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Abstract We propose a braided approach to zeta-functions in q-deformed geome-
try, defining ζt for any rigid object in a ribbon braided category. We compute ζt (C

n)

where C
n is viewed as the standard representation in the category of modules of

Uq(sln) and q is generic. We show that this coincides with ζt (C
n) where C

n is the
n-dimensional representation in the category ofUq(sl2)modules and that this equality
of the two braided zeta functions is equivalent to the classical Cayley–Sylvester for-
mula for the decomposition into irreducibles of the symmetric tensor products S j (V )

for V an irreducible representation of sl2. We obtain functional equations for the asso-
ciated generating function. We also discuss ζt (Cq [S2]) for the standard q-deformed
sphere.
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380 S. Majid, I. Tomašić

1 Introduction

The analogue of the Riemann hypothesis in the case of the zeta function of an algebraic
variety over a finite field was proven by Deligne in [2] and [3], as a culmination of
a body of work developed by the Grothendieck school. However, in quantum group
theory there are suggested links and analogies between algebraic geometry over finite
fields and q-deformations in characteristic zero both generically and at roots of unity.
There are also ‘reduced’ finite-dimensional but noncommutative versions of algebraic
varieties which capture some of the classical geometry much as working over Fq .
This suggests that a q-deformed Riemann hypothesis based on q-deformed geometry
should be possible to formulate and prove. The present work is intended as a step in
this direction. Other key ingredients such as q-complex geometry will be considered
elsewhere, following the model of q-deformed CP1 in [13]. Such a quantum groups
approach should not be confused with a rather more sophisticated approach of Connes
using operator algebra methods [1].

Let Schk be the category of algebraic schemes over a fixed ground field k and let S
be a commutative ring with identity. The motivic ζ -function is defined with reference
to a ‘weak motivic measure’ on Schk, meaning a map �·� : Schk → S such that [9]:

(1) for a finite scheme X , �X� = |X |;
(2) if X � Y , then �X� = �Y �;
(3) �X

∐
Y � = �X� + �Y �;

(4) �X × Y � = �X��Y �.

In the literature one also considers stronger notions, where condition (3) is replaced
by an ‘excision’ axiom and the last requirement can be strengthened by requiring that
if f : X → Y is a map such that for every y ∈ Y , � f −1(y)� = μ, then �X� = μ�Y �.
However, for our purposes the listed features are sufficient.

Given a fixed weak motivic measure �·� on Schk, for every scheme X one defines
(following Kapranov [8]):

ζt (X) =
∑

j

�X ( j)�t j ∈ S[[t]],

where X ( j) is the j-th symmetric power of X , i.e., X ( j) = X j/S j and the action of
S j is permutation of the factors of the direct product.

If we specialise to the case where k = Fq is a finite field, and �X� = |X (Fq)| is
the number of points over the ground field of a given variety, we recover the classical
Hasse–Weil zeta function. However, the motivic definition is the one which we shall
consider as this is rather more general. We also recall for orientation that for An , Pn

respectively the affine and projective spaces of dimension n and k = Fq ,

ζt (A
n) =

(
1

1 − qt

)n

, ζt (P
n) =

n∏

i=0

1

1 − qi t
.

Now let us consider how the motivic version might be generalised for noncommu-
tative geometry. Instead of a variety X we might work with an algebra A, possibly
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noncommutative but regarded as if a coordinate ring.We should have a notion of ‘finite
scheme’ which may be a bit more than merely finite-dimensional. Then a ‘weak moti-
vicmeasure’would be amap �·� from a reasonable class of algebras to a (commutative)
ring S such that

(1) if A ‘finite’, �A� = dim(A);
(2) if A � B, then �A� = �B�;
(3) �A ⊕ B� = �A� + �B�;
(4) �A ⊗ B� = �A��B�.

In place of X j we could consider A⊗ j as an algebra and in place of X ( j) we could
define A( j) = (A⊗ j )S j ⊂ A⊗ j as invariant subalgebra under S j . Here S j acts by
permutation of tensor factors of A⊗ j and one can check that this action respects the
product of A⊗ j so that this makes sense, even when A is noncommutative. Then

ζt (A) =
∞∑

j=0

t j �A( j)�. (1.1)

For a finite-dimensional algebra we could consider �A� = dim(A) as the dimension
of the left-regular representation, but in this case ζt (A) = (1/(1 − t))dim(A) indepen-
dently of the algebra structure of A. The issue then is how to define �·�more generally.
In noncommutative geometry the ⊗ of algebras would also need to be an appropriate
one and might be more general than the usual tensor product or completion thereof.

Our proposal in this paper is to go down a different route to ‘counting points’,
namely to use a version of the categorical rank or ‘braided dimension’ dim of an
object in a braided category to measure its ‘size’. Here dim(Cq [G]) was used in [15]
to ‘count’ the points in the Drinfeld–Jimbo-type quantum group coordinate algebras
Cq [G], with results related to L-functions in number theory (more precisely, this was
done in terms of the quantum enveloping algebras Uq(g)). The notion dim, however,
is not multiplicative and we propose, in the case of a ribbon braided category, to use
a variant dim′(A) which is. Thus we take �A� = dim′(A) on a reasonable class of
objects. This may include a sum of finite-dimensional (rigid) objects in which case
we extend dim′ additively and, in q-deformed examples with q generic will obtain
a powerseries in q (typically a rational function singular at q = 1). We also have in
mind a setting where q is a root of unity and the coordinate algebra A can be finite-
dimensional. Computations in the root of unity setting are deferred to a sequel while
in this note q is always taken to be generic. More details are in Sect. 3.

