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408 F. Jiang, N. S. Trudinger

1 Introduction

This paper is concerned with global and interior second derivative estimates of solu-
tions to partial differential equations of Monge–Ampère type, (MATEs) that arise in
optimal transportation and geometric optics and are embraced by the notion of “gen-
erated prescribed Jacobian equation” (GPJE) introduced in [16]. Such equations can
be written in the general form

det{D2u − A(·, u, Du)} = B(·, u, Du), (1.1)

where A and B are respectively n × n symmetric matrix valued and scalar functions
on a domain U ⊂ R

n ×R×R
n , Du and D2u denote respectively the gradient vector

and Hessian matrix of the scalar function u, which is defined on a bounded domain
� ⊂ R

n for which the sets

Ux = {(u, p) ∈ R × R
n | (x, u, p) ∈ U}

are non-empty for all x ∈ �. A solution u ∈ C2(�) of (1.1) is called elliptic, (degen-
erate elliptic), whenever D2u − A(·, u, Du) > 0, (≥ 0), which implies B > 0, (≥ 0).

We shall establish the second derivative bounds for generated prescribed Jacobian
equations under the hypotheses G1, G2, G1*, G3w and G4w introduced in [16], which
extend the conditionsA1, A2 andA3w for optimal transportation equations introduced
in [20]. These are degenerate versions of the conditions A1, A2 and A3 for regularity
originating in [11]. In fact we will relabel them here replacing G in [16] by A to make
this extension clearer. First we need to suppose that there exists a smooth generating
function g defined on a domain � ⊂ R

n × R
n × R for which the sets

�x,y = {z ∈ R | (x, y, z) ∈ �}

are convex, (and hence open intervals). Setting

U = {(x, g(x, y, z), gx (x, y, z)) | (x, y, z) ∈ �},

we then assume

A1: For each (x, u, p) ∈ U , there exists a unique point (x, y, z) ∈ � satisfying

g(x, y, z) = u, gx (x, y, z) = p.

A2: gz < 0, det E �= 0, in �, where E is the n × n matrix given by

E = [Ex,y] = [gx,y − (gz)
−1gx,z ⊗ gy].

Defining Y (x, u, p) = y, Z(x, u, p) = z in A1, we thus obtain mappings Y : U →
R

n, Z : U → R with Yp = E−1. The matrix function A in the corresponding
generated prescribed Jacobian equation is then given by
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Pogorelov estimates in optimal transportation 409

A(x, u, p) = −Y −1
p (Yx + Yu ⊗ p) = gxx [x, Y, Z ], (1.2)

where Y = Y (x, u, p) and Z = Z(x, u, p). Note that the Jacobian determinant
of the mapping (y, z) → (gx , g)(x, y, z) is gz det E , �= 0 by A2, so that Y and
Z are accordingly smooth. In particular, it suffices to have g ∈ C2(�) to define
Y, Z ∈ C1(U), A ∈ C0(U). The reader is referred to [16] for more details. We also
mention though that the special case of optimal transportation is given by taking

g(x, y, z) = c(x, y) − z, (1.3)

where c is a cost function defined on a domainD inRn ×R
n so that � = D×R, gx =

cx , gz = −1, Ex,y = cx,y and conditions A1 and A2 are equivalent to those in
[11,19]. Note that here we follow the same sign convention as in [15,20] so that our
cost functions are the negatives of those usually considered. We remark also that the
case when Y is independent of u is equivalent to the optimal transportation case.

Crucial to us in this paper is the dual condition to A1, namely

A1*: The mapping Q := −gy/gz is one-to-one in x , for all (x, y, z) ∈ �.

We will treat the implications of condition A1* as needed in Sect. 2. Meanwhile we
note that the Jacobian matrix of the mapping x → Q(x, y, z) is −Et/gz , where Et

is the transpose of E , so its determinant is automatically non-zero when condition A2
holds. Note that in the optimal transportation case (1.3), we simply have Q = cy but
the duality is more complicated in the general situation and will be amplified further
in Sect. 2.

The next conditions are expressed in terms of the matrix function A and extend
condition A3w in the optimal transportation case [20]. For these we assume that A is
twice differentiable in p and once in u.

A3w: The matrix function A is regular in U , that is A is codimension one convex
with respect to p in the sense that,

Ai j,klξiξ jηkηl := (Dpk pl Ai j )ξiξ jηkηl ≥ 0,

in U , for all ξ, η ∈ R
n such that ξ ·η = 0.

A4w: The matrix A is monotone increasing with respect to u in U , that is

Du Ai jξiξ j ≥ 0,

in U , for all ξ ∈ R
n .

An explicit formula for D2
p A in terms of the generating function g is given in [16].

In order to use conditions A3w and A4w for our barrier constructions in Sect. 2, we
also assume that U is sufficiently large in that the sets Ux are convex in p, for each
(x, u) ∈ R

n ×R, (for A3w), and Ux = Jx ×Px , for each x ∈ R
n , where Jx is an open

interval inR, (possibly empty), andPx ⊂ R
n , (for A4w). When we use both A3w and

A4w, we would also assume Px to be convex. We note that in [4], U = R
n ×R×R

n
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410 F. Jiang, N. S. Trudinger

so that these conditions are automatically satisfied and in the optimal transportation
case Jx = R. Similar conditions are also needed for the convexity theory in [16].

To formulate our second derivative estimates, we first denote the one-jet of a func-
tion u ∈ C1(�) by

J1[u](�) = {x, u(x), Du(x) | x ∈ �},

and recall from [16] that a g-affine function in � is a function of the form

g0 = g(·, y0, z0),

where y0 and z0 are fixed so that (x, y0, z0) ∈ � for all x ∈ �.

Theorem 1.1 Let u ∈ C4(�)∩ C2(�̄) be an elliptic solution of Eq. (1.1) in �, where
B ∈ C2(U), inf B > 0 and A ∈ C2(U) is given by (1.2) with generating function g
satisfying conditions A1, A2, A1*, A3w and A4w. Suppose also u ≤ g0 in � for some
g-affine function g0 with the one jets J1[u](�), J1[g0](�) � U . Then we have the
estimate

sup
�

|D2u| ≤ C

(
1 + sup

∂�

|D2u|
)

, (1.4)

where the constant C depends on n,U , g, B,�, g0 and J1[u].
Note that the inequality u ≤ g0 is trivially satisfied if there exists a g-affine function

on �̄ which is greater than sup u and moreover can be dispensed with in the optimal
transportation case, where Theorem 1.1 improves Theorems 3.1 and 3.2 in [20] and
Theorem 1.1 in [4]. Also we may assume in place of A4w the reversed monotonicity
condition:

A4*w: The matrix A is monotone decreasing with respect to u in U , that is

Du Ai jξiξ j ≤ 0, for all ξ ∈ R
n,

inwhich caseTheorem1.1 continues to hold provided the inequality u ≤ g0 is replaced
by u ≥ g0.

