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Abstract Suppose that G is a finite group and H is a subgroup of G. H is said to
be s-semipermutable in G if HGp = G p H for any Sylow p-subgroup G p of G with
(p, |H |) = 1; H is said to be an ss-quasinormal subgroup of G if there is a subgroup
B of G such that G = HB and H permutes with every Sylow subgroup of B. We will
study finite groups G saisfying the following: for each noncyclic Sylow subgroup P
of G, there exists a subgroup D of P such that 1 < |D| < |P| and every subgroup H
of P with order |D| is s-semipermutable or ss-quasinormal in G. Some recent results
are generalized and unified.

Keywords s-Semipermutable subgroup · ss-Quasinormal subgroup ·
Saturated formation
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1 Introduction

All groups considered in this paper are finite. G always means a group, |G| is the order
of G, π(G) denotes the set of all primes dividing |G| and G p is a Sylow p-subgroup
of G for some p ∈ π(G).

Let F be a class of groups. We call F a formation, provided that (1) if G ∈ F
and H � G, then G/H ∈ F , and (2) if G/M and G/N are in F , then G/(M ∩ N )
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is in F for any normal subgroups M , N of G. A formation F is said to be saturated
if G/�(G) ∈ F implies that G ∈ F . U will denote the class of all supersolvable
groups. Clearly, U is a saturated formation.

A subgroup H of G is called s-quasinormal (or s-permutable, π -quasinormal) in
G provided H permutes with all Sylow subgroups of G, i.e, HP=PH for any Sylow
subgroup P of G. This concept was introduced by Kegel in [5] and has been studied
extensively by Deskins [1] and Schmidt [11]. More recently, Zhang and Wang [14]
generalized s-quasinormal subgroups to s-semipermutable subgroups. A subgroup
H is said to be s-semipermutable in G if HGp = G p H for any Sylow p-subgroup
G p of G with (p, |H |) = 1. Clearly, every s-quasinormal subgroup of G is an s-
semipermutable subgroup of G, but the converse does not hold.Many authors consider
minimal or maximal subgroups of a Sylow subgroup of a group when investigating
the structure of G, such as in [1] and [4–14], etc. For example, Han in [4] proves the
following result.

Theorem 1.1 Let p be a prime dividing the order of a group G satisfying (|G|, p −
1) = 1 and P a Sylow p-subgroup of G. Suppose there exists a nontrivial subgroup
D such that 1 < |D| < |P| and every subgroup H of P with order |H | = |D| or with
order 2|D| (if P is a nonabelian 2-group and |P : D| > 2) is s-semipermutable in G,
then G is p-nilpotent.

As another generalization of the s-quasinormality, Li et al. [7] introduce the follow-
ing concept: A subgroup H of G is called an ss-quasinormal subgroup of G if there
is a subgroup B of G such that G = H B and H permutes with every Sylow subgroup
of B. Many authors consider minimal or maximal subgroups of a Sylow subgroup of
a group when investigating the structure of G, such as in [6–9], [12], etc. In [13], Wei
and Guo provide a result as follows.

Theorem 1.2 Let F be a saturated formation containing U and E be a normal
subgroup of a group G such that G/E ∈ F . Then G ∈ F if only if for every non-
cyclic Sylow subgroup P of F∗(E), there is a subgroup D of P with 1 < |D| < |P|
such that every subgroup H of P with order |D| or 2|D| whenever |D| = 2 is ss-
quasinormal in G.

The aim of this article is to unify and improve above Theorems using s-
semipermutable and ss-quasinormal subgroups. Our main theorems are as follows:

Theorem 1.3 (i.e., Theorem 3.5) Let F be a saturated formation containing U , the
class of all supersolvable groups and G a group with E as a normal subgroup of
G such that G/E ∈ F . Suppose that every non-cyclic Sylow subgroup P of F∗(E)

has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order
|H | = |D| or with order 2|D| (if P is a nonabelian 2-group and |P : D| > 2)
is either s-semipermutable or ss-quasinormal in G, where F∗(E) is the generalized
Fitting subgroup of E. Then G ∈ F .

2 Basic definitions and preliminary results

In this section, we collect some known results that are useful later.
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s-semipermutable or ss-quasinormal finite groups 399

Lemma 2.1 Suppose that H is an s-semipermutable subgroup of G. Then the follow-
ing assertions hold.

