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Abstract
In this study, we aim to introduce the concepts of 1-absorbing prime submodules and weakly
1-absorbing prime submodules of a unital module over a noncommutative ring with nonzero
identity. This is a new class of submodules between prime submodules (weakly prime
submodules) and 2-absorbing submodules (weakly 2-absorbing submodules). Let R be a
noncommutative ring with a nonzero identity 1 �= 0 and M an R-module. A proper sub-
mdule P of M is said to be a 1-absorbing prime submodule (weakly 1-absorbing prime
submodule) if for all nonunits x, y ∈ R and m ∈ M with x RyRm ⊆ P ({0} �= x RyRm
⊆ P), then xy ∈ (M :R P) or m ∈ P . Various properties and characterizations of these
classes of submodules are considered.

Keywords 1-absorbing prime submodule · Weakly 1-absorbing prime submodule

Mathematics Subject Classification Primary 16D10 · 16D25; Secondary 16D80 · 16L30 ·
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1 Introduction

In this article, we focus only on noncommutative rings with nonzero identity and nonzero
unital left modules. Let R always denote such a ring and let M denote such an R-module.
The concept of prime ideals and its generalizations have a significant place in noncommu-
tative algebra since they are used in understanding the structure of rings. Recall that in a
commutative ring a proper ideal I of R is said to be a prime ideal if whenever xy ∈ I then
x ∈ I or y ∈ I . In [1], Anderson and Smith introduced a notion of weakly prime ideal
which is a generalization of prime ideals. A proper ideal I of R is called weakly prime
ideal if 0 �= xy ∈ I for some elements x, y ∈ R implies that x ∈ I or y ∈ I . It is clear
that every prime ideal is weakly prime but the converse is not true in general. Afterwards,
Badawi, in his celebrated paper [2], introduced the notion of 2-absorbing ideals and used
them to characterize Dedekind domains. Recall from [2], that a nonzero proper ideal I of
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R is called 2-absorbing ideal if xyz ∈ I for some x, y, z ∈ R implies either xy ∈ I or
xz ∈ I or yz ∈ I . Note that every prime ideal is also a 2-absorbing ideal. After this, over the
past decades, 2-absorbing version of ideals and many generalizations of 2-absorbing ideals
attracted considerable attention by many researchers. Badawi and Darani in [3] defined and
studied the notion of weakly 2-absorbing ideals which is a generalization of weakly prime
ideals. A proper ideal I of R is called a weakly 2-absorbing ideal if for each x, y, z ∈ R with
0 �= xyz ∈ I , then either xy ∈ I or xz ∈ I or yz ∈ I .

In 2010, Hirano et al. extended the notion of weakly prime ideals in rings, not necessarily
commutative or with identity. According their celebrated paper [11], a proper ideal P of R
is called a weakly prime ideal of a ring R if whenever a, b ∈ R such that {0} �= aRb ⊆ P,

then a ∈ P or b ∈ P. They also verified that P is weakly prime ideal if and only if whenever
J , K are right ideals of R such that {0} �= J K ⊆ P , then J ⊆ P or K ⊆ P. An ideal I of
R is said to be proper if I �= R. Recall that a proper ideal I of R is called 2-absorbing as
in [6] if whenever aRbRc ⊆ I for some a, b, c ∈ R, then ab ∈ I or bc ∈ I or ac ∈ I . Let
I be a proper ideal of R. Recall from [7] that a proper ideal I of R is said to be a weakly
2-absorbing ideal of R if whenever a, b, c ∈ R with {0} �= aRbRc ⊆ I , then ab ∈ I or
ac ∈ I or bc ∈ I . Note that a 2-absorbing ideal is a weakly 2-absorbing ideal. However,
these are different concepts.

In 2011, Darani and Soheilnia [5] introduced the concept of 2-absorbing and weakly
2-absorbing submodules of modules over commutative rings with identities. A proper sub-
module P of a module M over a commutative ring R with identity is said to be a 2-absorbing
(weakly 2-absorbing) submodule of M if whenever a, b ∈ R and m ∈ M with abm ∈ P
(0 �= abm ∈ P), then abM ⊆ P or am ∈ P or bm ∈ P . One can see that 2-absorbing
submodules are generalization of prime submodules.Moreover, it is obvious that 2-absorbing
ideals are special cases of 2-absorbing submodules.

In [8] and [9] the notions of 2-absorbing and weakly 2-absorbing submodules of a module
over a noncommutative ring were introduced. A proper submodule P of a module M over
a noncommutative ring R with identity is said to be a 2-absorbing (weakly 2-absorbing)
submodule ofM if whenever a, b ∈ R andm ∈ M with aRbRm ⊆ P ({0} �= aRbRm ⊆ P),
then ab ∈ (P : M) ⊆ P or am ∈ P or bm ∈ P .