Next we formulate the corresponding extension of the Pogorelov interior estimate
[2] for generated prescribed Jacobian equations.

Theorem 1.2 Let u ∈ C4(�) ∩ C0,1(�̄) be an elliptic solution of (1.1) satisfying
u = g0 on ∂�, for some g-affine function g0, where B ∈ C2(U), inf B > 0 and
A ∈ C2(U) is given by (1.2) with generating function g satisfying conditions A1, A2,
A1*, A3w, A4w and J1[u](�), J1[g0](�) � U . Then we have for any �′ � �,

sup
�′

|D2u| ≤ C, (1.5)

where the constant C depends on n,U , g, B,�,�′, g0 and J1[u].
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Pogorelov estimates in optimal transportation 411

In the optimal transportation case, Theorem 1.2 improves Theorem 1.1 in [9] and
Theorem 2.1 in [4] by removing the barrier and subsolution hypotheses assumed there.
As in [9], we may also replace g0 by any strict supersolution. We also remark that
the dependence on J1[u] in Theorems 1.1 and 1.2 is more specifically determined by
sup�(|u| + |Du|) and dist(J1[u](�), ∂U).

This paper is organised as follows. In the next sectionwewill construct a function in
Lemma 2.1 for which the Eq. (1.1) is uniformly elliptic and use it to prove an appropri-
ate version, Lemma 2.2, of the key Lemma 2.1 in [4]. From here we obtain Theorems
1.1 and 1.2 by following the same arguments as in [4]. In Sect. 3, we will also discuss
the application of Theorem 1.1 to global second derivative estimates for the Dirichlet
and second boundary value problems for optimal transportation and generated pre-
scribed Jacobian equations, yielding improvements of the corresponding results in
[4,13,14,20]. In Sect. 4 we focus on applications to optimal transportation and near
field geometric optics. In the optimal transportation case, we obtain a different and
more direct proof of the improved global regularity result in [15]. Then we conclude
by treating some examples of generating functions in geometric optics satisfying our
hypotheses, which arise from the reflection and refraction of parallel beams.

To conclude this introduction we should also emphasise that while we have con-
sidered the more general case of generated prescribed Jacobian equations our results
are also new for optimal transportation. Further we note that when we strengthen con-
dition A3w to the strict inequality A3, the corresponding second derivative estimates
as treated in [11], (see also [20] and [18]), are much simpler to prove although even
here the constructions in Sect. 2 are still new.

2 Barrier constructions

Our first lemma shows the existence of a uniformly elliptic function under conditions
A1, A2 and A1*.

Lemma 2.1 Let g ∈ C4(�) be a generating function satisfying conditions A1, A2 and
A1*, and suppose g0 is a g-affine function on �̄, where � is a bounded domain in R

n.
Then there exists a function ū ∈ C2(�̄) such that J1[ū] � U , ū > g0 in � and

D2ū − A(·, ū, Dū) ≥ a0 I, in �, (2.1)

for some positive constant a0 depending on g0 and �.

Proof Suppose g0 = g(·, y0, z0) for some (y0, z0) ∈ R
n × R, let Bρ = Bρ(y0) be a

ball of radius ρ and centre y0 in Rn , and consider the function v = vρ in Bρ , given by

vρ(y) = z0 −
√

ρ2 − |y − y0|2. (2.2)

Our desired function ū is now defined as the g∗-transform of v, in accordance with
the notion of duality introduced in [16], namely

ū(x) = v∗
ρ(x) = sup

y∈Bρ

g(x, y, vρ(y)). (2.3)

123



412 F. Jiang, N. S. Trudinger

Note that ū is well defined for x ∈ �̄ for ρ sufficiently small to ensure the set

�0 = �̄ × B̄ρ(y0) × [z0 − ρ, z0] ⊂ �.

Furthermore, the supremum in (2.3) will be taken on at a unique point y = T x ∈ Bρ .
To prove this assertion, we fix a point y ∈ ∂ Bρ and set yλ = (1− λ)y + λy0 for some
λ ∈ (0, 1). Since gz < 0 in �, we then have, by the mean value theorem,

g(x, y, vρ(y)) − g(x, yλ, vρ(yλ))

≤
(
sup
�0

|gy |
)

|y − yλ| +
(
sup
�0

gz

)
(vρ(y) − vρ(yλ))

≤ Cλρ − δρ
√
2λ − λ2,

for positive constants C and δ. Consequently, choosing 0 < λ < 2/1+ (C
δ
)2, we have

g(x, y, vρ(y)) < g(x, yλ, vρ(yλ))

and hence the supremum in (2.3) cannot occur on ∂ Bρ . By differentiation, we then
have at an interior maximum point y,

gy + gz Dvρ(y) = 0 (2.4)

and hence by condition A1*, there exists a unique x = T ∗y corresponding to y.
From our construction (2.3) the function ū is g-convex in� and its g-normal mapping
χ [ū](x) consists of those y maximizing (2.3). Here we recall from [16] that a function
u ∈ C0(�) is g-convex in � if for each point x0 ∈ � , there exists y0 ∈ R

n and
z0 ∈ I (�, y0) := ∩��·,y0 , such that

u(x) ≥ g(x, y0, z0), u(x0) = g(x0, y0, z0),

for all x ∈ � and the g-normal mapping χ [u](x0) of u at x0 is given by

χ [u](x0) = {y0 ∈ R
n | u(x) ≥ g

(
x, y0, z0

)
for all x ∈ �

}
,

and moreover, χ [u](�) = ∪�χ [u](·). From (2.4), we also have

|Dvρ(y)| ≤ sup
�0

|gy |
−gz

≤ C (2.5)

whence χ [ū](�) ⊂ B(1−λ)ρ(y0) for some constant λ > 0. To show y = T x is
uniquely determined by x , we need to prove χ [ū](x) is a single point. For this we
invoke the duality considerations in [16]. Letting

�∗ = {(x, y, u) ∈ R
n × R

n × R | u = g(x, y, z) for (x, y, z) ∈ �},

123



Pogorelov estimates in optimal transportation 413

we let g∗ ∈ C4(�∗) denote the dual generating function of g, given by

g(x, y, g∗(x, y, u)) = u.

