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Abstract A function f defined on N is said to be a quasi polynomial if, f (αn + r)

is a polynomial in n for each r = 0, 1, . . . , α − 1, where α is a positive inte-
ger. In this article, we show that the below given restricted partition functions are
quasi polynomials: (i) a(n, k)-number of partitions of n with exactly k parts and
least part being less than k, (ii) aq(n, k)-number of distinct partitions (partitions
with distinct parts) of n with exactly k parts and least part being less than k, (iii)
Le(n, k, m)-number of partitions of n with exactly k parts and m least parts, (iv)
La(n, k, 1)-number of partitions of n with exactly k parts and one largest part and (v)
d(n, k)-number of partitions of n with exactly k parts and difference between least
part and largest part exceeds k − 2. Consequently, following estimates were derived:
(i)

a(n, k) ∼ nk−2

(k − 2)!2

(ii)

aq(n, k) ∼ nk−2

(k − 2)!2
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(iii)

Le(n, k, m) ∼ (k − 1)!
(k − m)!(k − m − 2)!nk−m−1

(iv)

La(n, k, 1) ∼ nk−1

k!(k − 1)!
(v)

d(n, k) ∼ nk−1

k!(k − 1)!
Keywords Restricted partitions · Quasi polynomials · Estimates
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1 Introduction

A function f defined onN is said to be a quasi polynomial if, f (αn+r) is a polynomial
in n for each r = 0, 1, . . . , α − 1, where α is a positive integer. In such case, α is
called quasi period of f and we term f (αn + r) as constituent polynomial of f .

The notion of quasi polynomial seems to be subsist from the time of Bell [1],
who proved that the partition function, pA(n)-number of partitions of n with parts
from a finite set of positive integers A, is a quasi polynomial with each constituent
polynomial being of degree at most |A|−1 and quasi period being a positive common
multiple of elements of A. This fact was also proved recently by Rødseth and Sellers
[5].

In this article, we consider partition functions mentioned in the following definition
and we show that they are quasi polynomials. This characteristic found in defined
functions is impetus in deriving its estimates. The method followed in this article for
deriving estimates can be adopted for the other functions which are not considered in
this article provided they meet the requisite for derivation.

Definition 1.1 We recall that, a partition of a positive integer n is a non increasing
sequence of positive integers say π = (a1, a2, . . . , ak) such that

∑k
i=1 ai = n. Each

ai is called a part of the partition π . If ai �= a j ∀i �= j , then π is said to be a
distinct partition. The partition function, p(n), counts the number of partitions of n.
The enumerative function which counts a class of partitions that have a fixed number
of parts is usually called a restricted partition function.

(i) The function a(n, k) is defined to be the number of partitions of n with exactly k
parts and least part being less than k, when n ≥ k. We define a(n, k) = 0, when
n < k.

(ii) The function aq(n, k) is defined to be the number of distinct partitions of n with
exactly k parts and least part being less than k, when n ≥ k(k+1)

2 . We define

aq(n, k) = 0, when n <
k(k+1)

2 .
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Estimates of five restricted partition functions 3

(iii) The function Le(n, k, m) is defined to be the number of partitions of n with exactly
k parts and m least parts, when n ≥ 2k − m. And Le(n, k, m) = 0 otherwise.

(iv) The function La(n, k, M) is defined to be the number of partitions of n with
exacly k parts and M largest parts, when n ≥ M + k. And La(n, k, M) = 0
otherwise.

(v) The function d(n, k) is defined to be the number of partitions of n with exactly k
parts and difference between least part and largest part exceeds k − 2.

2 Estimates

In this section, we derive estimates for the aforementioned functions.

2.1 Pattern of derivation

First, we paraphrase the current method of calculating estimate. If f is a quasi polyno-
mialwith quasi periodα and each constituent polynomial say f (αl+r) is a polynomial
in l of degree k having identical leading coefficient say c(k), then

lim
l→∞

f (αl + r)

(αl + r)k
= c(k)

αk
∀r = 0, 1, . . . , α − 1.

Since the limit is valid for each r = 0, 1, . . . , α − 1, we have

lim
n→∞

f (n)

nk
= c(k)

αk
.

Equivalently,

f (n) ∼ nkc(k)

αk
.

In order to make use of the above limit process, we need to show that the leading
coefficients of all constituent polynomials of the functions that we have considered
are identical.

