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Abstract
The novel coronavirus disease has ravaged many health systems around the world and has
brought many economies to their knees. In the absence of an approved curing medicine or
approved vaccine to date, the major control of the surge of infections is through use of Non-
Pharmaceutical Interventions (NPIs) and imposing specific standard operating procedures
(SOPs) in instances when the disease spread curbs are relaxed. It is thus essential to quantify
the extent towhich specificNPIs can be useful in containing the pandemic. To achieve this, we
constructed amathematicalmodel that accounts for both person to person transmission aswell
as transmission through contact from pathogen-contaminated surfaces. The model assumes
that there is change of behaviour resulting from the surge of the number of cases, hence a
class of susceptible individuals who practise self-protection measures. Basic properties of
the model including the conditions for existence and stability of steady states are explored.
The model was fitted to new-cases data for South Africa and baseline parameter values
were estimated. Sensitivity analysis of the model was performed to determine the most
influential parameters on the disease threshold. Our results show that practising of self-
protectionmeasures is vital in slowing the spreadof the infection. In addition, it is evident from
the results thatminimizing contact through “physical distancing” aswell aswith contaminated
surfaces can significantly help in containing the infection. Themodelwas extended to account
for testing and quarantining of both symptomatic and asymptomatic infected individuals. In
addition, migration and potential use of a vaccine were explored. In the case of migration, the
scenarios considered included aspectswhen there are both border control and illegal crossings
as well as the case where the government is in full control with proper SOPs. Our results
show that, although testing and isolating/quarantining of infected individuals is essential in
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curbing new infections, it ought to be done in conjunction with implementation of other
control measures if the disease is to be curtailed in a shorter period of time. More still, when
an effective vaccine is available, even a 98% coverage in one community may not be enough
to completely stop new infections in the presence of migration. We therefore recommend
that vaccination ought to be done universally if the daily number of new infections is to be
reduced to zero.

Keywords COVID-19 · Self-protection · NPIs · Global stability · Sensitivity analysis ·
Mitigation strategy

1 Introduction

The Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-Cov-2) was first reported
in Wuhan-Hubei Province, China on December 31, 2019 when it was reported to the World
Health Organisation as respiratory disease causing acute Pneumonia [36]. The disease was
code named COVID-19, (where COVID is the short form for coronavirus disease and the 19
indicating the year 2019 when it was first reported) [36]. COVID-19 is appearing as one of
the most fatal human diseases reported in the world’s history, it has caused a global health
emergency, and has a clear potential for a long-lasting global pandemic with high fatality
rates.

The disease affects people differently with some developing mild symptoms while others
developing severe symptoms and needing hospitalisation. The most common symptoms in
the early stages of the infection include fever, dry cough, flu like symptoms, fatigue, hypos-
mia/anosmia, loss of taste and appetite among others [21], with such symptoms appearing
within 2–14 days after exposure. The detailed symptoms of the disease are given in [16,21].
The persons with co-morbidities, those with suppressed immunity, as well as the elderly are
at risk of severe infection. The co-morbidities and the risk levels are detailed in [21].

The first COVID-19 case in South Africa was identified on the 5th of March 2020 as an
imported case (see [26]), while the first locally transmitted case was detected on March 12,
2020 (see [22]). Since then the number of cases has continued to grow. As of August 16, 2020
(at 11:10 GMT) at 583, 653 cumulative case (approximately 52.4% of all reported cases in
Africa), 466, 941 recoveries (56.4%of recoveries on the continent), 11, 677 fatalities (45.99%
of reported COVID-19 related fatalities in Africa) [37]. In terms of the total number of
reported cases, SouthAfrica sits at the fifth high ranking countries behindRussia, India, Brazil
and USA (with USA having reported the highest number of cases totalling to 5, 531, 065
which is approximately 25.56% of the total cases in the world as August 16, 2020 at the time
of drafting this manuscript).

A number of articles studying the transmission dynamics of the disease in various com-
munities/countries and regions have been appearing online since February 2020. One aspect
that is clear at the moment (at the time of drafting this manuscript) is that the disease has
no confirmed curing medicine for it and nor vaccine that can be used to prevent it. We note
however that several countries around the world and laboratories have embarked on an auda-
cious task of trying to find a vaccine so as to contain the global pandemic. In the absence of
any pharmaceutical intervention, most governments have embarked on non-pharmaceutical
interventions (NPIs) including: (i) wearing of face masks (covering the nose and mouth, with
some people using face shields or both), (ii) frequent washing of hands with soap and clean
water, or using alcohol based hand sanitizer (with at least 70% alcohol content), (iii) physi-
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cal/social distancing which involves maintaining a distance of at least 2m between any two
individuals as well as avoiding big gatheringsmost especially in closed spaces, (iv) continued
disinfecting of public spaces since the virus can remain viable in the environment for several
hours or even days.

When there does not exist a curing medicine or a working vaccination to prevent a con-
tagious disease, the main possible targets in the fight against such a disease are to reduce
(1) the number of adequate contacts of the population that lead to infection, (2) the trans-
mission probability of the disease per each adequate contact, and (3) the average duration of
infectiousness of infected individuals. For instance, in the case of COVID-19, the use of face
masks, frequent hand washing and sanitizing, and disinfecting the environment contribute to
the reduction of the transmission probability of the disease, whereas the lock downmeasures,
social distancing (“physical distancing”) and isolating/quarantining the exposed individuals
help to reduce potentially risky contacts. Moreover, increasing the quantity and quality of
testing to detect and isolate/quarantine infected individuals contribute to the reduction of the
average duration of infectiousness of those who are infected and the possibility of passing
the disease to others. Similar to other viral infections, “pre-symptomatic” and asymptomatic
infected individuals pose a great risk as super spreaders. For the persons who later become
symptomatic, detection and testing are usually done at the onset of the symptoms. In systems
where testing is done upon onset of symptoms, the completely asymptomatic individuals will
go undetected and these will pose a higher transmission risk compared to the symptomatic
individuals.

Similar to other SARS-CoV infections and many respiratory infections, the novel SARS-
CoV-2 is mainly transmitted through tiny respiratory droplets released from an infected
individual through bodily secretions such as saliva and nasal fluid, contact with soiled hands,
and the settling of aerosolized viral particles and droplets spread via talking, sneezing, cough-
ing, and vomiting [27]. The main route of entry of the virus into the body is through the soft
tissue lining the mouth, eyes and the nose. Once infected, individuals with COVID-19 can
shed viral particles before, during, and after developing symptoms [19,30]. The respiratory
droplets are believed not to travel distances of more than 2m and are less likely to be sus-
pended in the air for long periods of time. There may be exceptions however, given the wind
strength, humidity and air conditioning most especially in closed spaces. The viral particles
that are shed from an infected individual can be directly deposited onto the surrounding sur-
faces and some tiny particles can be re-suspended due to natural airflow patterns, mechanical
airflow patterns, or other sources of turbulence in the environment [11,27]. When an individ-
ual makes contact with such contaminated surfaces, there is an exchange of microbial life,
including a transfer of viruses from the individual to the surface and vice versa [31,33].