(i) If H ≤ K ≤ G, then H is s-semipermutable in K ;
(ii) Let N be a normal subgroup of G. If H is a p-group for some prime p ∈ π(G),

then H N/N is s-semipermutable in G/N;
(iii) If H ≤ Op(G), then H is s-permutable in G

Proof (i) is [14, Property 1], (ii) is [14, Property 2], and (iii) is [14, Lemma 3]. ��
Lemma 2.2 Let H be an ss-quasinormal subgroup of a group G.

(i) If H ≤ L ≤ G, then H is ss-quasinormal in L;
(ii) If N is normal in G, then H N/N is ss-quasinormal in G/N;
(iii) If H ≤ F(G), then H is s-quasinormal in G;
(iv) If H is a p-subgroup(p a prime), then H permutes with every Sylow q-subgroup

of G with q �= p.

Proof (i) and (ii) are [7, Lemma 2.1], (iii) is [7, Lemma 2.2], and (iv) is [7, Lemma
2.5]. ��
Lemma 2.3 ([12]) Let G be a group and P a Sylow p-subgroup of G, where p is the
smallest prime dividing |G|. If every maximal subgroup of P is s-semipermutable in
G, then G is p-nilpotent.

Lemma 2.4 ([2] III, 5.2 and IV, 5.4). Suppose that p is a prime and G is a minimal
non-p-nilpotent group, i.e., G is not a p-nilpotent group but whose proper subgroups
are all p-nilpotent.

(i) G has a normal Sylow p-subgroup P for some prime p and G = P Q, where Q
is a non-normal cyclic q-subgroup for some prime q �= p.

(ii) P/�(P) is a minimal normal subgroup of G/�(P).
(iii) The exponent of P is p or 4.

Lemma 2.5 ([4]) Let N be an elementary abelian normal p-subgroup of a group G.
If there exists a subgroup D in N such that 1 < |D| < |N | and every subgroup H of
N with |H | = |D| is s-semipermutable in G, then there exists a maximal subgroup M
of N such that M is normal in G.

Lemma 2.6 ([2], VI, 4.10) Assume that A and B are two subgroups of a group G and
G �= AB. If ABg = Bg A holds for any g ∈ G, then either A or B is contained in a
nontrivial normal subgroup of G.

The generalized Fitting subgroup F∗(G) of G is the unique maximal normal qua-
sinilpotent subgroup of G. Its definition and important properties can be found in [3,
X, 13]. We would like to give the following basic facts we will use in our proof.

Lemma 2.7 ([3], X, [13]) Let G be a group and M a subgroup of G.

(i) If M is normal in G, then F∗(M) ≤ F∗(G);
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(ii) F∗(G) �= 1 if G �= 1; in fact, F∗(G)/F(G) = Soc(F(G)CG(F(G))/F(G));
(iii) F∗(F∗(G)) = F∗(G) ≥ F(G); if F∗(G) is solvable, then F∗(G) = F(G).

Lemma 2.8 ([10]) Let F be a saturated formation containing U , the class of all
supersolvable groups and G a group with E as a normal subgroup of G such that
G/E ∈ F . Suppose that every non-cyclic Sylow subgroup P of F∗(E) has a subgroup
D such that 1 < |D| < |P| and every subgroup H of P with order |H | = |D| or with
order 2|D| (if P is a nonabelian 2-group and |P : D| > 2) is weakly s-permutable in
G, where F∗(E) is the generalized Fitting subgroup of E. Then G ∈ F .

3 Main results

In this section, we will prove our main results.

Theorem 3.1 Let p be the smallest prime dividing the order of a group G and P be a
Sylow p-subgroup of G. If every maximal subgroup of P is either s-semipermutable
or ss-quasinormal in G. Then G is p-nilpotent.

Proof Assume that the theorem is not true and let G be a counterexample of minimal
order. We derive a contradiction in several steps. ��

By Lemmas 2.1 and 2.2, the following two steps are obvious.
Step 1. Op′(G) = 1.
Step 2. G has a unique minimal normal subgroup N and G/N is p-nilpotent.