Also denoting

U∗ = {(y, z, q) ∈ R
n × R × R

n | q = Q(x, y, z) for (x, y, z) ∈ �},

the dual matrix, corresponding to g∗, is given by

A∗(y, z, q) = g∗
yy[X, y, g(X, y, z)]

= −
[(

gy

gz

)
y
(X, y, z) +

(
gy

gz

)
z
(X, y, z) ⊗ q

]
, (2.6)

where X = X (y, z, q) is the unique mapping, given by A1*, satisfying

Q(x, y, z) = g∗
y(X, y, g(X, y, z)) = q. (2.7)

Note that the mapping T ∗ constructed above is given by

x = T ∗y = X (y, vρ(y), Dvρ(y)). (2.8)

Since the graph of vρ is a hemisphere of radius ρ and hence has constant curvature
1/ρ, we have, on χ [ū](�)

D2vρ − A∗(·, vρ, Dvρ) ≥ a∗
0 I (2.9)

for some fixed constant a∗
0 > 0, provided ρ is taken sufficiently small, which implies

in particular that vρ is locally strictly g∗-convex, that is for any y1 ∈ χ [ū](x0), x0 ∈ �,
we have

vρ(y) > g∗(x0, y, ū(x0)) (2.10)

for all y �= y1, near y1. Clearly, by again taking ρ sufficiently small, we infer that
the function vρ is strictly globally g∗-convex, that is inequality (2.10) holds for all
y �= y1,∈ B(1−λ)ρ(y1). Consequently y1 = T x0 is uniquely determined by x0 ∈ �,
whence the mapping T ∗ is invertible with inverse T given by

T x = Y (x, ū(x), Dū(x))

and ū is differentiable with J1[ū] � U . Since T ∗ is C1 smooth so also is T with
Jacobian matrix

DT (x) = [Dy T ∗(y)]−1, y = T x .
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414 F. Jiang, N. S. Trudinger

Using the relation

Dū(x) = gx (x, T x, g∗(x, T x, ū(x))

we then have ū ∈ C2(�̄). Since

DT (x) = Yp

[
D2ū − A(·, ū, Dū)

]
,

Dy T ∗(y) = Xq

[
D2vρ − A∗(·, vρ, Dvρ)

]
,

and Yp = E−1, Xq = −gz(Et )−1, we thus obtain (2.1) from condition A2. Finally
we observe that

ū(x) = sup
y∈Bρ(y0)

g(x, y, vρ(y))

≥ g(x, y0, vρ(y0))

= g(x, y0, z0 − ρ)

> g(x, y0, z0),

by using gz < 0 in the last inequality. We then obtain ū > g0 as asserted and the proof
is complete. 
�
Remark 2.1 For a matrix A, not arising from optimal transportation or generated
Jacobian mappings, Lemma 2.1 may not be true even if A satisfies the regularity
condition A3w in a strong way. To see this, suppose A = A(p) ≥ a1|p|2 I for some
constant a1 > 0. Then the uniform ellipticity condition, D2u− A(Du) ≥ a0 I , a0 > 0,
implies u is convex in a convex domain � with

det D2u ≥ (a0 + a1|Du|2)n .

By integration, we obtain

|�| ≤
∫
Rn

(a0 + a1|p|2)−ndp,

which can only be satisfied for |�| sufficiently small.

We now use Lemma 2.1 to construct a barrier for the linearized operator of Eq.
(1.1), in accordance with Remark 2.4 in [5]. Letting u ∈ C2(�) be elliptic for Eq.
(1.1) with J1[u] ⊂ U we set F[u] = log(det(D2u − A(x, u, Du))) and define an
associated linear operator L by

L = L[u] = Fi j (Di j − Dpk Ai j (x, u, Du)Dk), (2.11)

where Fi j = ∂ F
∂wi j

and {Fi j } = {wi j } denotes the inverse matrix of {wi j } � {ui j −
Ai j (x, u, Du)}. It is known that F is a concave operator with respect towi j for elliptic
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Pogorelov estimates in optimal transportation 415

u. We then have the following improvement and extension of the fundamental lemma,
Lemma 2.1 in [4] in the optimal transportation case.

Lemma 2.2 Let g ∈ C4(�) be a generating function satisfying conditions A1, A2,
A1*, A3w, A4w and let u ∈ C2(�̄) be elliptic with respect to F, J1[u] � U and u ≤ g0
in � for some g-affine function, g0, on �̄. Then

L
(

eK (ū−u)
)

≥ ε1
∑

i

Fii − C, (2.12)

holds in �, for sufficiently large positive constant K , uniform positive constants ε1, C,
depending on n,U , g,�, g0, J1[u] and sup� F[u].
Proof By Lemma 2.1, ū ∈ C2(�̄) is a uniformly elliptic function satisfying J1[ū] �
U , ū > g0 in � and

F[ū] = log(det(D2ū − A(x, ū, Dū))) ≥ n log a0,

where a0 is the positive constant in (2.1). For any x0 ∈ �, the perturbation ūε =
ū − ε

2 |x − x0|2 is still a uniformly elliptic function with J1[ūε] � U , for sufficiently
small ε > 0, satisfying

F[ūε] = log(det(D2ūε − A(x, ūε, Dūε))) ≥ a1,

for some constant a1 = n log a0
2 . From our construction of ū, we can also choose ε

sufficiently small such that ūε ≥ g0 ≥ u in �.
Setting v = ū − u, vε = ūε − u and η = Kv = K (ū − u), we have v =

vε + ε
2 |x − x0|2. By detailed calculation, we have

Leη = eη(Lη + Fi j DiηD jη)

= K eη(Lv + K Fi j DivD jv)

= K eη(Lvε + L
(ε

2
|x − x0|2

)
+ K Fi j DivD jv)

= K eη

{
ε
∑

i

Fii − εFi j Dpk Ai j (x, u, Du)(x − x0)k

+Fi j (Di jvε − Dpk Ai j (x, u, Du)Dkvε) + K Fi j DivD jv
}

= K eη

{
ε
∑

i

Fii − εFi j Dpk Ai j (x, u, Du)(x − x0)k

+Fi j [Di j (ūε − u) − (Ai j (x, ūε, Dūε) − Ai j (x, u, Du))]
+Fi j [Ai j (x, u, Dūε) − Ai j (x, u, Du) − Dpk Ai j (x, u, Du)Dkvε]
+Fi j [Ai j (x, ūε, Dūε) − Ai j (x, u, Dūε)] + K Fi j DivD jv

}
. (2.13)
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416 F. Jiang, N. S. Trudinger

By the concavity of F with respect to wi j , we have

Fi j [Di j (ūε − u) − (Ai j (x, ūε, Dūε) − Ai j (x, u, Du))]
≥ F[ūε] − F[u] ≥ a1 − F[u]. (2.14)

Since ūε ≥ u in �, we then have, by the mean value theorem and condition A4w

Fi j [Ai j (x, ūε, Dūε) − Ai j (x, u, Dūε)
] = Fi j Du Ai j (x, û, Dūε)(ūε − u) ≥ 0,

(2.15)
where û = λūε + (1 − λ)u for some λ ∈ (0, 1). Note that from our conditions on U ,
we have u(x),û(x) ∈ Jx for all x ∈ � so that Ai j (x, u, Dūε) is well defined in (2.13),
and Ai j (x, û, Dūε) is well defined in (2.15). Using the Taylor expansion, we have

Ai j (x, u, Dūε) − Ai j (x, u, Du) − Dpk Ai j (x, u, Du)Dkvε

= 1

2
Ai j,kl(x, u, p̂)Dkvε Dlvε = 1

2
Ai j,kl(x, u, p̂)DkvDlv

−ε Ai j,kl(x, u, p̂)(x − x0)k

[
Dlv − ε

2
(x − x0)l

]
, (2.16)

where p̂ = (1 − θ)Du + θ Dūε for some θ ∈ (0, 1). Here we are also using the
convexity of the set Px for each x ∈ � which ensures the point (x, u, p̂) ∈ U so that
the term Ai j,kl(x, u, p̂) in (2.16) is also well defined.