2.2 Main results

Theorem 2.1 We have

(i)

aq(n, k) ∼ nk−2

(k − 2)!2 (2.1)

(ii)

a(n, k) ∼ nk−2

(k − 2)!2 . (2.2)
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Proof As first step of this proof, we establish the following relations:

(i)

q(n, k) = q(n − k, k) + q(n − k, k − 1) when n ≥ k(k + 1)

2
, (2.3)

where q(n, k) is defined to be the number of distinct partitions of n with exactly
k parts.

(ii)

aq(n, k) =
k−1∑

r=1

q(n − rk, k − 1) when n ≥ 3k(k − 1)

2
. (2.4)

(iii)

a(n, k) = aq

(

n + k(k − 1)

2
, k

)

when n ≥ k. (2.5)

Let qn,k,1 and qn,k,≥2, respectively, be the number of distinct partitions of n with
exactly k parts and least part being one, and the number of distinct partitions of n with
exactly k parts and least part being greater than one. We notice that, the mapping

(a1, a2, . . . , ak) → (a1 − 1, a2 − 1, . . . , ak − 1)

establishes one to one correspondence between the following two sets:

• The set of all distinct partitions of n with exactly k parts and least part being greater
than one.

• The set of all distinct partitions of n − k with exactly k parts.

Thus, we have qn,k,≥2 = q(n − k, k). Further, we notice that, the mapping

(a1, a2, . . . , ak−1) → (a1 + 1, a2 + 1, . . . , ak−1 + 1, 1)

establishes one to one correspondence between the following two sets:

• The set of all distinct partitions of n − k with exactly k − 1 parts.
• The set of all distinct partitions of n with exactly k parts and least part being one.

Thus, we have qn,k,1 = q(n − k, k − 1). Since q(n, k) = qn,k,1 + qn,k,≥2; we get the
relation (2.3).

We notice that, the mapping

(a1, a2, . . . , ak−1, ak) → (a1 + k − 1, a2 + k − 2, . . . , ak−1 + 1, ak) (2.6)

establishes one to one correspondence between the following two sets:

• The set of all partitions of n with exactly k parts and least part being less than k.
• The set of all distinct partitions of n + (k−1)k

2 with exactly k parts and least part
being less than k.

Thus the relation (2.5) follows.

123



Estimates of five restricted partition functions 5

Let r be a positive integer such that r ≤ k − 1 and let qr (n, k) be the number of
distinct partitions of n with exactly k parts and least part being r . We notice that, the
mapping

(a1, a2, . . . , ak−1, r) → (a1 − r, a2 − r, . . . , ak−1 − r)

establishes one to one correspondence between the following sets:

• The set of all distinct partitions of n with exactly k parts and least part being r .
• The set of all distinct partitions of n − rk with exactly k − 1 parts.

provided n ≥ (k−1)k
2 + (k − 1)k. Accordingly, we have the relation qr (n, k) = q(n −

rk, k − 1). Since aq(n, k) = ∑k−1
r=1 qr (n, k); the relation (2.4) follows.

Since q(n, 1) = 1 ∀n ≥ 1, from the relation (2.3) it follows inductively that: q(k!l+
r, k) is a polynomial of degree k − 1 for every r = 0, 1, . . . , k! − 1. Consequently,
from the relations (2.4) and (2.5) it follows that aq(k!l + r, k) and a(k!l + r, k) are
polynomials, each of which is of degree k − 2 for every r = 0, 1, 2, . . . , k! − 1.

Now, we show that the leading coefficient of q(k!l + r, k) is k!k−2

(k−1)! . We adopt proof
by induction on k. Since the leading coefficient of the polynomial q(1!l + 0, 1) and
q(1!l + 1, 1) is 1, the aforesaid assertion is true for k = 1.

Assume that, the assertion is true up to some k − 1 ≥ 1. Let ak−1 be the leading
coefficient of q(k!l + r, k) for every 0 ≤ r ≤ k! − 1. We notice that, the leading
coefficient of q(k!l + r, k) − q(k!(l − 1) + r, k) is (k − 1)ak−1. By the relation (2.3),
we have

q(k!l + r, k) − q(k!(l − 1) + r, k) =
(k−1)!∑

i=1

q((k − 1)!(kl + qi ) + ri , k − 1).