Recently, in [16], Yassine et al. introduced a 1-absorbing prime ideal. This type of ideal
which is a generalization of prime ideals of a commutative ring with identity. A proper ideal
I of R is called 1–absorbing prime ideal if whenever xyz ∈ I for some nonunits x, y, z ∈ R,

then either xy ∈ I or z ∈ I . Note that every prime ideal is 1-absorbing prime and every
1-absorbing prime ideal is 2-absorbing. The converses are not true. More currently in [12]
Koç et al. defined weakly 1-absorbing prime ideals which is a generalization of 1-absorbing
prime ideal. A proper ideal I of R is called weakly 1-absorbing prime ideal if 0 �= xyz ∈ I
for some nonunits x, y, z ∈ R implies that xy ∈ I or z ∈ I . Following Yassine et al.
[15] and Koç [12] in [10] we introduced 1-absorbing prime ideals and weakly 1-absorbing
prime ideals in noncommutative rings. For a noncommutative ring R, whenever x RyRz ⊆ I
({0} �= x RyRz ⊆ I ) for some nonunits x, y, z ∈ R, then xy ∈ I or z ∈ I , then I is a 1-
absorbingprime ideal (weakly1 absorbingprime ideal). In [14]Ugurlu introduced the concept
of a 1-absorbing prime submodule of a unital module over a commutative ring with a non-
zero identity. Also in [4] Celikel introduced the notion of 1-absorbing primary submodules
of a unital module over a commutative ring with a non-zero identity. In this paper, after
introducing the notion of 1-absorbing and weakly 1-absorbing prime submodules of a unital
left module over a noncommutative ring with nonzero identity, we examine the properties
of the new classes. We show that many of the results of Ugurlu in [14] for 1-absorbing
prime submodules of a unital module over a commutative ring with a non-zero identity are
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also valid for 1-absorbing prime submodules of a unital left module over a noncommutative
ring with nonzero identity. For all nonunit elements a, b ∈ R and m ∈ M , if aRbRm ⊆ N ,
({0} �= aRbRm ⊆ N ) either ab ∈ (N :R M) orm ∈ N , then N is called a 1-absorbing prime
submodule (weakly 1-absorbing prime submodule) of M . Recall that a proper submodule N
of the R-module M is a prime (weakly prime) submodule if aRm ⊆ N ({0} �= aRm ⊆ N )

for a ∈ R and m ∈ M then a ∈ (N :R M) or m ∈ N .

Among many results in this paper, it is shown in Proposition 2.4 if N is a 1-absorbing
prime submodule of M then (N :R M) is a 1-absorbing prime ideal of R. It is also proved
in Corollary 2.7 that if M is an R-module and N1, N2 submodules of M with N2 ⊆ N1,

then N1 is a 1-absorbing prime submodule of M if and only if N1/N2 is a 1-absorbing
prime submodule of M/N2. We also have the following charaterization of 1-absorbing prime
submodules in Theorem 2.9. A proper submodule of an R-module M is a 1-absorbing prime
submodule of M if I1 I2K ⊆ N for some proper ideals I1, I2 of R and some submodule K
of M , then either I1 I2 ⊆ (N :R M) or K ⊆ N . If there exists a weakly 1-absorbing prime
submodule N in the R-module M that is not a prime submodule, then we show in Theorem
2.10 that R is a local ring. If R is a local ring and N is a weakly 1-absorbing prime submodule
that is not 1-absorbing prime, then we show in Proposition 3.10 that (N :R M)2N = {0} ,

and in particular, (N :R M)3 ⊆Ann(M). If R is a local ring and M is a multiplication
module and N is a weakly 1-absorbing prime submodule of M that is not a 1-absorbing
prime submodule, then N 3 = {0} (Proposition 3.11). It is shown in Theorem 3.14 that if N is
a proper submodule of the R module M, then N is a weakly 1-absorbing prime submodule of
M if for any proper ideals I1, I2 of R and a submodule K of M such that {0} �= I1 I2K ⊆ N
and N is free triple-zero with respect to I1, I2, K , we have either I1 I2 ⊆ (N :R M) or
K ⊆ N .

Wehave the following diagramwhich clarifies the place of 1-absorbing prime submodules
and weakly 1-absorbing prime submodules. Here, the arrows in the diagram are irreversible.

prime submodule ⇒ 1-absorbing prime ⇒ 2-absorbing
⇓ ⇓ ⇓

weakly prime ⇒ weakly 1-absorbing prime ⇒ weakly 2-absorbing

2 1-absorbing prime submodules

Definition 2.1 Let M be an R-module and N be a proper submodule of M . For all nonunit
elements a, b ∈ R and m ∈ M if aRbRm ⊆ N either ab ∈ (N :R M) or m ∈ N , then N is
called 1-absorbing prime submodule of M .

Proposition 2.2 Prime submodules ⇒ 1-absorbing prime submodules ⇒ 2-absorbing
submodules.

Proof Let N be a prime submodule of M . Take nonunit elements a, b ∈ R and m ∈ M such
that aRbRm ⊆ N . Now abRm ⊆ N and since N is a prime submodule, ab ∈ (N :R M) or
m ∈ N , as desired.