Next we define A( j) in a way that makes sense in the ribbon braided category for
an object A. Remembering our motivation, we define A( j) essentially as the invari-
ant subobject of A⊗ j under all adjacent braidings. More precisely, for q-deformation
quantum groups we replace the role of the symmetric group S j by a q-Hecke alge-
bra or its appropriate variant. We then define ζt (A) as before by (1.1). Finally, if the
category has direct sums and if we have the λ-ring property

(A ⊕ B)( j) ∼=
∑

k,l≥0;k+l= j

A(k) ⊗ B(l) (1.2)

123



382 S. Majid, I. Tomašić

as objects then multiplicativity of the braided dimension dim′ implies that

ζt (A ⊕ B) = ζt (A)ζt (B).

This holds in our q-deformed examples for generic q because the tensor products and
direct sums have the same form as classically.

It is still the case that our constructions are for an object A in a ribbon categorywith-
out requiring an algebra structure, but if both structures exist they will be connected
through functoriality. Our point of view is that the usual ζ -function has a dependence
that can be viewed as factoring through certain geometrical constructions on the vari-
ety and it is envisaged that some of that is now reflected in the q-deformed case as an
object in a ribbon braided category, even if the variety itself (expressed in an algebra
structure on A) is not being directly referenced. It is also possible to interpret the
braided ζ -function in the q-deformed case for generic q as a braided Hilbert series.
We will explain this in Sect. 5.

In this note we show that our approach is ‘reasonable’ by computing ζt (C
n) where

C
n will be regarded in two different ribbon braided categories. On the one hand we

look at the braided finite geometry of ‘n points’ in the sense A = C
n equipped with

a Uq(sln)-induced solution of the braid relations, and on the other hand the same but
equipped with a Uq(sl2)-solution. The relevant braiding matrices are different yet we
find, remarkably, the same resulting ζt . Our result is, moreover, similar to the classical
ζ -function for Pn cited above.

We view the remarkable equality here is indicating that the ζ -function is invariant
under a certain ‘coherence of q-deformation’ between different quantum groups in
the same family. In our case it is implied by (and can be used to deduce) the classi-
cal Cayley-Sylvester formula for the classical decomposition into irreducibles of the
symmetric tensor powers S j (Vm) for all j , where Vm is the m + 1-dimensional irre-
ducible representation of sl2. Here our ζt obey functional equations which we interpret
as functional equations for the the q-generating functions cm(t, q) of the multiplic-
ities of the irreducibles in all S j (Vm). This provides a new way of computing these
multiplicities which may be of interest in classical representation theory.

For completeness, we discuss the definition by similar methods of ζt (Cq [S2]), i.e.
for the quantum sphere coordinate algebra. The issue here is the ordering of infinite
sums and we compute one such ordering to degree t3.

2 Classical ζ -functions for finite sets

We start with some elementary remarks in the finite case. Let X be a finite set. The
number of orbits of S j acting on X × · · · × X is the number of partitions of j into
|X | parts because for each element of X we have some non-negative integer for the
number of times it occurs and a total of j occurrences. This number of partitions is(

j + |X | − 1
|X | − 1

)
which gives

ζt (X) =
(

1

1 − t

)|X |
. (2.1)
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We see that the answer has the same as for an affine space of dimension n = |X | and
q = 1 (in keeping with a certain philosophy about geometry over F1).

Note that X j has points with nontrivial stabiliser under the action of S j . If we ignore
these points then the ‘regular points’ of X ( j) are the orbits of j-tuples with distinct
entries. These are

( |X |
j

)
in number. Hence

ζ
regular
t (X) = (1 + t)|X | = [2]|X |

t

where we use the notation [m]t = (1 − tm)/(1 − t) = 1 + t + · · · + tm−1. This
compares with the full number of orbits including degenerate ones above which in
this notation is [∞]|X |

t .
Now let us look at this from an algebraic point of view over a field k. Then n points

could be viewed as corresponding to A = kn (or any other n-dimensional algebra).
We are interested only in the dimension of the vector space

(A⊗ j )S j

of symmetric tensors. At least if k has characteristic zero, this space has dimension(
dim(A) + j − 1

j

)
because it can be identified with the degree j part of the symmetric

algebra S j (A). Thus, at least in this case

ζt (A) =
(

1

1 − t

)dim(A)

can be viewed as the Hilbert series of S(A) and is in accord with (2.1). This serves as
a model for what follows.