Knowledge of the transmission dynamics of COVID-19 is currently developing, but based
upon studies of SARS and MERS-CoV, preliminary data on SARS-CoV-2, and CDC recom-
mendations, it is likely that SARS-CoV-2 can persist on fomites ranging from a couple of
hours to 5 days [4,12,34] depending on the material [34]. Based upon preliminary studies of
SARS-CoV-2 survival, the virus survives longest at a relative humidity of 40% on plastic sur-
faces (half-life median =15.9 h) and shortest in aerosol form (half-life median =2.74 h) [34].
However, survival in aerosol was determined at a relative humidity of 65%. Based on data
related to SARS and MERS, we predict that the viability of SARS-CoV-2 in aerosol is likely
longer at lower relative humidity levels. Survival of SARS-CoV-2 at 40% relative humidity
on copper (half-life median =3.4 h), cardboard (half-life median =8.45 h), and steel (half-life
median =13.1 h) collectively fall between survival in the air and on plastic [34]. However, it
should be noted that there are no documented cases thus far of a COVID-19 infection origi-
nating from fomites. There is preliminary data demonstrating the presence of SARS-CoV-2
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in stool, indicating that transmission can potentially occur through the fecal-oral pathway
[27,28,39]. While transmission of COVID-19 has been documented only through respiratory
droplet spread and not through deposition on fomites, steps should still be taken to clean and
disinfect all potential sources of SARS-CoV-2 under the assumption that active virus may
be transmitted by contact with these abiotic surfaces [4,27]. With an abundance of caution,
it is important to consider the possibility that the virus is transmitted through aerosols and
surfaces [18].

Among the mathematical approaches used so far, many authors relied on deterministic
compartmentalmodels. This approach has been revealed successful for reproducing epidemic
curves in the past SARS-CoV outbreak in 2002–2003 (see [9]) and has been employed also
for COVID-19. The model construction addressing the dynamics of the disease caused by
SARS-CoV-2 virus in specific localities should be informed by the protocol followed when
managing the disease. For the case of South Africa, persons who test positive and show no
or mild symptoms for COVID-19 are directed to self-isolate in their homes. However, those
who show moderate to severe symptoms would usually require hospitalisation including
admission into the Intensive Care Units (ICU).

Research papers describingmathematical models that study the disease dynamics in South
Africa continue to be published. Here we cite a few. In the model projection in [23], an SEIR
type model was used in the early projections of the disease. We note however that the model
did not account for some special features such as the asymptomatic individuals, the contri-
bution from contaminated surfaces/environment as well as quarantining/isolation of detected
positive cases. In the paper by Mushayabasa et al. [24], the force of infection considered
assumed that the level of contribution to new infections by undetected symptomatic indi-
viduals as well as persons with severe symptoms to be the same as that of asymptomatic
individuals. This assumption does not address the issue of asymptomatic individuals being
considered as super spreaders [25]. In addition, no environmental contribution was consid-
ered. On the other hand, the study by Garba et al. [8] accounted for the contribution of
the environmental contamination to the disease transmission using mass-action form while
the contribution from human-to-human transmission was modelled using standard-incidence
formulation.

In this paper, the contribution of environmental contamination is modelled using a sat-
uration term, which is consistent in terms of magnitude and unit of measurement to that
of standard incidence formulation. Moreover, the behavioural change of the population is
included in accordance with the “learning” associated with a class of susceptible individu-
als who practice self-protection measures thereby reducing the likelihood of contracting the
infection. In addition, the model extensions highlight the dangers that may be associated with
uncontrolled migration on the disease severity and the prospects of curtailing new infections.
More still, scenarios of the possible outcomes of localised vaccination coverage (once the
vaccine is available) in presence of migration are explored. The model is numerically solved
for selected sets of nominal values of the parameters to ascertain the long term dynamics of
the disease and possible implications of varying vital processes on the disease dynamics.

The rest of this paper is organised as follows. In Sect. 2, we describe the baseline model
used, analyse the basic properties of the model including computation of the reproduction
number, determination of the conditions under which equilibrium points exist. The model
is slightly modified in Sect. 3 to include an additional class that accommodates all hospi-
talisations and isolated/quarantined individuals. The model is fitted to data and important
parameter values are determined in Sect. 3.1. Numerical simulations of the extended model
are presented in Sect. 4 followed by the discussion about the contribution of immigration and
vaccination in Sect. 5. Finally, the paper is concluded in Sect. 6.
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2 Baselinemodel and analysis

We consider a baseline model of SEIR (Susceptible-Exposed-Infectious-Recovered) type
with behaviour modification of the host population.

Here, it is assumed that the disease has no reinfections for the duration of themodeling time
and transmission is from two sources: (1) direct (fromhuman to human) and (2) indirect (from
the contaminated environment). By combining the direct and indirect way of transmissions,
the force of infection is assumed to have the form

λ = β1
I + νA

N
+ β2

W

K + W
, (1)

where N = S + Se + E + A+ I + R and K is the concentration of the novel coronavirus in
the environment which increases 50% chance of triggering the disease transmission. The
description of the state variables and parameters involved in the model formulation are
presented in Table 1. We assume the following system of nonlinear differential equations
represents the transmission dynamics of COVID-19 in a particular population.

Ṡ = π − (λ + σe + μ)S,

Ṡe = σeS − (1 − ρ)λSe − μSe,

Ė = λS + (1 − ρ)λSe − (η + μ)E,

Ȧ = 	ηE − (θ + γ1 + μ)A,

İ = (1 − 	)ηE + θ A − (γ2 + δ + μ)I ,

Ṙ = γ1A + γ2 I − μR,

Ẇ = ξ1A + ξ2 I − ψW ,

(2)

whereW represents the class of contaminated environmental and the dot sign is representing
the time derivative of the indicated variable.

Following a similar approach as in [13–15], in this paper, we assume the behaviour of
individuals in adopting self protectivemechanisms changes upon receiving information about
the daily confirmed new infections of the disease, and is given by the formula

e(E) = (ηE)n

En∗ + (ηE)n
= En

(
1
η
E∗

)n + En
, (3)

where E∗ is the count of newly emerged infections corresponding to the threshold incidence in
which individuals start reacting swiftly (that means, the point at which the behaviour change
function changes its concavity). We appended the following nonnegative initial conditions
with the system (2):

S(0) = S0, Se(0) = Se0 , E(0) = E0, A(0) = A0,

I (0) = I0, R(0) = R0, and W (0) = W0.