By (2.14), (2.15), (2.16), we have from (2.13)

Leη ≥ K eη

{
ε
∑

i

Fii − εFi j [Dpk Ai j (x, u, Du)

+Ai j,kl(x, u, p̂)(Dlv − ε

2
(x − x0)l)](x − x0)k

+1

2
Fi j Ai j,kl(x, u, p̂)DkvDlv + K Fi j DivD jv + a1 − F[u]

}
. (2.17)

Next we choose a finite family of balls Bρ(xi ), with centres at xi , i = 1 · · · N , covering
�̄ andwith fixed radiiρ < min{1/2n
, 1}, where
 = max�̄

[|Dpk Ai j (x, u, Du)|+|
Ai j,kl(x, u, p̂)|(|Dlv|+ 1

2 )
]
. Then we select x0 = xi for some i such that x ∈ Bρ(xi ).

Accordingly, we have for a fixed small positive ε,

Leη ≥ K eη

⎧⎨
⎩ε
∑

i

Fii − ε

2n

∑
i, j

|Fi j | + 1

2
Fi j Ai j,kl(x, u, p̂)DkvDlv

+ K Fi j DivD jv + a1 − F[u]
⎫⎬
⎭ , (2.18)
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holds for x ∈ Bρ(xi ). We see that (2.18) holds in all balls Bρ(xi ), i = 1 · · · N , with a
fixed positive constant ε. Then by the finite covering, (2.18) holds in�with a uniform
positive constant ε.

Without loss of generality, assume that Dv = (D1v, 0, . . . , 0) at a given point in
�, we get

Leη ≥ K eη

⎧⎨
⎩ε
∑

i

Fii − ε

2n

∑
i, j

|Fi j | + 1

2
Fi j Ai j,11(x, u, p̂)(D1v)2

+K F11(D1v)2 + a1 − F[u]
⎫⎬
⎭

≥ K eη

⎧⎨
⎩ε
∑

i

Fii − ε

2n

∑
i, j

|Fi j | + 1

2

∑
i or j=1

Fi j Ai j,11(x, u, p̂)(D1v)2

+K F11(D1v)2 + a1 − F[u]
⎫⎬
⎭

= K eη

⎧⎨
⎩ε
∑

i

Fii − ε

2n

∑
i, j

|Fi j | +
∑

i

F1i A1i,11(x, u, p̂)(D1v)2

−1

2
F11A11,11(x, u, p̂)(D1v)2 + K F11(D1v)2 + a1 − F[u]

⎫⎬
⎭ ,

where condition A3w is used in the second inequality.
Since the matrix {Fi j } is positive definite, any 2 × 2 diagonal minor has positive

determinant. By the Cauchy’s inequality, we have

|Fi j | ≤
√

Fii F j j ≤ 1

2
(Fii + F j j ),

⎛
⎝which leads to∑

i, j

|Fi j | ≤ n
∑

i

Fii

⎞
⎠ ,

and

|F1i | ≤
√

F11Fii ≤ αFii + 1

4α
F11,

for any positive constant α.
Thus, we have

Leη ≥ K eη

{∑
i

Fii
[ ε
2

− α|A1i,11(x, u, p̂)|(D1v)2
]

+F11

[
K − 1

4α

∑
i

|A1i,11(x, u, p̂)| − 1

2
|A11,11(x, u, p̂)|

]
(D1v)2 + a1 − F[u]

}
.
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By first choosing α small such that α ≤ ε
4max

i
max

�̄
{|A1i,11(x,u, p̂)|(D1v)2} , and then choos-

ing K large such that K ≥ max�̄

( 1
4α

∑
i |A1i,11(x, u, p̂)| + 1

2 |A11,11(x, u, p̂)|), we
obtain

Leη ≥ K eη
{ε

4

∑
i

Fii + a1 − F[u]
}

.

By choosing ε1 = min�̄{ ε
4 K eη} and C = max�̄{K eη|F[u] − a1|}, the conclusion of

this lemma is proved. 
�
Remark 2.2 Whenwe apply the operator L to the function eK (ū−u), the second deriva-
tives of u appear in the coefficients of Fi j which are controlled by using the concavity
property of F . Accordingly ε1 in (2.12) depends on the one jet J1[u] but not on D2u.
We note that the constant C in (2.12) has the additional dependence on sup� F[u],
which does involve second derivatives of u, but when we apply Lemma 2.2 to elliptic
solutions u and uniformly elliptic function ū, such a dependence is reduced. For exam-
ple, when we consider the Eq. (1.1), namely F[u] = log B(x, u, Du), the additional
dependence of C in (2.12) is just sup�(log B(x, u, Du)).

Remark 2.3 When we assume the reverse monotonicity A4*w and u ≥ g0, then by
modifying ū appropriately and using (2.15), we still obtain the key barrier inequality
(2.12).

3 Applications to second derivative estimates

Theorems 1.1 and 1.2 follow from Lemma 2.2 and the proofs of Theorem 3.1 in [20]
and Theorem 1.1 in [9]. These latter results are proved under an additional hypothesis
that� is A-bounded on J1[u](�), that is there exists a function ϕ ∈ C2(�)∩C0,1(�̄)

satisfying
D2ϕ − Dp A(·, u, Du) · Dϕ ≥ I, (3.1)

in �. However, as pointed out in [4], we need only assume the weaker inequality

Lϕ ≥ wi i − C0, (3.2)

for some constant C0 to carry out the same proofs. By virtue of Lemma 2.2, the barrier
inequality (3.2) is satisfied by the function

ϕ = 1

ε1
eK (ū−u). (3.3)

We will first treat the global estimates for boundary value problems, and subsequently
the interior estimate, Theorem 1.2, as we will need to modify slightly the proof in [9]
to accommodate the dependance of A on u.

Taking account of the above remarks we may extend the statement of Theorem 3.1
in [20] as follows.
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Lemma 3.1 Let u ∈ C4(�) ∩ C1,1(�̄) be an elliptic solution of Eq. (1.1) in � with
A, B ∈ C2(U). Suppose that A is regular on J1 = J1[u](�), that is

Dpk pl Ai j (·, u, Du)ξiξ jηkηl ≥ 0 (3.4)

in �, for all ξ, η ∈ R
n such that ξ · η = 0, and that A satisfies (3.2) for some

ϕ ∈ C2(�) ∩ C0,1(�̄), with inf J1 B > 0. Then we have the estimate

sup
�

|D2u| ≤ C

(
1 + sup

∂�

|D2u|
)

, (3.5)

where the constant C depends on A, B,�, |u|0,1;�, |ϕ|0,1;� and C0.