Moreover, �(G) = 1.
Step 3. Op(G) = 1.
If Op(G) �= 1, then step 2 yields N ≤ Op(G) and �(Op(G)) ≤ �(G) = 1.

Therefore, G has a maximal subgroup M such that G = M N and G/N ∼= M is p-
nilpotent. Since Op(G)∩ M is normalized by N and M , we conclude that Op(G)∩ M
is normal in G. The uniqueness of N yields N = Op(G). Clearly, P = N (P ∩ M).
Furthermore, P ∩ M < P , and, thus there exists a maximal subgroup P1 of P such
that P ∩ M ≤ P1. Hence, P = N P1. By hypothesis, P1 is s-semipermutable or
ss-quasinormal in G. In either case, we have that P1Mq is a group for q �= p. Hence

P1〈Mp, Mq |q ∈ π(M), q �= p〉 = P1M

is a group. Then P1M = M or G by maximality of M . If P1M = G, then

P = P ∩ P1M = P1(P ∩ M) = P1,

a contradiction. If P1M = M , then P1 ≤ M . Therefore, P1∩ N = 1 and N is of prime
order. Then the p-nilpotency of G/N implies the p-nilpotency of G, a contradiction.
Therefore, Op(G) = 1.

Step 4. The final contradiction.
Assume that P has a maximal subgroup P1 which is ss-quasinormal in G, then

there exists a subgroup B of G such that G = P1B and P1 permutes with every Sylow
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s-semipermutable or ss-quasinormal finite groups 401

subgroup of B. Noticing that H ∩ B is s-quasinormal in B, we have P1∩ B ≤ Op(B).
Since p is the smallest prime dividing the order of G and H ∩ B is a maximal subgroup
of a Sylow p-subgroup of B, we see that B/Op(B) is p-nilpotent and so B is p-
solvable. By [2, Chapter VI, Hauptsatz 1.7], we may assume that K is a Hall p′-
subgroup of B, π(K ) = {p2, . . . , ps} and Pi ∈ Sylpi (K ). Since P1 permutes with
every Pi , P1K = K P1 and therefore P1K is normal in G. Now let {Hj : j = 1, . . . , t}
be the set of allmaximal subgroup of P . Then, by the above, there is K j such that Hj K j

is normal in G for j = 1, . . . , t , respectively. Let N = ⋂{Hj K j : j = 1, . . . , t}.
Then N � G and G/N is a p-group. Thus we have P ∩ N = ⋂t

j=1((Hj K j ) ∩ P) =
⋂t

j=1((P ∩ K j )Hj ) = ⋂t
j=1 Hj ≤ �(P). By Tate′s theorem [2, Chapter IV, Satz

4.7], N is p-nilpotent and henceG is p-nilpotent, a contradiction.Nowwemay assume
that all maximal subgroups of P are s-semipermutable in G. Then G is p-nilpotent
by Lemma 2.3, a contradiction.

Theorem 3.2 Let p be the smallest prime dividing the order of a group G and P be
a Sylow p-subgroup of G. If P has a subgroup D such that 1 < |D| < |P| and every
subgroup H of P with order |H | = |D| or with order 2|D| (if P is a nonabelian
2-group and |P : D| > 2) is either s-semipermutable or ss-quasinormal in G. Then
G is p-nilpotent.

Proof Suppose that the theorem is false and let G be a counterexample of minimal
order. We will derive a contradiction in several steps. ��

Step 1. Op′(G) = 1.
If Op′(G) �= 1, Lemma 2.1 (ii) and Lemma 2.2 (iii) guarantee that G/Op′(G)

satisfies the hypotheses of the theorem. Thus G/Op′(G) is p-nilpotent by the choice
of G. Then G is p-nilpotent, a contradiction.

Step 2. |D| > p.
Suppose that |D| = p. Since G is not p-nilpotent, G has aminimal non-p-nilpotent

subgroup G1. By Lemma 2.4 (i), G1 = [P1]Q, where P1 ∈ Sylp(G1) and Q ∈
Sylq(G1), p �= q. Let X/�(P1) be a subgroup of P1/�(P1) of order p, x ∈ X\�(P1)

and L = 〈x〉. Then L is of order p or 4 byLemma2.4 (iii). By the hypotheses, L is either
s-semipermutable or ss-quasinormal in G, thus in G1 by Lemmas 2.1 (i) and 2.2 (i).
First, suppose that L is ss-quasinormal inG1, then L is s-quasinormal inG1 byLemma
2.2 (iii). Thus L Q ≤ G1. Therefore, L Q = L × Q. Then G1 = P1 × Q. Hence G1
is p-nilpotent, contrary to the choice of G1. Therefore, L = 〈x〉 is s-semipermutable
in G1 for every element x ∈ P1. Thus L Q ≤ G1. Therefore, L Q = L × Q. Then
G1 = P1 × Q, a contradiction.