3 Braided dimension

Let C be a braided category and let V be a rigid object, i.e. with (say) left dual. This
means morphisms evV : V ∗ ⊗ V → 1 and coevV : 1 → V ⊗ V ∗ obeying some
usual axioms. Here 1 is the identity object with respect to the ⊗ product. Typically
the category will be k-linear and 1 = k and in this case if {ea} is a basis of V and
{ f a} a dual basis then we may take coevV (λ) = λ

∑
a ea ⊗ f a , while evV is the usual

evaluation. The braiding means that for any two objects V, W there is an isomorphism
�V,W : V ⊗ W → W ⊗ V obeying the usual coherence and functoriality properties
(as a natural transformation ⊗ → ⊗op). We refer to [14, Chap. 9] for an introduction.
In this case there is a natural ‘rank’ or ‘braided dimension’

dim(V ) = evV ◦ �V,V ∗ ◦ coevV

as a map k → k, which we view as an element of k acting by multiplication. There is
an associator for the bracketting of tensor products which is omitted here but should
be understood (Mac Lane’s coherence theorem says that we can insert the associator
as needed for compositions to make sense and different ways to do this will give the
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same net result). One could use this braided dimension but it is not multiplicative when
the category is strictly braided.

Next we recall that a ribbon structure on a rigid braided category is a natural iso-
morphism νV : V → V (a coherent collection of isomorphisms) such that

νV ⊗W = �−1
V,W ◦ �−1

W,V ◦ (νV ⊗ νW ), ν1 = id, νV∗ = (νV)∗.

This allows the formation of right duals as well as the left ones assumed, which is
relevant to applications in knot theory, but also allows the formation of dim′ defined
as a braided trace Trace of ν in [14]

dim′(V ) = Trace(νV ) = evV ◦ �V,V ∗ ◦ (νV ⊗ id) ◦ coevV.

It is shown in [14] that this is multiplicative for ⊗. When the category has direct sums
we again extend dim′ to sums of rigid objects and we define

�A� = dim′(A).

For the standard quantum groups Uq(g) associated to complex simple Lie alge-
bras [4] the category of finite-dimensional highest weight modules is a ribbon rigid
braided category with direct sums. There are different formulations but we will work
with generic q over k = C and everything k-linear. For generic q the objects, their
tensor products and their decompositions into irreducibles follow the same pattern
up to isomorphism as in the classical case and we will make use of this. When we
consider infinite sums we will be working in a slightly larger category. For orienta-
tion purposes, for generic q the standard j + 1-dimensional representations Vj of the
quantum group Uq(sl2) are labelled as for the corresponding sl2-representations by
non-negative integers j . In these conventions,

dim(Vj ) = q− j ( j+2)
2 dim′(Vj ); dim′(Vj ) = q j+1 − q−( j+1)

q − q−1 = (dim(Vj ))q

where (n)q = (qn − q−n)/(q − q−1) is the ‘symmetric q-integer’ version of an
integer n.

As a concrete application of these ideas to ‘counting points’, consider Cq [S2]
defined as a U (1)-invariant subalgebra of Cq [SU2] under right translation (in the
sense of a Uq(su2)-module restricted to the maximal torus), see [13,14] for an expo-
sition. The notation comes from the compact real form, but we will not be concerned
about this explicitly and will work at the level ofUq(sl2)modules. It is also known for
generic q that there is a Peter-Weyl decompositionCq [SU2] = ⊕ j≥0Vj ⊗V ∗

j with left
and right translations on Vj , V ∗

j respectively, following the same form as classically.

From this it follows that Cq [S2] = ⊕ j≥0, j∈2ZVj since only V ∗
j for even j have an

invariant element under the maximal torus. From this one may readily compute that

dim(Cq [S2]) = 1

1 − q−2 , dim′(Cq [S2]) = 2

(1 − q−2)(1 − q2)
.
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Other q-deformation quantum groups and their homogeneous spaces can be treated
similarly. Although we are not aware of a formal treatment of this issue, one typically
has reasonable functions q in the numerator (such as L-functions [15]) and a pole at
q = 1.

Now let A be an object in a k-linear braided category. In this case we have an
action of the braid group B j on A⊗ j via the braiding � between adjacent copies. The
composition of these� generate a subalgebra Hj of the endomorphisms of A⊗ j . This
subalgebra has an action on A⊗ j and we define

A( j) = (A⊗ j )Hj .

using an appropriate normalisation of the action of the generators in the strictly braided
case. When A is an algebra and the category symmetric we obtain a subalgebra of the
braided tensor product A⊗ j , but in general we will not. When our braided category is
ribbon we define

ζt (A) =
∞∑

j=0

t jdim′(A( j)). (3.1)

4 Braided zeta function of Cn

This section contains the main result of the paper, a computation of ζt (C
n) in the

ribbon braided category of finite-dimensional Uq(sln)-modules, i.e. in some sense for
n ‘braided points’. We also find that this coincides with ζt (C

n) in the ribbon category
of finite-dimensional Uq(sl2)-modules, where we regard C

n = Vn−1 and we relate
this to classical formulae in the representation theory for sl2.

For n = 1 the quantum group is trivial as are all (C⊗ j )S j = C; clearly ζt (C) =
1/(1 − t) as for a single point.