Clearly, Theorem 1.1 follows immediately from Lemmas 2.2 and 3.1. As an imme-
diate consequence of Theorem 1.1, the hypothesis of the existence of a subsolution u in
Theorem 1.1 of [4] can be removed altogether in the optimal transportation case, while
for the Dirichlet problem in Theorem 1.2 of [4], we need only assume the existence
of a subsolution u in a neighbourhood of the boundary, whose boundary trace is the
prescribed boundary function. However, the natural boundary condition for optimal
transportation and the more general prescribed Jacobian equations is the prescription
of the image of the mapping, T u := Y (·, u, Du), that is

T u(�) = �∗ (3.6)

for some given target domain �∗ ∈ Y (U). Global estimates for solutions of Eq. (1.1)
subject to (3.6) now follow from Theorem 1.1 under appropriate convexity hypotheses
on � and �∗. As with (3.1) and (3.4), we will express these initially in terms of J1[u].
Accordingly, we assume the domain� is uniformly A-convex with respect to J1[u] in
the sense that there exists a defining function ϕ ∈ C2(�̄) satisfying ϕ = 0, Dϕ �= 0
on ∂� together with the “uniform convexity” condition (3.1) in a neighbourhoodN of
∂�, while for the domain �∗ we assume the dual condition, that �∗ is uniformly Y ∗-
convexwith respect to J1[u], namely that there exists a defining function ϕ∗ ∈ C2(�̄∗)
satisfying ϕ∗ = 0, Dϕ∗ �= 0 on ∂�∗ together with the “dual uniform convexity”
condition:

D2ϕ∗ − A∗
i j,k(·, u, Du)Dkϕ

∗ ≥ I (3.7)

in a neighbourhood N ∗ of ∂�∗, where A∗
i j,k is given by

[A∗
i j,k] = Y −1

p DppY k(Y −1
p )t (3.8)

for each k = 1, . . . , n. Taking account of (1.2) we see that these conditions can
be formulated for general prescribed Jacobian equations where Y ∈ C2(U) satisfies
det Yp �= 0, and are not necessarily restricted to those determined through generating
functions. Furthermore, writing

G(x, u, p) = ϕ∗ ◦ Y (x, u, p), (3.9)
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condition (3.7) may be expressed in the form

G pp(x, u, Du) ≥ δ∗
0 I (3.10)

for a positive constant δ∗
0 , whenever Y (x, u, Du) ∈ N ∗ and moreover the boundary

condition (3.6) implies a nonlinear oblique boundary condition,

G(·, u, Du) = 0, (3.11)

on ∂�, for an elliptic solution u ∈ C2(�) of Eq. (1.1) [14]. Building on the optimal
transportation case in [20], an obliqueness estimate

G p(·, u, Du) · γ ≥ κ0 (3.12)

on ∂�, for a positive constant κ0, where γ denotes the unit outer normal to ∂�,
is derived in [10,14] for elliptic solutions u of (1.1) (3.6), in C3(�), under the
above hypotheses that � and �∗ are respectively uniformly A-convex and uniformly
Y ∗-convex with respect to J1[u].

To proceed from (3.12) to global second derivative estimates for the second bound-
ary value problem, we need a boundary estimate for second derivatives, which we can
extract from [20], Sect. 4, as a refinement of the Monge–Ampère case in [21].

Lemma 3.2 Let u ∈ C4(�̄) be an elliptic solution of Eq. (1.1) in � subject to a
nonlinear oblique boundary condition (3.11), (3.12) on ∂� ∈ C4 with A, B, G ∈
C2(U). Suppose that A is regular on J1 = J1[u](�) � U , � is uniformly A-convex
with respect to J1, inf J1B > 0 and G satisfies the uniform convexity condition (3.10).
Then we have the estimate,

sup
∂�

|D2u| ≤ C

(
1 + sup

�

|D2u|
) 2n−3

2(n−1)

, (3.13)

where the constant C depends on A, B, G,� and |u|0,1;�.

Using the estimates, (3.12) and (3.13), we can thus conclude from Theorem 1.1,
the following global second derivative estimate for generated prescribed Jacobian
equations.

Theorem 3.1 Let u ∈ C4(�̄) be an elliptic solution of the second boundary value
problem (1.1), (3.6) in �, where A ∈ C2(U) is given by (1.2) with generating
function g ∈ C4(�), satisfying conditions A1, A2, A1*, A3w and A4w (or A4*w),
B > 0,∈ C2(U) and the domains �,�∗ ∈ C4 are respectively uniformly A-convex
and uniformly Y ∗-convex with respect to J1 = J1[u](�) � U . Suppose also u ≤ g0
(or u ≥ g0) in � for some g-affine function g0 on �̄. Then we have the estimate,

sup
�

|D2u| ≤ C, (3.14)

where the constant C depends on n,U , g, B,�,�∗, g0 and J1[u].
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We may express the domain convexity hypotheses in Theorem 3.1 in terms of
boundary data depending on the solution u or more specifically, as in [10], intervals
containing the range of u. For this purpose we will say that � is uniformly Y -convex
with respect to (�∗, u) if

(Diγ j − Dp Ai j (x, u(x), p) · Dγ )τiτ j ≥ δ0, (3.15)

for all x ∈ ∂�, Y (x, u(x), p) ∈ �∗, unit outer normal γ and unit tangent vector τ , for
some constant δ0 > 0. Similarly the target domain �∗ is uniformly Y ∗-convex with
respect to (�, u) if

[
Diγ

∗
j (y) − A∗

i j,k(x, u(x), p)γ ∗
k (y)

]
τiτ j ≥ δ∗

0 , (3.16)

for all x ∈ �, y = Y (x, u(x), p) ∈ ∂�∗, unit outer normal γ ∗ and unit tangent vector
τ , for some constant δ∗

0 > 0. It then follows that the uniform convexity assumptions in
Theorem 3.1 may be replaced by �, �∗ being respectively uniformly Y -convex, Y ∗-
convex with respect to (�∗, u), (�, u). Moreover these assumptions are equivalent to
the convexity notions defined in terms of the generating function g in [16]. Assuming
� and �∗ are connected and T u is a diffeomorphism, then � is uniformly Y -convex
with respect to (�∗, u) if and only if � is uniformly g-convex with respect to v, that
is the images Q(·, y, v(y))(�) are uniformly convex for all y ∈ �̄∗, where v is the
g-transform of u on �∗, given by

v(y) = g∗(x, y, u(x)) = Z(x, u(x), Du(x)), (3.17)

for y = T u(x), while �∗ is uniformly Y ∗-convex with respect to (�, u) if and only
if �∗ is uniformly g∗-convex with respect to u, that is the images P(x, ·, u(x))(�∗)
are uniformly convex for all x ∈ �̄, where P(x, y, u) = gx (x, y, g∗(x, y, u)) for
(x, y, u) ∈ �∗; see [16] for more details.