Step 3. |P : D| > p.
By Theorem 3.1.
Step 4. P has a subgroup D such that 1 < |D| < |P| and every subgroup H

of P with order |H | = |D| or with order 2|D| (if P is a nonabelian 2-group and
|P : D| > 2) is s-semipermutable in G. Assume that H ≤ P such that |H | = |D|
and H is ss-quasinormal in G. Then we may assume G has a normal subgroup M
such that |G : M | = p and G = H M . Since |P : D| > p by Step 3, M satisfies the
hypotheses of the theorem. The choice of G yields that M is p-nilpotent. It is easy to
see that G is p-nilpotent, contrary to the choice of G.
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Step 5. If N ≤ P and N is minimal normal in G, then |N | ≤ |D|.
Suppose that |N | > |D|. Since N ≤ Op(G), N is elementary abelian. By Lemma

2.5, N has a maximal subgroup which is normal in G, contrary to the minimality of
N .

Step 6. Suppose that N ≤ P and N is minimal normal in G. Then G/N is p-
nilpotent.

If |N | < |D|, G/N satisfies the hypotheses of the theorem by Lemma 2.1 (ii). Thus
G/N is p-nilpotent by the minimal choice of G. So we may suppose that |N | = |D|
by Step 5. We will show that every cyclic subgroup of P/N of order p or order 4
(when P/N is a non-abelian 2-group) is s-semipermutable in G/N . Let K ≤ P and
|K/N | = p. By Step 2, N is non-cyclic, so are all subgroups containing N . Hence
there is a maximal subgroup L �= N of K such that K = N L . Of course, |N | =
|D| = |L|. Since L is s-semipermutable in G by the hypotheses, K/N = L N/N
is s-semipermutable in G/N by Lemma 2.1 (ii). If p = 2 and P/N is non-abelian,
take a cyclic subgroup X/N of P/N of order 4. Let K/N be maximal in X/N . Then
K is maximal in X and |K/N |=2. Since X is non-cyclic and X/N is cyclic, there is
a maximal subgroup L of X such that N is not contained in L . Thus X = L N and
|L| = |K | = 2|D|. By the hypotheses, L is s-semipermutable inG. ByLemma2.1 (ii),
X/N = L N/N is s-semipermutable in G/N . Hence G/N satisfies the hypotheses.
By the minimal choice of G, G/N is p-nilpotent.

Step 7. Op(G) = 1.
Suppose that Op(G) �= 1. Take a minimal normal subgroup N of G contained in

Op(G). By Step 6, G/N is p-nilpotent. It is easy to see that N is the unique minimal
normal subgroup of G contained in Op(G). Furthermore, Op(G)∩�(G) = 1. Hence
Op(G) is an elementary abelian p-group.On theother hand,G has amaximal subgroup
M such that G = M N and M ∩ N = 1. It is easy to deduce that Op(G) ∩ M = 1,
N = Op(G) and M ∼= G/N is p-nilpotent. Then G can be written as G = N (M ∩
P)Mp′ , where Mp′ is the normal p-complement of M . Pick a maximal subgroup S of
Mp = P ∩ M . Then N SMp′ is a subgroup of G with index p. Since p is the minimal
prime in π(G), we know that N SMp′ is normal in G. Now by Step 3 and the induction,
we have N SMp′ is p-nilpotent. Therefore, G is p-nilpotent, a contradiction.

Step 8. The minimal normal subgroup L of G is not p-nilpotent.
If L is p-nilpotent, then it follows from the fact that L p′ char L � G that L p′ ≤

Op′(G) = 1. Thus L is a p-group.Whence L ≤ Op(G) = 1 byStep 7, a contradiction.
Step 9. G is a non-abelian simple group.
Suppose that G is not a simple group. Take a minimal normal subgroup L of G.