Suppose N is a 1-absorbing prime submodule of M . Take any a, b ∈ R and m ∈ M such
that aRbRm ⊆ N . If a and b are nonunits, we have ab ∈ (N :R M) or m ∈ N and we are
done. If a is a unit element, then abm ∈ N implies bm ∈ N . If b is a unit element, then there
exists b′ ∈ R such that b′b = 1 and we have am = ab′bm ∈ N , as desired. �	
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Example 2.3 For field K the ring R =
⎧
⎨

⎩

⎡

⎣
a 0 b
0 a c
0 0 a

⎤

⎦ : a, b, c ∈ K

⎫
⎬

⎭
is a local ring whose

unique maximal ideal M has square zero. Consider the R-module M . Then every proper
submodule is a 1-absorbing prime submodule of M . To see this, choose nonunits x, y ∈ R
and m ∈ M such that x RyRm ⊆ N . Since x Ry ⊆ M2 = {0}, we have xy ∈ (N :R M)

which implies N is a 1-absorbing prime submodule of M .

Proposition 2.4 If N is a 1-absorbing prime submodule of M then we have the following:

1. (N :R M) is a 1-absorbing prime ideal of R.
2. (N : Rm) is a 1-absorbing prime ideal of R for every m ∈ M\N.

Proof Let N be a 1-absorbing prime submodule of M .
1. Choose nonunits a, b, c ∈ R such that aRbRc ⊆ (N :R M). For all m ∈ M, then

aRbRcm ⊆ N . By our hypothesis, ab ∈ (N :R M) or cm ∈ N . If ab ∈ (N :R M), then
we done. So suppose ab /∈ (N :R M). Hence cm ∈ N for all m ∈ M . This implies that
c ∈ (N :R M). Consequently, (N :R M) is 1-absorbing prime ideal of R.

2. Choose nonunits a, b, c ∈ R such that aRbRc ⊆ (N : Rm). Hence aRbRcRm ⊆ N
and therefore aRbRcrm ⊆ N for all r ∈ R. By our hypothesis or ab ∈ (N :R M) or
crm ∈ N for all r ∈ R. Thus ab ∈ (N :R M) ⊆ (N : Rm) or c ∈ (N : Rm). Consequently,
(N : Rm) is 1-absorbing prime ideal of R. �	

The converse of the above proposition is not true in general.

Example 2.5 Let p be a fixed prime integer. Then Z(p∞) = {a ∈ Q/Z : a = r/pn + Z for
some r ∈ Z and n ≥ 0} is a nonzero submodule of Q/Z. LetGt = {a ∈ Q/Z : a = r/pt +Z

for some r ∈ Z} for all t ≥ 0. It is well known that each proper submodule of Z(p∞) is
equal to Gt for some t ≥ 0. Gt is not a 1-absorbing prime submodule of Z(p∞) since for
p2(1/pt+2 + Z) ∈ Gt we have (1/pt+2 + Z) /∈ Gt and p2 /∈ (Gt :Z Z(p∞)) = {0}. We
can see that (Gt :Z Z(p∞)) = {0} is a 1-absorbing prime ideal of Z for all t ≥ 0.

Note that from the above remark we have that some modules do not have any 1-absorbing
prime submodules. Since each proper submodule of Z(p∞) is equal to Gt for some t ≥ 0,
so Z(p∞) does not have any 1-absorbing prime submodule.

Proposition 2.6 Let M1 and M2 be R-modules and f : M1 → M2 be a module
homomorphism. Then the following statements hold:

1. If N2 is a 1-absorbing prime submodule of M2, then f −1(N2) is a 1-absorbing prime
submodule of M1.

2. Let f be an epimorphism. If N1 is a 1-absorbing prime submodule of M1 containing
ker( f ), then f (N1) is a 1-absorbing prime submodule of M2.

Proof 1. Suppose that a, b are nonunit elements of R, m1 ∈ M1 and aRbRm1 ⊆ f −1(N2).
Then aRbR f (m1) ⊆ N2. Since N2 is a 1-absorbing prime submodule, we have either
ab ∈ (N2 :R M2) or f (m1) ∈ N2. Here, we show that (N2 :R M2) ⊆ ( f −1(N2) : M1). Let
r ∈ (N2 : M2). Then rM2 ⊆ N2 which implies that r f −1(M2) ⊆ f −1(N2), i.e., rM1 ⊆
f −1(N2). Thus r ∈ ( f −1(N2) : M1). Hence ab ∈ ( f −1(N2) : M1) or m1 ∈ f −1(N2).
Hence f −1(N2) is a 1-absorbing prime submodule of M1.