2.1 Basic properties of the baselinemodel

The model (2) has a disease free equilibrium given by

E0 =
(

π

μ
, 0, 0, 0, 0, 0, 0

)
. (4)
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Table 1 Description of the state variables and parameters in the model

Variables Description

S Susceptible population

Se Susceptible individuals who are educated to prevent the disease

E Exposed individuals

A Asymptomatic infectious individuals

I Symptomatic infectious individuals

R Recovered individuals

W Corona virus contaminated surfaces or objects in the environment

Parameters Description

π Rate of local recruitment to the susceptible individuals

μ Natural death rate

β1 Contact rate among human population

β2 Contact rate with W class

ν1, ν2 Modification parameters

K The concentration of the disease pathogen in the environment

σ Rate of dissemination of information about the disease in the population

ρ Average effectiveness of existing self-preventive measures

η Progression to infectiousness

	 Fraction of infected individuals who become symptomatic

θ Rate of asymptomatic individuals develop symptoms and transfer to the I class

γ1, γ2 Rate of recovery

δ Death rate due to corona virus

ψ Rate of disinfecting touched objects and surfaces in the environment

ξ1, ξ2 Shedding rate of infected class to the environment

Theorem 1 The model system (2) is biological significance on the region given by

Ω = ΩH × ΩW (5)

where ΩH ∈ R
6 and ΩW ∈ R such that

ΩH =
{
(S, Se, E, A, I , R) ∈ R6 : 0 ≤ S + Se + E + A + I + R = N <

π

μ

}

and

ΩW =
{
W ∈ R | W <

(ξ1 + ξ2)π

μψ

}
.

Proof Since the model analyses the change in populations, it is necessary to show that all
solutions of Eq. (2) are non-negative as required in [2]. To show that the state variables S and
Se of the model are positive for all t ≥ 0, we use proof by contradiction. We suppose that a
trajectory crosses one of the positive cones at times t1 or t2 such that:

– t1: S(t1) = 0, Ṡ(t1) < 0, Se(t) > 0, E(t) > 0, A(t) > 0, I (t) > 0, R(t) > 0, and
W (t) > 0 for t ∈ (0, t1), or
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– t2: Se(t2) = 0, Ṡe(t2) < 0, S(t) > 0, E(t) > 0, A(t) > 0, I (t) > 0, R(t) > 0, and
W (t) > 0 for t ∈ (0, t2),

Using the first equation of (2), the first assumption leads to

Ṡ(t1) = 0 ≥ 0 (6)

which contradicts the assumption that Ṡ(t1) < 0. Therefore, S(t) remains non-negative for
all t > 0.

Considering the second assumption and second equation of (2), we have

Ṡ(t2) = σeS > 0. σ, e > 0 (7)

which contradicts the assumption that Ṡ(t2) < 0. Hence, Se(t) remains non-negative for all
t > 0.

Based on the third equation of (2), we have

Ė(t) = λS + (1 − ρ)λSe − (η + μ)E ≥ −(η + μ)E . (8)

The resulting equation (8) yields

E(t) ≥ E(0)e−(η+μ)t ≥ 0. (9)

Similarly, for the last fourth equations of (2) , we have
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

A(t) ≥ A(0)e−(θ+γ1+μ)t ≥ 0,

I (t) ≥ I (0)e−(μ+γ2+δ)t ≥ 0,

R(t) ≥ R(0)e−μt ≥ 0,

W (t) ≥ W (0)e−ψ t ≥ 0.

(10)

Therefore, the state variables of the model system (2) are non-negative for all t > 0.
The equation for the change in the total population is obtained by adding the first six

equations of (2) such that

Ṅ (t) = π − μN − δ I ≤ π − μN . (11)

The solution to the resulting inequality is given by

N (t) ≤ π

μ
+

(
N (0) − π

μ

)−μt

. (12)

Hence, considering the initial population such that 0 ≤ N (0) ≤ π
μ
, by Gronwall inequality,

we have

0 ≤ N (t) ≤ π

μ
. (13)

Considering the free virus in the environment, we have

Ẇ (t) = ξ1A + ξ2 I − ψW ≤ (ξ1 + ξ2)
π

μ
− ψW , (14)

which on applying the Gronwall inequality, for the initial conditions 0 ≤ W (0) ≤ (ξ1+ξ2)π
μψ

,
leads to

0 ≤ W (t) ≤ (ξ1 + ξ2)π

μψ
. (15)
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Therefore, both the human population under consideration and the density of the pathogen
are non-negative and bounded. Combining the above two steps in line with Theorem 2.1.5
in [32] describing the existence of unique bounded solutions, then the domain of biological
significance Ω is positively invariant. ��

2.1.1 Baseline model basic reproduction number

To find the model basic reproduction number denoted by R0, we use the next generation
matrix method which is detailed in [35] and found out

R0 = β1 (	ηθ + (1 − 	)ηk2)

k1k2k3
+ β1ν	η

k1k2
+ β2π [	ηξ1k1 + 	ηθξ2 + (1 − 	)ηk2ξ2]

k1k2k3μψK
,

where k1 = η + μ, k2 = θ + γ1 + μ, and k3 = γ2 + μ + δ.
The next result follows from Theorem 2 of [2].

Theorem 2 The DFE E0 of the model (2) is locally asymptotically stable whenever R0 < 1
and unstable if R0 > 1.

The epidemiological implication of Theorem 2 is that the transmission of coronavirus
can be controlled by having R0 < 1 if the initial total numbers of the sub-populations
involved in Eq.(2) are in the basin of attraction of E0. To ensure that eliminating the disease
is independent of the initial size of the subpopulation, the disease-free equilibrium must be
globally asymptotically stable when R0 < 1. This is what we present next.

Theorem 3 The disease free equilibrium E0 is globally asymptotically stable whenever R0

is less than unity.

Proof To prove global stability of the disease free equilibrium E0 we use a suitably defined
Lyapunov function. We consider a C1 candidate Lyapunov function G such that

G = aE + bA + cI + dW , (16)

where a, b, c and d are non-negative constants to be determined. The derivative of the
Lyapunov function is given by

Ġ = aĖ + bȦ + cİ + dẆ ,

= a [λS + (1 − ρ)λSe − k1E] + b [	ηE − k2A] + c [(1 − 	)ηE + θ A − k3 I ]

+d [ξ1A + ξ2 I − ψW ] ,

≤ a

[
β1(I + νA) + β2W

π
μ

K
− k1E

]

+b [	ηE − k2A] + [(1 − 	)ηE + θ A − k3 I ] + d [ξ1A + ξ2 I − ψW ] ,

= [−k1a + bη	 + (1 − 	)ηc] E + [aβ1ν − bk2 + cθ + dξ1] A + [aβ1 − ck2 + dξ2] I

+
[
a

β2
π
μ

K
− dψ

]
W .
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We equate the coefficients of E , I and W to zero and letting c = 1, we obtain the values,

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c = 1,

b =
(
β1ν(1−	)ηψK+θk1ψK+β2(1−	)ηξ1

π
μ

)

k1k1ψK−
(
β1ν	ηψK+β2	ηξ1

π
μ

) ,

a = b	η+(1−	)η
k1

,

d = β2(b	η+(1−	)η) π
μ

k1ψK .