For n = 2 the classical picture is ((C2)⊗ j )S j ∼= S j (C2)which has dimension j +1
and is given by the polynomials in x, y of degree j . These are known to form the
irreducible j +1-dimensional representation Vj . It is also known that dimensions and
multiplicities do not change under deformation for generic q; S j becomes the standard
q-Hecke algebra Hq, j and ((C2)⊗ j )Hq, j is a Uq(sl2)-module of the same dimension
as classically, i.e. Vj now as aUq(sl2)-module. Up to a normalisation the action of the
abstract q-Hecke generators is by the braiding of adjacent copies as in Sect. 3. Hence
the braided zeta function in the category of Uq(sl2)-modules is

ζt (C
2) =

∞∑

j=0

t j q j+1 − q−( j+1)

q − q−1 = 1

(1 − qt)(1 − q−1t)
.
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Proposition 4.1 RegardingCn, n ≥2 as a fundamental Uq(sln)-module, for generic q,
we have

ζt (C
n) =

n−1∏

j=−(n−1)step2

1

1 − q j t
.

Proof The classical picture is that ((Cn)⊗ j )S j ∼= S j (Cn) is an irreducible representa-
tion of sln with highest weight jω1. This corresponds to a Young diagramwith just one
row, of j boxes. The corresponding Young symmetrizer is the total symmetrization
in j tensor powers, i.e. the image in (Cn)⊗ j is our desired space of invariants. In the
q-deformed case we will define braided-symmetrization as ((Cn)⊗ j )Hq, j the space
of invariants under the appropriate q-Hecke algebra and for generic q this will be the
corresponding irreducible representation ofUq(sln). Now for all the standard quantum
groups associated to complex simple Lie algebras g the usual braided dimension and
the multiplicative one of the highest weight representation V (�) are

dim(V (�)) = q−(�,�+2ρ)dim′(V (�)); dim′(V (�)) =
∏

α>0

((α,� + ρ))q

((α, ρ))q

see [15].We use the symmetric q-integers (m)q = (qm −q−m)/(q −q−1) as in Sect. 4.
Here α are positive roots and ρ = 1

2

∑
α>0 α = ∑l

i=1 ωi where l = rank(g) and {ωi }
are the basis of the weight lattice defined by (ωi , α̌ j ) = δi, j . Note that (α, ρ) is the
height or the number of simple roots making up α. Here α̌i = 2αi/(αi , αi ) are the
coroots. We compute this for sln for our particular � = jω1.

Note that the standard normalisation for sln , which we use, is with the simple
roots all with (αi , αi ) = 2. Then α̌i = αi . We also chose a standard ordering of the
positive roots which begins α1, α1 + α2, . . . , α1 + α2 + · · · + αn−1. Then similarly
α2, α2 + α3, . . . , α2 + · · · + αn−1, and so on. Now, in the product we will only have
factors from α containing α1, i.e. from the first n − 1 in this ordering:

dim′(V ( jω1)) =
∏

α>0

((α, jω1 + ρ))q

((α, ρ))q
=

n−1∏

i=1

((α1 + · · · + αi , jω1 + ρ))q

((α1 + · · · + αi , ρ))q

=
n−1∏

i=1

q j+i − q−( j+i)

qi − q−i
= (

n + j − 1
j

)
q

where we use q-binomial coefficients defined by the symmetric q-integers. Hence

ζt (C
n) =

∞∑

j=0

t j (
n + j − 1

j

)
q

as a q-deformation of the standard Hilbert-series of a vector space of dimension n. We
now have to compute this, which we do by induction on n with the n = 2 case proven
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already (one could also start with n = 1 with care). Suppose the result for n − 1 and
write ζt (C

m) ≡ ζm(t). Then

ζt (C
n) =

∞∑

j=0

t j

(
q j+n−1 − q−( j+n−1)

qn−1 − q−(n−1)

)
n−2∏

i=1

q j+i − q−( j+i)

qi − q−i

= qn−1ζn−1(qt) − q−(n−1)ζn−1(q−1t)

qn−1 − q−(n−1)

=
qn−1 ∏n−2

j=−(n−2)step2
1

1−q j+1t
− q−(n−1) ∏n−2

j=−(n−2)step2
1

1−q j−1t

qn−1 − q−(n−1)

=
(

qn−1

1−qn−1t
− q−(n−1)

1−q−(n−1)t

)

qn−1 − q−(n−1)

n−3∏

j=−(n−3)step2

1

1 − q j t

= 1

(1 − qn−1t)(1 − q−(n−1)t)

n−3∏

j=−(n−3)step2

1

1 − q j t

as required. This can be viewed as a symmetric q-integer version of the Newton for-
mula for q-binomials and is presumably known to experts on q-series. ��

It would be interesting (but significantly harder) to compute the result for q a root
of unity.We also note the apparent similarity with the weight structure of the n-dimen-
sional representation of sl2 under the maximal torus. This and the general philosophy
that deformation in the A-series involves replacing integers by q-integers, suggests
the following theorem. It expresses a kind of invariance of ζt within the same quantum
group family.