2. Suppose that are nonunit elements a and b of R,m2 ∈ M2 and aRbRm2 ∈ f (N1). Since
f is an epimorphism, there exists m1 ∈ M1 such that f (m1) = m2. Since ker( f ) ⊆ N1,
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aRbRm1 ⊆ N1. Hence ab ∈ (N1 : M1) or m1 ∈ N1. Here, we show that (N1 : M1) ⊆
( f (N1) : M2). Let r ∈ (N1 : M1). Then rM1 ⊆ N1 which implies that r f (M1) ⊆ f (N1).
Since f is onto, we conclude that rM2 ⊆ f (N1), that is, r ∈ ( f (N1) : M2). Thus ab ∈
( f (N1) : M2) or m2 ∈ f (N1), as desired �	

As a consequence of Proposition 2.6, we have the following result.

Corollary 2.7 Let M be an R-module and N1, N2 be submodules of M with N2 ⊆ N1. Then
N1 is a 1-absorbing prime submodule of M if and only if N1/N2 is a 1-absorbing prime
submodule of M/N2.

Proof Suppose that N1 is a 1-absorbing primary submodule of M . Consider the canonical
epimorphism f : M → M/N2 in Proposition 2.6. Then N1/N2 is a 1-absorbing prime
submodule of M/N2. Conversely, let a and b are nonunit elements of R, m ∈ M such that
aRbRm ⊆ N1. Hence aRbR(m + N2) ⊆ N1/N2. Since N1/N2 is a 1-absorbing prime
submodule of M/N2, it implies either ab ∈ (N1/N2 :R M/N2) or m + N2 ∈ M/N2.
Therefore ab ∈ (N1 :R M) or m ∈ N1. Thus N1 is a 1-absorbing prime submodule of M . �	

Let M1 be R1-module and M2 be R2-module where R1 and R2 are noncommutative rings
with identity. Let R = R1 × R2 and M = M1 × M2. Then M is an R-module and every
submodule of M is of the form N = N1 × N2 for some submodules N1, N2 of M1, M2,
respectively.

Proposition 2.8 Let M1 be R1-module and M2 be R2-module where R1 and R2 are non-
commutative rings with identity. Let R = R1 × R2 and M = M1 × M2. Suppose that N1

is a proper submodule of M1. If N = N1 × M2 is a 1-absorbing prime submodule of the
R-module M, then N1 is a 1-absorbing prime submodule of M .

Proof Suppose that N = N1 × M2 is a 1-absorbing prime submodule of M . Put M ′ =
M/({0} × M2) and N ′ = N/({0} × N2). From Corollary 2.7, N ′ is a 1-absorbing prime
submodule of M ′. Since M ′ ∼= M1 and N ′ ∼= N1, we conclude the result. �	

Next we give several characterizations of 1-absorbing prime submodules of an R-module.

Theorem 2.9 Let N be a proper submodule of an R-module M. Then the following statements
are equivalent:

(1) N is a 1-absorbing prime submodule of M.
(2) If a, b are nonunit elements of R such that ab /∈ (N :R M), then (N :M aRbR) ⊆ N.
(3) If a, b are nonunit elements of R, and K is a submodule of M with aRbK ⊆ N, then

ab ∈ (N :R M) or K ⊆ N .

(4) If I1 I2K ⊆ N for some proper ideals I1, I2 of R and some submodule K of M, then
either I1 I2 ⊆ (N :R M) or K ⊆ N .

Proof (1) ⇒ (2) Suppose that a, b are nonunit elements of R such that ab /∈ (N :R M).
Let m ∈ (N :M aRbR). Hence aRbRm ⊆ N . Since N is 1-absorbing prime submodule and
ab /∈ (N :R M), we have m ∈ N , and so (N :M aRbR) ⊆ N .

(2) ⇒ (3) Suppose that ab /∈ (N :R M). Since aRbRK ⊆ aRbK ⊆ N , we have K ⊆
(N :M aRbR) ⊆ N by (2). (3) ⇒ (4) Suppose I1 I2K ⊆ N for some proper ideals I1, I2
of R and some submodule K of M . Assume on the contrary that neither I1 I2 ⊆ (N :R M)

nor K ⊆ N . Then there exist nonunit elements a ∈ I1, b ∈ I2 with ab /∈ (N :R M). Thus
aRbK ⊆ N , which contradicts (3).
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(4) ⇒ (1) Let a, b ∈ R be nonunit elements, m ∈ M and aRbRm ⊆ N . Put I1 =
RaR, I2 = RbR, K = Rm. Now RaRRbRRm ⊆ RaRbRm ⊆ N .Thus ab ∈ RaRRbR ⊆
(N :R M) or m ∈ Rm ⊆ N and we are done. �	
Theorem 2.10 Let M be an R-module. If N is a 1-absorbing prime submodule of M that is
not a prime submodule, then R is a local ring.