Here uniqueness of (ri , qi ) and the bound 0 ≤ ri ≤ (k − 1)! − 1 follows from the
relation r − ik = (k − 1)!qi + ri as consequence of Division algorithm. By the
induction assumption, we have that: the leading coefficient of each of the polynomial

in the right side of the above equality is (k−1)!k−3kk−2

(k−2)! . Thus, the leading coefficient of

q(k!l + r, k) − q(k!(l − 1) + r, k) is k!k−2

(k−2)! . This gives ak−1 = k!k−2

(k−1)! as desired.
From the relation (2.4) it follows that

aq(k!l + r, k) =
k−1∑

i=1

q((k − 1)!(kl + qi ) + ri , k − 1)

Here too uniqueness of (ri , qi ) and the bound 0 ≤ ri ≤ (k − 1)! − 1 follows from
the relation r − ik = (k − 1)!qi + ri as consequence of Division algorithm. Thus, the

leading coefficient of aq(k!l + r, k) is (k−1)kk−2(k−1)!k−3

(k−2)! = (k − 1)2kk−2(k − 1)!k−4.
Consequently, from the relation (2.5) it follows that the leading coefficient of a(k!l +
r, k) is (k − 1)2kk−2(k − 1)!k−4.

Accordingly, the estimate of both a(n, k) and aq(n, k) is nk−2(k−1)2kk−2(k−1)!k−4

k!k−2 =
nk−2

(k−2)!2 , as desired. 	
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Remark 2.2 (i) In the course of proof it is shown that, the leading coefficient of the

constituent polynomial q(k!l + r, k) is k!k−2

(k−1)! for every r = 0, 1, . . . , k!−1. Since
each constituent polynomial is of degree k − 1, one can get the following estimate
for q(n, k):

q(n, k) ∼ nk−1

k!(k − 1)! . (2.7)

(ii) Using the following easily verifiable identity:

p(n, k) = q(n + k(k − 1)

2
, k),

one can see that, the leading coefficient of the constituent polynomial p(k!l+r, k)

is k!k−2

(k−1)! for every r = 0, 1, . . . , k! − 1. Consequently, we have

p(n, k) ∼ nk−1

k!(k − 1)! . (2.8)

This estimate is a well established one and number of proofs have been obtained
for this. From the generating functions for p{1,2,...,k}(n) and p(n, k), one can see
that:

p{1,2,...,k}(n) = p(n − k, k). (2.9)

It is well documented that

pA(n) ∼ n|A|−1

(|A| − 1)!∏a∈A a
(2.10)

when A is a finite set of positive integers with gcd(A) = 1. Number of proofs
have been obtained for the latter estimate (see [3,4,6–8]). From the relation (2.9),
we see that the estimate (2.8) is a particular case of the estimate (2.10).

(iii) If we define a(n, k) to be the number of partitions of n with exactly k parts and
least part greater than or equal to k, then we have:

p(n, k) = a(n, k) + a(n, k).

Since p(k!l+r, k) is a polynomial of degree k−1 and a(k!l+r, k) is a polynomial
of degree k−2 for every r = 0, 1, . . . , k!−1, by justmentioned relation it follows

that a(k!l + r, k) is a polynomial of degree k − 1 with leading coefficient k!k−2

(k−1)!
for every r = 0, 1, . . . , k! − 1. Consequently,

a(n, k) ∼ nk−1

k!(k − 1)! . (2.11)

In similar fashion, if one defines aq(n, k) to be the number of distinct partitions
of n with exactly k parts and least part being greater than or equal to k, then it
follows that:
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Estimates of five restricted partition functions 7

aq(n, k) ∼ nk−1

k!(k − 1)! . (2.12)

(iv) In [2] the partition function, u(n, k), is defined to be the number of uniform
partitions of n with exactly k parts, and it is shown that:

u(n, k) =
∑

d|n, d|k
q

(
n

d
,

k

d

)

.

From this, we have

q(n, k) ≤ u(n, k) ≤ p(n, k).

As we have q(n, k) ∼ nk−1

k!(k−1)! and p(n, k) ∼ nk−1

k!(k−1)! , it follows that:

u(n, k) ∼ nk−1

k!(k − 1)! .

Theorem 2.3 We have

Le(n, k, m) ∼ (k − 1)!
(k − m)!(k − m − 2)!nk−m−1 (2.13)

Proof First, we show that

Le(n, k, m) = Le(n − k, k, m) + p(n − k, k − m). (2.14)

We denote a partition say π of n by π = (aα1
1 · · · aαr

r )when there is αi parts of size ai ;
(i = 1, 2, . . . , r). Let π = (aα1

1 aα2
2 · · · aαr

r ) be a partition of n with α1 + · · ·+αr = k
and αr = m, that is, π be a partition of n with exactly k parts and m least parts. Now,
we enumerate such partitions by considering two cases.