Then L < G. If |L|p > |D|, then L is p-nilpotent by the minimal choice of G,
contrary to Step 8. If |L|p ≤ |D|. Take P∗ ≥ L ∩ P such that |P∗| = p|D|. Hence P∗
is a Sylow p-subgroup of P∗L . Since every maximal subgroup of P∗ is of order |D|,
every maximal subgroup of P∗ is s-semipermutable in G by hypotheses, thus in P∗L
by Lemma 2.1 (i). Now applying Theorem 3.1, we get P∗L is p-nilpotent. Therefore,
L is p-nilpotent, contrary to Step 8.

Step 10. The final contradiction.
Suppose that H is a subgroup of P with |H | = |D| and Q is a Sylow q-subgroup

with q �= p. Then H Qg = Qg H for any g ∈ G by the hypotheses that H is s-
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semipermutable in G. Since G is simple by Step 9, G = H Q from Lemma 2.6, the
final contradiction.

The following corollary is immediate from Theorem 3.2.

Corollary 3.3 Suppose that G is a group. If every non-cyclic Sylow subgroup of G
has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order
|H | = |D| or with order 2|D| (if P is a nonabelian 2-group and |P : D| > 2) is either
s-semipermutable or ss-quasinormal in G, then G has a Sylow tower of supersolvable
type.

Theorem 3.4 LetF be a saturated formation containingU , the class of all supersolv-
able groups and G a group with E as a normal subgroup of G such that G/E ∈ F .
Suppose that every non-cyclic Sylow subgroup of E has a subgroup D such that
1 < |D| < |P| and every subgroup H of P with order |H | = |D| or with order
2|D| (if P is a nonabelian 2-group and |P : D| > 2) is either s-semipermutable or
ss-quasinormal in G. Then G ∈ F .

Proof Suppose that P is a non-cyclic Sylow p-subgroup of E , ∀p ∈ π(E). Since P
has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order
|H | = |D| or with order 2|D| (if P is a nonabelian 2-group and |P : D| > 2) is
either s-semipermutable or ss-quasinormal in G by hypotheses, thus in E by Lemma
2.1 (i) and Lemma 2.2 (i). Applying Corollary 3.3, we conclude that E has a Sylow
tower of supersolvable type. Let q be the maximal prime divisor of |E | and Q ∈
Sylq(E). Then Q �G. Since (G/Q, E/Q) satisfies the hypotheses of the theorem, by
induction, G/Q ∈ F . For any subgroup H of Q with |H | = |D|, since Q ≤ Oq(G),
H is s-permutable in G by Lemmas 2.1 (iii) and 2.2 (iii). Since s-permutable implies
weakly s-permutable and F∗(Q) = Q by Lemma 2.7, we get G ∈ F by applying
Lemma 2.8. ��
Theorem 3.5 Let F be a saturated formation containing U , the class of all super-
solvable groups and G a group with E as a normal subgroup of G such that G/E ∈ F .
Suppose that every non-cyclic Sylow subgroup of F∗(E) has a subgroup D such that
1 < |D| < |P| and every subgroup H of P with order |H | = |D| or with order
2|D| (if P is a nonabelian 2-group and |P : D| > 2) is either s-semipermutable or
ss-quasinormal in G. Then G ∈ F .

Proof We distinguish two cases:
Case 1. F = U .
Let G be a minimal counter-example.
Step 1. Every proper normal subgroup N of G containing F∗(E) (if it exists) is

supersolvable. ��
If N is a proper normal subgroup of G containing F∗(E), then N/N ∩ E ∼= N E/E

is supersolvable. By Lemma 2.7 (iii), F∗(E) = F∗(F∗(E)) ≤ F∗(E ∩ N ) ≤ F∗(E),
so F∗(E ∩ N ) = F∗(E). For any Sylow subgroup P of F∗(E ∩ N ) = F∗(E), P
has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order
|H | = |D| or with order 2|D| (if P is a nonabelian 2-group and |P : D| > 2) is either
s-semipermutable or ss-quasinormal in G by hypotheses, thus in N by Lemma 2.1
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(i) and Lemma 2.2 (i). So N and N ∩ H satisfy the hypotheses of the theorem, the
minimal choice of G implies that N is supersolvable.