(17)

Using the coefficients obtained in (17), the derivative of the Lyapunov function reduces to

Ġ ≤ −ψ2k21K
2k2k3(1 − R0)I .

We note that whenR0 < 1, Ġ < 0 and equality is achieved whenR0 = 1 or I = 0 which is
at the disease free equilibrium. By the LaSalle invariance principle (see [17]), the equilibrium
E0 is globally asymptotically stable. ��

2.2 Endemic equilibrium of the baselinemodel

To determine the endemic equilibrium of the baseline model at E1 = (S∗, S∗
e , E

∗, A∗, I ∗,
R∗,W ∗), we equate the left hand side of the model system (2) to zero and obtain

0 = π − (λ∗ + σe∗)S∗ − μS∗, (18a)

0 = σe∗S∗ − (1 − ρ)λ∗S∗
e − μS∗

e , (18b)

0 = λ∗S∗ + (1 − ρ)λ∗S∗
e − k1E

∗, (18c)

0 = 	ηE∗ − k2A
∗, (18d)

0 = (1 − 	)ηE∗ + θ A∗ − k3 I
∗, (18e)

0 = γ1A
∗ + γ2 I

∗ − μR∗, (18f)

0 = ξ1A
∗ + ξ2 I

∗ − ψW ∗. (18g)

From equations (18d), (18e), (18f) and (18g),

A∗ = Φ1E
∗, where Φ1 = 	η

k2
, (19)

I ∗ = Φ∗
2 E

∗, where Φ2 = (1 − 	)η + θΦ1

k3
, (20)

R∗ = Φ3E
∗, where Φ3 = γ1Φ1 + γ2Φ2

μ
, (21)

W ∗ = Φ4E
∗, where Φ4 = ξ1Φ1 + ξ2Φ2

ψ
. (22)

Adding up the equations (18a), (18b) and (18c), and using the expression for the total popu-
lation N , we obtain

N∗ = π

μ
− Φ5E

∗, where Φ5 = η

μ
− (Φ1 + Φ2 + Φ3) . (23)

Using the expression for the force of infection at equilibrium λ∗ and substituting the appro-
priate terms, we obtain
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λ∗ = (Φ6 − Φ7E∗) E∗
π
μ
K + Φ8E∗ − Φ9(E∗)2

, (24)

where ⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Φ6 = β1 (Φ2 + νΦ1) K + β2Φ4
π
μ

Φ7 = [β2Φ5 − β1 (Φ2 + νΦ1)]Φ4

Φ8 = π
μ
Φ4 − Φ5K

Φ9 = Φ4Φ5.

(25)

From equation (18c), we can express S∗
e in terms of S∗ as E∗ such that

S∗
e = k1E∗ − λ∗S∗

(1 − ρ)λ∗ .

Substituting for S∗
e in (18b), we obtain

S∗ =
[
(1 − ρ)λ∗k1 + μk1

]
E∗

[(1 − ρ)(σe∗ + λ∗) + μ] λ∗ .

Substituting for S∗ in equation (18a), we obtain

π
[
(1 − ρ)(σe∗ + λ∗) + μ

]
λ∗ = (

λ∗ + σe∗ + μ
) [

(1 − ρ)λ∗k1 + μk1
]
E∗. (26)

We note from the expression (24) that λ∗ is expressed in terms of E∗. On substituting for λ∗
and e∗ into equation (26), we obtain one of the roots as E∗ = 0, which corresponds to the
disease free equilibrium. When E∗ �= 0, noting that E∗ is constant, we obtain a polynomial
of the order n + 4 given by

E∗n [
C4E

∗4 + C3E
∗3 + C2E

∗2 + C1E
∗ + C0

]

+
(
1

η
E∗

)n [
D4E

∗4 + D3E
∗3 + D2E

∗2 + D1E
∗ + D0

]
= 0, (27)

where the coefficients Ci for i = 1, 2, 3, 4 are such that

C4 = k1μ(μ + σ)Φ2
9 + (1 − ρ)k1Φ

2
7 + k1[(1 − ρ)(σ + μ) + μ]Φ7Φ5Φ4

C3 = −2(1 − ρ)k1Φ6Φ7 − k1((1 − ρ)(σ + μ) + μ) (Φ7Φ8 + Φ6Φ9) − (1 − ρ)πΦ2
7

−π((1 − ρ)σ + μ)Φ7Φ9 − 2μk1Φ8Φ9(σ + μ),

C2 = (1 − ρ)k1Φ6 + 2(1 − ρ)πΦ6Φ7 + k1((1 − ρ)(μ + σ) + μ)
(
Φ6Φ8 − π

μ KΦ7

)

+π(μ + (1 − ρ)σ ) (Φ7Φ8 + Φ6Φ9) + k1μ(μ + σ)
(
Φ2
8 − 2π

μ KΦ9

)
,

C1 = π
μ k1Φ6K ((1 − ρ)(σ + μ) + μ) − (1 − ρ)πΦ6 − π(μ + (1 − ρ)σ )

(
Φ6Φ8 − π

μ KΦ7

)

2πk1K (σ + μ)Φ8,

C0 = k1π
2K 2 + σk1

π2

μ
K 2 − μπΦ6

π
μ K − (1 − ρ)πσΦ6

π
μ K ,

and the coefficients Di for i = 1, 2, 3, 4 are given by

D4 = (1 − ρ)k1Φ
2
7 + μ(2 − ρ)k1Φ7Φ9 + μ2k1Φ

2
9

D3 = −2(1 − ρ)k1Φ6Φ7 − (1 − ρ)πΦ2
7 − μ(2 − ρ)k1(Φ7Φ8 + Φ6Φ9)

−μπΦ7Φ9 − 2μ2k1Φ8Φ9,
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D2 = (1 − ρ)k1Φ6 + 2(1 − ρ)πΦ6Φ7 + μ(2 − ρ)k1
(
Φ6Φ8 − π

μ
KΦ7

)

+μπ (Φ7Φ8 + Φ6Φ9) + μ2k1
(
Φ2

8 − 2π
μ
KΦ9

)
,

D1 = (2 − ρ)πk1Φ6K − (1 − ρ)πΦ6 + μπ
(

π
μ
KΦ7 − Φ6Φ8

)
+ 2μπk1KΦ8.

D0 = π2k1K
2 − π2KΦ6 = π2k1K

2(1 − R0).

We note that D0 is negative for R0 > 1 and positive when R0 < 1 whereas C4 is always
positive (not difficult to observe it after simplification). In addition, the total number of
possible positive real roots of the polynomial (27) depends on the signs of the coefficients.
To determine the total number of positive roots of equation (27), we use Descartes’ rule of
signs [7]. According to Descartes’ rule of signs, total number of positive real zeros is either
the same as the total number of sign changes of the coefficients of the polynomial or less
than the total number of sign changes by even number. Hence, we state the next theorem for
the existence of endemic equilibrium.

Theorem 4 The model system (2) has at least one endemic equilibrium when R0 > 1.