Theorem 4.2 For generic q the braided ζt (C
n) for C

n, n ≥ 1, regarded as the
n-dimensional irreducible Uq(sl2)-module Vn−1, is given by the same formula as
in Proposition 4.1

This time the classical picture is quite different. We let n = m + 1 from now on,
so Cn = Vm as an sl2-module. This time S j (Vm) will in general not be an irreducible
representation of sl2. Rather, let

S j (Vm) = ⊕p≥0cm
j

pVp, cm
j

p ∈ N ∪ {0}.

It is known that [6]

S j (V0) = V0, S j (V1) = Vj , S j (V2) = V2 j ⊕ V2 j−4 ⊕ · · · ⊕ V2 j−4� j/2�

where � � denotes integer part. The general case m > 2 is more complicated but there
is a classical formula of Cayley–Sylvester

S j (Vm) = ⊕� jm
2 �

r=0 V ⊕(p(r, j,m)−p(r−1, j,m))
jm−2r (4.1)
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in terms of the number p(r, j, m) of partitions of r into at most j parts each ≤ m,
see for example [16]. We shall use this formula to prove the theorem. Conversely,
invariance of the braided ζ -function expressed in the theorem provides a new point of
view on this classical result and one which we expect to apply more widely.

Our first step is to introduce generating functions. We define

cm(t, q) =
∑

j,p

cm
j

p t j q p =
∑

p

cm(t)pq p.

So, the low cases appear now as

c0(t, q) = 1

1 − t
, c1(t, q) = 1

1 − qt
, c2(t, q) = 1

(1 − t2)(1 − q2t)
.

The following lemma relates these to the braided ζ -functions.

Lemma 4.3

ζt (Vm) = qcm(t, q) − q−1cm(t, q−1)

q − q−1 .

Proof From the above and Sect. 3 we have immediately

ζt (Vm)=
∑

j

t jdim′(S j (Vm))=
∑

j,p

t j cm
j

pdim
′(Vp)=

∑

j,p

t j cm
j

p
q p+1 − q−(p+1)

q − q−1

from which the stated formula follows. ��
Proof (Of Theorem 4.2) The partition number p(r, j, m) occurs in the theory of the
cohomology of Grassmannians Grm( j + m) and in that context it is known that it can
be viewed as the coefficient of qr in an asymmetric q-binomial coefficient defined
by [n]q = (1 − qn)/(1 − q). We recast this as the coefficient of q−2r in a binomial
defined by [n]q−2 and hence the coefficient of q jm−2r in the symmetric q-binomial
(

j + m
m

)
q . The powers in this range from q jm to q− jm in steps of 2. In view of these

observations, we can write

cm(t, q) =
∞∑

j=0

t j
� jm

2 �∑

r=0

q jm−2r (p(r, j, m) − p(r − 1, j, m))

= (1 − q−2)

∞∑

j=0

t j (
j + m

m

)+
q + q−2

∞∑

j=0

t j (
j + m

m

)0
q

where ( )+ denotes the part with non-negative powers of q while ( )0 denotes the term
with lowest power (i.e. q0 when jm is even and q1 when jm is odd). Doing the sums
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as in the proof of Proposition 4.1 we obtain

cm(t, q) = (1 − q−2)ζt,m(q)+ + q−2ζt,m(q)0

where ζt,m(q) is the expression in Proposition 4.1 for n = m + 1. We then use the
lemma to find

ζt (Vm) = (q − q−1)ζt,m(q)+ + q−1ζt,m(q)0 − (q−1 − q)ζt,m(q)− − qζt,m(q)−0

q − q−1

= ζt,m(q)

where we used that ζt,m is symmetric in q, q−1. Here ( )− denotes the part with non-
positive powers of q and ( )−0 denotes the term with q0 or q−1 as jm is even or odd.
In the even case the ζt,m(q)0 and ζt,m(q)−0 are equal and cancel the duplication in
degree 0. In the odd case they cancel with each other. ��

The expression found for cm(t, q) in the course of the proof, while equivalent to
the Cayley–Sylvester formula, is not very illuminating. We now turn to other ways to
obtain cm(t, q) as a consequence of Theorem 4.2. First, in the same spirit, we can also
recover cm(t, q) from

(q − q−1)ζt (Vm) = qcm(t, q) − q−1cm(t, q−1)

since the first term on the right has only strictly positive powers of q while the 2nd
term has only strictly negative powers. For example, if m = 2s then, (1− t)qcm(t, q)

is the truncation to strictly positive powers of q in the expression

(q − q−1)

s∏

i=1

1

(1 − qi t)(1 − q−i t)
= (q − q−1)

∑

{ki ≥0},{ ji ≥0}
q2α(k, j)t

∑
i (ki + ji )

where α(k1, . . . , ks, j1, . . . , js) = ∑s
i=1 i(ki − ji ). Hence

(1 − t)qcm(t, q) = q
∑

k, j;α=0

t
∑

(k+ j) + (q − q−1)
∑

k, j;α≥1

q2αt
∑

(k+ j).

We can also deduce an inductive formula as follows.