Returning to the Dirichlet problem, we state the following analogue of Theorem
3.1, which follows from Theorem 1.1 and our boundary estimates in [4].

Theorem 3.2 Let u ∈ C4(�̄) be an elliptic solution of (1.1) in �, satisfying u = u0 on
∂�, where A ∈ C2(U) is given by (1.2) with generating function g ∈ C4(�), satisfying
conditions A1, A2, A1*, A3w and A4w (or A4*w), B > 0,∈ C2(U), u0 ∈ C4(�̄) and
the domain � ∈ C4 is uniformly A-convex with respect to J1 = J1[u](�) � U .
Suppose also u ≤ g0 (or u ≥ g0) in � for some g-affine function g0 on �̄. Then we
have the estimate,

sup
�

|D2u| ≤ C, (3.18)

where the constant C depends on n,U , g, B,�, ϕ, g0 and J1[u].
To reduce the proof of Theorem 3.2 to our boundary estimates in Section 3 of [4],

we replace u by u0 in inequality (3.5) there and use the barrier v = −Cϕ in place
of v = 1 − φ, for sufficiently large constant C , in the rest of the proof, where ϕ is
a defining function in the definition of A-convexity. Note that under the assumption
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of uniform A-convexity we do not need Lemma 2.2 to obtain the second derivative
boundary estimate, which is already asserted in [13]. Note also that in these arguments
the dependence of the coefficients on u can be removed by replacing u by u(x).

To conclude this sectionwe indicate howTheorem 1.2 follows fromLemma 2.2 and
[9]. In the optimal transportation case (1.3), when A is independent of u, we simply
use (3.3) in the proof of Theorem 1.1 in [9] instead of (3.1), with u0 replaced by g0. In
the general case we proceed the same way, first noting that the monotonicity condition
A4w ensures η = g0 −u > 0 in �, by virtue of the strong maximum principle [2] and
the fact that g0 is a degenerate elliptic solution of the homogeneous equation, (B = 0).
We then consider as in [9], the corresponding auxiliary function

v = τ log η + log(wi jξiξ j ) + 1

2
β|Du|2 + eκϕ, (3.19)

where β, κ, τ are positive constants to be determined and estimate L̃v from below at
an interior maximum point x = x̄ , where

L̃v = Lv − Dp(log B)·Dv.

As in Section 3 of [20], the additional terms arising from the the u dependence, in the
differentiations of (1.1), are absorbed in the lower bounds (18) and (19) in [9] so it
remains to extend the lower bound for L̃η in inequalities (20) and (21) in [9], where
now η = g0 − u. This is done similarly to the argument in the proof of Lemma 2.2,
as follows. By calculation, we have

L̃η = wi j [Di jη − Dpk Ai j (x, u, Du)Dkη] − Dpk (log B)Dkη

= wi j [−wi j + Ai j (x, g0, Dg0) − Ai j (x, u, Du) − Dpk Ai j (x, u, Du)Dkη]
−Dpk (log B)Dkη

≥ −C + wi j [Ai j (x, g0, Dg0) − Ai j (x, u, Du) − Dpk Ai j (x, u, Du)Dkη]
≥ −C + wi j [Ai j (x, u, Dg0) − Ai j (x, u, Du) − Dpk Ai j (x, u, Du)Dkη]
= −C + 1

2
wi j Ai j,kl(x, u, p̄)DkηDlη, (3.20)

where p̄ = (1 − θ)Dg0 + θ Du for some θ ∈ (0, 1), condition A4w is used in the
second inequality and Taylor’s formula is used in the last equality. By assuming {wi j }
is diagonal, we have from (3.20)

L̃η ≥ −Cn + 1

2
wi i Aii,kl(x, u, p̄)DkηDlη,

≥ −C +
∑
k �=i

wi i Aii,ik(x, u, p̄)DiηDkη + 1

2
wi i Aii,i i (x, u, p̄)(Diη)2

≥ −C(1 + wi i |Diη|), (3.21)

where condition A3w is used in the second inequality and the constant C depends on
�, A, B, g0 and J1[u]. We remark that the particular form of the estimate (3.21) is
actually crucial in the ensuing estimations in [9].
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Accordingly we obtain from [9], an estimate,

(g0 − u)τ |D2u| ≤ C (3.22)

for positive constants τ and C , corresponding to the estimate (9) in [9]. Our desired
estimate (1.5) follows, noting also that the estimate (28) in [9] for u0 − u from below
extends automatically when we substitute u(x) for u in A and B.

4 Optimal transportation and geometric optics

4.1 Optimal transportation

For our applications to optimal transportation when g reduces to a cost function c
through (1.3), it will suffice to assume c ∈ C4(�̄ × �̄∗) where the domains � and
�∗ are respectively uniformly c and c∗-convex with respect to each other, that is the
images cy(·, y)(�) and cx (x, ·)(�∗) are uniformly convex in R

n , for each y ∈ �̄∗,
x ∈ �̄.

Conditions A1, A1*, A2 and A3w can then be written as:

A1: The mappings cx (x, ·), cy(·, y) are one-to-one for each x ∈ �, y ∈ �∗;
A2: det cx,y �= 0 in �̄ × �̄∗;
A3w: (Dpk pl Ai j (x, p))ξiξ jηkηl ≥ 0, for all (x, p) ∈ �×R

n such that Y (x, p) ∈
�∗ and ξ, η ∈ R

n such that ξ ·η = 0.

Here we also have the simpler formulae,

Y (x, u, p) = Y (x, p) = c−1
x (x, ·)(p), A(x, u, p) = A(x, p) = cxx (x, Y ). (4.1)

We then conclude from Theorem 3.2 the following global second derivative estimate
which improves Theorem 1.1 in [20] and Theorem 2.1 in [15].