Theorem 5 For the model system (2), the endemic equilibrium guaranteed by Theorem 4 is
locally asymptotically stable for R0 close to one.

The proof of Theorem 5 follows from the Center Manifold Theorem in [3].

3 Model with isolation

The baseline model described above does not consider the effect of isolating/quarantining
and hospitalizing infected individuals as part of the dynamical process. However, practi-
cally individuals who tested positive for COVID-19 are being isolated/quarantined (and/or
hospitalized) so that they do not further spread the disease to others. In this section we
modify the baseline model to include the cohort of individuals, denoted by Q, who are iso-
lated/quarantined after tested positive to the disease. Note that, hospitalized individuals have
the same effect as the isolated/quarantined ones in terms of their ability to mix with others
and thereby passing the infection. Therefore, we assume that hospitalized individuals are
subsets of the cohort Q. The corresponding mathematical model is given in Eq. (28) below.

Ṡ = π − (λ + σe + μ)S,

Ṡe = σeS − [(1 − ρ)λ + μ] Se,

Ė = λS + (1 − ρ)λSe − (η + μ)E,

Ȧ = 	ηE − (θ + φ1 + γ1 + μ)A,

İ = (1 − 	)ηE + θ A − (φ2 + γ2 + μ + δ)I ,

Q̇ = φ1A + φ2 I − (γ3 + μ + δ)Q,

Ṙ = γ1A + γ2 I + γ3Q − μR,

Ẇ = ξ1A + ξ2 I − ψW ,

(28)

In this model, the parameters φ1 and φ2 represent the rate at which people are tested to
be positive from the asymptomatic and symptomatic cohorts and being transferred to the
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isolated/quarantined section, whereas γ3 is the rate at which the isolated/quarantined indi-
viduals recover from the disease. Since themodifiedmodel has shown the samemathematical
analysis as the baseline model and the value of Ro does not change, we omitted the presen-
tation of the analysis here. However, we present the numerical simulations of this model to
demonstrate the effect of some intervention mechanisms, especially the Non-Pharmaceutical
interventions (NPIs) on the long term dynamics of the disease. To this effect, we first estimate
the parameters involved in system equation (28) and analyse the sensitivity of the threshold
values corresponding to any variation in the values of these parameters.

3.1 Parameter estimation and sensitivity

To estimate the values of parameters and study their sensitivity, the mathematical model
system (28) is fitted to the new cases and disease related deaths data from South Africa.

3.1.1 Parameter estimation

The life expectancy of South Africa has been fluctuating with a major decline observed from
1990 to 2005 where it declined from 63.25 to 53.9. Since 2005, the life expectancy has been
increasing and stands at 64.12 years in 2020 [20]. The estimated total population of South
Africa is 59, 414, 253 [37]. We therefore use the value of π such that π = μ × N0. For
detailed selection of ranges of parameters related to the biology of the disease, see [16]. The
mean incubation period for the novel coronavirus has been reported at an average value of
5.2 days [4]. In some cases the incubation period has been observed to vary in a range of
2–14 days with outliers observed in a range of 0–27 days [38]. We select a sampling range
of (0.071, 0.2) which is equivalent to the mean period of 5–14 days with our model fit giving
the incubation period of about 6.2 days. The recovery rate of the infected individuals varies
considerably depending on their immune fitness (influenced by co-morbidities and age, as
mentioned in [4]) as well as severity of the disease. According to the CDC report in [5]
patients who showed mild to moderate symptoms remained infectious for a period not longer
than 10 days from the time symptoms were first detected, whereas those with more severe
symptoms and those whose immune system was compromised remained infectious for no
longer than 20 days. It should be noted that these are average values taken from various
studies.

In this subsection, we shall consider the numerical simulation of the model against known
data and then we will indicate the long term prediction of the dynamics of the disease in the
population.

As can be seen from Fig. 1, the solution of the model fits very well with both the daily new
cases data and the data for daily deaths. With the same continued state of the disease without
much change, the prediction of the peak of the disease is after the first week of November
2020 as it can be observed from Fig. 2. This period is equivalent to about 250 days from
when the first case was reported.

We note also that the asymptomatic new cases may not in most cases be detected but
still largely wreak havoc as silent super-spreaders. The model simulations depict that all the
subclasses would reach the peak around the same time.
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Fig. 1 Model fit to the data. a Model fitting with new cases data, b model fitting with daily death data

Fig. 2 Model simulation of the transmission depicting daily new cases

3.1.2 Sensitivity analysis

To carry out sensitivity analysis of the model input parameters to the model output, which
in this case is the disease threshold. We use the Latin Hypercube sampling (LHS) scheme
explained in [1,10] to simultaneously sample the input parameter space and compute the
values of the reproduction number as the output. The graphical representation of the PRCCs
is indicated in the Tornado plot, Fig. 3a. For the sampled parameter spacewith the peak values
as the nominal values indicated in Table 2, we produce a box plot (Fig. 3b) summarising key
information about the computed reproduction number (R0), that is, the minimum value,
lower quartile, the median, the upper quartile, the observed maximum, and outliers.

The obtained values ofR0 from the LHS scheme are in the range (0.5, 3). From the results
depicted in the box plot, Fig. 3b, it is evident that although the median value of the computed
reproduction number is greater than 1, we can still find combinations of parameter values for
which the reproduction number is less than 1, in which case the disease can be contained.
In the same respect, we can find combinations of parameter values for which the underlying
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Fig. 3 PRCCs of sampled parameter values. a the Tornado plot summarising the PRCCs of the sampled param-
eter. The parameterswith positive PRCCs indicate processes that canmake the epidemicworsewhen increased
and those with negative PRCCs can help contain the epidemic when increased. b gives the five-number (i.e.,
the minimum, lower quartile, median, upper quartile, and the maximum) summary of the computed values of
R0 from the sampled parameter space

Table 2 Estimated baseline parameter values

Parameter Unit description Range Nominal value Source

π Persons day−1 μ × N0 [20,37]

β1 contacts day−1 (0.1274, 0.2624) 0.26097 Fitted

β2 contacts day−1 (0.00274, 0.0100274) 0.002787 Fitted

ν Relative value (1.1, 2.1) 1.975 Fitted

K Pathogen concentration (104, 107) 9, 999, 885 Fitted

μ day−1 (1/(64.12 × 365)) [20]

σ day−1 (0.18, 0.67) 0.637 Fitted

η day−1 (0.071, 0.20) 0.1632 Fitted

ρ Proportion (0.32, 0.475) 0.3233 Fitted

	 Proportion (0.48, 0.83) 0.8172 Fitted

θ day−1 (0.0714, 0.1429) 0.1141 Fitted

γ1 day−1 (0.07, 0.12) 0.08385 Fitted

γ2 day−1 (0.01, 0.08) 0.0761 Fitted

δ day−1 (0.10, 0.235) 0.1746 Fitted

ξ1 day−1 (0.01, 0.22) 0.0148 Fitted

ξ2 day−1 (0.01, 0.35) 0.02199 Fitted

ψ day−1 (0.3333, 3.4285) 1.9119 Fitted

γ3 day−1 (0.07, 0.15) 0.07343 Fitted

φ1 day−1 (0.01, 0.30) 0.0132 Fitted

φ2 day−1 (0.35, 0.70) 0.4194 Fitted
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Table 3 Parameter PRCC
significance (FDR adjusted
p-values)