Corollary 4.4

cm(t, q)= cm−2(t, q)

(1−qmt)(1−q−mt)
− 1

1−t2

(
q−mt

1 − q−mt

∑

p

cm−2(t)pq p(q−mt)�p/m�

+ q−2

1 − qmt

∑

p

cm−2(t)pq−p(qmt)�(p+2)/m�
)

where � � denotes the smallest integer greater than or equal to the enclosed quantity.
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Proof From Theorem 4.2 and the form of ζt in Proposition 4.1 we have

(q − q−1)ζt (Vm) = (q − q−1)ζt (Vm−2)

(1 − qmt)(1 − q−mt)
= qcm−2(t, q) − q−1cm−2(t, q−1)

(1 − qmt)(1 − q−mt)
.

We expand the right hand side denominators and pick out the part which has strictly
positive powers of q, thus

qcm(t, q) =
∑

i, j,p≥0,(i− j)m+p+1>0

cm−2(t)pt i+ j q(i− j)m+p+1

−
∑

i, j,p≥0,(i− j)m−p−1>0

cm−2(t)pt i+ j q(i− j)m−p−1

There is no q0 contribution as the two terms in the numerator cancel in this degree.
The first sum is constrained by ( j − i) ≤ p/m and we split this into two parts, one
where i is replaced in favour of k = i − j ≥ 0 and the other where j is replaced by
k = j − i is in the range 0 < k ≤ p/m. The second sum is also a geometric series,
for k = j − i ≥ (p + 2)/m. Thus

qcm(t, q) = qcm(t, q)

(1 − t2)(1 − qmt)
+

∑

p,i≥0

∑

0<k≤ p
m

cm−2(t)pt2i+kq− km+p+1

−
∑

p,i≥0,k≥ p+2
m

cm−2(t)pt2i+kqkm−p−1

leading to the formula stated on doing the i and k sums. Note that all denominators of
rational functions in t should be understood as power series in t . ��

It is a useful and nontrivial check, which we leave to the reader, that applying this
inductive formula to c0 gives c2.

Corollary 4.5

c3(t, q)= 1−qt+q2t2

(1−t4)(1−qt)(1−q3t)
, c4(t, q)= 1−q2t+q4t2

(1−t2)(1−t3)(1−q2t)(1−q4t)
.

Proof Corollary 4.4 applied to c1(t, q) in the form c1(t)p = t p provides c3(t, q), an
exercise which we leave to the reader. We similarly find c4(t, q) by Corollary 4.4 from
c2(t)p = t p/2/(1 − t2) for even p and zero for odd p. ��

We conclude with some remarks about the general form of cm(t, q). Let

ηm(t, q) =
⎧
⎨

⎩

∏m/2
i=1 (1 − q2i t) m even

∏(m−1)/2
i=0 (1 − q2i+1t) m odd

.
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Lemma 4.6 Theorem 4.2 is equivalent to cm(t, q) having the form

cm(t, q) = gm(t, q)

hm(t)ηm(t, q)

where gm(t, q) and hm(t) are polynomials with no common factor, have value 1 at
t = 0, and obey

qgm(t, q)ηm(t, q−1) − q−1gm(t, q−1)ηm(t, q)

q − q−1 = hm(t)

{
1

(1−t) m even

1 else
.

Moreover, cm(t, q) has rational t, q-degrees −(m + 1),−2 respectively for m ≥ 2.

Proof The content of Theorem 4.2 is that ζt (Vm) = 1/(ηm(t, q)ηm(t, q−1)) if m is
odd, with an extra factor 1/(1 − t) if m is even. Suppose cm(t, q) factorises in the
form shown. Rearranging Lemma 4.3 now gives the stated equation for gm, hm (and
conversely if this equation holds then cm(t, q) of the form given implies Theorem 4.2).
Note that the right hand side is independent of q. Next, by looking at the top power of
q in the numerator and denominator, either 2+deg(gm) > deg(ηm), in which case the
first term in the numerator dominates and deg(gm) = 0 (and deg(ηm) < 2 which is
possible form = 0, 1), or 2+deg(gm) < deg(ηm) inwhich case the second term domi-
nates and deg(ηm) = 2 and deg(gm) < 0 (a contradiction), or 2+deg(gm) = deg(ηm).
This gives the q-degree of cm(t, q). To see the t-degree we see from the equation for
gm, hm that each term of the numerator on the left has degree degt (gm)+ degt (ηm). If
m ≥ 2 then by our previous analysis of q-degree these terms have different powers of
q in the coefficient of the top power of t (the first term has highest power≤ −1 in q and
the 2nd term has lowest power ≥ 1). Hence there can be no cancellation for generic
q and degt (gm) + degt (ηm) is the degree of the numerator. The rational t-degree of
cm(t, q) is then as stated, namely, the t-degree of ζt (Vm). It remains to show that the
equation shown for gm, hm can be solved in the form stated. Indeed, this is a series of
linear equations with coefficients rational functions of t . Thus, looking at the numer-
ator, start with the top degree in q, which is the coefficient of qdeg(gm )+1. Only the top
coefficient in gm or the constant term in gm can contribute at this degree, which fixes
the former in terms of the latter so that the numerator has nothing in this degree. We
then consider the next degree, and so forth down to the coefficient of q2. This solves
for gm up to normalisation as a linear system of equations. By antisymmetry in the
form of the expression under inversion of q we know that there is nothing in degree
0 and that the negative degrees will be solved as well by the same equations. Having
solved for gm with coefficients as a rational function of t we remove any factors that
depend on t alone and normalise so that gm(0, q) = 1 (say), and we define hm(t) by
the displayed equation. ��

In fact by expanding (q −q−1)ζt,m(q) as a Laurent series in q and using the residue
theorem one can extract the positive part as
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cm(t, q) = q−1
� m−1

2 �∑

s=0

∑

zm−2s=t

(−1)s zs2+s−1

(1 − z2)m−1(m − 2s)(1 − qz)[s]z2 ![m − s]z2 !
, ∀m ≥ 2

and verify that this has the general form in Lemma 4.6. Here [ ]z2 is the notation in
Section 2 and the factorials are products of these. Note that summing over roots of t
necessarily produces a rational function by Kummer theory.

Corollary 4.7 With reference to the form of cm(t, q) in Lemma 4.6,

g5(t, q)=1−(q+q3)t+(q2+q4+q6)t2−q7t3+q4t4+(q+q3−q5)t5−(1+q4)t6

+(2q+q3+q5)t7−(q2+q4+2q6)t8+(q3+q7)t9+(q2−q4−q6)t10

−q3t11 + t12 − (q + q3 + q5)t13 + (q4 + q6)t14 − q7t15

h5(t) = (1 − t4)(1 − t6)(1 − t8)

g6(t, q)=1+(1−q2−q4)t−(q2−q6−q8)t2−(1−q2−q4−q6−q8+q10)t3

−(1 − 2q2 − q4 + q10)t4 − (1 − 2q2 − q4 + q6 + q8)t5

+(q2 + q4 − q6 − 2q8 + q10)t6 + (1 − q6 − 2q8 + q10)t7

+(1 − q2 − q4 − q6 − q8 + q10)t8 − (q2 + q4 − q8)t9

+(q6 + q8 − q10)t10 − q10t11

h6(t) = (1 + t)(1 − t2)(1 − t3)(1 − t4)(1 − t5)

We have independently verified all formulae for cm(t, q) to m ≤ 6 and to t9 using
the package LiE for the decomposition of S j (Vm). We note that the algorithm used by
LiE (which does not lead to closed formulae) is based on Adams operations ψ j . We
recall that formally extending the direct sum and tensor products of representations

St (V ) =
∞∑

j=0

t j S j (V ) = e
∑∞

j=1
t j
j ψ j (V )

which suggests an interpretation of the classical Hasse–Weil form of the ζ -function
with ψ j (V ) providing X (Fq j ) in a suitable category.

Finally, the above results are to ζt (V ) for V irreducible as an object in our braided
category. But because tensor products and direct sums under q-deformaton have the
same structure up to isomorphism, property (1.2) remains true. Hence ζt of a direct
sum module is the product of the ζt of each part. This means that we are in position to
compute the braided ζt of the q-sphere, formally at least, using Theorem 4.2 under the
assumption of generic q. Namely we use Cq [S2] = ⊕∞

s=0V2s as explained in Sect. 3,
then formally

ζt (Cq [S2]) = 1

1 − t

∞∏

s=1

ζt (V2s) =
(

1

1 − t

)∞ ∞∏

s=1

s∏

i=1

1

(1 − q2i t)(1 − q−2i t)
.
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Clearly we could remove the unquantized classical factor
(

1
1−t

)∞
corresponding to

theweight zero eigenspace of each component V2s . It should be remembered, however,
that this is a formal expression. For small powers of t we can compute the coefficients
directly for additional insight.

Proposition 4.8 For generic q, and provided summations over irreducibles are taken
in a certain order and summands combined,

ζt (Cq [S2]) = 1 − 2
t

(q − q−1)2
+ 4

(2)2q

(
t

(q − q−1)2

)2

+2((4)2q − 4)

(2)2q(3)2q

(
t

(q − q−1)2

)3

+ O(t4)

Proof The t1 coefficient is dim′(Cq [S2]) as in Sect. 3. For the t2 coefficient we have
classically

S2(C(S2)) = S2(⊕∞
s=0V2s) = (⊕∞

s=0S2(V2s)) ⊕ (⊕s<s′(V2s ⊗ V2s′))

and S2(V2s) = S2s(V2) = ⊕s
i=0V4i as noted above. Taking the same decompositions

in the q-deformed case and using multiplicativity of dim′ we compute

dim′(S2(Cq [S2])) =
∞∑

s=0

s∑

i=0

(4i + 1)q +
∑

0≤s<s′≤∞
(2s + 1)q(2s′ + 1)q

= 4

(1 − q2)(1 − q−2)(1 − q4)(1 − q−4)
.