Corollary 4.1 Let u ∈ C4(�̄) be an elliptic solution of the second boundary value
problem (1.1), (3.6) in �, where A is given by (4.1) with cost function c satisfying
conditions A1, A2 and A3w and B > 0,∈ C2( J̄1[u]) and the domains �,�∗ ∈ C4 are
respectively uniformly c-convex and uniformly c∗-convex with respect to each other.
Then we have the estimate,

sup
�

|D2u| ≤ C, (4.2)

where the constant C depends on n, c, B,�,�∗ and J1[u].
For application to optimal transportation, the function B has the form

B(·, u, p) = | det cx,y |ρ
ρ∗ ◦ Y (·, p)

(4.3)

where ρ and ρ∗ are positive densities defined on � and �∗ respectively, satisfying the
mass balance condition ∫

�

ρ =
∫

�∗
ρ∗, (4.4)

123



424 F. Jiang, N. S. Trudinger

which is a necessary condition for a solution u for which the mapping Tu = Y (·, Du)

is a diffeomorphism. From Corollary 4.1, we obtain following [20] the existence of an
elliptic solution u ∈ C3(�̄) which is unique up to additive constants, as formulated in
Theorem 1.1 in [15]. However our proof of Corollary 4.1 in this case is more direct and
more general than the approach in [15] which depends on a strict convexity regularity
result of Figalli et al. [1]. From the existence we obtain the existence of a smooth
optimal mapping solving the transportation problem as formulated in Corollary 1.2 in
[15].

Examples of cost functions which satisfy condition A3w and not A3 are given
in [20] and [9]. However for these examples the global second derivative bounds in
Theorems 1.1 and 4.1 are proved in [20] from other structures such as c-boundedness
or duality so that Corollary 4.1 is not new in these cases. This is not the case though
for the interior estimate, Theorem 1.2, which for example is new for the cost function
c(x, y) = |x − y|−2. For explicit calculations in this case the reader is referred to [8],
as well as [20].

4.2 Geometric optics

Keeping to domains in Euclidean space, we will just consider here parallel beams in
R

n+1, directed in the en+1 direction, through a domain � ⊂ R
n × {0}, illuminating

targetswhich are graphs over domains�∗ inRn ×{0}. The formulae are easily adjusted
to cover more general situations and we may also consider point sources of light as
in [6]. The special cases where the targets are themselves domains in R

n × {0} yield
strictly regular matrix functions A and global estimates for the second boundary value
problem are already proved in [10,14]. Consequently our main interest here is with
situations where the resultant matrices A satisfy A3w and not necessarily A3, although
as we indicated in Sect. 1 our lemmas in Sect. 2 are still new in this case.

(i) Reflection. We modify slightly the example in [16] to allow for non-flat targets;
see also [7] for a thorough description of the geometric picture.
Let D be a domain in Rn ×R

n , containing � × �∗, and consider the generating
function:

g(x, y, z) = �(y) + 1

2z
− z

2
|x − y|2, (4.5)

defined for (x, y) ∈ D and z > 0 where � is a smooth function on R
n . By

differentiation we have
gx (x, y, z) = z(y − x) (4.6)

so that if there are mappings y = Y (x, u, p), z = Z(x, u, p) satisfying A1, we
must have y = x + p/z and from (4.5),

u = h(z) = �

(
x + p

z

)
+ 1

2z

(
1 − |p|2

)
. (4.7)
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By differentiation we then obtain,

h′(z) = − 1

2z2
(2p ·D� + 1 − |p|2) < 0, (4.8)

provided

2p ·D� + 1 − |p|2 > 0,

that is,
z2|y − x |2 + 2z(x − y)·D� − 1 < 0. (4.9)

Accordingly conditions A1 and A2 will be satisfied for 0 < z < z0(x, y), where

z0 = 1√|x − y|2 + |(x − y)·D�|2 + (x − y)·D�
, (4.10)

Y (x, u, p) = x + p/Z(x, u, p) and Z , given implicitly by (4.7), satisfies Zu < 0.
Now from (4.6), we see that the matrix A is given by

A(x, u, p) = −Z(x, u, p)I (4.11)

and hence conditions A3w and A4w are both satisfied whenever the dual function
Z is concave in the gradient variables. It also follows that condition A1* is also
satisfied when (4.9) holds, that is the mapping Q given by

Q(x, y, z) = 2z2
D� + z(x − y)

1 + z2|x − y|2

is one to one in x , for 0 < z < z0(x, y), which can be proved for example from
the quadratic structure of the equation, Q(x, y, z) = q. Furthermore by taking z
sufficiently small, we see that there exist arbitrarily large g-affine functions and
hence all the hypotheses of Theorems 1.1 and 1.2 are satisfied by the generating
function g if Z is concave in p. Note that when � is constant, then Z = (1 −
|p|2)/2(u −�), u > �, |p| < 1 and the strict condition A3 holds, [16]. By direct
calculation, we have an explicit formula for the matrix E ,

E = z

{
I − 2z(x − y) ⊗ [z(x − y) + D�]

1 + z2|x − y|2
}

,

and its determinant

det E = −zn z2|x − y|2 + 2z(x − y)·D� − 1

1 + z2|x − y|2 > 0,

123



426 F. Jiang, N. S. Trudinger

when (4.9) holds. By the Sherman–Morrison formula, we also have a formula for
the inverse of E ,

E−1 = 1

z

{
I − 2z(x − y) ⊗ [z(x − y) + D�]

z2|x − y|2 + 2z(x − y)·D� − 1

}
.

(ii) Refraction. We consider refraction from media I to media II with respective
refraction indices n1, n2 > 0 and set κ = n1/n2. For κ �= 1, we consider now
generating functions,

g(x, y, z) = �(y) − 1

|κ2 − 1|
(

κz +
√

z2 + (κ2 − 1)|x − y|2
)

, (4.12)

where again (x, y) ∈ D, z >
√
1 − κ2|x − y| for 0 < κ < 1, > 0 for κ > 1 and

� is a smooth function on Rn . For more details about the geometric and physical
aspects of this model, see for example [12]. We will now restrict attention to the
case 0 < κ < 1, in which case by setting κ ′ = √

1 − κ2 and rescaling z → z/κ ′,
� → κ ′�, g → κ ′g, we can write

g(x, y, z) = �(y) − κz −
√

z2 − |x − y|2. (4.13)

By differentiation we now have

gx (x, y, z) = x − y√
z2 − |x − y|2 (4.14)

so that if there are mappings y = Y (x, u, p), z = Z(x, u, p) satisfying A1, we
must have

y = x − zp√
1 + |p|2 ,

so from (4.13),

u = h(z) = �

(
x − zp√

1 + |p|2
)

− κz − z√
1 + |p|2 . (4.15)

By differentiation we then obtain,

h′(z) = − 1√
1 + |p|2

(
p ·D� + 1 + κ

√
1 + |p|2

)
< 0, (4.16)

provided

p ·D� + 1 + κ

√
1 + |p|2 > 0,
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that is, √
z2 − |x − y|2 + κz + (x − y)·D� > 0. (4.17)

Accordingly conditions A1 and A2 will be satisfied for z > z0 = z0(x, y), where
z0 = |x − y|, if κ|x − y| ≤ (y − x)·D� and z0 is given by

z0 = 1

1 − κ2

(
κ(x − y)·D� +

√
(1 − κ2)|x − y|2 + |(x − y)·D�(y)|2

)
,

(4.18)
if κ|x − y| ≥ (y − x)·D�. Furthermore the mapping Y is given by Y (x, u, p) =
x + Z(x, u, p)p/

√
1 + |p|2 and Z , given implicitly by (4.15), satisfies Zu < 0.