Proof Suppose that N is a 1-absorbing prime submodule of M that is not a prime submodule.
Then there exist a nonunit r ∈ R and m ∈ M such that r Rm ⊆ N but r /∈ (N :R M) and
m /∈ N . Choose a nonunit element s ∈ R. Hence we have that r RsRm ⊆ r Rm ⊆ N and
m /∈ N . Since N is 1-absorbing prime, rs ∈ (N :R M). Let us take a unit element u ∈ R.
We claim that s + u is a unit element of R. To see this, assume s + u is a nonunit. Then
r R(s + u)Rm ⊆ r Rm ⊆ N . As N is 1-absorbing prime, r(s + u) ∈ (N :R M). This means
that ru ∈ (N :R M), i.e., r ∈ (N :R M), which is a contradiction. Thus for any nonunit
element s and unit element u in R, we have s + u is a unit element. From [9, Lemma 4.1],
we have that R is a local ring. �	
Corollary 2.11 Let M be an R-module where R is not a local ring. Then a proper submodule
N of M is a 1-absorbing prime submodule if and only if N is a prime submodule of M.

Proposition 2.12 Let {Ni : i ∈ �} be a chain of 1-absorbing prime submodules of the R-
module M. Then

⋂
i∈�Ni is a 1-absorbing prime submodule of M.

Proof Let {Ni : i ∈ �} be a chain of 1-absorbing prime submodules of M . Take nonunit
elements a, b ∈ R andm ∈ M such that aRbRm ⊆ ⋂

i∈�Ni . Assume thatm /∈ ⋂
i∈�Ni , so

there exists i ∈ � such that m /∈ Ni . Since Ni is 1-absorbing prime, we conclude ab ∈ (Ni :
M). For any j ∈ �, we have Ni ⊆ N j or N j ⊆ Ni . Without loss of generality, if Ni ⊆ N j

then (Ni : M) ⊆ (N j : M), that is, ab ∈ (N j : M). If N j ⊆ Ni , then ab ∈ (N j : M) since
m /∈ N j and N j is 1-absorbing prime. Hence we have ab ∈ ⋂

i∈� {(Ni : M) : i ∈ �} =
((

⋂
i∈�Ni : i ∈ �) : M). �	

Definition 2.13 Let M be an R-module and N be a proper submodule of M . Let P be a
1-absorbing prime submodule of M such that N ⊆ P . If there does not exist a 1-absorbing
prime submodule P ′ such that N ⊆ P ′ ⊂ P , then P is called a minimal 1-absorbing prime
submodule over N .

Proposition 2.14 Let M be an R-module and N be a proper submodule of M. If P is a 1-
absorbing prime submodule of M such that N ⊆ P, then there exists a minimal 1-absorbing
prime submodule over N that is contained in P.

Proof Let � = {Pi : Pi is a submodule of M such that N ⊆ Pi ⊆ P} . Since N ⊆ P, we
have � �= ∅. Consider (�,⊇). Let us take a chain {Ni : i ∈ �} in �. Since by Proposition
2.12,∩i∈�Ni is a 1-absorbing prime submodule ofM, there exists amaximal element K ∈ �

by applying Zorn’s Lemma. Then K is 1-absorbing prime and N ⊆ K ⊆ P . Now we will
show that K is a minimal 1-absorbing prime submodule over N . On the contrary, assume that
there exists a 1-absorbing prime submodule K ′ such that N ⊆ K ′ ⊆ K . Then K ′ ∈ � and
K ⊆ K ′. This implies K = K ′. Consequently, K is a minimal 1-absorbing prime submodule
of N . �	
Corollary 2.15 Let M be an R-module. Every 1-absorbing prime submodule of M contains
at least one minimal 1-absorbing prime submodule of M .
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3 Weakly 1-absorbing prime submodules

Definition 3.1 Let R be a ring and N be a proper submodule of an R-module M . Then N is
a weakly 1-absorbing prime submodule of M if {0} �= aRbRm ⊆ N implies abM ⊆ N i.e.
ab ∈ (N :R M) or m ∈ N for nonunits a, b ∈ R and m ∈ M .

Remark 3.2 1. Every 1–absorbing prime submodule is weakly 1-absorbing prime but the
converse does not necessarily hold. For example consider the case where R = Z, M =
Z/30Z and N = {0}. Then 2 · 3 · (5 + 30Z) = 0 ∈ N while 2 · 3 /∈ (N :R M),

(5 + 30Z) /∈ N . Therefore N is not 1-absorbing prime while it is weakly 1-absorbing
prime.

2. Every weakly prime submodule is weakly 1 absorbing prime but the converse does not
necessarily hold. Let M = Z12 be a module over Z and W = {0, 4, 8} be a proper
submodule of M . Let r , s ∈ Z and m ∈ M . Now (W : M) = 4Z. Therfore, for
0 �= rsm ∈ W , we get m = 4 or m = 8 which are elements in W or rs ∈ 4Z. So W is a
weakly 1 absorbing prime submodule. W is not weakly prime since 0 �= 2 · 2 ∈ W with
2 /∈ W and 2 /∈ (W : M).