Note that each sum here is infinite but when the summands over s are combined one
obtains the result stated. Similarly, for t3 we have

S3(C(S2)) =
(
⊕∞

s=0S3(V2s)
)

⊕
(
⊕∞

s=0(S2(V2s) ⊗ (⊕s′ �=s V2s′))
)

⊕ (⊕s′′<s<s′(V2s′′ ⊗ V2s ⊗ V2s′))

as S3(⊕∞
s=0V2s). We decompose S3(V2s) = S2s(V3) either by the decomposition pro-

vided by Corollary 4.5 or, more easily, we compute the braided dimension directly
from ζ±1(V3). This works for all odd m:

dim′(⊕∞
s=0Sm(V2s)) = dim′(⊕∞

s=0S2s(Vm)) = (even part ζt (Vm))t=1

= 1

2
(ζ1(Vm) + ζ−1(Vm))

and in the present case, using Theorem 4.2 for m = 3, gives

q−4 + q−2 + 4 + q2 + q4

(1 − q2)(1 − q−2)(1 − q6)(1 − q−6)
.
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For the remaining direct sums we decompose S2(V2s) as before and apply dim′ to give

∞∑

s=0

(
s∑

i=0

(4i + 1)q

) ⎛

⎝
∞∑

s′=0,s′ �=s

(2s′ + 1)q

⎞

⎠

+
∞∑

s=1

s−1∑

s′′=0

∞∑

s′=s+1

(2s′′ + 1)q(2s + 1)q(2s′ + 1)q .

The two sums do not separately converge but merging the summands to a single sum
over s (with no contribution from s = 0 in the second expression), the combined sum
then converges. We add this to our result from ζ±1, express the denominators in terms
of q-integers and group the poles as a rescaling of t . It should be noted that many
different answers can be obtained when combining divergent series to convergent
ones; the above is just one such ‘minimal prescription’ in the absence of a general
framework. ��

We see that at least to low degree the coefficients of ζt (Cq [S2]) are rational func-
tions in q, but this does depend on taking sums over irreducibles in the right manner.
It also appears that the ζ -function may be expressible as a ‘renormalised’ function
ζ̄ (t/(q −q−1)2)with ζ̄ now having a classical limit as q → 1. This would be reminis-
cent of the process of renormalisation in quantum field theory, but again will depend
on the scheme used. If we could eliminate the (4)2q in one of the terms then we would
have, for example, the leading terms of a q-Bessel function. A systematic treatment
of these issues would be a topic for further work.

5 Braided Hilbert series

Going back to the finite set case in Sect. 2, an alternative approach to A( j) there is as
the degree j part of the symmetric algebra S(A). In the strictly braided case this will
normally be different from the braided zeta function but in the q-deformed case for
generic q it coincides and offers a different point of view.

Let A be an object in an Abelian braided category. One can define a canonical
‘braided-symmetric algebra’

BS(A) = T A/ ⊕ j ker(S j ), S j =
∑

σ∈S j

�i1 . . . �il(σ )
(5.1)

where σ = si1 . . . sil(σ )
is a reduced expression in terms of simple (adjacent) reflections

and �i denotes � acting similarly in the i, i + 1 tensor factors. Constructions of this
type have been used (in an antisymmetric variant) for left-invariant differential forms
on quantum groups [17]. This BS(A) is a ‘braided group’[14] or Hopf algebra in the
braided category, with respect to coaddition, and in the finite-dimensional (rigid) case
it arises naturally as the coradical of the pairing between braided tensor Hopf algebras
T A and T A∗ [10,12,11]. In the ribbon case we define
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Ht (A) =
∞∑

j=0

t jdim′(BS(A) j ). (5.2)

In the q-deformed setting with generic q both A( j) and BS(A) j deform the same clas-
sical representation and hence have the same multiplicities as modules for the relevant
quantum group. Hence their braided dimensions coincide.

We conclude with a complementary class of examples, now in the ribbon braided
category of D(G)-modules where D(G) is the quantum double of a classical finite
group G. The ribbon structure cancels with the braiding in such a way that dim′ = dim
for any object (in the notation of [14] the special elements u, v, ν all coincide). As
objects we take X ⊂ G a nontrivial conjugacy class A = CX . This carries an action
of the quantum double and the induced braiding is

�(x ⊗ y) = xyx−1 ⊗ x, ∀x, y ∈ X.

It has been explained in [11] that the Fomin–Kirillov quadratic algebra[5] for the
flag variety of type An−1 can be understood as a braided symmetric algebra BSquad(A)

(where we take only the quadratic relations) and it was proposed that BS(A) gener-
alises this construction to general Lie type. Here G = Sn the symmetric group and
X = Xn is the conjugacy class of 2-cycles and |Xn| = (

n
2

)
. At least for small n the

relations of BS(A) are only the quadratic ones and the dimensions of each degree are
also known for small n and vanish after some top degree. The pattern of top degrees is
conjectured to be related to the structure of the Lusztig canonical bases for An−1[11].
The Hilbert series for small n are quoted in [5] as

Ht (CX2) = [2]t

Ht (CX3) = [2]2t [3]t

Ht (CX4) = [2]2t [3]2t [4]2t
Ht (CX5) = [4]4t [5]2t [6]4t .

Comparing these results with the classical zeta-function on finite sets in Sect. 2, we
see that they resemble the ζ -functions of collections of points with different amounts
of ‘regularity’ in the sense of contributing different factors [m]t with 2 ≤ m < ∞.

Clearly, X above is a special case of the notion of a ‘braided set’, i.e. a set equipped
with a map X × X → X × X obeying the braid relations [7]; the computation of Ht

for other braided sets is a direction for further work.
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