Step 2. E = G.
If E < G, then E ∈ U by Step 1. Hence F∗(E) = F(E) by Lemma 2.7. It

follows that every Sylow subgroup of F∗(E) is normal in G. By Lemmas 2.1 (iii)
and 2.2 (iii), every non-cyclic Sylow subgroup of F∗(E) has a subgroup D such that
1 < |D| < |P| and every subgroup H of P with order |H | = |D| or with order
2|D| (if P is a nonabelian 2-group and |P : D| > 2) is s-permutable in G. Applying
Lemma 2.8 for the special case F = U , G ∈ U , a contradiction.

Step 3. F∗(G) = F(G) < G.
If F∗(G) = G, then G ∈ F by Theorem 3.4, contrary to the choice of G. So

F∗(G) < G. By Step 1, F∗(G) ∈ U and F∗(G) = F(G) by Lemma 2.7.
Step 4. The final contradiction.
Since F∗(G) = F(G), each non-cyclic Sylow subgroup of F∗(G) has a subgroup

D such that 1 < |D| < |P| and every subgroup H of P with order |H | = |D| or with
order 2|D| (if P is a nonabelian 2-group and |P : D| > 2) is s-permutable in G by
Lemmas 2.1 (iii) and 2.2 (iii). Applying Lemma 2.8, G ∈ U , a contradiction.

Case 2. F �= U .
By hypotheses, every non-cyclic Sylow subgroup of F∗(E) has a subgroup D such

that 1 < |D| < |P| and every subgroup H of P with order |H | = |D| or with order
2|D| (if P is a nonabelian 2-group and |P : D| > 2) is either s-semipermutable or
ss-quasinormal in G, thus in E Lemma 2.1 (i) and Lemma 2.2 (i). Applying Case 1,
E ∈ U . Then F∗(E) = F(E) by Lemma 2.7. It follows that each Sylow subgroup
of F∗(E) is normal in G. By Lemmas 2.1 (iii) and 2.2 (iii), each non-cyclic Sylow
subgroup of F∗(E) has a subgroup D such that 1 < |D| < |P| and every subgroup
H of P with order |H | = |D| or with order 2|D| (if P is a nonabelian 2-group and
|P : D| > 2) is s-permutable in G. Applying Lemma 2.8, G ∈ F . These complete
the proof of the theorem.

The following corollaries are immediate from Theorem 3.5.

Corollary 3.6 Let F be a saturated formation containing U . Suppose that G is a
group with a normal subgroup E such that G/E ∈ F . Then G ∈ F if and only if
every maximal subgroup of any Sylow subgroup of F∗(E) is s-semipermutable in G.

Corollary 3.7 Let F be a saturated formation containing U . Suppose that G is a
group with a normal subgroup E such that G/E ∈ F . Then G ∈ F if and only if
every cyclic subgroup of any Sylow subgroup of F∗(E) of prime order or order 4 is
s-semipermutable in G.

Corollary 3.8 ([6], Theorem 3.3) Let F be a saturated formation containing U .
Suppose that G is a group with a normal subgroup H such that G/H ∈ F . Then
G ∈ F if and only if every maximal subgroup of any Sylow subgroup of F∗(H) is
ss-quasinormal in G.

Corollary 3.9 ([6], Theorem 3.7) Let F be a saturated formation containing U .
Suppose that G is a group with a normal subgroup H such that G/H ∈ F . Then
G ∈ F if and only if every cyclic subgroup of any Sylow subgroup of F∗(H) of
prime order or order 4 is ss-quasinormal in G.
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Corollary 3.10 ([8], Theorem 3.4) Let F be a saturated formation containing U .
Suppose that G is a group with a normal subgroup E such that G/E ∈ F . Then
G ∈ F if and only if every maximal subgroup of any Sylow subgroup of F∗(E) is
s-quasinormal in G.

Corollary 3.11 ([9], Theorem 3.3) Let F be a saturated formation containing U .
Suppose that G is a group with a normal subgroup E such that G/E ∈ F . Then
G ∈ F if and only if every cyclic subgroup of any Sylow subgroup of F∗(E) of
prime order or order 4 is s-quasinormal in G.
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