Question. Suppose that L is a weakly 1-absorbing prime submodule of an R-module M and
{0} �= I J K ⊆ L for some ideals I , J of R and a submodule K of M . Does it imply that
I J ⊆ (M :R L) or K ⊆ L?

This section is devoted to studying the above question for modules over noncommutative
rings.

Proposition 3.3 Let x ∈ M and a ∈ R. Then if annl(x) ⊆ (Rx : M), the submodule Rx is
1-absorbing prime if and only if Rx is weakly 1-absorbing prime.

Proof If Rx is 1-absorbing prime then it is clear that Rx is weakly 1- absorbing prime. Let
Rx be a weakly 1-absorbing prime submodule of M and suppose r , s ∈ R are nonunits and
m ∈ M with r RsRm ⊆ Rx . Since Rx is a weakly 1-absorbing prime submodule, we may
assume r RsRm = {0}, otherwise Rx is 1-absorbing prime. Now r RsR(x + m) ⊆ Rx . If
r RsR(x + m) �= {0} then we have rs ∈ (Rx : M) or (x + m) ∈ Rx , as Rx is a weakly 1-
absorbing prime submodule. Hence rs ∈ (Rx : M) orm ∈ Rx . Now let r RsR(x+m) = {0}.
Then r RsRm = {0} implies r RsRx = {0}. Hence rs ∈annl(x) ⊆ (Rx : M). Thus Rx is
1-absorbing prime. �	
Proposition 3.4 Let R be a ring and N be a proper submodule of an R-module M.

1. If N is weakly prime, then it is weakly 1-absorbing prime.
2. If N is a weakly 1-absorbing prime submodule of M, then it is a weakly 2-absorbing

submodule.

Proof 1. Assume N is a weakly prime submodule of the R-module M and {0} �= aRbRm ⊆
N for nonunits a, b ∈ R and m ∈ M . Suppose m /∈ N . Since abRm ⊆ N and m /∈ N ,

we have ab ∈ (N :R M). Hence N is weakly 1-absorbing prime. 2. Assume N is a weakly
1-absorbing prime submodule of the R-module M and {0} �= aRbRm ⊆ N for a, b ∈ R and
m ∈ M . If a is a unit, then it is easy to see that bm ∈ N . If b is a unit, then there exists b′ ∈ R
such that ab′bm = am ∈ N . If both a and b are nonunits, then ab ∈ (N :R M) since N is a
weakly 1-absorbing prime submodule of the R-module M . Hence N is weakly 2-absorbing.

�	
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Proposition 3.5 Let N be aweakly 1-absorbing prime submodule of an R-module M. Assume
that K is a submodule of M with N � K. Then N is a weakly 1-absorbing prime submodule
of K .

Proof Let a, b ∈ R be nonunits and k ∈ K with {0} �= aRbRk ⊆ N . Then ab ∈ (N :R M)

or k ∈ N as N is a weakly 1-absorbing prime submodule of M . Thus ab ∈ (N :R K ) or
k ∈ K since (N :R M) ⊆ (N :R K ) and N ⊆ K . �	
Proposition 3.6 Let N , K be submodules of an R-module M with K ⊆ N. If N is a weakly
1-absorbing prime submodule of M, then N/K is a weakly 1-absorbing prime submodule of
M/K. The converse is true when K is a weakly 1-absorbing prime submodule.

Proof Assume that N is a weakly 1-absorbing prime submodule of M . Let a, b ∈ R be
nonunits and m + K ∈ M/K where

{
0M/K

} �= aRbR(m + K ) ⊆ N/K . Since aRbR(m +
K ) �= {

0M/K
}
, we get aRbRm ⊆ N and aRbPm � K . If aRbRm = {0}, we obtain

aRbRm + K = {
0M/K

}
. So aRbRm �= {0}. Thus ab ∈ (N :R M) or m ∈ N as N is

weakly 1-absorbing prime. Consequently, we get ab ∈ (N/K :R M/K ) or m + K ∈ N/K .
Conversely, let K be a weakly 1-absorbing prime submodule. Assume that N/K is a weakly
1-absorbing prime submodule of M/K . Let a, b ∈ R be nonunits and m ∈ M where
{0} �= aRbRm ⊆ N . Then we have aRbRm + K ⊆ N/K . If aRbRm + K = {

0M/K
}
,

then aRbRm ⊆ K . Thus ab ∈ (K :R M) or m ∈ K , since K is weakly 1-absorbing prime.
Therefore, ab ∈ (N :R M) or m ∈ N , since K ⊆ N . Let aRbRm + K = aRbR(m + K ) �={
0M/K

}
. Then ab ∈ (N/K :R M/K ) or m + K ∈ N/K . Thus ab ∈ (N :R M) or m ∈ N . �	

Definition 3.7 Let N be a weakly 1-absorbing prime submodule of an R-module M . For
nonunits a, b ∈ R and m ∈ M, (a, b,m) is called a triple-zero of N if aRbRm = 0,
ab /∈ (N :R M) and m /∈ N .