Variable PRCC p value Keep

β1 0.5928 0.00000 TRUE

β2 0.1363 4.597 × 10−05 TRUE

ν 0.2825 0.00000 TRUE

σ −0.0205 5.553 × 10−1 FALSE

η 0.0353 3.130 × 10−1 FALSE

ρ −0.0005 9.875 × 10−1 FALSE

	 0.0732 3.450 × 10−2 TRUE

θ −0.0385 3.032 × 10−1 FALSE

γ1 −0.0498 1.721 × 10−1 FALSE

γ2 −0.0972 4.492 × 10−3 TRUE

δ −0.1857 1.254 × 10−8 TRUE

ξ1 0.0349 3.130 × 10−1 FALSE

ξ2 0.1327 6.574 × 10−5 TRUE

ψ −0.1932 3.486 × 10−9 TRUE

φ1 −0.5522 0.00000 TRUE

φ2 −0.0788 2.372 × 10−2 TRUE

processes can make the epidemic worse. The p-values for the PRCCs are computed after
performing Fisher transformation as explained in [1,16]. The results are indicated in Table 3.

For the parameters whose PRCCs with p-values less that 0.05, we carry out pairwise
comparison with the null hypothesis, H0 being that the compared sensitive parameters are
significantly different. The p-values are computed between the compared parameters. The
results are summarised in Table 4.

To reduce the likelihood of making a Type 1 statistical error, False discovery rate adjusted
p-values are computed and the results are summarised inTable 5.Amore detailed explanation
of the FDR process for a similar computation is given in [16].

The pairwise compared parameter values whose FDR adjusted p-values are less that 0.05
are observed to be significantly different and therefore the null hypothesis that “the compared
parameters are significantly different” can not be rejected. The summary given in Table 6
is based on the results presented in Table 5 where “TRUE” indicates that the compared
parameters are observed to be significantly different whereas the “FALSE” indicates that the
compared parameters have p-value greater than 0.05 and therefore, the null hypothesis is
rejected.

3.2 Herd immunity

Assuming that individuals recover from the disease with permanent immunity, the disease
may eventually be blocked from being spread in the population if a certain proportion of the
society is being recovered from the disease even though some few people are still susceptible.
This phenomena is called the herd immunity of population. Herd immunity is a form of
indirect protection for susceptible individuals in a populationwhere having enough recovered
(or vaccinated, if vaccination is available) individuals in the population decrease the number
of susceptible hosts for an infectious agent, thus preventing or limiting the spread of disease
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Table 6 Are the parameters different after FDR adjustment?

β1 β2 ν 	 γ2 δ ξ2 ψ φ1 φ2

β1 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

β2 TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE

ν TRUE TRUE TRUE TRUE TRUE TRUE TRUE

	 TRUE TRUE FALSE TRUE TRUE TRUE

γ2 FALSE TRUE TRUE TRUE FALSE

δ TRUE FALSE TRUE TRUE

ξ2 TRUE TRUE TRUE

ψ TRUE TRUE

φ1 TRUE

φ2

[29]. In such situations if cases of the disease do occur, they are often easier to isolate or
contain.

The proportion of the population that need to be infected to arrive at the herd immunity
level depends on the value of the reproduction number, R0, of the disease dynamics and is
given by

R0 − 1

R0
= 1 − 1

R0
.

Therefore,many of thewould-be possible transmissions of the disease fall on those recovered
(and hence immune) individuals in the population [6]. That means, after (1 − 1/R0)%of the
total population is infected the disease may eventually die out (at least temporarily) until the
mix of the population changes. For instance, if the disease is withR0 = 2.5, herd immunity
occurs nominally when (1 − 1/2.5) = 60% of the total population have been infected. If the
value of R0 of the disease is large, then herd immunity threshold will be small.

In particular, our parameter estimation from the daily new cases and death data of South
Africa results in the value of R0 to be approximately equal to 2.8. Therefore, according to
the above formula, the phenomena of herd immunity for COVID-19 in South Africa can be
observed only after nearly 64% of the total population is recovered from the disease.

Reducing contacts and the transmission probability of the disease as well as isolat-
ing/quarantining the infectious individuals are known to have an effect on the actual value of
R0. In addition to this, vaccination also contributes to the reduction of this threshold value.
The next section considers the implementation of various forms of preventions, as well as
isolating/quarantining (and/or hospitalization) of the infectious individuals.

4 Effect of various disease control measures

4.1 Environmental control

The environment is assumed to be one source that contributes to the spread of the disease.
Reducing the effective contact rate of the population to the contaminated environment by
disinfecting the environment and applying strict hygiene rulesmay contribute to the reduction
of the new infections. Such interventions have two fold effect; (1) it reduces the environmental
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Fig. 4 Effect of environmental control on the number of new infections

transmission rate (β2) and (2) it increases the pathogen decay rate (ψ) when the contaminated
surfaces are disinfected. The effect of increasing the percentage of environmental control
mechanisms is simulated in Fig. 4. The baseline in the legends of the simulation figures
refers to the case where parameter values are the nominal values in Table 2, which portray
the dynamics of the disease by the time the data is collected.

We note that improved sanitation and disinfecting of surfaces contribute to not only in
lowering the peak values of daily new cases but also the peaks are attained at a later stage.
The delayed outbreak may be vital for the government to have enough time to prepare the
healthcare system to be able to manage the surge in the number of cases. In addition, the
scenarios explored predict that the disease may remain in the population for a relatively long
time, as can be seen in Fig. 4 unless other control measures are taken concurrently.

4.2 Effect of reducing transmission rates

When people use facemasks and keep their distance fromothers, they are effectively reducing
the rate of contact with a potentially infectious individuals. The model can measure the effect
of this control measure by the amount of reduction in the transmission rate from infected
humans (β1) and from contaminated environment (β2).

The controls are assumed to have an impact on both β1 and β2 and the reductions on these
values are formulated by multiplicative terms:

1 − �H × χH and 1 − �E × χE ,

where �H and �E represent the efficacy of the control measures on the transmission from
humans and environment, respectively, and χH , χE are representing the percentage of cov-
erage in each case. However, the coverage level may not be constant as the level of alertness
of individuals in implementing and enforcing the intervention measures decays as time goes
on. To address this, we modeled this values as

χH (t) = cH × ea−r t and χE (t) = cE × ea−r t ,
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Fig. 5 Effect of the combination of use of face covering and physical distancing on the number of new
infections

where cH and cE are the targeted percentages, a is the initial level of alertness and r is the
decay rate. In our simulations, we used a = 0.15 and r = 0.001 per day.