From (4.14), we now have

A(x, u, p) =
√
1 + |p|2

Z(x, u, p)
(I + p ⊗ p). (4.19)

It follows then that conditions A3w and A4w are both satisfied whenever the
function p → √

1 + |p|2/Z(x, u, p) is convex. Again the condition A1* is also
satisfied when (4.17) holds so that the hypotheses of Theorems 1.1 and 1.2 are
fulfilled provided in the case ofTheorem1.1 the solution u has a g-affinemajorant,
which is satisfied automatically from the boundary condition, u = g0 on ∂� in
the case of Theorem 1.2. Note that when � is constant, we obtain

Z = (� − u)
√
1 + |p|2

1 + κ
√
1 + |p|2 , u < �,

so again the strict condition A3 holds. By direct calculation, we now have an
explicit formula for the matrix E ,

E = − 1√
z2 − |x − y|2

{
I + (x − y) ⊗ [κ(x − y) + zD�]√

z2 − |x − y|2(z + κ
√

z2 − |x − y|2)

}
,

and its determinant

det E =
(−1)nz

[√
z2 − |x − y|2 + κz + (x − y)·D�

]

(z2 − |x − y|2) n+1
2 (z + κ

√
z2 − |x − y|2)

�= 0,

when (4.17) holds. We also obtain the following formula for the inverse of E ,

E−1 = −
√

z2 − |x − y|2
{

I − (x − y) ⊗ [κ(x − y) + zD�]
z[√z2 − |x − y|2 + κz + (x − y)·D�]

}
.

In the case κ > 1, the monotonicity is reversed in the case � = constant. For
general � and taking now κ ′ = √

κ2 − 1, we have after rescaling z → z/κ ′,
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� → κ ′�, g → κ ′g,

g(x, y, z) = �(y) − κz −
√

z2 + |x − y|2, (4.20)

and hence we obtain in place of (4.14) to (4.16),

gx (x, y, z) = y − x√
z2 + |x − y|2 , y = x + zp√

1 − |p|2 , |p| < 1,

u = h(z) = �

(
x + zp√

1 − |p|2
)

− κz − z√
1 − |p|2 ,

h′(z) = 1√
1 − |p|2

(
p ·D� − 1 − κ

√
1 − |p|2

)
< 0, (4.21)

provided

(y − x)·D� < κz +
√

z2 + |x − y|2.

However now we have in place of (4.19),

A(x, u, p) = −
√
1 − |p|2

Z(x, u, p)
(I − p ⊗ p) (4.22)

so that we obtain A4*w instead of A4w. Hence for A4w we need to assume the
reverse inequality, h′(z) > 0, that is 0 < z < z0, where now z0 is given by

z0 = 1

κ2 − 1

(
κ(y − x)·D� −

√
(κ2 − 1)|x − y|2 + |(x − y)·D�(y)|2

)
,

(4.23)
which implies at least that � and �∗ are disjoint and excludes the case � =
constant. However with z > max{z0, 0}, Theorems 1.1, 3.1 and 3.2 are still
applicable provided the function p → −√1 − |p|2/Z(x, u, p) is convex as there
exist arbitrarily small g-affine functions. Also then the case of constant � is
embraced with

Z = (� − u)
√
1 − |p|2

1 + κ
√
1 − |p|2 , u < �, |p| < 1.

By direct calculation, we again have an explicit formula for the matrix E ,

E = 1√
z2 + |x − y|2

{
I + (x − y) ⊗ [−κ(x − y) + zD�]√

z2 + |x − y|2(z + κ
√

z2 + |x − y|2)

}
,
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and its determinant

det E = z[√z2 + |x − y|2 + κz + (x − y)·D�]
(z2 + |x − y|2) n+1

2 (z + κ
√

z2 + |x − y|2)
�= 0,

when h′(z) �= 0. By the Sherman-Morrison formula, we also obtain the inverse
of E ,

E−1 =
√

z2 + |x − y|2
{

I − (x − y) ⊗ [−κ(x − y) + zD�]
z[√z2 + |x − y|2 + κz + (x − y)·D�]

}
.

As in the previous cases the condition A1* will hold if either h′(z) < 0, (that
is det E > 0), or h′(z) > 0, (that is det E < 0), which again follows from the
equivalent quadratic structure of the equation Q(x, y, z) = q.

(iii) Further remarks. It is interesting to note that when we pass to the dual functions
in the above examples the monotonicity of A is reversed but, as shown in general
in [16], the condition A3w is preserved. In particular for the dual in the reflection
case (4.5) we have from [16],

g∗(x, y, u) = 1

u − �(y) +√(u − �(y))2 + |x − y|2 , (4.24)

while in the refraction cases (4.12), a simple calculation gives

g∗(x, y, u) = +, (−)

(
κ(u − �(y)) +

√
(u − �(y))2 + |x − y|2

)
, (4.25)

for κ < 1, (κ > 1) respectively. Note that by replacing z by −1/z in (4.5), the
dual function in (4.24) is the limit as κ → 1 of the case κ > 1 in (4.25).

Alsowenote thatwhenweconsider instead the complementary ellipticity condition,
D2u − A(·, u, Du) < 0, in Eq. (1.1), condition A3w is replaced by substituting −A
for A but conditions A4w and A4*w are maintained. Thus in the above examples we
need to replace Z by−Z in the convexity conditions, (and interchange the inequalities
u < g0, u > g0), to fulfil our hypotheses.

As well as the monotonicity properties, another interesting ingredient of the above
examples is that we cannot infer, as in the optimal transportation examples mentioned
in the previous section, that bounded domains are A-bounded so second derivative
estimates do not follow from the relevant arguments in [14,20].

4.3 Final remarks

The existence of locally smooth solutions to the second boundary value problem for
generated prescribed Jacobian equations is treated in [16] under conditions A1, A2,
A1*, A3 and A4w. We remark that there that the montonicity condition A4w may
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also be replaced by condition A4* for local regularity. In [17] and ensuing work the
monotonicity condition A4w is relaxed and local boundary regularity is also consid-
ered, yielding an alternative approach to that in [10] which deals with estimates and
existence of globally smooth solutions. We remark that the strict monotonicity of Z ,
in our examples in Sect. 4.2, also follows from a general formula in [17],

Zu = det gx,y

gz det E
.

In a follow up work [3] we will use our estimates here to extend the global theory
when A3 is weakened to A3w, without A-boundedness conditions, as well as further
develop the optics examples.We also develop an alternative duality approach to second
derivative estimates when the matrix A depends only on u and p. As already noted in
[20], this situation is much simpler in two dimensions.

Finally we wish to thank the anonymous referee of this paper for their careful
checking and useful comments.
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