Case (i) Assume ar > 1. We notice that, the mapping:

(aα1
1 · · · aαr

r ) → (
(a1 − 1)α1 · · · (ar − 1)αr

)

is a bijection between the following sets:

• The set of partitions of n with exactly k parts, m least parts and least part being
greater than 1.

• The set of partitions of n − k with exactly k parts and m least parts.

We see that, the cardinality of the latter set is Le(n − k, k, m).

Case (ii) Assume ar = 1. We notice that, the mapping:

(aα1
1 · · · aαr

r ) → (
(a1 − 1)α1 · · · (ar−1 − 1)αr−1

)

is a bijection between the following sets:
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8 A. D. Christopher, M. D. Christober

• The set of partitions of n with exactly k parts, m least parts and least part being
equal to 1.

• The set of partitions of n − k with exactly k − m parts.

We see that, the cardinality of the latter set is p(n −k, k −m). Thus the relation (2.14)
follows.

From the relation (2.14), one can get inductively that: Le(k!l +r, k, m) is a polyno-
mial of degree k−m−1 for every r = 0, 1, . . . , k!−1. Now, we prove that, the leading

coefficient of Le(k!l + r, k, m) is (k−1)!k!k−m−1

(k−m)!(k−m−2)! for every r = 0, 1, . . . , k!− 1. From
the relation (2.14) it follows that:

Le(k!l + r, k, m) − Le(k!(l − 1) + r, k, m) =
(k−1)!∑

i=1

p(k!l + r − ik, k − m)

=
(k−1)!∑

i=1

p

(

(k − m)!
(

k!
(k − m)! l + qi

)

+ ri , k − m

)

,

where ri and qi were determined uniquely by the relation:r − ik = (k − m)!qi +
ri ; uniqueness of (ri , qi ) and boundedness of ri : 0 ≤ ri ≤ (k − m)! − 1
follows by Division algorithm. Then from part(ii) of Remark 2.2, it follows
that, the leading coefficient of Le(k!l + r, k, m) − Le(k!(l − 1) + r, k, m) is

(k − 1)! (k−m)!k−m−2

(k−m−1)!
k!k−m−1

(k−m)!k−m−1 . Consequently, the leading coefficient of Le(k!l +
r, k, m) is (k − m − 1)(k − 1)! (k−m)!k−m−2

(k−m−1)!
k!k−m−1

(k−m)!k−m−1 , which on simplification gives
(k−1)!k!k−m−1

(k−m)!(k−m−2)! . Since Le(k!l+r, k, m) is a polynomial of degree k−m−1 for each r =
0, 1, . . . , k! − 1, we get the estimate of Le(n, k, m) as (k−1)!k!k−m−1

(k−m)!(k−m−2)!k!k−m−1 nk−m−1

= (k−1)!
(k−m)!(k−m−2)!n

k−m−1. The proof is now completed. 	

It is not hard to see that:

q(n, k) ≤ d(n, k) ≤ p(n, k).

Since q(n, k) ∼ nk−1

k!(k−1)! and p(n, k) ∼ nk−1

k!(k−1)! , one can get the following estimate:

d(n, k) ∼ nk−1

k!(k − 1)! .

Also, we see that:

q(n, k) ≤ La(n, k, 1) ≤ p(n, k).

Again, since q(n, k) ∼ nk−1

k!(k−1)! and p(n, k) ∼ nk−1

k!(k−1)! , one can get the following
estimate:

La(n, k, 1) ∼ nk−1

k!(k − 1)! .
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Estimates of five restricted partition functions 9

Though estimates for d(n, k) and La(n, k, 1) has been obtained immediately, it is the
core objective of this article to show that d(n, k) and La(n, k, 1) are quasi polynomials.
We accomplish the same and thereby obtain the above mentioned estimates.

Theorem 2.4 We have

d(n, k) ∼ nk−1

k!(k − 1)! . (2.15)

Proof For instance, we call the partitions that d(n, k) enumerates as deviated parti-
tions. First, we prove the relation:

d(n, k) = d(n − k, k) + p(n − 1, k − 1) (2.16)

when n ≥ k(k − 1) + 1.
Let π = (a1, a2, . . . , ak) be a deviated partition of n with exactly k parts. Now, we

enumerate such partitions.

Case (i) Assume ak > 1. We notice that, the mapping

(a1, . . . , ak) → (a1 − 1, . . . , ak − 1)

establishes one to one correspondence between the following sets:

• The set of all deviated partitions of n with exactly k parts and least part being greater
than one.