Therefore, to produce Fig. 5 we used

(1 − �H × χH (t))β1 and (1 − �E × χE (t))β2

in place of β1 and β2, respectively, in system equation (28). In the simulation for the current
and the next subsections, the implementation of control measures is assumed to start after
July 18, which is equivalent to 137 days after the first case was reported in South Africa.

We note on one hand that, if the efficacy of the control measures for both person-to-person
transmission and from contaminated surfaces is capped at 35%, it would require a population
coverage of at least 80% in order to curb new infections or reduce them to minuscule levels.
On the other hand, if resources only allow for the coverage of the control effort to only reach
up to 60% of the population, then the intervention processes ought to have the efficacy level
of at least 45% if the new infections are to be reduced to manageable numbers.

4.3 Effect of increasing random testing and isolating

The purpose of random testing is to identify asymptomatically infectious individuals and
isolate them. Therefore, its main epidemiological effect can be tested by increasing the value
ofφ1 in themodel system (28). The first case in this regard corresponds to the casewhere there
is no other control mechanism except isolating/quarantining the positively tested individuals.
The baseline value of φ1 in the simulations corresponds to the nominal values obtained from
the data fit and is reported in Table 2. To examine the effect of increasing random testing
and isolating/quarantining, we vary the parameter φ1 by several folds from the baseline value
and ascertain the potential effect on the peak values of new infections as well as the relative
time within which the peaks are attained. Our results are presented in Fig. 6.

As can be observed from Fig. 6, increasing the value of φ1 significantly reduces the new
infectionwith high impact. The numbers in the legend of the figure correspond to the increase
in φ1 by 3.8 folds, 5.7 folds and 7.6 folds respectively. Our results show that increasing the
detection and isolating of asymptomatic individuals by 3.8 folds leads to a reduction in daily
new infections by 64.7%. A 5.7 folds increase in testing and isolating is associated with a
72.8% reduction in the number of daily new cases. More still, a 7.6 folds increase in testing
and isolating/quarantining can lead to up-to 75.7% reduction in daily new infections. For the
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Fig. 6 Impact of scaling up random testing on the number of new infections

Fig. 7 Impact of scaling up random testing as an additional control.

three cases, the peak is reached earlier by 33 days, 48 days and 66 days respectively. See
Fig. 6 for detailed illustration.

On the other hand, while using face covering and physical distancing control measures
that have an average of 35% efficacy with 60% coverage, it is also possible to increase
effectiveness of the controls by increasing the percentage of detecting the asymptomatically
infectious individuals in the society. This effect can be seen in Fig. 7.
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5 Model with hypothetical vaccination and inflow of population

The baseline model considered in the previous sections assumes that the population is in a
closed system and there is no inflow of individuals into the country. This assumption holds
only for a short period of time in many countries. However, as can be observed in various
places, countries are being opening their borders allowing people to enter from other places,
even if some control measures are being implemented to avoid imported infection cases.
Such control mechanisms can be implemented strictly if all incoming individuals are using
only the legal border crossing of the country. However, in some countries people may cross
the borders using informal crossings where authorities may not be able to control them. Such
“illegal” ways of crossing borders are common in many countries in Southern Africa as
some people have their relatives or their tribal elders residing across borders. This situation
is incorporated in model system Eq. (29). In this model, we assume that the rate of inflow (or
immigration) is Λ, of which q percent enter the country through official border crossings so
that they can be screened and tested for their status of COVID-19 infection. The remaining
proportion are assumed to cross the border illegally and mix with the domestic population
freely without them being tested and their disease status known. Here, we also assume that
p percent of the illegally crossing individuals are already exposed and the remaining (1− q)
proportion of them are asymptomatically infectious.

Ṁ = qΛ − (α1 + α2 + μ)M,

Ṡ = π + (1 − r)α1M − (λ + σe + ε1 + μ)S,

Ṡe = rα1M + σeS − [(1 − ρ)λ + ε2 + μ] Se,

V̇ = ε1S + ε2Se − μV ,

Ė = (1 − q)pΛ + λS + (1 − ρ)λSe − (η + μ)E,

Ȧ = (1 − q)(1 − p)Λ + 	ηE − (θ + φ1 + γ1 + μ)A,

İ = (1 − 	)ηE + θ A − (φ2 + γ2 + κ1 + μ)I ,

Q̇ = α2M + φ1A + φ2 I − (γ3 + κ2 + μ)Q,

Ḣ = κ1 I + κ2Q − (γ4 + μ + δ)H ,

Ṙ = γ1A + γ2 I + γ3Q + γ4H − μR,

Ẇ = ξ1A + ξ2 I − ψW ,

(29)

Moreover, model system (29) assumes that there is a working vaccination for COVID-19
and the susceptible (S) class of the population are immunized at the rate of ε1 while the
aware-susceptible (Se) class of individuals get vaccinated at the rate of ε2. Due to their high
level of awareness and decision to apply any preventive mechanisms, we assume that a larger
proportion of individuals from the Se class will be vaccinated as compared to the S class.
Therefore, we assume in this model that ε2 > ε1. In addition, hospitalized individuals are
considered as a separate class and is denoted by H . Therefore, in this case, the force of
infection in the transmission dynamics of the disease takes the form

λ = β1
I + ν1A + ν2H

N − Q − M
+ β2

W

K + W
, (30)

where N = M + V + S + Se + E + I + A + Q + H + R. Since the individuals in the
H class stay in the protected area being visited by health workers only, their possibility of
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Table 7 Description of the additional state variables and parameters

Variables Description

M Newly immigrated population who are isolated for testing

V Vaccinated individuals

H Hospitalized individuals

Parameters Description

Λ Rate of immigration to the country

q Rate of legal migration to the population

p Fraction of illegally migrated individuals who are exposed

εi Rate of vaccination

r Fraction of immigrated individuals who are tested negative and

who move into the Se class

α1 Proportion of immigrated individuals who are tested negative

α2 Proportion of immigrated individuals who are tested positive (α2 = 1 − α1)

κi Rate of hospitalization

passing the disease to others is limited. However, since there is a possibility of the disease
being transmitted to the people working in the health facilities, we assumed that ν2 << 1.

The mathematical analysis of the model system (29) follows a similar structure as in the
analysis presented in Sect. 2. However, we omitted presenting it here for brevity. We rather
present the simulation of this model for some varying cases of the newly added parameters
and variables.

The description of the additional state variables and new parameters that are involved in
the formation of the general model system (29) are presented in Table 7.

