n of the chi-square random
variable with r degrees of freedom. The special instance r = 2, i.e.,

n∑
k=0

(
2k

k

)(
2 (n − k)

n − k

)
= 4n

plays an important role in combinatorics and probability theory (see the introduction
of [4]). In 2013, Duarte and Guedes de Oliveira [2, Theorem 2] showed that, for
a = (a1, . . . , ar ) ∈ R

r with |a| = 0,

∑
|k|=n

[
r∏

i=1

(
2ki − ai

ki

)]
= 4n

(
n + r/2 − 1

n

)
. (1)

The special case r = 2, reveals that, for all constants a ∈ R,

n∑
k=0

(
2k − a

k

)(
2 (n − k) + a

n − k

)
= 4n

where the sum in the left-hand side is independent of a. Identities for similar sums
can be found in [3, Theorem 1].

We study the identity (1) without the restriction |a| = 0. In particular, we give a
presentation of the sum

∑
|k|=n

[
r∏

i=1

(
cki − ai

ki

)]

as a derivative of an explicitly defined function, for arbitrary c ∈ R and a =
(a1, . . . , ar ) ∈ R

r . In the special case c = 2 and when it happens that |a| is a non-
negative integer, this sum can be represented in terms of a sum consisting of |a| + 1
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summands. While Chang and Xu used probabilistic arguments involving the expected
value of a χ2 random variable, and Duarte and Guedes de Oliveira used standard com-
binatorial tools like generating functions, our proof is based on methods of complex
analysis.

The main result is the following identity.

Theorem 1 For n, r ∈ N, r ≥ 2, and a = (a1, . . . , ar ) ∈ R
r such that |a| is a

nonnegative integer,

∑
|k|=n

[
r∏

i=1

(
2ki − ai

ki

)]
= 4n−|a|/2

|a|∑
j=0

(|a|
j

)(
n + (r − |a| + j) /2 − 1

n

)
. (2)

Remark 1 In the special case |a| = 0 Theorem 1 reduces to the identity (1) by Duarte
and Guedes de Oliveira.

Corollary 1 Under the assumptions of Theorem 1, the condition |a| = 0 implies that

∑
|k|=n

[
r∏

i=1

(
2ki − ai

ki

)]
= 4n

(
n + r/2 − 1

n

)
.

Proposition 1 For n, r ∈ N, r ≥ 2, c ∈ R and a = (a1, . . . , ar ) ∈ R
r ,

∑
|k|=n

[
r∏

i=1

(
cki − ai

ki

)]
= 1

n! F
(n)
n (0) ,

where

Fn (x) ≡ Fn (r, c, a; x) := (1 + x)cn+r−1−|a|

(1 + (1 − c) x)r−1 . (3)

Remark 2 Application of the Leibniz Rule for the derivatives of products of differen-
tiable functions implies as an immediate consequence the formula

∑
|k|=n

[
r∏

i=1

(
cki − ai

ki

)]
=

n∑
k=0

(
cn − |a| + r − 1

k

)(
r − 2 + n − k

n − k

)
(c − 1)n−k ,

which reduces the number of multiplied binomial coefficients from r to two.

Recently, Michael Z. Spivey gave a combinatorial proof of the alternating sum

n∑
k=0

(−1)k
(
2k

k

)(
2 (n − k)

n − k

)
=

⎧⎨
⎩
2n

(
n

n/2

)
, n even,

0, n odd

by applying an involution to certain colored permutations.
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2 Proofs and auxiliary results

The proofs of the results in the preceding section are essentially based on the following
formula.

Lemma 1 Let n ∈ N0, r ∈ N, and let h, fi (i = 1, . . . , r) be functions which are n
times differentiable in x0 ∈ R with h (x0) �= 0. Then

∑
|k|=n

(
n

k

) r∏
i=1

(
hki fi

)(ki )
(x0)=

((
d

dx

)n hn+r−1 (x)
∏r

i=1 fi (x)

(h (x) −h′ (x) (x−x0))
r−1

)∣∣∣∣
x=x0

. (4)

A proof of the intriguing formula (4) can be found in [1]. If h is a constant function,
Eq. (4) obviously reduces to the well-known Leibniz Rule

(
r∏

i=1

fi

)(n)

=
∑
|k|=n

(
n

k

) r∏
i=1

fi
(ki ) (n = 0, 1, 2, . . .) ,

for several n times differentiable functions fi (i = 1, . . . , r ).