Note that if N is a weakly 1-absorbing prime submodule of M and there is no triple-zero
of N , then N is a 1-absorbing prime submodule of M .

Proposition 3.8 Let N be a weakly 1-absorbing prime submodule of M and K be a proper
submodule of M with K ⊆ N. Then for any nonunits a, b ∈ R and m ∈ M, (a, b,m) is a
triple-zero of N if and only if (a, b,m + K ) is a triple-zero of N/K.

Proof Let (a, b,m) be a triple-zero of N for some nonunits a, b ∈ R and m ∈ M . Then
aRbRm = {0}, ab /∈ (N :R M) andm /∈ N . By Proposition 3.6, we get that N/K is a weakly
1-absorbing prime submodule of M/K . Thus aRbR(m + K ) = K , ab /∈ (N/K : M/K )

and (m + K ) /∈ N/K . Hence (a, b,m + K ) is a triple-zero of N/K . Conversely, assume
that (a, b,m+ K ) is a triple-zero of N/K . Suppose that aRbRm �= {0}. Then aRbRm ⊆ N
since aRbR(m + K ) = K . Thus ab ∈ (N :R M) or m ∈ N as N is weakly 1-absorbing
prime, a contradiction. So it must be aRbRm = {0}. Consequently, (a, b,m) is a triple-zero
of N . �	
Theorem 3.9 Let R be a local ring and let N be weakly 1-absorbing prime submodule of
M and (a, b,m) be a triple-zero of N for some nonunits a, b ∈ R and m ∈ M. Then the
following hold.

1. aRbN = a(N :R M)m = b(N :R M)m = {0} .

2. a(N :R M)N = b(N :R M)N = (N :R M)bN = (N :R M)bm = (N :R M)2m =
{0} .
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Proof Suppose that (a, b,m) is a triple-zero of N for some nonunits a, b ∈ R and m ∈ M .
1. Assume that aRbN �= {0}. Then there is an element n ∈ N such that aRbRn �= {0} .

Now aRbR(m + n) = aRbRm + aRbRn = aRbRn �= {0} since aRbRm = {0} . Since
{0} �= aRbR(m + n) ⊆ N and N a weakly 1-absorbing prime submodule, we have ab ∈
(N :R M) or (m + n) ∈ N . Hence ab ∈ (N :R M) or m ∈ N . This is a contradiction
since (a, b,m) is a triple zero of N . Hence aRbN = {0} . Now, we suppose that a(N :R
M)m �= {0}. Thus there exists an element r ∈ (N :R M) such that arm �= 0. Hence
aR(r + b)Rm = aRr Rm + aRbRm = aRr Rm. Hence {0} �= aR(r + b)Rm ⊆ N . Since
R is local, the set of nonunit elements of R is an ideal of R. Therefore (r + b) is a nonunit.
Since N is a weakly 1-absorbing prime submodule, we have a(r + b) ∈ (N :R M) or
m ∈ N . Consequently, ab ∈ (N :R M) or m ∈ N a contradiction since (a, b,m) is a triple-
zero of N . Hence a(N :R M)m = {0} . Similarly, we can proof that b(N :R M)m = {0}.
2. Assume that a(N :R M)N �= {0}. Then there are r ∈ (N :R M), n ∈ N such that
arn �= 0. By (1), we get a(b + r)(m + n) = abm + abn + arm + arn = arn �= 0. Now
{0} �= aR(b + r)R(m + n) ⊆ N . Again, since R is a local ring (b + r) is a nonunit and
since N is 1-absorbing prime, we have a(b + r) ∈ (N :R M) or (m + n) ∈ N . Hence
we obtain ab ∈ (N :R M) or m ∈ N a contradiction. Hence a(N :R M)N = {0} . In a
similar way we get b(N :R M)N = {0} . Now, we suppose that (N :R M)bN �= {0} . Then
there are r ∈ (N :R M), n ∈ N such that rbn �= 0. Now, from above (a + r)b(n + m) =
abn+abm+ rbn+ rbm = rbn �= 0. Hence {0} �= (a+ r)RbR(n+m) ⊆ N and since N is
weakly 1-absorbing and (a+ r) is a nonunit, we have (a+ r)b ∈ (N :R M) or (n+m) ∈ N .

Hence ab ∈ (N :R M) or m ∈ N a contradiction since (a, b,m) is a triple-zero of N . Now,
we suppose that (N :R M)bm �= {0} . Then there is r ∈ (N :R M) such that rbm �= 0. Hence
0 �= rbm = (a + r)bm ∈ (a + r)RbRm = r RbRm ⊆ N . Since N is a weakly 1-absorbing
prime submodule, we have (a + r)b ∈ (N :R M) or m ∈ N . Therefore ab ∈ (N :R M)

or m ∈ N a contradiction since (a, b,m) is a triple-zero of N . Hence (N :R M)bm = {0} .