5.1 Impact of immigration

We consider three cases as follows: (1) In the first case, it is assumed that there is no immigra-
tion or emigration, where borders are completely closed. We assume that in the case where
there is any cross border movement of goods, “relay driving” is adopted such that trucks are
exchanged at the border points and the persons drive only within their respective countries
of residence at the time. In this scenario (see blue curve (or the broken line curve) in Fig. 8),
the simulations predict an early out break with the new daily infections reaching a peak
early on in the course of the pandemic with the peak values registered daily new case at
about 14, 000. (2) In the second case, we consider a scenario where there is a cross-border
movement with about 95% of the individuals go through legitimate channels while about 5%
of the immigrants are presumed to use illegal crossings and that these individuals are either
exposed or asymptomatically infected. This scenario is depicted in the magenta curve (or
the solid line curve) in Fig. 8. In this case one can observe a delay in the outbreak but with
higher peak values of daily new cases compared to the case with no migration. The model
predicted delay in the outbreak can be attributed to a reduced probability of infection since
the incidence term is based on standard incidence. Therefore, the influx of many susceptible
individuals means that when there are few infected cases at the beginning, the likelihood that
susceptible individuals will get in contact with an infected individual will be low.
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Fig. 8 Impact of controlled and uncontrolled migration on the side of the epidemic. Here, the baseline curve
corresponds to the parameter values: Λ = 198.37, q = 0.95, p = 0.66, ν2 = 0.12, r = 0.194, α1 =
0.359, κ1 = 0.25, κ2 = 0.005 with no vaccination

(3) In the third case, it is assumed that all border posts are in full control of the migration
process and standard operating procedures are followed. In this scenario, we assume that at
the border posts, only uninfected persons are allowed to cross whereas the infected ones are
either turned back or sent to mandatory isolation/quarantine. The predicted simulation for
this scenario is depicted in the black curve (or the dotted line curve) in Fig. 8. More still,
this inflow of individuals results in a low probability of susceptible persons meeting infected
individuals in the initial stages of the pandemic which is depicted by a delayed outbreak. We
note however that the peak values reached of daily new infections will be higher. In all the
three cases, the equilibrium daily new case remain at relatively the same level and the disease
is predicted to remain prevalent with intervention measured implemented.

5.2 Potential impact of the vaccine

We incorporate the vaccinated class in the model to establish how the use of a vaccine can
potentially influence the number of daily new infections in the long term. We assume avail-
ability of a highly effective vaccine and ascertain how vaccination coveragemay influence the
pandemic dynamics. In the model simulations, we test four vaccination cases as indicated in
Fig. 9. The depicted cases include, the baseline case (magenta or the solid line curve depicts
a scenario with no vaccination implemented) and cases with 10% vaccination coverage (blue
curve or the broken line curve), 30% vaccination coverage (red curve or the broken dotted
curve), and 98% vaccination coverage (black curve or the dotted line curve). It is evident
that if a highly effective vaccine is used with high coverage, it can potentially curtail new
infections.

We also note however that, when immigration is allowed into the country, even a 98%
vaccination coverage may not completely stop new infections. This can be observed from
the simulation in Fig. 9 that after a hypothetical effective vaccination is implemented with a
coverage of 98% the number of new cases stabilizes at around 300 new cases per day, which
is close to the assumed rate of inflow of immigrants into the country. That means, unless a
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Fig. 9 Impact of applying vaccination on the severity of the infection. The baseline in the figure also corre-
sponds to the parameter values given in the caption for Fig. 8

country is completely isolated from the remaining world, or apply a mandatory vaccination
for the incoming individuals, it is not possible to eradicate the infection from the country. We
therefore, recommend that, if a vaccine is available, universal vaccination will be the ideal
protocol if the new infections are to be curbed.

6 Discussion and conclusion

Amathematical model that analyses the transmission dynamics of COVID-19 in presences of
both person-to-person contact and environmental transmission and contamination is consid-
ered. The model analyses the impact of implementing specific levels of NPI’s on the disease
severity, the number of daily new cases and conditions under which the preventive measures
can be used to effectively contain the disease. The constructed models are composed of
the baseline model, and extensions to the baseline model to account for testing and isolat-
ing/quarantining/hospitalised of both asymptomatic and symptomatic infected individuals,
and a further extension on the model to include the inflow of immigrants to the country as
well as a hypothetical vaccination.

The basic analysis of the model properties was done on the baseline model. The model
properties including, positivity, boundedness, existence and stability of the equilibriumpoints
were established. The model was shown to have a disease free equilibrium which is globally
asymptotically stable and an endemic equilibriumwhich existswhenR0 is greater than unity.

The extended model incorporating testing and isolating/quarantining the confirmed ones
was fitted to COVID-19 new cases data for South Africa and the parameter values are
determined. For the obtained baseline parameter values, the basic reproduction number (R0)
evaluated was approximately 2.8. The model was observed to fit well to the data on daily
new cases and the daily new deaths. The basic simulation of the baseline model without
implementing any control measures predicted that the number of daily new cases would reach
the peak around 250 days from the time the first new case was reported. This time period was
estimated to be after the first week of November 2020 if no interventionmeasures were taken.
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Sensitivity analysis of the model was carried out using the Latin hypercube sampling scheme
with the output being the reproduction number which is the disease threshold parameter.
Our results indicated that the processes described by parameters that are related to contact
between susceptible individuals and those infected as well as with the contaminated surfaces
had the greatest potential of making the epidemic worse when left unabated. In addition, the
relative contribution to new infections by asymptomatic individualswas observed to be highly
significant. We further observed that testing and isolating/quarantining infected individuals
is significant in curtailing daily new infections. It is therefore, vital to enhance detection
and isolating/quarantining of infected persons if the disease is to be contained. Pairwise
comparison of the parameter values with significant PRCCs was carried and most pairs of
parameters were observed to be significantly different and hence the processes described by
such parameters.

Various interventions and control measures including, environmental transmission con-
trols, reduction in transmission rates as well as increasing random testing and isolat-
ing/quarantining of infected individuals are studied and numerically tested. Our results
show that environmental control and disinfected surfaces is associatedwith lower and delayed
peaks of new daily infections. It was further shown that use of face covering and physical
distancing are vital preventive measures in curtailing the number of daily new infected cases.
Furthermore, our simulations suggest that, in absence of other control measures, it would
require increasing the effort of testing and isolating/quarantining from the baseline value
about 7.6 folds to realise a reduction in the number of daily new cases by 75.7%.

Using the extended model that incorporates the use of a hypothetical vaccine and cross
border migration, different aspects of vaccination coverage were explored and the potential
effect on the daily new infections. In addition, migration patterns were explored consider-
ing two scenarios namely; (1) migrations characterised by control by immigration officials
implementing SOPs but also in presence of illegalmigrations, with just about 5%of the illegal
immigrants either exposed or asymptomatically infected; (2) a case where there is full con-
trol of the border crossings with no possibility for illegal crossings. The case characterised
with migration through illegal crossings was tested with a consideration of vaccination to
ascertain the effect on daily new cases. Our results suggest that in presence of the vaccine,
as long as migration is in place, even a 98% vaccination coverage may not be enough to curb
new infections. We therefore suggest that if a highly effective vaccine is made available, it
may be necessary to implement universal coverage if the new infections are to be completely
contained.
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