Proof of Prop. 1. We put

h (x) = xc,

fi (x) = x−ai , for 1 ≤ i ≤ r.

The left-hand side of Eq. (4) is equal to

LHS =
∑
|k|=n

(
n

k

) r∏
i=1

(
hki fi

)(ki )
(x0)

= n!x (c−1)n−|a|
0

∑
|k|=n

[
r∏

i=1

(
cki − ai

ki

)]
.

The right-hand side of Eq. (4) is equal to

RHS =
((

d

dx

)n xc(n+r−1)−|a|

((1 − c) x + cx0)r−1

)∣∣∣∣
x=x0

,

where we used that

h (x) − h′ (x) (x − x0) = xc−1 ((1 − c) x + cx0) .

Comparison of both sides with x0 = 1 leads to

n!
∑
|k|=n

r∏
i=1

(
cki − ai

ki

)
=

((
d

dx

)n xcn+r−1−|a|

((1 − c) x + c)r−1

)∣∣∣∣
x=1

which implies the assertion. �	
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Proof of Theorem 1. Put c = 2 in Prop. 1. Taking advantage of the Cauchy integral
formula we obtain, for the function F as defined in (3),

F (n)
n (0) = n!

2π i

∫
W1

(1 + z)2n−|a|

zn+1

(
1 + z

1 − z

)r−1

dz,

where the integration path W1 = ∂Dρ = {z | |z| = ρ} with sufficiently small ρ > 0
encircles the origin counterclockwise. The change of variables

z = w − 1

w + 1
, dz = 2 (w + 1)−2 dw,

i.e., w = (1 + z) / (1 − z), yields

F (n)
n (0) = 22n−|a|+1 n!

2π i

∫
W2

w2n−|a|+r−1 (w + 1)|a|(
w2 − 1

)n+1 dw,

where the integration pathW2 encountersw0 = 1 such that Re (w + 1) > 0. A second
change of variables w = √

ς yields

F (n)
n (0) = 22n−|a| n!

2π i

∫
W3

ςn+ −|a|+r
2 −1 (√

ς + 1
)|a|

(ς − 1)n+1 dς,

where the integration pathW3 encounters ς0 = 1 such that Re ς > 0.When it happens
that |a| ∈ N0 expansion by the binomial formula and application of theCauchy integral
formula completes the proof of Theorem 1. �	

3 An alternative proof of Theorem 1

In this section we present an alternative derivation of Theorem 1. The referee pointed
out that our main result (2) is a consequence of results by Duarte and Guedes de
Oliveira [2] and suggested a proof. It is based on the technique of generating functions
and will be outlined below. To this end denote, as in [2, Sect. 4], by

g (x) := 1√
1 − 4x

=
∑
n≥0

(
2n

n

)
xn

and

C (x) := 2

1 + √
1 − 4x

=
∑
n≥0

1

n + 1

(
2n

n

)
xn

the generating functions of the central binomial coefficients and of the Catalan num-
bers, respectively. By [2, Theorem 11], we have, for all real numbers s and t ,
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g (x)C (x)s =
∑
n≥0

(
2n + s

n

)
xn

and

g (x)t =
∑
n≥0

4n
(
n + t/2 − 1

n

)
xn .

Since

1 + 1

g(x)
= 2

C(x)
,

we deduce that
r∏

i=1

g (x)C (x)−ai = g (x)r C (x)−|a| = 2−|a|g (x)r−|a| (1 + g (x))|a| . (5)

Note that the left-hand side of (2) is the general term (i.e., the coefficient of the term
in xn) of the left-hand side of (5). Moreover, since the general term of g(x)r−|a|+ j

is 4n
(n+(r−|a|+ j)/2−1

n

)
, the right-hand side of (2) is the general term of the right-hand

side of (5).
Hence, the new proof of Theorem 1 is complete.
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