• The set of all deviated partitions of n − k with exactly k parts.

Case (ii) Assume ak = 1. Let π = (a1, . . . , ak) be a partition of n with ak = 1. We
note that: if n ≥ k(k − 1) + 1 then a1 ≥ k. Consequently, π is a deviated partition of
n when n ≥ k(k − 1) + 1. It is not hard to see that enumeration of such partitions is
p(n − 1, k − 1). Whence the relation (2.16).

From the relation (2.16) one can have the following relation:

d(k!l + r, k) − d(k!(l − 1) + r, k) =
(k−1)!−1∑

i=0

p(k!l − ik − 1 + r, k − 1) when l ≥ 2

=
(k−1)!−1∑

i=0

p ((k − 1)!(kl + qi ) + ri , k − 1),

where (qi , ri ) satisfying the inequality 0 ≤ ri ≤ (k−1)!−1were uniquely determined
from the relation (k−1)!qi +ri = r −ik−1. From the above equality one can calculate

the leading coefficient of d(k!l +r, k) to be k!k−2

(k−1)! for every r = 0, 1, . . . , k!−1. Since
d(k!l + r, k) is a polynomial of degree k − 1 for every r = 0, 1, . . . , k! − 1, we get

the estimate of d(n, k) as nk−1k!k−2

k!k−1(k−1)! = nk−1

k!(k−1)! . This is what we wish to prove. 	

Theorem 2.5 We have

La(n, k, 1) ∼ nk−1

k!(k − 1)! (2.17)
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10 A. D. Christopher, M. D. Christober

Proof We define La(n, k, M) to be the number of partitions of n with exactly k parts
and M largest parts. We show that

La(n, k, M) = La(n − k, k, M) + La(n − 1, k − 1, M).

Let π = (a1, . . . , ak) be a partition of n with exactly k parts and M largest parts. Now,
we count such partitions.

Case (i) Assume ak > 1. In this case, the mapping

(a1, . . . , ak) → (a1 − 1, . . . , ak − 1)

establishes one to one correspondence between the following sets:

• The set of all partitions of n with k parts, M largest parts and least part being greater
than 1.

• The set of all partitions of n − k with k parts and M largest parts.

We see that, the cardinality of the latter set is La(n − k, k, M).

Case (ii) Assume ak = 1. In this case, the mapping

(a1, . . . , ak) → (a1, . . . , ak−1)

establishes one to one correspondence between the following sets:

• The set of all partitions of n with k parts, M largest parts and least part being one.
• The set of all partitions of n − 1 with k − 1 parts and M largest parts.

Since cardinality of the latter set is La(n − 1, k − 1, M), above recurrence relation
follows.

In this proof, we are concerned with the case M = 1. We see that La(n, 1, 1) = 1,
La(2l, 2, 1) = q(2l, 2) = l − 1 and La(2l + 1, 2, 1) = q(2l + 1, 2) = l. Thus, one
can get inductively that: La(n, k, 1) is a quasi polynomial of degree k − 1 with quasi
period k!. We show that the leading coefficient of the polynomial La(k!l + r, k, 1) is
k!k−2

(k−2)! for every r = 0, 1, . . . , k!− 1. By previous observation, the aforesaid assertion
is true for k = 1, 2.

Assume that, the assertion is true up to some k − 1 ≥ 1. Let ak−1 be the leading
coefficient of La(k!l + r, k, 1) for every 0 ≤ r ≤ k! − 1. We notice that, the leading
coefficient of La(k!l + r, k, 1) − La(k!(l − 1) + r, k, 1) is (k − 1)ak−1. By above
recurrence relation, we have

La(k!l + r, k, 1) − La(k!(l − 1) + r, k, 1)

=
(k−1)!−1∑

i=0

La((k − 1)!(kl + qi ) + ri , k − 1, 1),

where (qi , ri ) were determined uniquely from the relation (k − 1)!qi + ri = r − 1− i
with 0 ≤ ri ≤ (k − 1)! − 1. By the induction assumption, the leading coefficient of
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Estimates of five restricted partition functions 11

each of the polynomial in the right side of the above equality is (k−1)!k−3kk−2

(k−2)! . Thus the

leading coefficient of La(k!l + r, k, 1) − La(k!(l − 1) + r, k, 1) is k!k−2

(k−2)! . This gives
ak−1 = k!k−2

(k−1)! .
Consequently, the estimate of La(n, k, 1) is nk−1k!k−2

(k−1)!k!k−1 = nk−1

k!(k−1)! , as desired. 	
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