Lastly, we show that (N :R M)2m = {0} . Let (N :R M)2m �= {0}. Thus there exist
r , s ∈ (N :R M) where rsm �= 0. By (1), we get (a+ r)(b+ s)m = rsm �= 0. Thus we have
{0} �= (a + r)R(b + s)Rm ⊆ N . Since R is a local ring, (a + r) and (b + s) are nonunits.
Hence (a + r)(b + s) ∈ (N :R M) or m ∈ N . Consequently ab ∈ (N :R M) or m ∈ N a
contradiction since (a, b,m) is a triple-zero of N . Therefore (N :R M)2m = {0}. �	
Proposition 3.10 Let R be a local ring. Assume that N is a weakly 1-absorbing prime sub-
module of an R-module M that is not 1-absorbing prime. Then (N :R M)2N = {0}. In
particular, (N :R M)3 ⊆Ann(M).

Proof Suppose that N is a weakly 1-absorbing prime submodule of an R-module M that is
not 1-absorbing prime. Then there is a triple-zero (a, b,m) of N for some nonunits a, b ∈ R
and m ∈ M . Assume that (N :R M)2N �= {0}. Thus there exist r , s ∈ (N :R M) and n ∈ N
with rsn �= 0. By Theorem 3.9, we get (a + r)(b + s)(n + m) = rsn �= 0. Then we have
{0} �= (a + r)R(b + s)R(n + m) ⊆ N . Since N is weakly 1-absorbing prime, we have
(a + r)(b + s) ∈ (N :R M) or (n + m) ∈ N and so ab ∈ (N :R M) or m ∈ N which is
a contradiction. Thus (N :R M)2N = {0} . We get (N :R M)3 ⊆ ((N :R M)2N : M) =
({0} : M) =Ann(M). �	
Proposition 3.11 Let R be a local ring and let M be a multiplication R-module and N be a
weakly 1-absorbing prime submodule of M that is not a 1-absorbing prime submodule. Then
N 3 = {0}.
Proof We have that (N :R M)M = N since M is a multiplication module. Then N 3 =
(N :R M)3M = (N :R M)2N = {0}. Consequently, N 3 = {0}. �	
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Definition 3.12 Let N be a weakly 1-absorbing prime submodule of an R-module M and let
a, b ∈ R be nonunits. Let {0} �= I1 I2K ⊆ N for some ideals I1, I2 of R and some submodule
K of M . N is called free triple-zero in regard to I1, I2, K if (a, b,m) is not a triple-zero of
N for every a ∈ I1, b ∈ I2 and m ∈ K .

Lemma 3.13 Let N beaweakly1-absorbingprime submodule of M.Assume that aRbK ⊆ N
for some nonunits a, b ∈ R and some submodule K of M where (a, b,m) is not a triple-zero
of N for every m ∈ K. If ab /∈ (N :R M), then K ⊆ N.

Proof Suppose that aRbK ⊆ N , but ab /∈ (N :R M) and K � N . Then there exists an
element k ∈ K\N . But (a, b, k) is not a triple-zero of N andaRbRk ⊆ N andab /∈ (N :R M)

and k /∈ N , a contradiction. Hence K ⊆ N . �	
Let N be a weakly 1-absorbing prime submodule of an R-module M and I1 I2K ⊆ N for

some for some ideals I1, I2 of R and some submodule K of M where N is free triple-zero in
regard to I1, I2, K . Note that if a ∈ I1, b ∈ I2 and m ∈ K , then ab ∈ (N :R M) or m ∈ N .

Theorem 3.14 Suppose that N is a proper submodule of the R module M. Then the following
statements are equivalent.

1. N is a weakly 1-absorbing prime submodule of M.
2. For any proper ideals I1, I2 of R and a submodule K of M such that {0} �= I1 I2K ⊆ N

and N is free triple-zero with respect to I1, I2, K, we have either I1 I2 ⊆ (N :R M) or
K ⊆ N .

Proof (1) ⇒ (2) Suppose that N is a weakly 1-absorbing prime submodule of M and
{0} �= I1 I2K ⊆ N for proper ideals I1, I2 of R and a submodule K of M such that N
is free triple-zero with respect to I1, I2, K . Then there are nonunit elements a ∈ I1 and
b ∈ I2 such that ab /∈ (N :R M). Since aRbK ⊆ N , ab /∈ (N :R M) and (a, b, k)
is not a triple-zero of N for every k ∈ K , it follows from Lemma 3.13 that K ⊆ N .
(2) ⇒ (1) Suppose that {0} �= aRbRm ⊆ N for some nonunit elements a, b ∈ R and
m ∈ M . Suppose ab /∈ (N :R M). Let I1 = RaR, I2 = RbR and K = Rm. Now,
{0} �= RaRRbRRm ⊆ RN ⊆ N . Hence {0} �= I1 I2K ⊆ N and I1 I2 � (N :R M). From
(2), it follows that m ∈ Rm = K ⊆ N and we are done. �	
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